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THE RPC3BP

RESTRICTEDPLANARCIRCULAR3BP

We consider:

@ Planar: the motion takes place into a plane.
@ Restricted: one body is massless, i.e. m3 = 0.

@ Circular: the two bodies with mass (primaries) move in a
circular motion of the same period T.

@ Changing unities: my =1 — u, mo = pand T = 2~.
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@ Changing unities: my =1 — p, mo = pand T = 2.
@ In rotating (synodic) coordinates, the primaries are located at (¢, 0) and ( — 1,0) and the
massless body follows a 2 degrees of freedom autonomous hamiltonian system.
The massless body follows the hamiltonian

IIPIIZ_qT(o 1)p_ 1—p u .
2 -1 0 g = (1w 0) g —(u—1,0)

I.B. (UPC) BEYOND ALL ORDER 3/13



THE RPC3BP

RESTRICTEDPLANARCIRCULAR3BP

We consider:

my=p
T

@ Planar: the motion takes place into a plane.
@ Restricted: one body is massless, i.e. m3 = 0.

@ Circular: the two bodies with mass (primaries) move in a
circular motion of the same period T.

@ Changing unities: my =1 — p, mo = pand T = 2.
@ In rotating (synodic) coordinates, the primaries are located at (¢, 0) and ( — 1,0) and the
massless body follows a 2 degrees of freedom autonomous hamiltonian system.
The massless body follows the hamiltonian

IIPIIZ_qT(o 1)p_ 1—p u .
2 -1 0 g = (1w 0) g —(u—1,0)

@ We assume a perturbative setting, 0 < o < 1.
@ Notice that when . = 0, the third body follows a two body problem
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THE RPC3BP

1 AS A SINGULAR PARAMETER

q— plane

1= 0. A cercle of equilibrium points w>0.Ly,---, Ls equilibrium points.
@ We focus on the Lagrangian point L3 which belongs to the mean motion resonance 1 : 1.

MEAN MOTION RESONANCE
The mean motion resonance 1 : 1 is a region of the phase space close to the motions of the third
body having the same period 7, as the primaries. That is, 7 = 27 (major axis a = 1).

The green zone in the figure corresponds to a= 1, e = 0.

(=] (= = E RPN
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THE LAGRANGIAN POINT L3

MAIN RESULT

@ L3 is of saddle-center type having eigenvalues with two scales when 1 > 0 is small:

:I:\/;L%U + O(1)), +i+ O(p).

@ It has one dimensional stable and unstable manifolds, WY which either coincide or have
no intersection (In the figure is the projection of WS on the g-plane).

@ Our goal: To measure the distance between these invariant manifolds.
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THEOREM

N Take a section ¥ as in the figure and let (q“>*, p*-°) be the
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A
|
lg” — g°Il + [Ip¥ — pSll ~ K p3e” V7.
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NCRG
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THE LAGRANGIAN POINT L3

MAIN RESULT

@ L3 is of saddle-center type having eigenvalues with two scales when 1 > 0 is small:

:I:\/;L%U + O(1)), +i+ O(p).

@ It has one dimensional stable and unstable manifolds, WY which either coincide or have
no intersection (In the figure is the projection of WS on the g-plane).

@ Our goal: To measure the distance between these invariant manifolds.
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Stokes constant Known constant
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THE LAGRANGIAN POINT L3

THE CONSTANTS

The constants A, K have a different nature:
@ The constant

V2-1 > X
A:/ : \/ dx ~ 0.177744.
0 1—x

3(x +1)(1 — 4x — 4x23)

Is the height of the analyticity strip of a suitable homoclinic connection.

@ K corresponds a Stokes constant, depending on the full jet of the hamiltonian. Can be
numerically computed by means of the so called inner equation. We obtain K ~ 1.63.
In fact, by means of a computer assisted proof, we expect to prove that K # 0.

@ We can not use a Melnikov-like theory.
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THE LAGRANGIAN POINT L3

DYNAMICS AROUND L3 AND ITS MANIFOLDS

@ The motion takes place far from collision.
@ Mean motion resonances can lead to inestabilities, see for instance
@ J. Féjoz, M. Guardia, V. Kaloshin, and P. Roldan.

Kirkwood gaps and diffusion along mean motion resonances in the restricted planar
three-body problem

@ The center-stable and center-unstable invariant manifold act as boundaries of effective
stability of the stability domains around L4 and Ls.

[d c.simé, P. Sousa-Silva, and M. Terra
Practical Stability Domains Near L4 s5in the Restricted Three-Body Problem: Some
Preliminary Facts

@ Horseshoe-shaped orbits: quasi-periodic orbits
encompassing Lg, L4 and Ls. These orbits can model the
motion of co-orbital satellites (Janus and Epimetheus, for
example).

@ L. Niederman, A. Pousse and P. Robutel. 2020. "
On the co-orbital motion in the 3-BP: Existence of
quasi-periodic horseshoe-shaped orbits.
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THE LAGRANGIAN POINT L3

COMMENTS

@ One should expect that our result implies that there exist Lyapunov periodic orbits

exponentially close to L3 whose stable and unstable invariant manifolds intersect
transversally.

<
@ We have not primary homoclinic connection, but in o Wt
@ E. Barrabés, J. M. Mondelo, and M. Ollé \
Dynamical aspects of multi-round horseshoe-shaped oe b '
homoclinic orbits in the RTBP 1 Ve
is conjectured the existence of multiround homoclinic orbits to NN we— s
L for {pk}, with g — 0. —

@ A more difficult problem is to consider the elliptic case (the primaries move in an elliptic
motion) and try to prove, for small excentricities, the existence of diffussing orbits.
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SKETCH OF THE PROOF

DIFFERENT SCALES

@ We use Poincaré variables and singular scalings to write the system as
H\ A X, y) = Ho(A\ A x, y) + o(1)

with
Xy 3, 1
_ = _ AN +1- N= ——
Ho(M\ A x,y) = VE 2 v oS 2 +2cos A\
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SKETCH OF THE PROOF

DIFFERENT SCALES

@ We use Poincaré variables and singular scalings to write the system as
H(}\,/\,X,y) = HO()‘vAvxr.y) + 0(1)

with
. Xy 3 5 1
—i—= _ A" +1—cos\— ———
Ho(M A x,y) = Vi 2 v cos 2 +2cos A

Fastvariables\_/ Slow variables j

@ The slow system is a pendulum-like hamiltonian system with homoclinic connections

@ [ corresponds to the origin.

@ The homoclinic connection is
parameterizated by (Ao(t), Ao(t))

- w w ™ @ )\(f) is analytic in some complex strip.

@ We have no explicit expression for A\o(t)
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SKETCH OF THE PROOF

EXPONENTIALLY SMALL BOUND

@ We prove the existence of analytic parameterizations of the #\

invariant manifolds in a common domain. The black point is
iB.

@ The one dimensional stable and unstable manifold are solutions of the same equation.

@ The difference between the invariant manifold is a solution of a linear homogeneous
system satisfying

. i it
Ax ~ —AX, Ax(t) ~ e VEC.
Vi

B _ B
@ Then Ax(iB) ~ evr CimpliesC~e V¢,

Bounded in complex domain implies exponentially small in real domain.

@ Bigger B better bound. Since we expect that the homoclinic connection Aq(t) be a good
approximation of the invariant manifolds, we need to analyze its complex singularities.

@ However, to capture the first order we will need a better approximation of the invariant
manifolds than the homoclinic orbit, /u-close to the singularities.
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SKETCH OF THE PROOF

COMPLEX SINGULARITIES OF \o({)

RESULT

are LiA.

We prove that the only singularities of A\g(t) in the complex domain

The homoclinic connection satisfies

—5/\0(1‘)2 + 1 —cos \o(t) —

1 1
V24 2cosho(t) 2
From this relation, we have that

Ao(t)
- | ‘
A

. e
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SKETCH OF THE PROOF

COMPLEX SINGULARITIES (II)

1 2
@ Take g = cos(A\/2) and at = —3 + % We have the identity:

q q i s
t=5@) = [ 1= s—1\/3(s+1)(

) s—as-a)

WHERE THE SINGULARITIES ARE?

F is analytic in the Riemann surface of f. Then, if the inverse function theorem can be applied to
gh, qo(t) will not have singularities at t, = F(qp).

Then we have to study F(g«) for g« = —1,a—,0, a+, 1, |q| — oo using different complex paths.
t-plane r A
0 HA
/ f(y4)dys = —IA il
ar
—iA
=] = E E Qe
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SKETCH OF THE PROOF

FINAL COMMENTS ON THE PROOF

@ To prove the analytic extension of the invariant manifolds we use fixed point theorem
arguments.

@ After the changes of variables, the hamiltonian we deal with has no explicit expression but
Despite of this, we can perform Taylor expansion

@ We have not proven a bound for the distance, but an asymptotic expression. For that we
have had to deal with a better approximation for the invariant manifolds than the homoclinic
connection around the singularities +iA.

@ This approximation comes from special solutions Z“° of the inner equation which is
explicit:

16 ,,_4 16, _, 4i,,_2
— sW+ — — 3I(X-Y
27U +81U +3U ( )

- gu—‘ W(X + Y)+%U‘%(X+ Y) - %u—%(x%r ¥2)

H(U, W, X,Y) =1+gu—%w2f

+gu—%xy.

@ By using matching complex techniques we relate Z'>° with the parameterization of the
invariant manifolds we already had and prove the result.
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