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Outline

Beyond all orders phenomenon

Chaotic and homoclinic phenomena around L3

Asymptotic wavenumber of spiral waves of the Ginzburg Landau
equation
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Beyond all orders phenomenon
Definition

In a family ẋ = X(x , ε) (ε ∼ 0) if a phenomenon can be described by a flat function ψ(ε) we
say that it is a beyond all orders phenomenon (BOP). Namely ψ(ε) = O(|ε|m) for all m ≥ 0.
The regular perturbation theory does not work.

▶ They appear in singular perturbed systems
dx
dt

= f (x , y , ε),
dy
dt

= εg(x , y , ε), or ε
dx
dτ

= f (x , y , ε),
dy
dτ

= g(x , y , ε),

with τ = εt.
▶ See that as ε= 0 we get

ẋ = f (x , y , 0), ẏ = 0, not equivalent to 0 = f (x , y , 0), y ′ = g(x , y , 0).

▶ Plethora of models with this phenomena: crystal growth, fluid mechanics (see [Segur,
Tarveer, Levine, 1991]), biological problems of several nature (see [Geertje Hek, 2010]),
unfoldings of singularities, rapidly forced hamiltonian systems, etc.

▶ People with results in this area: M. Aguareles, F. Batelli, H. Broer, O. Castejón, S.J.
Chapman, A. Delshams, E. Fontich, G. Gallavotti, G. Gentile, V. Gelfreich, M. Giralt, M.
Guardia, P. Gutiérrez, V. Hakim, P. Holmes, A. Jorba, M. Kruskal, T. Lázaro, V.
Lazutkin, E. Lombardi, P. Loschak, K. Mallic, J.P. Marco, P. Martín, J. Marsden,
Mastropietro, A. Neishtad, C. Olivé, J. Paradela, R. Ramírez, M. Rudnev, D. Sauzin, T.M.
Seara, H. Segur, J. Sheurle, C. Simó, D. Treshev, Vegter, S. Wiggins and many others

3 / 31



Beyond all orders phenomenon
Definition
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Singular perturbation. Naive examples (I)
First naive example

Consider εy ′ + y = f (ε), y(0) = 1.

▶ If ε = 0 there is solution only when f (0) = 1.
▶ If ε ̸= 0, then y(x ; ε) = f (ε) + e− x

ε (1 − f (ε)) is a solution of our problem.

▶ If we consider y(x ; ε) =
∑
n≥0

εnyn(x) and f (ε) =
∑
n≥0

fnεn then we have that

y0 ≡ f0 = 1, y ′
n−1 + yn = fn =⇒ yn ≡ fn.

The series
∑
n≥0

εnyn(x) = f (ε) is convergent but does not describes the solution.

However

Changing x = εu, ẏ + y = f (ε) is a totally regular system. Expanding in power series

y(x ; ε) =
∑
n≥0

εn(fn + e−x (1 − fn)) = f (ε) + e−u(1 − f (ε))
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Singular perturbation. Naive examples (II)
A exponentially small selection

Consider now εy ′ + y = c and we look for solutions y(0) = y0 and y(1) = y1. Of course it has
to exists a selection mechanism for the constant c.

▶ The solutions satisfying y(0; ε) = y0 are

y(x ; ε) = e− x
ε

[
y0 + c(e

x
ε − 1)

]
▶ Imposing y(1; ε) = y1, we have that

c = c(ε) =
y1 − y0e− 1

ε

1 − e− 1
ε

= y1 + O(e− 1
ε ).

▶ If a classical perturbation expansion of y(x ; ε) and c(ε) is performed does not provide a
solution for c.

However

Thinking in x − 1 = εv , we have that ŷ(v ; ε) = e−v [y1 + c(ev − 1)]. Notice that ε → 0 implies
v → −∞. Thus ŷ bounded, implies c = y1 + o(1).

5 / 31



Singular perturbation. Naive examples (II)
A exponentially small selection

Consider now εy ′ + y = c and we look for solutions y(0) = y0 and y(1) = y1. Of course it has
to exists a selection mechanism for the constant c.

▶ The solutions satisfying y(0; ε) = y0 are

y(x ; ε) = e− x
ε

[
y0 + c(e

x
ε − 1)

]
▶ Imposing y(1; ε) = y1, we have that

c = c(ε) =
y1 − y0e− 1

ε

1 − e− 1
ε

= y1 + O(e− 1
ε ).

▶ If a classical perturbation expansion of y(x ; ε) and c(ε) is performed does not provide a
solution for c.

However
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Singular perturbation. Naive examples (III)
An example of divergence

Consider now, x > 0, ε > 0, εy ′ + y =
1
x
.

▶ Clearly for ε = 0 we have only one solution y(x ; ε) =
1
x

.
▶ For ε ̸= 0 we have that all the solutions are

y(x ; ε) = e− x
ε

[
y0 +

∫ x

0
e

s
ε

1
εs

ds
]
.

▶ If we look for y(x ; ε) =
∑
n≥0

εnyn(x) we obtain a divergent series
∑
n≥0

(−1)nn!εnx−n−1.

▶ All the solutions have the same divergent expansion and the difference between two of
them is Ce− x

ε for some constant C .
▶ When x > 0 we can not distinguish between two solutions up to any order in ε.

However

If x ∼ 0, change x = uε. The difference between two solutions is Ce−u and any term of the
divergence series is of the same order O(ε−1).
The change η(u) = ε−1y(uε) leads to the free parameter equation

η̇ + η =
1
u
.
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The rapidly perturbed pendulum
Consider the pendulum perturbed periodically

y2

2
+ cos x − 1 + µH1(x , y , t/ε), ⟨H1(x , y , ·)⟩ = 0, |µ| ≪ 1, 0 < ε ≪ 1.

for µ = 0, (x0(u), y0(u)) the homoclinic connection (0, 0) and (2π, 0). Notice that
y0(u) = 2 cosh−1(u)) has poles at u = ±i

π

2
.

▶ The generic situation is that the homoclinic connection is destroyed for µ ̸= 0.

▶ The question is, can we measure the distance between Wu and Ws when µ ̸= 0?
▶ Wu,s can be expressed as graphs y = ∂x Su,s(x , τ) with Su,s satisfying

∂x Su(0, τ) = ∂x Ss(2π, τ) = 0 and the Hamilton-Jacobi equation

ε−1∂τ Su,s + H0(x , ∂x Su,s) + µH1(x , ∂x Su,s , τ) = 0

▶ For µ = 0 S0(x) = 4(1 − cos(x/2)).
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Exponentially small splitting
▶ Take

T u,s(u, τ) = Su,s(x0(u), τ) − S0(x0(u)),
that are real analytic functions in u ∈ [−ρ, ρ] satisfying

ε−1∂τ T u,s(u, τ) + ∂uT u,s(u, τ) = µF(∂uT u,s , u, τ)

▶ Substracting the equations for T u,s , the difference ∆ = T u − T s satisfies a linear
homogeneous equation which is close to

ε−1∂τ ∆ + ∂u∆ = 0 =⇒ ∆(u, τ) = Υ
(
τ −

u
ε

)
.

▶ Since ∆(u, τ + 2π) = ∆(u, τ), Υ(z + 2π) = Υ(z). Then

∆(u, τ) =
∑
k∈Z

Υ[k]eik(τ− u
ε ) =

∑
k∈Z

Υ[k]e−ik u
ε eikτ ,

that is

Υ[k]e−ik u
ε =

1
2π

∫ 2π

0
e−ikτ ∆(u, τ) dτ

▶ ∆(u, τ) is real analytic for |Im u| ≤ b bounded by C |µ|. Taking u = −ib if k < 0 and
u = ib if k > 0

|Υ[k]| ≤ C |µ|e− |k|b
ε =⇒ sup

u∈[−ρ,ρ]
|∆(u, τ) − ⟨∆(u, ·)⟩| ≤ C |µ|e− b

ε
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Comments
▶ The difference between Wu,s is measured by |∂uT u − ∂uT s | ≤ |∂u∆(u, τ)| ≤ C |µ|e− b

ε .
The bigger b is, a sharper bound we obtain.

▶ Under some conditions, b = π/2 − O(ε).
▶ What is happen here is that

T u,s(u, τ) ∼
∑
n≥0

εnFn(u, τ), is a divergent series

Chaotic motions
The presence of transversal homoclinic intersections, leads to chaos by means of the
conjugation with the Smale’s horseshoe. Then

▶ To prove that Wu,s intersect transversally, we need to provide a known and computable
(at least numerically) first order ∆0(u, τ) of ∆(u, τ).

▶ When µH1(x0(u), y0(u), τ) is small enough, can be proven that the celebrated Melnikov
function (exponentially small) provides this first order.

▶ Otherwise we need to use the so called inner equation which is a first order approximation
of the Hamilton-Jacobi equation around the singularities of the homoclinic connection.

▶ The procedure can be generalized for mechanic unperturbed hamiltonian [I.B., E. Fontich,
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Hopf-zero singularity truly unfolds chaos
▶ The Hopf-zero singularity is a vector field X0,0 with linear

part having eigenvalues ±iα, 0.
▶ A family Xµ,ν such that X0,0 is a Hopf-zero singularity, it is

called an unfolding. The eigenvalues are O(µ) and
±iα+ O(µ).

Shilnikov orbits in the analytic unfoldings of the Hopf-zero singularity
[I.B., O. Castejón, S. Ibáñez, T.M. Seara]

Fix a Hopf-zero singularity in a concrete open set and an analytic unfolding
of it. There exists a (rigorously computable [I.B., Capinsky, Guardia,
M-Seara, 2022]) constant K such that, if K ̸= 0, Xµ,ν(µ) possesses a
Shilnikov homoclinic orbit, with ν(µ) exponentially close to a known curve.
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Comments
▶ These last two examples can be enclosed in a fast oscillation set up by means of a result

due to [Neishtadt, 1984] for systems having fast oscillations

ẋ = εf (x , φ, ε), φ̇ = ω(x) + εg(x , φ, ε),

with (x , φ) ∈ Rn × S1. He proved that the system can be decoupled up to terms of order
e− c1

ε with c1 > 0.
▶ However, as we said, we have not deal with upper bounds but with asymptotic expansions

in order to decide if weather a system possesses chaotic dynamics via topological
conjugation with the Smale’s horseshoe.

▶ The methodology developed can be implemented by means of computed assisted proofs.
▶ It is important to mention that there are also results for maps providing exponentially

small splitting. [Lazutkin, 84] in his celebrated paper, provides (without a complete
proof) the first asymptotic formula for the splitting in the standard. Later, in
[Fontich-Simó, 90 ] provide a sharp bound for the splitting of the invariant manifolds of
the origin for diffeomorphisms close to the identity and planar rapidly forced systems.
Gelfreich, P. Martin, D. Sauzin, T.M. Seara also have dealt with asymptotic expressions
for the splitting.

▶ The exponentially small splitting of the separatrices is a main ingredient in the Arnold’s
diffusion problem in the a priori stable case.
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The last two examples of beyond all order
phenomena

▶ Homoclinic phenomena around L3. In the RCP3BP, we exploit the fast oscillations with
respect to the small mass parameter. This is a joint work with M. Giralt and M. Guardia.

▶ Spiral waves in Ginzburg-Landau equation with exponentially small asymptotic
wavenumber. Roughly speaking, we reduce the problem to a boundary value problem
depending on two parameters

εx ′′ + εx ′ = f (x , y , ε, λ), y ′ = g(x , y , ε, λ)

with x(0) = x ′(0) = y(0) = 0, y(∞) = λ, x , y > 0 and bounded for r > 0. This
boundary problem has too much conditions and this will imply a selection mechanism for
λ = λ(ε). It turns out that

λ(ε) ∼ Ae− B
ε , B > 0.

This context has no fast oscillations.
It is a joint work with M. Aguareles and T.M. Seara.
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A Carles Simó’s problem

It appears 22 problems
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RestrictedPlanarCircular3BP

We consider:

▶ Planar: the motion takes place into a plane.
▶ Restricted: one body is massless, i.e. m3 = 0.
▶ Circular: the two bodies with mass (primaries) move in a

circular motion of the same period T .

▶ In rotating (synodic) coordinates, the primaries are located at (µ, 0) and (µ− 1, 0) and
the massless body follows a 2 degrees of freedom autonomous hamiltonian system.

∥p∥2

2
− q⊤

(
0 1

−1 0

)
p −

1 − µ

∥q − (µ, 0)∥
−

µ

∥q − (µ− 1, 0)∥
.

▶ We assume a perturbative setting, 0 < µ ≪ 1.
▶ Notice that when µ = 0, the third body follows a two body problem
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µ as a singular parameter

µ = 0. A cercle of equilibrium points µ > 0. L1, · · · , L5 equilibrium points.
▶ The Lagrangian point L3 belongs to the mean motion resonance 1 : 1.

Mean Motion resonance
The mean motion resonance 1 : 1 is a region of the phase space close to the motions of the
third body having the same period as the primaries. They can lead to inestabilities (diffusion)
[Féjoz, Guardia, Kaloshin, Roldan, 2016]
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Exponentially small splitting
▶ L3 is of saddle-center type having eigenvalues with two scales when µ > 0 is small:

±

√
µ

21
8

(1 + O(µ)), ±i + O(µ).

▶ It has one dimensional stable and unstable manifolds, W u,s which either coincide or have
no transversal intersection (In the figure is the projection of W u,s on the q-plane, the
phase space is R4).

▶ First goal: To measure the distance between these
invariant manifolds at first crossing.

Theorem

Take a section Σ as in the figure and let (qu,s , pu,s) be
the intersection of W u,s(L3) with Σ. When µ small
enough:

∥qu − qs∥ + ∥pu − ps∥ ∼ K µ
1
3 e−

A
√

µ .

Stokes constant Known constant

16 / 31



Exponentially small splitting
▶ L3 is of saddle-center type having eigenvalues with two scales when µ > 0 is small:

±

√
µ

21
8

(1 + O(µ)), ±i + O(µ).

▶ It has one dimensional stable and unstable manifolds, W u,s which either coincide or have
no transversal intersection (In the figure is the projection of W u,s on the q-plane, the
phase space is R4).

▶ First goal: To measure the distance between these
invariant manifolds at first crossing.

Theorem

Take a section Σ as in the figure and let (qu,s , pu,s) be
the intersection of W u,s(L3) with Σ. When µ small
enough:

∥qu − qs∥ + ∥pu − ps∥ ∼ K µ
1
3 e−

A
√

µ .

Stokes constant Known constant

16 / 31



Exponentially small splitting
▶ L3 is of saddle-center type having eigenvalues with two scales when µ > 0 is small:

±

√
µ

21
8

(1 + O(µ)), ±i + O(µ).

▶ It has one dimensional stable and unstable manifolds, W u,s which either coincide or have
no transversal intersection (In the figure is the projection of W u,s on the q-plane, the
phase space is R4).

▶ First goal: To measure the distance between these
invariant manifolds at first crossing.

Theorem

Take a section Σ as in the figure and let (qu,s , pu,s) be
the intersection of W u,s(L3) with Σ. When µ small
enough:

∥qu − qs∥ + ∥pu − ps∥ ∼ K µ
1
3 e−

A
√

µ .

Stokes constant Known constant

16 / 31



Exponentially small splitting
▶ L3 is of saddle-center type having eigenvalues with two scales when µ > 0 is small:

±

√
µ

21
8

(1 + O(µ)), ±i + O(µ).

▶ It has one dimensional stable and unstable manifolds, W u,s which either coincide or have
no transversal intersection (In the figure is the projection of W u,s on the q-plane, the
phase space is R4).

▶ First goal: To measure the distance between these
invariant manifolds at first crossing.

Theorem

Take a section Σ as in the figure and let (qu,s , pu,s) be
the intersection of W u,s(L3) with Σ. When µ small
enough:

∥qu − qs∥ + ∥pu − ps∥ ∼ K µ
1
3 e−

A
√

µ .

Stokes constant Known constant

16 / 31



Exponentially small splitting
▶ L3 is of saddle-center type having eigenvalues with two scales when µ > 0 is small:

±

√
µ

21
8

(1 + O(µ)), ±i + O(µ).

▶ It has one dimensional stable and unstable manifolds, W u,s which either coincide or have
no transversal intersection (In the figure is the projection of W u,s on the q-plane, the
phase space is R4).

▶ First goal: To measure the distance between these
invariant manifolds at first crossing.

Theorem

Take a section Σ as in the figure and let (qu,s , pu,s) be
the intersection of W u,s(L3) with Σ. When µ small
enough:

∥qu − qs∥ + ∥pu − ps∥ ∼ K µ
1
3 e−

A
√

µ .

Stokes constant Known constant

16 / 31



Comments
▶ The motion takes place far from collision.
▶ The constant A has an explicit expression

A =
∫ √

2−1
2

0

2
1 − x

√
x

3(x + 1)(1 − 4x − 4x2)
dx ∼ 0.177744

it is related with a hidden homoclinic connection. First computed by J. Font.
▶ K has a different nature and it corresponds a Stokes constant, depending on the full jet of

the hamiltonian. Can be numerically computed by means of the so called inner equation
that is explicit. We obtain K ∼ 1.63. We will assume that K ̸= 0 as a (numerical) ansatz.

▶ Other people studying the dynamics around L3 and its manifolds
▶ Acting as boundaries of stability domains, C. Simó, P. Sousa-Silva, M. Terra, 2013
▶ Horseshoe shapped orbits: quasi-periodic orbits encompassing L3, L4, L5 (models

co-orbital satellites): L. Niederman, A. Pousse, P. Robutel, J. Cors, J. Palacián, P.
Yanguas (2019-2020).

▶ Transfer orbits: Tantardini, Fantino, Ren, Pergola,G. Gómez, J. Masdemont, A.
Jorba, B. Nicolás (2010-2020).

▶ Existence of multiround homoclinic orbits, E. Barrabés, J.M. Mondelo, M. Ollé
(2009)
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▶ Horseshoe shapped orbits: quasi-periodic orbits encompassing L3, L4, L5 (models

co-orbital satellites): L. Niederman, A. Pousse, P. Robutel, J. Cors, J. Palacián, P.
Yanguas (2019-2020).

▶ Transfer orbits: Tantardini, Fantino, Ren, Pergola,G. Gómez, J. Masdemont, A.
Jorba, B. Nicolás (2010-2020).

▶ Existence of multiround homoclinic orbits, E. Barrabés, J.M. Mondelo, M. Ollé
(2009)
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Sketch of the proof
▶ First order. We use Poincaré variables and singular scalings to transform the system

H(λ,Λ, x , y) = H0(λ,Λ, x , y) + o(1) with

H0(λ,Λ, x , y ; √
µ) = i

xy
√
µ

−
3
2

Λ2 + 1 − cosλ−
1

√
2 + 2 cosλ

Fast variables Slow variables

▶ The time parameterization of the homoclinic connection of H0 has singularities at ±iA.
▶ There are parameterizations of W u,s(L3) in domains √

µ- close to ±iA and related with
special solutions of the inner equation (matching complex techniques).

▶ The inner equation gives a hopefully first order for the difference (in the fast x variable)

∆0x(u) = Ke− A√
µ e

iu√
µ for u ∈ 0, i(A − √

µ)
▶ The difference is written as ∆x = ∆0x + ∆1x with |∆1x(u)| = O(| logµ|) and

∆1x ′ ∼
i

√
µ

∆1x +
1

| logµ|
∆0x

▶ Then for u ∈ 0, i(A − √
µ)

|∆1x(u)| ≤ C |e
iu√
µ |

[
1 +

K
| logµ|

e− A√
µ

]
and evaluating at u− = −i(A − √

µ), from the fact |∆1x(u−)| ≤ C | logµ|−1, we get that
for u ∈ R

|∆1x(u)| ≤ C | logµ|−1e− A√
µ 18 / 31
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More comments
▶ The hamiltonian H has no closed expression, but it can be studied by means of power

series in the excentricity. However, the inner equation is explicit:

H(U,W ,X ,Y ) =1 +
4
9

U− 2
3 W 2 −

16
27

U− 4
3 W +

16
81

U−2 +
4i
3

U− 2
3 (X − Y )

−
4
9

U−1W (X + Y ) +
8
27

U− 5
3 (X + Y ) −

1
3

U− 4
3 (X2 + Y 2)

+
10
9

U− 4
3 XY .

▶ Even when the Stokes constant K is transcendental and has no explicit expression, it can
be characterized by a methodology that can be adapted for a computed assisted proofs.

▶ At this point we have not proven chaotic motions, but there
are no primary homoclinic connections.

▶ Are there dynamical consequences of our result if K ̸= 0?

dist(W s,+ ∩ Σ,W u,+ ∩ Σ) ∼ Kµ
1
3 e− A√

µ

▶ The answer is yes, two round homoclinic connection for some values of µ → 0 and the
existence of chaotic coorbital motions.
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Homoclinic phenomena around L3
It was conjectured by E. Barrabés, M. Ollé and J.M. Mondelo (2009) that there exists a
sequence of mass rations µn → 0 such that there exist secondary homoclinic connections.

Theorem

The RPC3BP has a 2-round homoclinc connection to L3 between W u,+ and
W s,−, if K ̸= 0, for a sequence of the form

µn =
A
nπ

√
8
21

(
1 + O

( 1
log n

))
, n ≫ 1

▶ Uniform normal form in a neightbourhood of the
fixed point. The result is provided by a work of T.
Jezequel, P. Bernard, and E. Lombardi, 2016.

▶ The new system is almost linear and uncoupled.
▶ In the picture the saddle (slow) variables.
▶ The fast variables travel with a velocity of

O
(

1
√
µ

)
.
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W s,−, if K ̸= 0, for a sequence of the form

µn =
A
nπ

√
8
21

(
1 + O

( 1
log n

))
, n ≫ 1

▶ The original system has a symmetry plane
▶ Choose a transversal section close enough of the

equilibrium point and translate the section and the
symmetry plane to the new normal form variables.

▶ The intersection of the stable manifold is easy to
control.

▶ Our result asserts that the unstable manifold
intersect with the transversal section

▶ and provides also the coordinates of its intersection.
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sequence of mass rations µn → 0 such that there exist secondary homoclinic connections.
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W s,−, if K ̸= 0, for a sequence of the form

µn =
A
nπ

√
8
21

(
1 + O

( 1
log n

))
, n ≫ 1

▶ The local system is almost uncoupled and linear,
the time Tµ we need to hit the projection of the

simmetry plane in the saddle plane is Tµ ∼
1
µ

.

▶ The fast variables pf ψTµ (ṽu , w̃u) are approximately

R(µ)
(

cos
(
α−

c
µ

)
, sin

(
α−

c
µ

))
▶ They hits the symmetry axis when α−

c
µ

= nπ.
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sequence of mass rations µn → 0 such that there exist secondary homoclinic connections.
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W s,−, if K ̸= 0, for a sequence of the form

µn =
A
nπ

√
8
21

(
1 + O

( 1
log n
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, n ≫ 1

▶ By symmetry we are done!
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Chaotic coorbital motions
The next result assures the existence of chaotic motions around L3 and its manifolds

Theorem

Fix c1 > 1, c2 > c1 and assume that K ̸= 0. There exists µ0 > such that for µ ∈ (0, µ0), if the
energy level h(p, q, µ) = E satisfies

c1

3√2
4

K2µ
2
3 e− 2A√

µ ≤ |E − h(L3)| ≤ c2

3√2
4

K2µ
2
3 e− 2A√

µ ,

there exists a periodic Lyapunov orbit belonging to {h(p, q;µ) = E}, exponentially close to L3,
having 2-dimensional stable and unstable manifolds that intersect transversally.

▶ We prove the existence of Lyapunov orbits in this fast-slow
system.

▶ These orbits have two dimensional stable and unstable
manifolds living in a 3 dimensional domain.

▶ Following the strategy in [O. Gomide, M. Guardia, T.M.
Seara, 2020] we prove the existence of transversal
intersections.
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Spiral patterns
Spiral patterns are commonly observed in certain chemical, biological and physical systems

Belousov-
Zhabotinskii

Social amoebas
Dictyostelium
discoideium Cardiac muscle

tissue

▶ These systems are governed by chemical or biological reaction and spatial diffusion.

∂τ U = D∆U + F (U, a), D a diffusion matrix, F the reaction nonlinearity

U = U(τ, x⃗) ∈ RN , x⃗ ∈ R2 and a is a parameter (for instance some catalyst
concentration).
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The Ginzburg-Landau equation
▶ Assume that ∂τ U = F (U, a) undergoes a supercritical Hopf bifurcation for (U0, a0) with

eigenvalues ±iω and eigenvectors v±.
▶ Take ε2 = a − a0 > 0, small, t = ε2τ . Then the modulation of local oscillations with

frequency ω
U(τ, x⃗ , a) = U0 + ε[A(t, x⃗)eiωτ v+ + c.c.] + O(ε2).

▶ and (after some scalings) the (complex) amplitude A, which can be seen as coordinates
on the central manifold, satisfies the celebrated complex Ginzburg-Landau equation

∂A
∂t

= (1 + iα)∆A + A − (1 + iβ)A|A|2,

where A(x⃗ , t) ∈ C and α, β are real parameters (dispersion parameters).
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Spiral waves. Definition

▶ We focus on infinite domains, x⃗ = (r cosφ, r sinφ) ∈ R2.
▶ The so called wave trains are solutions of the one dimensional GL in polar coordinates of

the form A(t, r) = A∗(−k∗r + Ωt) with A∗(·) a periodic functions A∗(ξ).
▶ Ω is the frequency and k∗ the wavenumber.
▶ The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely

solutions of the form A(t, r , φ) = As(r , nφ+ Ωt) satisfying

As(0, ψ) bounded, lim
r→∞

∥As(r , ψ) − A∗(−k∗r + θ(r) + ψ)∥ = 0

with A∗(·) a wave train , θ is smooth and lim
r→∞

θ′(r) → 0.

▶ In the co-rotating frame, (ψ = nφ+ Ωt), they can be seen as an heteroclinic connection
(with r as independent variable)

B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

24 / 31



Spiral waves. Definition

▶ We focus on infinite domains, x⃗ = (r cosφ, r sinφ) ∈ R2.
▶ The so called wave trains are solutions of the one dimensional GL in polar coordinates of

the form A(t, r) = A∗(−k∗r + Ωt) with A∗(·) a periodic functions A∗(ξ).
▶ Ω is the frequency and k∗ the wavenumber.
▶ The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely

solutions of the form A(t, r , φ) = As(r , nφ+ Ωt) satisfying

As(0, ψ) bounded, lim
r→∞

∥As(r , ψ) − A∗(−k∗r + θ(r) + ψ)∥ = 0

with A∗(·) a wave train , θ is smooth and lim
r→∞

θ′(r) → 0.

▶ In the co-rotating frame, (ψ = nφ+ Ωt), they can be seen as an heteroclinic connection
(with r as independent variable)

B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

24 / 31



Spiral waves. Definition

▶ We focus on infinite domains, x⃗ = (r cosφ, r sinφ) ∈ R2.
▶ The so called wave trains are solutions of the one dimensional GL in polar coordinates of

the form A(t, r) = A∗(−k∗r + Ωt) with A∗(·) a periodic functions A∗(ξ).
▶ Ω is the frequency and k∗ the wavenumber.
▶ The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely

solutions of the form A(t, r , φ) = As(r , nφ+ Ωt) satisfying

As(0, ψ) bounded, lim
r→∞

∥As(r , ψ) − A∗(−k∗r + θ(r) + ψ)∥ = 0

with A∗(·) a wave train , θ is smooth and lim
r→∞

θ′(r) → 0.

▶ In the co-rotating frame, (ψ = nφ+ Ωt), they can be seen as an heteroclinic connection
(with r as independent variable)

B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

24 / 31



Spiral waves. Definition

▶ We focus on infinite domains, x⃗ = (r cosφ, r sinφ) ∈ R2.
▶ The so called wave trains are solutions of the one dimensional GL in polar coordinates of

the form A(t, r) = A∗(−k∗r + Ωt) with A∗(·) a periodic functions A∗(ξ).
▶ Ω is the frequency and k∗ the wavenumber.
▶ The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely

solutions of the form A(t, r , φ) = As(r , nφ+ Ωt) satisfying

As(0, ψ) bounded, lim
r→∞

∥As(r , ψ) − A∗(−k∗r + θ(r) + ψ)∥ = 0

with A∗(·) a wave train , θ is smooth and lim
r→∞

θ′(r) → 0.

▶ In the co-rotating frame, (ψ = nφ+ Ωt), they can be seen as an heteroclinic connection
(with r as independent variable)

B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

24 / 31



Spiral waves. Definition
▶ We focus on infinite domains, x⃗ = (r cosφ, r sinφ) ∈ R2.
▶ The so called wave trains are solutions of the one dimensional GL in polar coordinates of

the form A(t, r) = A∗(−k∗r + Ωt) with A∗(·) a periodic functions A∗(ξ).
▶ Ω is the frequency and k∗ the wavenumber.
▶ The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely

solutions of the form A(t, r , φ) = As(r , nφ+ Ωt) satisfying

As(0, ψ) bounded, lim
r→∞

∥As(r , ψ) − A∗(−k∗r + θ(r) + ψ)∥ = 0

with A∗(·) a wave train , θ is smooth and lim
r→∞

θ′(r) → 0.
▶ In the co-rotating frame, (ψ = nφ+ Ωt), they can be seen as an heteroclinic connection

(with r as independent variable)

B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory
24 / 31



Wave trains and spiral waves in Ginzburg-Landau
equation

▶ The only possible wave trains are A∗(Ωt − k∗r) = Cei(Ωt−k∗r) satisfying

C =
√

1 − k2
∗, Ω = Ω(k∗) = −β + k2

∗(β − α)

The last condition is the associated dispersion relation and the quantity
vg := −∂k∗ Ω(k∗) = 2k∗(α− β) the group velocity.

▶ As a consequence an spiral wave has to tend as r → ∞ to

A∗(Ωt + χ(r) + nφ) =
√

1 − k2
∗ei(Ωt+χ(r)+nφ)

with χ(r) = −k∗r + θ(r) ∼ −k∗r and Ω, k∗ satisfying the dispersion relation.
▶ We look for spirals waves n-armed of the form

A(t, r , φ) = f (r)exp
(

i(Ωt + χ(r) + nφ)
)
,

with f , χ, χ′ bounded and

lim
r→∞

χ′(r) = −k∗, lim
r→∞

f (r) =
√

1 − k2
∗.
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Where is the spiral shape?
▶ Below, the surface Re(A(t, r , φ)e−iΩt) for different values of r .

n = 5, 6 ≤ r ≤ 20 n = 5, 20 ≤ r ≤ 100 n = 5, 100 ≤ r ≤ 500

▶ The wave train A∗(−k∗r + Ωt + nφ) has wavelength L (distance between two spiral arms)

L =
2π
|k∗|

.

Since L is a constant, it is an archimedian spiral.

26 / 31
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Our result

▶ We introduce the twist parameter
q =

β − α

1 + αβ

Theorem

If |q| is small enough, the Ginzburg-Landau equation possesses a rigidly archimedian spiral with
one defect (f (0) = 0, f (r ; q) > 0 for r > 0) and f ′(r ; q) > 0, if and only if

k∗ = k∗(q) =
√

1
1 − αq(1 − k2(q))

k(q), k(q) =
2
q

e− Cn
n2 −γe− π

2n|q| (1 + O(|q|)), (1)

with γ the Euler’s constant and

Cn = lim
r→∞

(∫ r

0
ξf 2(ξ; 0)(1 − f 2(ξ; 0)) dξ − n2 log r

)
.

Notice that k∗(q) = k(q)(1 + O(q)).
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Remarks

▶ The case q = 0, can be reduced to the real
Ginzburg Landau equation

∂tA = ∆A + A − A|A|2.

▶ If q = 0, k∗ = 0 and there are no spiral waves.
▶ In our perturbative setting, these lines bend to

form the spirals.

Other people dealing with spiral waves
▶ N. Kopell and L. N. Howard (1981). A serie of papers concerned with pattern formation

in the Belousov-Zhabotinskii reaction. The existence and uniqueness of the asymtptotic
wavenumber k∗ = k∗(q) as a function of q was proven.

▶ P.S. Hagan (1982), J. Greenberg (1980), M. Aguareles, M. S. Chapman, T. Witelski
(2010) used asymptotic methods to compute an explicit asymptotic formula for k(q).
The asymptotic methods are a consistent and systematic way to conjecture true results
but does not provide rigorous proofs.
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Strategy of the proof (I)
▶ We forget PDE because f (r) and v(r) = χ′(r) has to satisfy

f ′′ +
f ′

r
− f

n2

r2 + f (1 − f 2 − v2) = 0, v ′ +
v
r

+ 2
vf ′

f
+ q(1 − f 2 − k2) = 0.

together with
lim

r→∞
v(r) = −k, lim

r→∞
f (r) =

√
1 − k2.

▶ In order to f , v being bounded at r = 0, we need to impose f (0) = v(0) = 0.
▶ There are too many conditions. This indicates a selection mechanism for k.
▶ First approach: perturbation theory with respect to |q| ≪ 1 [M. Aguareles, I.B., Seara]. It

can be seen that ∂(n)
q k(0) = 0 for all n ≥ 0.

▶ We divide the problem between r ∈ [0, r0] (inner region) r ∈ [r0,∞) (outer region) with
r0 = eρ/q with ρ ≪ 1.

▶ The boundary conditions; in the inner region f (0) = v(0) = 0 and in the outer region,

lim
r→∞

f (r) =
√

1 − k2, lim
r→∞

v(r) = −k

does not provide uniqueness of the solution.
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Strategy of the proof (II)

▶ Two families of
solutions depending
on (a, k) and (b, k).

▶ Remember that the
ODE is of second
order; f ′ has also to
be take into account.

▶ We match the two families in the common point r = r0. Namely we impose that

f out(r0, a; k, q) = f in(r0, b; k, q)

∂r f out(r0, a; k, q) = ∂r f in(r0, b; k, q)

vout(r0, a; k, q) = v in(r0, b; k, q).

▶ This is a system with three unknowns (a, b, k) and three equations (depending on q).
▶ Controlling the dominant terms in the inner and the outer region we can solve the system

and compute k = k(q).
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