Chaotic Phenomena around L_{3} IN THE RPC3BP

I. Baldomá ${ }^{1}$, M. Giralt ${ }^{1}$ and M. Guardia ${ }^{1}$

${ }^{1}$ Departament de Matemàtiques
Universitat Politècnica de Catalunya

Barcelona Mathematical Days, 2020

Outline

(1) RPC3BP

- Formulation of the problem
- Mean motion resonance 1:1
- The Lagrangian point L_{3}
(2) MAIN RESULT
(3) HEURISTICS OF THE PROOF
- Good variables
- Singularities analysis
- Exponentially small phenomenon
(4) REFERENCES

Outline

(1) RPC3BP

- Formulation of the problem
- Mean motion resonance 1:1
- The Lagrangian point L_{3}
(2) Main Result

3 Heuristics of the proof

- Good variables
- Singularities analysis
- Exponentially small phenomenon
(4) REFERENCES

4 $\square>4$ 品
のQ

3BodyProblem

Consider three bodies of mass m_{1}, m_{2}, m_{3} under their mutual attraction law.

Newton's law states that, if $r_{i j}=\left\|\mathbf{r}_{i}-\mathbf{r}_{j}\right\|$ is the norm of the difference vector

$$
\begin{aligned}
& m_{1} \ddot{\mathbf{r}}_{1}=\frac{\mathcal{G} m_{1} m_{2}}{r_{12}^{3}}\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)+\frac{\mathcal{G} m_{1} m_{3}}{r_{13}^{3}}\left(\mathbf{r}_{3}-\mathbf{r}_{1}\right) \\
& m_{2} \ddot{\mathbf{r}}_{2}=\frac{\mathcal{G} m_{1} m_{2}}{r_{12}^{3}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)+\frac{\mathcal{G} m_{2} m_{3}}{r_{23}^{3}}\left(\mathbf{r}_{3}-\mathbf{r}_{2}\right) \\
& m_{3} \ddot{\mathbf{r}}_{3}=\frac{\mathcal{G} m_{1} m_{3}}{r_{13}^{3}}\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right)+\frac{\mathcal{G} m_{2} m_{3}}{r_{23}^{3}}\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right)
\end{aligned}
$$

RestrictedPlanarCircular3BP

Make some assumptions:

- Planar: the motion takes place into a plane, $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} \in \mathbb{R}^{2}$.
- Restricted: one body is massless, i.e. $m_{3}=0$.
- Circular: the two masses bodies (primaries) moves in a circular motion of period T. As a consequence, we only need to pay attention to the massless body: $\left(\mathbf{r}_{3}, \dot{\mathbf{r}}_{3}\right) \in \mathbb{R}^{4}$.
Moreover,
- Changing unities we obtain: $\mathcal{G}=1, m_{1}=1-\mu, m_{2}=\mu, T=2 \pi$.
- Primaries position: $\mathbf{r}_{1}(t)=(\mu \cos t, \mu \sin t), \mathbf{r}_{2}(t)=((\mu-1) \cos t,(\mu-1) \sin t)$.
- When $\mu=0, \mathbf{r}_{1}=(0,0), \mathbf{r}_{2}(t)=(-\cos t,-\sin t)$ and the third body follows a two body problem:

$$
\ddot{\mathbf{r}_{3}}=-\frac{1}{\|q\|^{3}} \longrightarrow \frac{r_{3}}{\left\{\mid r_{3} \|^{3}\right.}
$$

- Then calling $r=\left\|\mathbf{r}_{3}\right\|$ we have that:

$$
r(\varphi)=\frac{a\left(1-e^{2}\right)}{1+e \cos (\varphi-\omega)}
$$

Outline

（1）RPC3BP

－Formulation of the problem
－Mean motion resonance 1：1
－The Lagrangian point L_{3}
（2）MAIN RESULT
（5）Heuristics of the proof
－Good variables
－Singularities analysis
－Exponentially small phenomenon
（4）REFERENCES
$4 \square>4$ 司
のの®

MEAN MOTION RESONANCE $1: 1$

DEFINITION

The mean motion resonance 1:1 is a region of the phase space close to the motions of the third body having the same period τ, as the primaries. That is, $\tau=2 \pi$.

- When $\mu=0$, by Kepler's third law $\frac{a^{3}}{\tau^{2}}=\frac{1}{4 \pi^{2}}$, being a the major axis of the ellipse.
- $\tau=2 \pi$ is equivalent to $a=1$.
- The figure is on the \mathbf{r}_{3} - plane.
- We will study the motion around $a=1$ and $e=0$.

- In rotating (synodic) coordinates:

$$
\mathbf{r}_{3}(t)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) q(t), \quad p(t)=\dot{q}-\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) q(t)
$$

the primaries are at $(\mu, 0)$ and $(\mu-1,0)$. The massless body follows the hamiltonian

$$
\frac{\|p\|^{2}}{2}-q^{\top}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) p-\frac{1-\mu}{\|q-(\mu, 0)\|}-\frac{\mu}{\|q-(\mu-1,0)\|}
$$

μ AS A SINGULAR PARAMETER

- In these coordinates, $e=0$ and $a=1$ correspond to a circle of degenerated equilibrium points.
- The massless primary is located at $(-1,0)$.

- There are 5 equilibrium points. The Euler-Lagrange fixed points.
- We study a region (the resonance zone) in the phase space $\mathcal{O}(\sqrt{\mu})$ - close to this circle.

Outline

（1）RPC3BP

－Formulation of the problem
－Mean motion resonance 1：1
－The Lagrangian point L_{3}
（2）MAIN RESULT
3 Heuristics of the proof
－Good variables
－Singularities analysis
－Exponentially small phenomenon
（4）REFERENCES

4 $\square>4$ 司
っの

L_{3} LAGRANGIAN POINT

- L_{3} is an equilibrium point of saddle-center type having eigenvalues with two scales when $\mu>0$ is small:

$$
\pm \sqrt{\mu \frac{21}{8}}(1+\mathcal{O}(\mu)), \quad \pm i+\mathcal{O}(\mu)
$$

- L_{3} has one dimensional stable and unstable manifolds, $W^{u, s}$ which will lie in the resonance zone.
- The figure is the projection of $W^{u, s}$ on the q-plane. W^{s} in green and W^{u} in blue.
- Remember that the phase space is \mathbb{R}^{4}. We have not drawn the momenta.
- Of course the manifolds do not intersect!

OUR GOAL

To measure the distance between the one dimensional stable and unstable invariant manifolds of L_{3} for small values of μ. This is a singular perturbation problem.

Main Result

Theorem

Take the section $\Sigma=\left\{(q, p) \in \mathbb{R}^{4}: q_{1}=0, q_{2}>0\right\}$ and let $\left(q^{u, s}, p^{u, s}\right)$ be the intersection of $W^{u, s}\left(L_{3}\right)$ with Σ. Then there exist constants A, C such that for μ small enough:

$$
\left\|q^{u}-q^{s}\right\|+\left\|p^{u}-p^{s}\right\| \sim C \mu^{-\frac{1}{12}} e^{-A / \sqrt{\mu}}
$$

- The constant

$$
A=\int_{0}^{a_{+}} \frac{1}{1-x} \sqrt{\frac{x}{3(x+1)\left(a_{+}-x\right)\left(x-a_{-}\right)}} d x \sim 0.177744
$$

with $a_{ \pm}=-\frac{1}{2} \pm \sqrt{\frac{\sqrt{2}}{2}}$.

- C corresponds a Stokes constant, depending on the full jet of the hamiltonian. Can be numerically computed by means of the so called inner equation.

Comments

- Consider a close to integrable one

$$
h_{0}(I)+\varepsilon f(I, \varphi), \quad I \in \mathbb{R}^{2}
$$

with a resonant frequency $\partial_{I} h_{0}(0)=(0, \omega)$.

- Under some assumptions, the normal form of the hamiltonian can be expressed

$$
\frac{\omega}{\sqrt{\varepsilon}} \tilde{I}+\frac{p^{2}}{2}+V(q)+\frac{1}{2} \tilde{l}^{2}+\mathcal{O}(\sqrt{\varepsilon})
$$

- The unperturbed system $\frac{p^{2}}{2}+V(q)$ has typically saddle points with homoclinic connections.
- Notice that $\dot{\varphi}=\frac{\omega}{\sqrt{\varepsilon}}+\cdots$ is a fast variable. We have a singular perturbation setting.

Skeleton of The proof

- Use first Delaunay's variables, which provide a non explicit action-angles change of variables.
- However, these variables are not defined for our resonance zone: we have to consider Poincaré variables. The changes of variables are not explicit.
- We describe the complex singularities of the unperturbed separatrix.
- We prove the exponentially small splitting of separatrices.

Outline

(1) RPC3BP

- Formulation of the problem
- Mean motion resonance 1:1
- The Lagrangian point L_{3}
(2) Main result
(3) Heuristics of the proof
- Good variables
- Singularities analysis
- Exponentially small phenomenon
(4) References
$4 \square>4$ 句
ChaOs around L_{3}

DELAUNAY VARIABLES

Analytic point of view

- Polar symplectic change of variables:

$$
\frac{1}{2}\left(R^{2}+\frac{G^{2}}{r^{2}}\right)-\frac{1}{r}-G+\mu \mathcal{H}_{1}
$$

- Take $\alpha=L\left[L-\left(L^{2}-G^{2}\right)\right]^{1 / 2}$ and

$$
\mathcal{S}(r, \theta, L, G)=\theta G+\int_{\alpha}^{r}\left\{-\frac{G^{2}}{\xi^{2}}+\frac{2}{\xi}-\frac{1}{L^{2}}\right\} d \xi
$$

- The Delaunay variables (ℓ, g, L, G), for $|L| \neq|G|$, are implicitly defined by

$$
R=\partial_{r} \mathcal{S}, \quad \ell=\partial_{L} \mathcal{S}, \quad g=\partial_{G} \mathcal{S}
$$

- In Delaunay variables the hamiltonian is

$$
\mathcal{H}(\ell, g, L, G)=-\frac{1}{2 L^{2}}-G+\mathcal{H}_{1}
$$

Geometric point of view

- Take L, G, g, ℓ and $e(L, G)>0$:

- Notice that

$$
r(\theta)=\frac{L^{2}\left(1-e^{2}\right)}{1+e \cos (\theta-g)}
$$

- When $\mu=0$ is a two body problem and then
$e=e(L, G)=\sqrt{1-\frac{G^{2}}{L^{2}}}$.

Poincaré variables

- The polar coordinates (r, θ, R, G) are

$$
q=(r \cos \theta, r, \sin \theta), \quad p=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{R}{\frac{G}{r}}
$$

The circle of equilibrium points is given by $(1, \theta, 0,1)$ and $L_{3} \sim(1,0,0,1)$

- The region we want to study is $\mathcal{O}(\sqrt{\mu})$ - close to this circle. Then, $r \sim 1, G \sim 1$ (and $e \sim 0$).

DELAUNAY COORDINATES FAIL!

The Delaunay coordinates are not defined for $e=0$, that is for $L=G=1$.

- We use Poincaré coordinates instead, namely (λ, η, L, ξ) :

$$
\lambda=\ell+g, \quad \eta=\sqrt{L-G} e^{i g}, \quad \xi=\sqrt{L-G} e^{-i g} .
$$

- The change has the symplectic form $d \lambda \wedge d L+i d \eta \wedge d \xi$.
- It is analytic when $e=0$, i.e. $\xi=\eta=0$ (hard to check!). We also have that $\lambda \rightarrow \theta$ when $e \rightarrow 0$.
- In Poincaré variables $L_{3}=(\lambda, \eta, L, \xi)=(0,0,1,0)$ and the resonance zone is $\xi, \eta \sim 0$.
- The hamiltonian in this variables is $\mathcal{H}(\lambda, \eta, L, \xi)=-\frac{1}{2 L^{2}}-L+\xi \eta+\mu \mathcal{H}_{1}$.

SCALINGS

- Take the usual scaling $L=1+\sqrt{\mu} \Lambda$.
- In order to make the change symplectic, $\xi=\sqrt[4]{\mu} x, \eta=\sqrt[4]{\mu}$ and $t=\mu^{-1} \tau$.

WHICH ARE NOW THE RELEVANT TERMS?

The hamiltonian (up to constant terms) is now

$$
\mu^{-1}\left(-\frac{1}{2 L^{2}}-L+\xi \eta+\mathcal{O}(\mu)\right) \equiv-\frac{3}{2} \Lambda^{2}+\frac{x y}{\sqrt{\mu}}+\mathcal{H}_{1} .
$$

- Recall that $\theta \sim \lambda$ and $r \sim 1$ when $e \sim 0$, namely when $\mu \sim 0$. Then $\mu \mathcal{H}_{1}$ is

$$
\begin{aligned}
\frac{1}{r} & -\frac{1-\mu}{\left(r^{2}-2 \mu r \cos \theta+\mu^{2}\right)^{1 / 2}}-\frac{\mu}{\left(r^{2}-2(1-\mu) r \cos \theta+(1-\mu)^{2}\right)^{2}} \\
& =\frac{1}{r}-\frac{(1-\mu)}{r}\left(1+\frac{\mu \cos \theta}{r}+o(1)\right)-\frac{\mu}{(2-2 \cos \lambda+o(1))^{1 / 2}} \\
& =\mu(1-\cos \lambda)+\frac{\mu}{(2-2 \cos \lambda)^{1 / 2}}+o(1) .
\end{aligned}
$$

- The hamiltonian is then

$$
-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}+\frac{x y}{\sqrt{\mu}}+o(1)
$$

Terms o(1) are not explicit

Outline

（1）RPC3BP

－Formulation of the problem
－Mean motion resonance 1：1
－The Lagrangian point L_{3}
（2）MAIN RESULT
（3）Heuristics of the proof
－Good variables
－Singularities analysis
－Exponentially small phenomenon
4 REFERENCES

THE HOMOCLINIC CONNECTION

The hamiltonian
$H_{0}(\lambda, \Lambda)=-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}$
has two homoclinic connection

- Let $\left(\lambda_{0}(t), \Lambda_{0}(t)\right)$ be the parameterization of the right separatrix with $\Lambda_{0}(0)=0$.
- It is well known that $\lambda_{0}(t)$ is analytic in some complex strip.

GOAL

To prove that, for some $A>0$, the only singularities of $\lambda_{0}(t)$ in $\overline{\Pi_{A}}$ are $\pm i A$.

However, there is no explicit parameterization with respect to t of this connection. We only know the relation:

$$
t=\int_{\lambda_{+}}^{\lambda} \frac{1}{\tilde{V}(s)} d s
$$

Complex singularities

- Take $q=\cos (\lambda / 2)$ and $a_{ \pm}=-\frac{1}{2} \pm \frac{\sqrt{2}}{2}$. We have the identity:

$$
t=\mathcal{F}(q)=\int_{a_{+}}^{q} f(s)=\int_{a_{+}}^{q} \frac{1}{s-1} \sqrt{\frac{s}{3(s+1)\left(s-a_{+}\right)\left(s-a_{-}\right)}} d s
$$

WHERE THE SINGULARITIES ARE?

\mathcal{F} is analytic in the Riemann surface of f. Then, if the inverse function theorem can be applied to $q_{h}, q_{0}(t)$ will not have singularities at $t_{h}=\mathcal{F}\left(q_{h}\right)$.
Then we have to study $\mathcal{F}\left(q_{*}\right)$ for $q_{*}=-1, a_{-}, 0, a_{+}, 1,|q| \rightarrow \infty$ using different complex paths.

Strategy

We also have

VISIBLE SINGULARITY

t_{*} is visible if we can encounter a path γ_{*} in the q - complex plane such that $\operatorname{int}\left(\mathcal{F}\left(\gamma_{*}(\sigma)\right)\right) \in \Pi_{A}$ for all σ. Notice that $\mathcal{F}\left(\gamma_{*}\right)$ is a path in the t-complex plane.
This definition allows us to search singularities in the first sheet of the Riemann surface.

- We encounter singularities with real part, but having bigger imaginary part.
- We study all the homotopic paths and we conclude that the associated singularity is either $\pm i A$ or not visible.

Outline

(1) RPC3BP

- Formulation of the problem
- Mean motion resonance 1:1
- The Lagrangian point L_{3}
(2) Main result
(3) Heuristics of the proof
- Good variables
- Singularities analysis
- Exponentially small phenomenon
(4) References

Splitting Stuff

- Recall that the hamiltonian is

$$
-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{2+2 \cos \lambda}+\frac{x y}{\sqrt{\mu}}+o(1)
$$

- We perform the symplectic change of variables $\lambda=\lambda_{0}(u), \Lambda=\Lambda_{0}(u)-\frac{w}{3 \Lambda_{0}(u)}$.
- We can parameterize the one dimensional invariant manifolds by $\zeta^{s, u}(u)$ in domains

- For $u \in E$, the function $\Delta \zeta=\pi_{x, y}\left(\zeta^{u}-\zeta^{s}\right)$ satisfies an equation of the form

$$
\partial_{u} \Delta \zeta=\frac{i}{\sqrt{\mu}}(M+\cdots) \Delta \zeta
$$

- Since $\Delta \zeta$ is bounded in the domain E it has to be exponentially small for real values of u,

FinAl Comments

- As far as we know, this is the first time that the complex singularities of the homoclinic are analyzed without an explicit formula for $\lambda_{0}(t)$.
- To prove the existence of $\zeta^{s, u}$ we use fixed point theorem arguments.
- The hamiltonian we deal with is not explicit! Despite of this, we can perform all the computations.
- We have not proven a bound for the distance, but an asymptotic expression. For that we have had to deal with a better approximation for $\zeta^{s, u}$ than the homoclinic connection around the singularities $\pm i A$.
- This approximation comes from special solutions $Z^{u, s}$ of the inner equation which is explicit:

$$
\begin{aligned}
\mathcal{H}(U, W, X, Y)= & 1+\frac{4}{9} U^{-\frac{2}{3}} W^{2}-\frac{16}{27} U^{-\frac{4}{3}} W+\frac{16}{81} U^{-2}+\frac{4 i}{3} U^{-\frac{2}{3}}(X-Y) \\
& -\frac{4}{9} U^{-1} W(X+Y)+\frac{8}{27} U^{-\frac{5}{3}}(X+Y)-\frac{1}{3} U^{-\frac{4}{3}}\left(X^{2}+Y^{2}\right) \\
& +\frac{10}{9} U^{-\frac{4}{3}} X Y .
\end{aligned}
$$

- By using matching complex techniques we relate $\zeta^{s, u}$ with $Z^{u, s}$ and prove the result.
- It remains a lot of work to do: Smale's horseshoes, Lyapunov orbits, ...
I. Baldomá.

The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems.
Nonlinearity, 19(6):1415-1445, 2006.
I. Baldomá, E. Fontich, M. Guardia, and T. M. Seara.

Exponentially small splitting of separatrices beyond Melnikov analysis: Rigorous results. Journal of Differential Equations, 253(12):3304-3439, 2012.
I. Baldomá and Tere M. Seara.

The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete \& Continuous Dynamical Systems - B, 10(2\&3, September):323, 2008.

John B. Conway.
Functions of One Complex Variable II, volume 159.
Springer US, 1995.
J. Fejoz, M. Guardia, V. Kaloshin, and P. Roldan.

Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem.
Journal of the European Mathematical Society, 18(10):2313-2401, 2016.
E. Fontich.

Rapidly Forced Planar Vector Fields and Splitting of Separatrices.
Journal of Differential Equations, 119(2):310-335, jul 1995.
T. K. R. Meyer and D. C. Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, volume 90. Springer Science+Business Media, 2017.
C. Simó and V. Gelfreich.

High-precision computations of divergent asymptotic series and homoclinic phenomena.
Discrete and Continuous Dynamical Systems - Series B, 10(2/3, September):511-536, 2008.
V. G. Szebehely.

Theory of orbits : the restricted problem of three bodies.
Academic Press, New York [etc.], 1967.

Thanks!

