Some instances where we can encounter a beyond all order phenomenon

I. Baldomá ${ }^{123}$
${ }^{1}$ UPC ${ }^{2}$ CRM ${ }^{3}$ IMTech

Outline

Beyond all orders phenomenon

Chaotic and homoclinic phenomena around L_{3}

Asymptotic wavenumber of spiral waves of the Ginzburg Landau equation

Beyond all orders phenomenon

Definition

In a family $\dot{x}=X(x, \varepsilon)(\varepsilon \sim 0)$ if a phenomenon can be described by a flat function $\psi(\varepsilon)$ we say that it is a beyond all orders phenomenon $(B O P)$. Namely $\psi(\varepsilon)=\mathcal{O}\left(|\varepsilon|^{m}\right)$ for all $m \geq 0$. The regular perturbation theory does not work.

- They appear in singular perturbed systems

$$
\frac{d x}{d t}=f(x, y, \varepsilon), \frac{d y}{d t}=\varepsilon g(x, y, \varepsilon), \quad \text { or } \quad \varepsilon \frac{d x}{d \tau}=f(x, y, \varepsilon), \frac{d y}{d \tau}=g(x, y, \varepsilon)
$$

with $\tau=\varepsilon t$.

- See that as $\varepsilon=0$ we get

$$
\dot{x}=f(x, y, 0), \dot{y}=0, \quad \text { not equivalent to } \quad 0=f(x, y, 0), y^{\prime}=g(x, y, 0)
$$

$$
\mathrm{D}
$$

Beyond all orders phenomenon

Definition

In a family $\dot{x}=X(x, \varepsilon)(\varepsilon \sim 0)$ if a phenomenon can be described by a flat function $\psi(\varepsilon)$ we say that it is a beyond all orders phenomenon $(B O P)$. Namely $\psi(\varepsilon)=\mathcal{O}\left(|\varepsilon|^{m}\right)$ for all $m \geq 0$. The regular perturbation theory does not work.

- They appear in singular perturbed systems

$$
\frac{d x}{d t}=f(x, y, \varepsilon), \frac{d y}{d t}=\varepsilon g(x, y, \varepsilon), \quad \text { or } \quad \varepsilon \frac{d x}{d \tau}=f(x, y, \varepsilon), \frac{d y}{d \tau}=g(x, y, \varepsilon)
$$

with $\tau=\varepsilon t$.

- See that as $\varepsilon=0$ we get

$$
\dot{x}=f(x, y, 0), \dot{y}=0, \quad \text { not equivalent to } \quad 0=f(x, y, 0), y^{\prime}=g(x, y, 0)
$$

- Plethora of models with this phenomena: crystal growth, fluid mechanics (see [Segur, Tarveer, Levine, 1991]), biological problems of several nature (see [Geertje Hek, 2010]), unfoldings of singularities, rapidly forced hamiltonian systems, etc.

Beyond all orders phenomenon

Definition

In a family $\dot{x}=X(x, \varepsilon)(\varepsilon \sim 0)$ if a phenomenon can be described by a flat function $\psi(\varepsilon)$ we say that it is a beyond all orders phenomenon $(B O P)$. Namely $\psi(\varepsilon)=\mathcal{O}\left(|\varepsilon|^{m}\right)$ for all $m \geq 0$. The regular perturbation theory does not work.

- They appear in singular perturbed systems

$$
\frac{d x}{d t}=f(x, y, \varepsilon), \frac{d y}{d t}=\varepsilon g(x, y, \varepsilon), \quad \text { or } \quad \varepsilon \frac{d x}{d \tau}=f(x, y, \varepsilon), \frac{d y}{d \tau}=g(x, y, \varepsilon)
$$

with $\tau=\varepsilon t$.

- See that as $\varepsilon=0$ we get

$$
\dot{x}=f(x, y, 0), \dot{y}=0, \quad \text { not equivalent to } \quad 0=f(x, y, 0), y^{\prime}=g(x, y, 0)
$$

- Plethora of models with this phenomena: crystal growth, fluid mechanics (see [Segur, Tarveer, Levine, 1991]), biological problems of several nature (see [Geertje Hek, 2010]), unfoldings of singularities, rapidly forced hamiltonian systems, etc.
- People with results in this area: M. Aguareles, F. Batelli, H. Broer, O. Castejón, S.J. Chapman, A. Delshams, E. Fontich, G. Gallavotti, G. Gentile, V. Gelfreich, M. Giralt, M. Guardia, P. Gutiérrez, V. Hakim, P. Holmes, A. Jorba, M. Kruskal, T. Lázaro, V. Lazutkin, E. Lombardi, P. Loschak, K. Mallic, J.P. Marco, P. Martín, J. Marsden, Mastropietro, A. Neishtad, C. Olivé, J. Paradela, R. Ramírez, M. Rudnev, D. Sauzin, T.M. Seara, H. Segur, J. Sheurle, C. Simó, D. Treshev, Vegter, S. Wiggins and many others

Singular perturbation. Naive examples (I)

First naive example
Consider $\varepsilon y^{\prime}+y=f(\varepsilon), y(0)=1$.

- If $\varepsilon=0$ there is solution only when $f(0)=1$.
- If $\varepsilon \neq 0$, then $y(x ; \varepsilon)=f(\varepsilon)+e^{-\frac{x}{\varepsilon}}(1-f(\varepsilon))$ is a solution of our problem.

However

Changing $x=\varepsilon u, \dot{y}+y=f(\varepsilon)$ is a totally regular system. Expanding in power series

Singular perturbation. Naive examples (I)

First naive example
Consider $\varepsilon y^{\prime}+y=f(\varepsilon), y(0)=1$.

- If $\varepsilon=0$ there is solution only when $f(0)=1$.
- If $\varepsilon \neq 0$, then $y(x ; \varepsilon)=f(\varepsilon)+e^{-\frac{x}{\varepsilon}}(1-f(\varepsilon))$ is a solution of our problem.
- If we consider $y(x ; \varepsilon)=\sum_{n \geq 0} \varepsilon^{n} y_{n}(x)$ and $f(\varepsilon)=\sum_{n \geq 0} f_{n} \varepsilon^{n}$ then we have that

$$
y_{0} \equiv f_{0}=1, \quad y_{n-1}^{\prime}+y_{n}=f_{n} \Longrightarrow y_{n} \equiv f_{n}
$$

The series $\sum_{n \geq 0} \varepsilon^{n} y_{n}(x)=f(\varepsilon)$ is convergent but does not describes the solution.

However

Changing $x=\varepsilon u, \dot{y}+y=f(\varepsilon)$ is a totally regular system. Expanding in power series

Singular perturbation. Naive examples (I)

First naive example
Consider $\varepsilon y^{\prime}+y=f(\varepsilon), y(0)=1$.

- If $\varepsilon=0$ there is solution only when $f(0)=1$.
- If $\varepsilon \neq 0$, then $y(x ; \varepsilon)=f(\varepsilon)+e^{-\frac{x}{\varepsilon}}(1-f(\varepsilon))$ is a solution of our problem.
- If we consider $y(x ; \varepsilon)=\sum_{n \geq 0} \varepsilon^{n} y_{n}(x)$ and $f(\varepsilon)=\sum_{n \geq 0} f_{n} \varepsilon^{n}$ then we have that

$$
y_{0} \equiv f_{0}=1, \quad y_{n-1}^{\prime}+y_{n}=f_{n} \Longrightarrow y_{n} \equiv f_{n}
$$

The series $\sum_{n \geq 0} \varepsilon^{n} y_{n}(x)=f(\varepsilon)$ is convergent but does not describes the solution.

However

Changing $x=\varepsilon u, \dot{y}+y=f(\varepsilon)$ is a totally regular system. Expanding in power series

$$
y(x ; \varepsilon)=\sum_{n \geq 0} \varepsilon^{n}\left(f_{n}+e^{-x}\left(1-f_{n}\right)\right)=f(\varepsilon)+e^{-u}(1-f(\varepsilon))
$$

Singular perturbation. Naive examples (II)

A exponentially small selection

Consider now $\varepsilon y^{\prime}+y=c$ and we look for solutions $y(0)=y_{0}$ and $y(1)=y_{1}$. Of course it has to exists a selection mechanism for the constant c.

- The solutions satisfying $y(0 ; \varepsilon)=y_{0}$ are

$$
y(x ; \varepsilon)=e^{-\frac{x}{\varepsilon}}\left[y_{0}+c\left(e^{\frac{x}{\varepsilon}}-1\right)\right]
$$

- Imposing $y(1 ; \varepsilon)=y_{1}$, we have that

$$
c=c(\varepsilon)=\frac{y_{1}-y_{0} e^{-\frac{1}{\varepsilon}}}{1-e^{-\frac{1}{\varepsilon}}}=y_{1}+\mathcal{O}\left(e^{-\frac{1}{\varepsilon}}\right) .
$$

Singular perturbation. Naive examples (II)

A exponentially small selection

Consider now $\varepsilon y^{\prime}+y=c$ and we look for solutions $y(0)=y_{0}$ and $y(1)=y_{1}$. Of course it has to exists a selection mechanism for the constant c.

- The solutions satisfying $y(0 ; \varepsilon)=y_{0}$ are

$$
y(x ; \varepsilon)=e^{-\frac{x}{\varepsilon}}\left[y_{0}+c\left(e^{\frac{x}{\varepsilon}}-1\right)\right]
$$

- Imposing $y(1 ; \varepsilon)=y_{1}$, we have that

$$
c=c(\varepsilon)=\frac{y_{1}-y_{0} e^{-\frac{1}{\varepsilon}}}{1-e^{-\frac{1}{\varepsilon}}}=y_{1}+\mathcal{O}\left(e^{-\frac{1}{\varepsilon}}\right) .
$$

- If a classical perturbation expansion of $y(x ; \varepsilon)$ and $c(\varepsilon)$ is performed does not provide a solution for c.

However

Singular perturbation. Naive examples (II)

A exponentially small selection

Consider now $\varepsilon y^{\prime}+y=c$ and we look for solutions $y(0)=y_{0}$ and $y(1)=y_{1}$. Of course it has to exists a selection mechanism for the constant c.

- The solutions satisfying $y(0 ; \varepsilon)=y_{0}$ are

$$
y(x ; \varepsilon)=e^{-\frac{x}{\varepsilon}}\left[y_{0}+c\left(e^{\frac{x}{\varepsilon}}-1\right)\right]
$$

- Imposing $y(1 ; \varepsilon)=y_{1}$, we have that

$$
c=c(\varepsilon)=\frac{y_{1}-y_{0} e^{-\frac{1}{\varepsilon}}}{1-e^{-\frac{1}{\varepsilon}}}=y_{1}+\mathcal{O}\left(e^{-\frac{1}{\varepsilon}}\right) .
$$

- If a classical perturbation expansion of $y(x ; \varepsilon)$ and $c(\varepsilon)$ is performed does not provide a solution for c.

However

Thinking in $x-1=\varepsilon v$, we have that $\hat{y}(v ; \varepsilon)=e^{-v}\left[y_{1}+c\left(e^{v}-1\right)\right]$. Notice that $\varepsilon \rightarrow 0$ implies $v \rightarrow-\infty$. Thus \hat{y} bounded, implies $c=y_{1}+o(1)$.

Singular perturbation. Naive examples (III)

An example of divergence
Consider now, $x>0, \varepsilon>0, \varepsilon y^{\prime}+y=\frac{1}{x}$.

- Clearly for $\varepsilon=0$ we have only one solution $y(x ; \varepsilon)=\frac{1}{x}$.
- For $\varepsilon \neq 0$ we have that all the solutions are

$$
y(x ; \varepsilon)=e^{-\frac{x}{\varepsilon}}\left[y_{0}+\int_{0}^{x} e^{\frac{s}{\varepsilon}} \frac{1}{\varepsilon s} d s\right] .
$$

- All the solutions have the same divergent expansion and the difference between two of
\rightarrow When $x>0$ we can not distinguish between two solutions up to any order in

However

If $x \sim 0$, change $x=u \in$. The difference between two solutions is $\mathrm{Ce} \mathrm{C}^{-u}$ and any term of the
divergence series is of the same order $\mathcal{O}\left(\varepsilon^{-1}\right)$.
The change $\eta(u)=\varepsilon^{-1} y(u \varepsilon)$ leads to the free parameter equation

Singular perturbation. Naive examples (III)

An example of divergence

Consider now, $x>0, \varepsilon>0, \varepsilon y^{\prime}+y=\frac{1}{x}$.

- Clearly for $\varepsilon=0$ we have only one solution $y(x ; \varepsilon)=\frac{1}{x}$.
- For $\varepsilon \neq 0$ we have that all the solutions are

$$
y(x ; \varepsilon)=e^{-\frac{\chi}{\varepsilon}}\left[y_{0}+\int_{0}^{x} e^{\frac{s}{\varepsilon}} \frac{1}{\varepsilon s} d s\right] .
$$

- If we look for $y(x ; \varepsilon)=\sum_{n \geq 0} \varepsilon^{n} y_{n}(x)$ we obtain a divergent series $\sum_{n \geq 0}(-1)^{n} n!\varepsilon^{n} x^{-n-1}$.
- All the solutions have the same divergent expansion and the difference between two of them is $C e^{-\frac{x}{\varepsilon}}$ for some constant C.
- When $x>0$ we can not distinguish between two solutions up to any order in ε.

However

If $x \sim 0$, change $x=u \in$. The difference between two solutions is $\mathrm{Ce}-u$ and any term of the
divergence series is of the same order $\mathcal{O}\left(\varepsilon^{-1}\right)$.
The change $\eta(u)=\varepsilon^{-1} y(u \varepsilon)$ leads to the free parameter equation

Singular perturbation. Naive examples (III)

An example of divergence

Consider now, $x>0, \varepsilon>0, \varepsilon y^{\prime}+y=\frac{1}{x}$.

- Clearly for $\varepsilon=0$ we have only one solution $y(x ; \varepsilon)=\frac{1}{x}$.
- For $\varepsilon \neq 0$ we have that all the solutions are

$$
y(x ; \varepsilon)=e^{-\frac{\chi}{\varepsilon}}\left[y_{0}+\int_{0}^{x} e^{\frac{s}{\varepsilon}} \frac{1}{\varepsilon s} d s\right] .
$$

- If we look for $y(x ; \varepsilon)=\sum_{n \geq 0} \varepsilon^{n} y_{n}(x)$ we obtain a divergent series $\sum_{n \geq 0}(-1)^{n} n!\varepsilon^{n} x^{-n-1}$.
- All the solutions have the same divergent expansion and the difference between two of them is $C e^{-\frac{x}{\varepsilon}}$ for some constant C.
- When $x>0$ we can not distinguish between two solutions up to any order in ε.

However

If $x \sim 0$, change $x=u \varepsilon$. The difference between two solutions is Ce^{-u} and any term of the divergence series is of the same order $\mathcal{O}\left(\varepsilon^{-1}\right)$.
The change $\eta(u)=\varepsilon^{-1} y(u \varepsilon)$ leads to the free parameter equation

$$
\dot{\eta}+\eta=\frac{1}{u} .
$$

The rapidly perturbed pendulum

Consider the pendulum perturbed periodically

$$
\frac{y^{2}}{2}+\cos x-1+\mu H_{1}(x, y, t / \varepsilon), \quad\left\langle H_{1}(x, y, \cdot)\right\rangle=0,|\mu| \ll 1,0<\varepsilon \ll 1
$$

for $\mu=0,\left(x_{0}(u), y_{0}(u)\right)$ the homoclinic connection $(0,0)$ and $(2 \pi, 0)$. Notice that $\left.y_{0}(u)=2 \cosh ^{-1}(u)\right)$ has poles at $u= \pm i \frac{\pi}{2}$.

- The generic situation is that the homoclinic connection is destroyed for $\mu \neq 0$.

The question is, can we measure the distance between \mathcal{W}^{u} and
W $W^{u, s}$ can be expressed as graphs $y=\partial_{x} S^{u, s}(x, \tau)$ with $S^{u, s}$ sati
$\partial_{x} S^{u}(0, \tau)=\partial_{x} S^{s}(2 \pi, \tau)=0$ and the Hamilton-Jacobi equation

The rapidly perturbed pendulum

Consider the pendulum perturbed periodically

$$
\frac{y^{2}}{2}+\cos x-1+\mu H_{1}(x, y, t / \varepsilon), \quad\left\langle H_{1}(x, y, \cdot)\right\rangle=0,|\mu| \ll 1,0<\varepsilon \ll 1
$$

for $\mu=0,\left(x_{0}(u), y_{0}(u)\right)$ the homoclinic connection $(0,0)$ and $(2 \pi, 0)$. Notice that $\left.y_{0}(u)=2 \cosh ^{-1}(u)\right)$ has poles at $u= \pm i \frac{\pi}{2}$.

- The generic situation is that the homoclinic connection is destroyed for $\mu \neq 0$.

- The question is, can we measure the distance between \mathcal{W}^{u} and \mathcal{W}^{s} when $\mu \neq 0$?
$\partial_{x} S^{u}(0, \tau)=\partial_{x} S^{s}(2 \pi, \tau)=0$ and the Hamilton-Jacobi equation
- For $\mu=0 S_{0}(x)=4(1-\cos (x / 2))$

The rapidly perturbed pendulum

Consider the pendulum perturbed periodically

$$
\frac{y^{2}}{2}+\cos x-1+\mu H_{1}(x, y, t / \varepsilon), \quad\left\langle H_{1}(x, y, \cdot)\right\rangle=0,|\mu| \ll 1,0<\varepsilon \ll 1
$$

for $\mu=0,\left(x_{0}(u), y_{0}(u)\right)$ the homoclinic connection $(0,0)$ and $(2 \pi, 0)$. Notice that $\left.y_{0}(u)=2 \cosh ^{-1}(u)\right)$ has poles at $u= \pm i \frac{\pi}{2}$.

- The generic situation is that the homoclinic connection is destroyed for $\mu \neq 0$.

- The question is, can we measure the distance between \mathcal{W}^{u} and \mathcal{W}^{s} when $\mu \neq 0$?
- $\mathcal{W}^{u, s}$ can be expressed as graphs $y=\partial_{x} S^{u, s}(x, \tau)$ with $S^{u, s}$ satisfying $\partial_{x} S^{u}(0, \tau)=\partial_{x} S^{s}(2 \pi, \tau)=0$ and the Hamilton-Jacobi equation

$$
\varepsilon^{-1} \partial_{\tau} S^{u, s}+H_{0}\left(x, \partial_{x} S^{u, s}\right)+\mu H_{1}\left(x, \partial_{x} S^{u, s}, \tau\right)=0
$$

- For $\mu=0 S_{0}(x)=4(1-\cos (x / 2))$.

Exponentially small splitting

- Take

$$
T^{u, s}(u, \tau)=S^{u, s}\left(x_{0}(u), \tau\right)-S_{0}\left(x_{0}(u)\right),
$$

that are real analytic functions in $u \in[-\rho, \rho]$ satisfying

$$
\varepsilon^{-1} \partial_{\tau} T^{u, s}(u, \tau)+\partial_{u} T^{u, s}(u, \tau)=\mu \mathcal{F}\left(\partial_{u} T^{u, s}, u, \tau\right)
$$

Substracting the equations for $T^{u, s}$, the difference $\Delta=T^{u}-T^{s}$ satisfies a linear homogeneous equation which is close to

Exponentially small splitting

- Take

$$
T^{u, s}(u, \tau)=S^{u, s}\left(x_{0}(u), \tau\right)-S_{0}\left(x_{0}(u)\right),
$$

that are real analytic functions in $u \in[-\rho, \rho]$ satisfying

$$
\varepsilon^{-1} \partial_{\tau} T^{u, s}(u, \tau)+\partial_{u} T^{u, s}(u, \tau)=\mu \mathcal{F}\left(\partial_{u} T^{u, s}, u, \tau\right)
$$

- Substracting the equations for $T^{u, s}$, the difference $\Delta=T^{u}-T^{s}$ satisfies a linear homogeneous equation which is close to

$$
\varepsilon^{-1} \partial_{\tau} \Delta+\partial_{u} \Delta=0 \Longrightarrow \Delta(u, \tau)=\gamma\left(\tau-\frac{u}{\varepsilon}\right)
$$

- Since $\Delta(u, \tau+2 \pi)=\Delta(u, \tau), \Upsilon(z+2 \pi)=\Upsilon(z)$. Then
$\Delta(u, \tau)$ is real analytic for $|\operatorname{Im} u| \leq b$ bounded by $C|\mu|$. Taking $u=-i b$ if $k<0$ and $u=i b$ if $k>0$

Exponentially small splitting

- Take

$$
T^{u, s}(u, \tau)=S^{u, s}\left(x_{0}(u), \tau\right)-S_{0}\left(x_{0}(u)\right),
$$

that are real analytic functions in $u \in[-\rho, \rho]$ satisfying

$$
\varepsilon^{-1} \partial_{\tau} T^{u, s}(u, \tau)+\partial_{u} T^{u, s}(u, \tau)=\mu \mathcal{F}\left(\partial_{u} T^{u, s}, u, \tau\right)
$$

- Substracting the equations for $T^{u, s}$, the difference $\Delta=T^{u}-T^{s}$ satisfies a linear homogeneous equation which is close to

$$
\varepsilon^{-1} \partial_{\tau} \Delta+\partial_{u} \Delta=0 \Longrightarrow \Delta(u, \tau)=\Upsilon\left(\tau-\frac{u}{\varepsilon}\right)
$$

- Since $\Delta(u, \tau+2 \pi)=\Delta(u, \tau), \Upsilon(z+2 \pi)=\Upsilon(z)$. Then
$\Delta(u, \tau)$ is real analytic for $|\operatorname{Im} u| \leq b$ bounded by $C|\mu|$. Taking $u=-i b$ if $k<0$ and $u=i b$ if $k>0$

Exponentially small splitting

- Take

$$
T^{u, s}(u, \tau)=S^{u, s}\left(x_{0}(u), \tau\right)-S_{0}\left(x_{0}(u)\right),
$$

that are real analytic functions in $u \in[-\rho, \rho]$ satisfying

$$
\varepsilon^{-1} \partial_{\tau} T^{u, s}(u, \tau)+\partial_{u} T^{u, s}(u, \tau)=\mu \mathcal{F}\left(\partial_{u} T^{u, s}, u, \tau\right)
$$

- Substracting the equations for $T^{u, s}$, the difference $\Delta=T^{u}-T^{s}$ satisfies a linear homogeneous equation which is close to

$$
\varepsilon^{-1} \partial_{\tau} \Delta+\partial_{u} \Delta=0 \Longrightarrow \Delta(u, \tau)=\Upsilon\left(\tau-\frac{u}{\varepsilon}\right)
$$

- Since $\Delta(u, \tau+2 \pi)=\Delta(u, \tau), \Upsilon(z+2 \pi)=\Upsilon(z)$. Then

$$
\Delta(u, \tau)=\sum_{k \in \mathbb{Z}} \Upsilon^{[k]} e^{i k\left(\tau-\frac{u}{\varepsilon}\right)}=\sum_{k \in \mathbb{Z}} \Upsilon^{[k]} e^{-i k \frac{u}{\varepsilon}} e^{i k \tau}
$$

that is

$$
\Upsilon^{[k]} e^{-i k \frac{u}{\varepsilon}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k \tau} \Delta(u, \tau) d \tau
$$

$\Rightarrow \Delta(u, \tau)$ is real analytic for $|\operatorname{Im} u| \leq b$ bounded by $C|\mu|$. Taking $u=-i b$ if $k<0$ and $u=i b$ if $k>0$

Exponentially small splitting

- Take

$$
T^{u, s}(u, \tau)=S^{u, s}\left(x_{0}(u), \tau\right)-S_{0}\left(x_{0}(u)\right),
$$

that are real analytic functions in $u \in[-\rho, \rho]$ satisfying

$$
\varepsilon^{-1} \partial_{\tau} T^{u, s}(u, \tau)+\partial_{u} T^{u, s}(u, \tau)=\mu \mathcal{F}\left(\partial_{u} T^{u, s}, u, \tau\right)
$$

- Substracting the equations for $T^{u, s}$, the difference $\Delta=T^{u}-T^{s}$ satisfies a linear homogeneous equation which is close to

$$
\varepsilon^{-1} \partial_{\tau} \Delta+\partial_{u} \Delta=0 \Longrightarrow \Delta(u, \tau)=\Upsilon\left(\tau-\frac{u}{\varepsilon}\right)
$$

- Since $\Delta(u, \tau+2 \pi)=\Delta(u, \tau), \Upsilon(z+2 \pi)=\Upsilon(z)$. Then

$$
\Delta(u, \tau)=\sum_{k \in \mathbb{Z}} \Upsilon^{[k]} e^{i k\left(\tau-\frac{u}{\varepsilon}\right)}=\sum_{k \in \mathbb{Z}} \Upsilon^{[k]} e^{-i k \frac{u}{\varepsilon}} e^{i k \tau}
$$

that is

$$
\Upsilon^{[k]} e^{-i k \frac{u}{\varepsilon}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k \tau} \Delta(u, \tau) d \tau
$$

- $\Delta(u, \tau)$ is real analytic for $|\operatorname{Im} u| \leq b$ bounded by $C|\mu|$. Taking $u=-i b$ if $k<0$ and $u=i b$ if $k>0$

$$
\left|\Upsilon^{[k]}\right| \leq C|\mu| e^{-\frac{|k| b}{\varepsilon}} \Longrightarrow \sup _{u \in[-\rho, \rho]}|\Delta(u, \tau)-\langle\Delta(u, \cdot)\rangle| \leq C|\mu| e^{-\frac{b}{\varepsilon}}
$$

Comments

The difference between $\mathcal{W}^{u, s}$ is measured by $\left|\partial_{u} T^{u}-\partial_{u} T^{s}\right| \leq\left|\partial_{u} \Delta(u, \tau)\right| \leq C|\mu| e^{-\frac{b}{\varepsilon}}$ The bigger b is, a sharper bound we obtain.

- What is happen here is that

Chaotic motions

The presence of transversal homoclinic intersections, leads to chaos by means of the conjugation with the Smale's horseshoe. Then

- To prove that $\mathcal{W}^{u, s}$ intersect transversally, we need to provide a known and computable (at least numerically) first order $\Delta_{0}(u, \tau)$ of $\Delta(u, \tau)$.
\rightarrow When $\mu H_{1}\left(x_{0}(u), y_{0}(u), \tau\right)$ is small enough, can be proven that the celebrated Melnikov function (exponentially small) provides this first order
- Otherwise we need to use the so called inner equation which is a first order approximation of the Hamilton-Jacobi equation around the singularities of the homoclinic connection.
- The procedure can be generalized for mechanic unperturbed hamiltonian [I.B., E. Fontich, M. Guardia, T.M. Seara, 2012]

Comments

- The difference between $\mathcal{W}^{u, s}$ is measured by $\left|\partial_{u} T^{u}-\partial_{u} T^{s}\right| \leq\left|\partial_{u} \Delta(u, \tau)\right| \leq C|\mu| e^{-\frac{b}{\varepsilon}}$. The bigger b is, a sharper bound we obtain.
- Under some conditions, $b=\pi / 2-\mathcal{O}(\varepsilon)$.
\rightarrow What is happen here is that

Chaotic motions

The presence of transversal homoclinic intersections, leads to chaos by means of the conjugation with the Smale's horseshoe. Then

- To prove that $\mathcal{W}^{u, s}$ intersect transversally, we need to provide a known and computable (at least numerically) first order $\Delta_{0}(u, \tau)$ of $\Delta(u, \tau)$.
\rightarrow When $\mu H_{1}\left(x_{0}(u), y_{0}(u), \tau\right)$ is small enough, can be proven that the celebrated Melnikov function (exponentially small) provides this first order
- Otherwise we need to use the so called inner equation which is a first order approximation of the Hamilton-Jacobi equation around the singularities of the homoclinic connection.

[^0]
Comments

\rightarrow The difference between $\mathcal{W}^{u, s}$ is measured by $\left|\partial_{u} T^{u}-\partial_{u} T^{s}\right| \leq\left|\partial_{u} \Delta(u, \tau)\right| \leq C|\mu| e^{-\frac{b}{\varepsilon}}$ The bigger b is, a sharper bound we obtain.

- Under some conditions, $b=\pi / 2-\mathcal{O}(\varepsilon)$.
- What is happen here is that

$$
T^{u, s}(u, \tau) \sim \sum_{n \geq 0} \varepsilon^{n} F_{n}(u, \tau), \quad \text { is a divergent series }
$$

Chaotic motions

The presence of transversal homoclinic intersections, leads to chaos by means of the conjugation with the Smale's horseshoe. Then

- To prove that $\mathcal{W}^{u, s}$ intersect transversally, we need to provide a known and computable (at least numerically) first order $\Delta_{0}(u, \tau)$ of $\Delta(u, \tau)$.
\rightarrow When $\mu H_{1}\left(x_{0}(u), y_{0}(u), \tau\right)$ is small enough, can be proven that the celebrated Melnikov function (exponentially small) provides this first order
- Otherwise we need to use the so called inner equation which is a first order approximation of the Hamilton-Jacobi equation around the singularities of the homoclinic connection.

[^1]
Comments

\rightarrow The difference between $\mathcal{W}^{u, s}$ is measured by $\left|\partial_{u} T^{u}-\partial_{u} T^{s}\right| \leq\left|\partial_{u} \Delta(u, \tau)\right| \leq C|\mu| e^{-\frac{b}{\varepsilon}}$ The bigger b is, a sharper bound we obtain.

- Under some conditions, $b=\pi / 2-\mathcal{O}(\varepsilon)$.
- What is happen here is that

$$
T^{u, s}(u, \tau) \sim \sum_{n \geq 0} \varepsilon^{n} F_{n}(u, \tau), \quad \text { is a divergent series }
$$

Chaotic motions

The presence of transversal homoclinic intersections, leads to chaos by means of the conjugation with the Smale's horseshoe. Then
\rightarrow To prove that $\mathcal{W}^{u, s}$ intersect transversally, we need to provide a known and computable (at least numerically) first order $\Delta_{0}(u, \tau)$ of $\Delta(u, \tau)$.

- When ${ }_{14} H_{1}\left(x_{0}(I I) v_{0}(I I), \tau\right)$ is small enough, can be proven that the celebrated Melnikov function (exponentially small) provides this first order
- Otherwise we need to use the so called inner equation which is a first order approximation of the Hamilton-Jacobi equation around the singularities of the homoclinic connection.

[^2]
Comments

- The difference between $\mathcal{W}^{u, s}$ is measured by $\left|\partial_{u} T^{u}-\partial_{u} T^{s}\right| \leq\left|\partial_{u} \Delta(u, \tau)\right| \leq C|\mu| e^{-\frac{b}{\varepsilon}}$. The bigger b is, a sharper bound we obtain.
- Under some conditions, $b=\pi / 2-\mathcal{O}(\varepsilon)$.
- What is happen here is that

$$
T^{u, s}(u, \tau) \sim \sum_{n \geq 0} \varepsilon^{n} F_{n}(u, \tau), \quad \text { is a divergent series }
$$

Chaotic motions

The presence of transversal homoclinic intersections, leads to chaos by means of the conjugation with the Smale's horseshoe. Then

- To prove that $\mathcal{W}^{u, s}$ intersect transversally, we need to provide a known and computable (at least numerically) first order $\Delta_{0}(u, \tau)$ of $\Delta(u, \tau)$.
- When $\mu H_{1}\left(x_{0}(u), y_{0}(u), \tau\right)$ is small enough, can be proven that the celebrated Melnikov function (exponentially small) provides this first order.
- Otherwise we need to use the so called inner equation which is a first order approximation of the Hamilton-Jacobi equation around the singularities of the homoclinic connection.
\rightarrow The procedure can be generalized for mechanic unperturbed hamiltonian [1.B., E. Fontich,
M. Guardia, T.M. Seara, 2012]

Comments

- The difference between $\mathcal{W}^{u, s}$ is measured by $\left|\partial_{u} T^{u}-\partial_{u} T^{s}\right| \leq\left|\partial_{u} \Delta(u, \tau)\right| \leq C|\mu| e^{-\frac{b}{\varepsilon}}$. The bigger b is, a sharper bound we obtain.
- Under some conditions, $b=\pi / 2-\mathcal{O}(\varepsilon)$.
- What is happen here is that

$$
T^{u, s}(u, \tau) \sim \sum_{n \geq 0} \varepsilon^{n} F_{n}(u, \tau), \quad \text { is a divergent series }
$$

Chaotic motions

The presence of transversal homoclinic intersections, leads to chaos by means of the conjugation with the Smale's horseshoe. Then

- To prove that $\mathcal{W}^{u, s}$ intersect transversally, we need to provide a known and computable (at least numerically) first order $\Delta_{0}(u, \tau)$ of $\Delta(u, \tau)$.
- When $\mu H_{1}\left(x_{0}(u), y_{0}(u), \tau\right)$ is small enough, can be proven that the celebrated Melnikov function (exponentially small) provides this first order.
- Otherwise we need to use the so called inner equation which is a first order approximation of the Hamilton-Jacobi equation around the singularities of the homoclinic connection.
- The procedure can be generalized for mechanic unperturbed hamiltonian [I.B., E. Fontich, M. Guardia, T.M. Seara, 2012]

Hopf-zero singularity truly unfolds chaos

- The Hopf-zero singularity is a vector field $X_{0,0}$ with linear part having eigenvalues $\pm i \alpha, 0$.

[^3]
Hopf-zero singularity truly unfolds chaos

- The Hopf-zero singularity is a vector field $X_{0,0}$ with linear part having eigenvalues $\pm i \alpha, 0$.
- A family $X_{\mu, \nu}$ such that $X_{0,0}$ is a Hopf-zero singularity, it is called an unfolding. The eigenvalues are $\mathcal{O}(\mu)$ and $\pm i \alpha+\mathcal{O}(\mu)$.

$$
\begin{aligned}
& \text { Shilnikov orbits in the analytic unfoldings of the Hopf-zero singularity } \\
& \text { [I.B., O. Castejón, S. Ibáñez, T.M. Seara] } \\
& \text { Fix a Hopf-zero singularity in a concrete open set and an analytic unfolding } \\
& \text { of it. There exists a (rigorously computable [I.B., Capinsky, Guardia, } \\
& \text { M-Seara, 2022]) constant } K \text { such that, if } K \neq 0, X_{\mu, \nu(\mu)} \text { possesses a } \\
& \text { Shilnikov homoclinic orbit, with } \nu(\mu) \text { exponentially close to a known curve. }
\end{aligned}
$$

Hopf-zero singularity truly unfolds chaos

- The Hopf-zero singularity is a vector field $X_{0,0}$ with linear part having eigenvalues $\pm i \alpha, 0$.
- A family $X_{\mu, \nu}$ such that $X_{0,0}$ is a Hopf-zero singularity, it is called an unfolding. The eigenvalues are $\mathcal{O}(\mu)$ and $\pm i \alpha+\mathcal{O}(\mu)$.

Shilnikov orbits in the analytic unfoldings of the Hopf-zero singularity [I.B., O. Castejón, S. Ibáñez, T.M. Seara]
Fix a Hopf-zero singularity in a concrete open set and an analytic unfolding of it. There exists a (rigorously computable [I.B., Capinsky, Guardia, M-Seara, 2022]) constant K such that, if $K \neq 0, X_{\mu, \nu(\mu)}$ possesses a Shilnikov homoclinic orbit, with $\nu(\mu)$ exponentially close to a known curve.

Hopf-zero singularity truly unfolds chaos

- The Hopf-zero singularity is a vector field $X_{0,0}$ with linear part having eigenvalues $\pm i \alpha, 0$.
- A family $X_{\mu, \nu}$ such that $X_{0,0}$ is a Hopf-zero singularity, it is called an unfolding. The eigenvalues are $\mathcal{O}(\mu)$ and $\pm i \alpha+\mathcal{O}(\mu)$.

Shilnikov orbits in the analytic unfoldings of the Hopf-zero singularity [I.B., O. Castejón, S. Ibáñez, T.M. Seara]
Fix a Hopf-zero singularity in a concrete open set and an analytic unfolding of it. There exists a (rigorously computable [I.B., Capinsky, Guardia, M-Seara, 2022]) constant K such that, if $K \neq 0, X_{\mu, \nu(\mu)}$ possesses a Shilnikov homoclinic orbit, with $\nu(\mu)$ exponentially close to a known curve.

Hopf-zero singularity truly unfolds chaos

- The Hopf-zero singularity is a vector field $X_{0,0}$ with linear part having eigenvalues $\pm i \alpha, 0$.
- A family $X_{\mu, \nu}$ such that $X_{0,0}$ is a Hopf-zero singularity, it is called an unfolding. The eigenvalues are $\mathcal{O}(\mu)$ and $\pm i \alpha+\mathcal{O}(\mu)$.

Shilnikov orbits in the analytic unfoldings of the Hopf-zero singularity [I.B., O. Castejón, S. Ibáñez, T.M. Seara]
Fix a Hopf-zero singularity in a concrete open set and an analytic unfolding of it. There exists a (rigorously computable [I.B., Capinsky, Guardia, M-Seara, 2022]) constant K such that, if $K \neq 0, X_{\mu, \nu(\mu)}$ possesses a Shilnikov homoclinic orbit, with $\nu(\mu)$ exponentially close to a known curve.

Normal form up to any order

Distance exponentially small

Hopf-zero singularity truly unfolds chaos

- The Hopf-zero singularity is a vector field $X_{0,0}$ with linear part having eigenvalues $\pm i \alpha, 0$.
- A family $X_{\mu, \nu}$ such that $X_{0,0}$ is a Hopf-zero singularity, it is called an unfolding. The eigenvalues are $\mathcal{O}(\mu)$ and $\pm i \alpha+\mathcal{O}(\mu)$.

Shilnikov orbits in the analytic unfoldings of the Hopf-zero singularity [I.B., O. Castejón, S. Ibáñez, T.M. Seara]
Fix a Hopf-zero singularity in a concrete open set and an analytic unfolding of it. There exists a (rigorously computable [I.B., Capinsky, Guardia, M-Seara, 2022]) constant K such that, if $K \neq 0, X_{\mu, \nu(\mu)}$ possesses a Shilnikov homoclinic orbit, with $\nu(\mu)$ exponentially close to a known curve.

Normal form up to any order
Global $W^{u}\left(S_{+}\right)$

Hopf-zero singularity truly unfolds chaos

- The Hopf-zero singularity is a vector field $X_{0,0}$ with linear part having eigenvalues $\pm i \alpha, 0$.
- A family $X_{\mu, \nu}$ such that $X_{0,0}$ is a Hopf-zero singularity, it is called an unfolding. The eigenvalues are $\mathcal{O}(\mu)$ and $\pm i \alpha+\mathcal{O}(\mu)$.

Shilnikov orbits in the analytic unfoldings of the Hopf-zero singularity [I.B., O. Castejón, S. Ibáñez, T.M. Seara]
Fix a Hopf-zero singularity in a concrete open set and an analytic unfolding of it. There exists a (rigorously computable [I.B., Capinsky, Guardia, M-Seara, 2022]) constant K such that, if $K \neq 0, X_{\mu, \nu(\mu)}$ possesses a Shilnikov homoclinic orbit, with $\nu(\mu)$ exponentially close to a known curve.

Normal form up to any order

Global $W^{u}\left(S_{+}\right)$

Bolzano and fast oscillation

Comments

- These last two examples can be enclosed in a fast oscillation set up by means of a result due to [Neishtadt, 1984] for systems having fast oscillations

$$
\dot{x}=\varepsilon f(x, \varphi, \varepsilon), \quad \dot{\varphi}=\omega(x)+\varepsilon g(x, \varphi, \varepsilon),
$$

with $(x, \varphi) \in \mathbb{R}^{n} \times \mathbb{S}^{1}$. He proved that the system can be decoupled up to terms of order $e^{-\frac{c_{1}}{\varepsilon}}$ with $c_{1}>0$.

- However, as we said, we have not deal with upper bounds but with asymptotic expansions in order to decide if weather a system possesses chaotic dynamics via topological conjugation with the Smale's horseshoe.
- The methodology developed can be implemented by means of computed assisted proofs.
- It is important to mention that there are also results for maps providing exponentially small splitting. [Lazutkin, 84] in his celebrated paper, provides (without a complete proor) the first asymptotic formu'a for the splitting th the standard. Later, in [Fontich-Simó, 90] provide a sharp bound for the splitting of the invariant manifolds of the origin for diffeomorphisms close to the identity and planar rapidly forced systems. Gelfreich, P. Martin, D. Sauzin, T.M. Seara also have dealt with asymptotic expressions for the spltting
* The exponentially small splitting of the separatrices is a main ingredient in the Arnold's diffusion problem in the a priori stable case.

Comments

- These last two examples can be enclosed in a fast oscillation set up by means of a result due to [Neishtadt, 1984] for systems having fast oscillations

$$
\dot{x}=\varepsilon f(x, \varphi, \varepsilon), \quad \dot{\varphi}=\omega(x)+\varepsilon g(x, \varphi, \varepsilon),
$$

with $(x, \varphi) \in \mathbb{R}^{n} \times \mathbb{S}^{1}$. He proved that the system can be decoupled up to terms of order $e^{-\frac{c_{1}}{\varepsilon}}$ with $c_{1}>0$.

- However, as we said, we have not deal with upper bounds but with asymptotic expansions in order to decide if weather a system possesses chaotic dynamics via topological conjugation with the Smale's horseshoe.
- The methodology developed can be implemented by means of computed assisted proofs.
- It is important to mention that there are also results for maps providing exponentially small splitting. [Lazutkin, 84] in his celebrated paper, provides (without a complete proof) the first asymptotic formula for the splitting in the standard. Later, in [Fontich-Simó, 90] provide a sharp bound for the splitting of the invariant manifolds of the origin for diffeomorphisms close to the identity and planar rapidly forced systems. Gelfreich, P. Martin, D. Sauzin, T.M. Seara also have dealt with asymptotic expressions for the splitting.
- The exponentially small splitting of the separatrices is a main ingredient in the Arnold's diffusion problem in the a priori stable case.

Comments

- These last two examples can be enclosed in a fast oscillation set up by means of a result due to [Neishtadt, 1984] for systems having fast oscillations

$$
\dot{x}=\varepsilon f(x, \varphi, \varepsilon), \quad \dot{\varphi}=\omega(x)+\varepsilon g(x, \varphi, \varepsilon),
$$

with $(x, \varphi) \in \mathbb{R}^{n} \times \mathbb{S}^{1}$. He proved that the system can be decoupled up to terms of order $e^{-\frac{c_{1}}{\varepsilon}}$ with $c_{1}>0$.

- However, as we said, we have not deal with upper bounds but with asymptotic expansions in order to decide if weather a system possesses chaotic dynamics via topological conjugation with the Smale's horseshoe.
- The methodology developed can be implemented by means of computed assisted proofs.

It is important to mention that there are also results for maps providing exponentially small splitting. [Lazutkin, 84] in his celebrated paper, provides (without a complete proof) the first asymptotic formula for the splitting in the standard. Later, in [Fontich-Simó, 90] provide a sharp bound for the splitting of the invariant manifolds of the origin for diffeomorphisms close to the identity and planar rapidly forced systems. Gelfreich, P. Martin, D. Sauzin, T.M. Seara also have dealt with asymptotic expressions for the splitting.

- The exponentially small splitting of the separatrices is a main ingredient in the Arnold's diffusion problem in the a priori stable case.

Comments

- These last two examples can be enclosed in a fast oscillation set up by means of a result due to [Neishtadt, 1984] for systems having fast oscillations

$$
\dot{x}=\varepsilon f(x, \varphi, \varepsilon), \quad \dot{\varphi}=\omega(x)+\varepsilon g(x, \varphi, \varepsilon),
$$

with $(x, \varphi) \in \mathbb{R}^{n} \times \mathbb{S}^{1}$. He proved that the system can be decoupled up to terms of order $e^{-\frac{c_{1}}{\varepsilon}}$ with $c_{1}>0$.

- However, as we said, we have not deal with upper bounds but with asymptotic expansions in order to decide if weather a system possesses chaotic dynamics via topological conjugation with the Smale's horseshoe.
- The methodology developed can be implemented by means of computed assisted proofs.
- It is important to mention that there are also results for maps providing exponentially small splitting. [Lazutkin, 84] in his celebrated paper, provides (without a complete proof) the first asymptotic formula for the splitting in the standard. Later, in [Fontich-Simó, 90] provide a sharp bound for the splitting of the invariant manifolds of the origin for diffeomorphisms close to the identity and planar rapidly forced systems. Gelfreich, P. Martin, D. Sauzin, T.M. Seara also have dealt with asymptotic expressions for the splitting.
- The exponentially small splitting of the separatrices is a main ingredient in the Arnold's diffusion problem in the a priori stable case.

Comments

- These last two examples can be enclosed in a fast oscillation set up by means of a result due to [Neishtadt, 1984] for systems having fast oscillations

$$
\dot{x}=\varepsilon f(x, \varphi, \varepsilon), \quad \dot{\varphi}=\omega(x)+\varepsilon g(x, \varphi, \varepsilon),
$$

with $(x, \varphi) \in \mathbb{R}^{n} \times \mathbb{S}^{1}$. He proved that the system can be decoupled up to terms of order $e^{-\frac{c_{1}}{\varepsilon}}$ with $c_{1}>0$.

- However, as we said, we have not deal with upper bounds but with asymptotic expansions in order to decide if weather a system possesses chaotic dynamics via topological conjugation with the Smale's horseshoe.
- The methodology developed can be implemented by means of computed assisted proofs.
- It is important to mention that there are also results for maps providing exponentially small splitting. [Lazutkin, 84] in his celebrated paper, provides (without a complete proof) the first asymptotic formula for the splitting in the standard. Later, in [Fontich-Simó, 90] provide a sharp bound for the splitting of the invariant manifolds of the origin for diffeomorphisms close to the identity and planar rapidly forced systems. Gelfreich, P. Martin, D. Sauzin, T.M. Seara also have dealt with asymptotic expressions for the splitting.
- The exponentially small splitting of the separatrices is a main ingredient in the Arnold's diffusion problem in the a priori stable case.

The last two examples of beyond all order phenomena

- Homoclinic phenomena around L_{3}. In the RCP3BP, we exploit the fast oscillations with respect to the small mass parameter. This is a joint work with M. Giralt and M. Guardia.
- Spiral waves in Ginzburg-Landau equation with exponentially small asymptotic wavenumber. Roughly speaking, we reduce the problem to a boundary value problem depending on two parameters

$$
\varepsilon x^{\prime \prime}+\varepsilon x^{\prime}=f(x, y, \varepsilon, \lambda), \quad y^{\prime}=g(x, y, \varepsilon, \lambda)
$$

with $x(0)=x^{\prime}(0)=y(0)=0, y(\infty)=\lambda, x, y>0$ and bounded for $r>0$. This boundary problem has too much conditions and this will imply a selection mechanism for $\lambda=\lambda(\varepsilon)$. It turns out that

$$
\lambda(\varepsilon) \sim A e^{-\frac{B}{\varepsilon}}, \quad B>0 .
$$

This context has no fast oscillations.
It is a joint work with M. Aguareles and T.M. Seara.

A Carles Simó's problem

SOME QUESTIONS LOOKING FOR ANSWERS
IN DYNAMICAL SYSTEMS

Carles Simó
Departament de Matemàtiques i Informảtica
Universitat de Barcelona, Barcelona, Catalonia, Spain
Dedicated to my friend, professor Rafael de la Llave Canosa, for his Goth birthday

It appears 22 problems

22. Bounding the manifolds of L_{3} in the restricted three-body problem. Consider the Restricted Three-Body Problem [138] and the libration point L_{3} (located opposite to the secondary with respect to the primary).

The point is of center \times saddle type in the planar problem and center \times center \times saddle type in the spatial one. It has one-dimensional stable and unstable manifolds W^{s}, W^{u}.

The manifolds (1-dimensional) do not coincide, as expected, and they have a splitting which can be measured as the distance in the phase space the first time that the upper branches reach, say, $r=1$ to the left of L_{5}. By the symmetry of the problem the same value is obtained if the lower branches are used. This distance is exponentially small in $\sqrt{\mu}$.

A long continuation of W^{s}, W^{u} leads to escape, in the sense that they go either to small or large values of the radius r or come very close to the secondary. This has been reported in [132].

But this seems only to happen up to a value $\mu \approx 0.00043$. Below that value W^{s}, W^{u} seem to be confined, even for extremely long simulations, while for larger values of μ the escape is fast or happens for moderate values of the integration time.

- Which are the objects which confine the manifolds of L_{3} for sufficiently small μ ?
- How to predict the critical value?

A Carles Simó's problem

SOME QUESTIONS LOOKING FOR ANSWERS
IN DYNAMICAL SYSTEMS

Carles Simó
Departament de Matemàtiques i Informàtica
Universitat de Barcelona, Barcelona, Catalonia, Spain
Dedicated to my friend, professor Rafael de la Llave Canosa, for his Goth birthday

It appears 22 problems

22. Bounding the manifolds of L_{3} in the restricted three-body problem.

 Consider the Restricted Three-Body Problem [138] and the libration point L_{3} (located opposite to the cocondary with respect to the primary).The point is center \times saddle ype in the pianar problem and center resenter \times saddle type in the spation one. It ha one-dimensional stable and unstable manifolds W^{s}, W^{u}.

The manifolds (1-dimensional do not coincide as expected, and they have a splitting which can be measured as the distance in the phase space the first time that the upper branches reach, say, $r=1$ to the left of L_{5}. By the symmetry of the problem the como value is obtained if the lower branches are used. This distance is exponentially small in $\sqrt{\mu}$.

A long or W^{s}, W^{u} leads to escape, in the sense that they go either to small or large values of the radius r or come very close to the secondary. This has been reported in [132].

But this seems only to happen up to a value $\mu \approx 0.00043$. Below that value W^{s}, W^{u} seem to be confined, even for extremely long simulations, while for larger values of μ the escape is fast or happens for moderate values of the integration time.

- Which are the objects which confine the manifolds of L_{3} for sufficiently small μ ?
- How to predict the critical value?

RestrictedPlanarCircular3BP

We consider:

- Planar: the motion takes place into a plane.
- Restricted: one body is massless, i.e. $m_{3}=0$.
- Circular: the two bodies with mass (primaries) move in a circular motion of the same period T.

- In rotating (synodic) coordinates, the primaries are located at $(\mu, 0)$ and $(\mu-1,0)$ and the massless body follows a 2 degrees of freedom autonomous hamiltonian system.

$$
\frac{\|p\|^{2}}{2}-q^{\top}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) p-\frac{1-\mu}{\|q-(\mu, 0)\|}-\frac{\mu}{\|q-(\mu-1,0)\|} .
$$

- We assume a perturbative setting, $0<\mu \ll 1$.
- Notice that when $\mu=0$, the third body follows a two body problem

μ as a singular parameter

$\mu=0$. A cercle of equilibrium points

$\mu>0 . L_{1}, \cdots, L_{5}$ equilibrium points.

- The Lagrangian point L_{3} belongs to the mean motion resonance 1:1.

Mean Motion resonance

The mean motion resonance $1: 1$ is a region of the phase space close to the motions of the third body having the same period as the primaries. They can lead to inestabilities (diffusion) [Féjoz, Guardia, Kaloshin, Roldan, 2016]

Exponentially small splitting

$-L_{3}$ is of saddle-center type having eigenvalues with two scales when $\mu>0$ is small:

$$
\pm \sqrt{\mu \frac{21}{8}}(1+\mathcal{O}(\mu)), \quad \pm i+\mathcal{O}(\mu)
$$

- It has one dimensional stable and unstable manifolds, $W^{u, s}$ which either coincide or have no transversal intersection (In the figure is the projection of $W^{u, s}$ on the q-plane, the phase space is \mathbb{R}^{4}).
- First goal: To measure the distance between these
invariant manifolds at first crossing.

Exponentially small splitting

$-L_{3}$ is of saddle-center type having eigenvalues with two scales when $\mu>0$ is small:

$$
\pm \sqrt{\mu \frac{21}{8}}(1+\mathcal{O}(\mu)), \quad \pm i+\mathcal{O}(\mu)
$$

- It has one dimensional stable and unstable manifolds, $W^{u, s}$ which either coincide or have no transversal intersection (In the figure is the projection of $W^{u, s}$ on the q-plane, the phase space is \mathbb{R}^{4}).
- First goal: To measure the distance between these invariant manifolds at first crossing.

Exponentially small splitting

$\rightarrow L_{3}$ is of saddle-center type having eigenvalues with two scales when $\mu>0$ is small:

$$
\pm \sqrt{\mu \frac{21}{8}}(1+\mathcal{O}(\mu)), \quad \pm i+\mathcal{O}(\mu)
$$

- It has one dimensional stable and unstable manifolds, $W^{u, s}$ which either coincide or have no transversal intersection (In the figure is the projection of $W^{u, s}$ on the q-plane, the phase space is \mathbb{R}^{4}).
- First goal: To measure the distance between these invariant manifolds at first crossing.

Theorem

Take a section Σ as in the figure and let $\left(q^{u, s}, p^{u, s}\right)$ be the intersection of $W^{u, s}\left(L_{3}\right)$ with Σ. When μ small enough:

$$
\left\|q^{u}-q^{s}\right\|+\left\|p^{u}-p^{s}\right\| \sim K_{\mu^{\frac{1}{3}}} e^{-\frac{A}{\sqrt{\mu}}} .
$$

Exponentially small splitting

$\rightarrow L_{3}$ is of saddle-center type having eigenvalues with two scales when $\mu>0$ is small:

$$
\pm \sqrt{\mu \frac{21}{8}}(1+\mathcal{O}(\mu)), \quad \pm i+\mathcal{O}(\mu)
$$

- It has one dimensional stable and unstable manifolds, $W^{u, s}$ which either coincide or have no transversal intersection (In the figure is the projection of $W^{u, s}$ on the q-plane, the phase space is \mathbb{R}^{4}).
- First goal: To measure the distance between these invariant manifolds at first crossing.

Theorem

Take a section Σ as in the figure and let $\left(q^{u, s}, p^{u, s}\right)$ be the intersection of $W^{u, s}\left(L_{3}\right)$ with Σ. When μ small enough:

$$
\left\|q^{u}-q^{s}\right\|+\left\|p^{u}-p^{s}\right\| \sim_{\nearrow} K_{\mu^{\frac{1}{3}}} e^{-\frac{A}{\sqrt{\mu}}} .
$$

Stokes constant

Exponentially small splitting

- L_{3} is of saddle-center type having eigenvalues with two scales when $\mu>0$ is small:

$$
\pm \sqrt{\mu \frac{21}{8}}(1+\mathcal{O}(\mu)), \quad \pm i+\mathcal{O}(\mu)
$$

- It has one dimensional stable and unstable manifolds, $W^{u, s}$ which either coincide or have no transversal intersection (In the figure is the projection of $W^{u, s}$ on the q-plane, the phase space is \mathbb{R}^{4}).
- First goal: To measure the distance between these invariant manifolds at first crossing.

Theorem

Take a section Σ as in the figure and let $\left(q^{u, s}, p^{u, s}\right)$ be the intersection of $W^{u, s}\left(L_{3}\right)$ with Σ. When μ small enough:

$$
\left\|q^{u}-q^{s}\right\|+\left\|p^{u}-p^{s}\right\| \sim_{\pi} K \mu^{\frac{1}{3}} e^{-\frac{A}{\sqrt{\mu}}}
$$

Stokes constant

Comments

- The motion takes place far from collision.
- The constant A has an explicit expression

$$
A=\int_{0}^{\frac{\sqrt{2}-1}{2}} \frac{2}{1-x} \sqrt{\frac{x}{3(x+1)\left(1-4 x-4 x^{2}\right)}} d x \sim 0.177744
$$

it is related with a hidden homoclinic connection. First computed by J. Font.
the hamiltonian. Can be numerically computed by means of the so called inner equation that is explicit. We obtain $K \sim 1.63$. We will assume that $K \neq 0$ as a (numerical) ansatz.

- Other people studying the dynamics around L_{3} and its manifolds
- Acting as boundaries of stability domains, C. Simó, P. Sousa-Silva, M. Terra, 2013
- Horseshoe shapped orbits: quasi-periodic orbits encompassing L_{3}, L_{4}, L_{5} (models co-orbital satellites): L. Niederman, A. Pousse, P. Robutel, J. Cors, J. Palacián, P Yanguas (2019-2020).
- Transfer orbits: Tantardini, Fantino, Ren, Pergola, G. Gómez, J. Masdemont, A Jorba, B. Nicolás (2010-2020)
- Existence of multiround homoclinic orbits, E. Barrabés, J.M. Mondelo, M. Ollé (2009)

Comments

- The motion takes place far from collision.
- The constant A has an explicit expression

$$
A=\int_{0}^{\frac{\sqrt{2}-1}{2}} \frac{2}{1-x} \sqrt{\frac{x}{3(x+1)\left(1-4 x-4 x^{2}\right)}} d x \sim 0.177744
$$

it is related with a hidden homoclinic connection. First computed by J. Font.

- K has a different nature and it corresponds a Stokes constant, depending on the full jet of the hamiltonian. Can be numerically computed by means of the so called inner equation that is explicit. We obtain $K \sim 1.63$. We will assume that $K \neq 0$ as a (numerical) ansatz.

- Other people studying the dynamics around L_{3} and its manifolds

> - Acting as boundaries of stability domains, C. Simó, P. Sousa-Silva, M. Terra, 2013
> \rightarrow Horseshoe shapped orbits: quasi-periodic orbits encompassing L_{3}, L_{4}, L_{5} (models co-orbital satellites): L. Niederman, A. Pousse, P. Robutel, J. Cors, J. Palacián, P Yanguas (2019-2020)
> - Transfer orbits: Tantardini, Fantino, Ren, Pergola, G. Gómez, J. Masdemont, A Jorba, B. Nicolás (2010-2020)
> Existence of multiround homoclinic orbits, E. Barrabés, J.M. Mondelo, M. Ollé (2009)

Comments

- The motion takes place far from collision.
- The constant A has an explicit expression

$$
A=\int_{0}^{\frac{\sqrt{2}-1}{2}} \frac{2}{1-x} \sqrt{\frac{x}{3(x+1)\left(1-4 x-4 x^{2}\right)}} d x \sim 0.177744
$$

it is related with a hidden homoclinic connection. First computed by J. Font.

- K has a different nature and it corresponds a Stokes constant, depending on the full jet of the hamiltonian. Can be numerically computed by means of the so called inner equation that is explicit. We obtain $K \sim 1.63$. We will assume that $K \neq 0$ as a (numerical) ansatz.
- Other people studying the dynamics around L_{3} and its manifolds
- Acting as boundaries of stability domains, C. Simó, P. Sousa-Silva, M. Terra, 2013
- Horseshoe shapped orbits: quasi-periodic orbits encompassing L_{3}, L_{4}, L_{5} (models co-orbital satellites): L. Niederman, A. Pousse, P. Robutel, J. Cors, J. Palacián, P. Yanguas (2019-2020).
- Transfer orbits: Tantardini, Fantino, Ren, Pergola, G. Gómez, J. Masdemont, A. Jorba, B. Nicolás (2010-2020).
- Existence of multiround homoclinic orbits, E. Barrabés, J.M. Mondelo, M. Ollé (2009)

Sketch of the proof

- First order. We use Poincaré variables and singular scalings to transform the system $H(\lambda, \Lambda, x, y)=H_{0}(\lambda, \Lambda, x, y)+o(1)$ with

$$
H_{0}(\lambda, \Lambda, x, y ; \sqrt{\mu})=i \frac{x y}{\sqrt{\mu}}-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}
$$

Slow variables
The time parameterization of the homoclinic connection of H_{0} has singularities at $\pm i A$.
There are parameterizations of $W^{u, s}\left(L_{3}\right)$ in domains $\sqrt{\mu}$ - close to $\pm i A$ and related with
special solutions of the inner equation (matching complex techniques).
The inner equation gives a hopefully first order for the difference (in the fast x variable)
$\Delta_{0} \times(u)=K e^{-\frac{A}{\sqrt{\mu}}} e^{\frac{i u}{\sqrt{\mu}}}$ for $u \in \overline{0, i(A-\sqrt{\mu})}$
The difference is written as $\Delta x=\Delta_{0} \times+\Delta_{1} \times$ with $\left|\Delta_{1} \times(u)\right|=\mathcal{O}(|\log \mu|)$ and
and evaluating at $u_{-}=-i(A-\sqrt{\mu})$, from the fact $\left|\Delta_{1} \times\left(u_{-}\right)\right| \leq C|\log \mu|^{-1}$, we get that for $u \in \mathbb{R}$

Sketch of the proof

- First order. We use Poincaré variables and singular scalings to transform the system $H(\lambda, \Lambda, x, y)=H_{0}(\lambda, \Lambda, x, y)+o(1)$ with

$$
H_{0}(\lambda, \Lambda, x, y ; \sqrt{\mu})=i \frac{x y}{\sqrt{\mu}}-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}
$$

Fast variables

> The time parameterization of the homoclinic connection of H_{0} has singularities at $\pm i A$ - There are parameterizations of $W^{u, s}\left(L_{3}\right)$ in domains $\sqrt{\mu}$ - close to $\pm i A$ and related with special solutions of the inner equation (matching complex techniques)
> \Rightarrow The inner equation gives a hopefully first order for the difference (in the fast x variable) $\Delta_{0 \times}(u)=K e^{-\frac{1}{\sqrt{\mu}}} e^{\overline{\sqrt{\mu}}}$ for $u \in \overline{0, i(A-\sqrt{\mu})}$
> - The difference is written as $\Delta x=\Delta_{0} x+\Delta_{1} \times$ with $\left|\Delta_{1} x(u)\right|=O(|\log \mu|)$ and

Sketch of the proof

- First order. We use Poincaré variables and singular scalings to transform the system $H(\lambda, \Lambda, x, y)=H_{0}(\lambda, \Lambda, x, y)+o(1)$ with

$$
\begin{aligned}
& H_{0}(\lambda, \Lambda, x, y ; \sqrt{\mu})=i \frac{x y}{\sqrt{\mu}}-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}} \\
& \text { Slow variables }
\end{aligned}
$$

Fast variables

[^4]- Then for $u \in \overline{0, i(A-\sqrt{\mu})}$

Sketch of the proof

- First order. We use Poincaré variables and singular scalings to transform the system $H(\lambda, \Lambda, x, y)=H_{0}(\lambda, \Lambda, x, y)+o(1)$ with

$$
H_{0}(\lambda, \Lambda, x, y ; \sqrt{\mu})=i \frac{x y}{\sqrt{\mu}}-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}
$$

Fast variables
Slow variables

- The time parameterization of the homoclinic connection of H_{0} has singularities at $\pm i A$.
special solutions of the inner equation (matching complex techniques).
The inner equation gives a hopefully first order for the difference (in the fast x variable) $\Delta_{0 \times}(u)=K e^{-\frac{A}{\sqrt{\mu}}} e^{\frac{i u}{\sqrt{\mu}}}$ for $u \in \overline{0, i(A-\sqrt{\mu})}$
- The difference is written as $\Delta x=\Delta_{0} x+\Delta_{1} \times$ with $\left|\Delta_{1} x(u)\right|=O(|\log \mu|)$ and

- Then for $u \in \overline{0, i(A-\sqrt{\mu})}$

Sketch of the proof

- First order. We use Poincaré variables and singular scalings to transform the system $H(\lambda, \Lambda, x, y)=H_{0}(\lambda, \Lambda, x, y)+o(1)$ with

$$
H_{0}(\lambda, \Lambda, x, y ; \sqrt{\mu})=i \frac{x y}{\sqrt{\mu}}-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}
$$

Fast variables
Slow variables

- The time parameterization of the homoclinic connection of H_{0} has singularities at $\pm i A$.
- There are parameterizations of $W^{u, s}\left(L_{3}\right)$ in domains $\sqrt{\mu}$ - close to $\pm i A$ and related with special solutions of the inner equation (matching complex techniques).
$>$ The inner equation gives a hopefully first order for the difference (in the fast x variable)
- The difference is written as $\Delta x=\Delta_{0} x+\Delta_{1} \times$ with $\left|\Delta_{1} \times(u)\right|=\mathcal{O}(|\log \mu|)$ and
- Then for $u \in \overline{0, i(A-\sqrt{\mu})}$

Sketch of the proof

- First order. We use Poincaré variables and singular scalings to transform the system $H(\lambda, \Lambda, x, y)=H_{0}(\lambda, \Lambda, x, y)+o(1)$ with

$$
H_{0}(\lambda, \Lambda, x, y ; \sqrt{\mu})=i \frac{x y}{\sqrt{\mu}}-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}
$$

Fast variables

Slow variables

- The time parameterization of the homoclinic connection of H_{0} has singularities at $\pm i A$.
- There are parameterizations of $W^{u, s}\left(L_{3}\right)$ in domains $\sqrt{\mu}$ - close to $\pm i A$ and related with special solutions of the inner equation (matching complex techniques).
- The inner equation gives a hopefully first order for the difference (in the fast x variable) $\Delta_{0} \times(u)=K e^{-\frac{A}{\sqrt{\mu}}} e^{\frac{i u}{\sqrt{\mu}}}$ for $u \in \overline{0, i(A-\sqrt{\mu})}$
\rightarrow The difference is written as $\Delta x=\Delta_{0} x+\Delta_{1} x$ with $\left|\Delta_{1} x(u)\right|=\mathcal{O}(\mid \log \mu)$ and

Sketch of the proof

- First order. We use Poincaré variables and singular scalings to transform the system $H(\lambda, \Lambda, x, y)=H_{0}(\lambda, \Lambda, x, y)+o(1)$ with

$$
H_{0}(\lambda, \Lambda, x, y ; \sqrt{\mu})=i \frac{x y}{\sqrt{\mu}}-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}
$$

Fast variables

Slow variables

- The time parameterization of the homoclinic connection of H_{0} has singularities at $\pm i A$.
- There are parameterizations of $W^{u, s}\left(L_{3}\right)$ in domains $\sqrt{\mu}$ - close to $\pm i A$ and related with special solutions of the inner equation (matching complex techniques).
- The inner equation gives a hopefully first order for the difference (in the fast x variable) $\Delta_{0} \times(u)=K e^{-\frac{A}{\sqrt{\mu}}} e^{\frac{i u}{\sqrt{\mu}}}$ for $u \in \overline{0, i(A-\sqrt{\mu})}$
- The difference is written as $\Delta x=\Delta_{0} x+\Delta_{1 x}$ with $\left|\Delta_{1} x(u)\right|=\mathcal{O}(|\log \mu|)$ and

$$
\Delta_{1} x^{\prime} \sim \frac{i}{\sqrt{\mu}} \Delta_{1} x+\frac{1}{|\log \mu|} \Delta_{0 x}
$$

- Then for $u \in \overline{0, i(A-\sqrt{\mu})}$

Sketch of the proof

- First order. We use Poincaré variables and singular scalings to transform the system $H(\lambda, \Lambda, x, y)=H_{0}(\lambda, \Lambda, x, y)+o(1)$ with

$$
H_{0}(\lambda, \Lambda, x, y ; \sqrt{\mu})=i \frac{x y}{\sqrt{\mu}}-\frac{3}{2} \Lambda^{2}+1-\cos \lambda-\frac{1}{\sqrt{2+2 \cos \lambda}}
$$

Fast variables

Slow variables

- The time parameterization of the homoclinic connection of H_{0} has singularities at $\pm i A$.
- There are parameterizations of $W^{u, s}\left(L_{3}\right)$ in domains $\sqrt{\mu}$ - close to $\pm i A$ and related with special solutions of the inner equation (matching complex techniques).
- The inner equation gives a hopefully first order for the difference (in the fast x variable) $\Delta_{0} \times(u)=K e^{-\frac{A}{\sqrt{\mu}}} e^{\frac{i u}{\sqrt{\mu}}}$ for $u \in \overline{0, i(A-\sqrt{\mu})}$
- The difference is written as $\Delta x=\Delta_{0} x+\Delta_{1 x}$ with $\left|\Delta_{1} x(u)\right|=\mathcal{O}(|\log \mu|)$ and

$$
\Delta_{1} x^{\prime} \sim \frac{i}{\sqrt{\mu}} \Delta_{1} x+\frac{1}{|\log \mu|} \Delta_{0 x}
$$

- Then for $u \in \overline{0, i(A-\sqrt{\mu})}$

$$
\left|\Delta_{1} \times(u)\right| \leq C\left|e^{\frac{i u}{\sqrt{\mu}}}\right|\left[1+\frac{K}{|\log \mu|} e^{-\frac{A}{\sqrt{\mu}}}\right]
$$

and evaluating at $u_{-}=-i(A-\sqrt{\mu})$, from the fact $\left|\Delta_{1} \times\left(u_{-}\right)\right| \leq C|\log \mu|^{-1}$, we get that for $u \in \mathbb{R}$

$$
\left|\Delta_{1} \times(u)\right| \leq C|\log \mu|^{-1} e^{-\frac{A}{\sqrt{\mu}}}
$$

More comments

- The hamiltonian H has no closed expression, but it can be studied by means of power series in the excentricity. However, the inner equation is explicit:

$$
\begin{aligned}
\mathcal{H}(U, W, X, Y)= & 1+\frac{4}{9} U^{-\frac{2}{3}} W^{2}-\frac{16}{27} U^{-\frac{4}{3}} W+\frac{16}{81} U^{-2}+\frac{4 i}{3} U^{-\frac{2}{3}}(X-Y) \\
& -\frac{4}{9} U^{-1} W(X+Y)+\frac{8}{27} U^{-\frac{5}{3}}(X+Y)-\frac{1}{3} U^{-\frac{4}{3}}\left(X^{2}+Y^{2}\right) \\
& +\frac{10}{9} U^{-\frac{4}{3}} X Y .
\end{aligned}
$$

- Even when the Stokes constant K is transcendental and has no explicit expression, it can be characterized bv a methodologv that can be adanted for a computed assisted proofs.
- At this point we have not proven chaotic motions, but there are no primarv homoclinic connections.
\rightarrow Are there dynamical consequences of our result if $K \neq 0$?

\rightarrow The answer is yes, two round homoclinic connection for some values of $\mu \rightarrow 0$ and the existence of chaotic coorbital motions.

More comments

- The hamiltonian H has no closed expression, but it can be studied by means of power series in the excentricity. However, the inner equation is explicit:

$$
\begin{aligned}
\mathcal{H}(U, W, X, Y)= & 1+\frac{4}{9} U^{-\frac{2}{3}} W^{2}-\frac{16}{27} U^{-\frac{4}{3}} W+\frac{16}{81} U^{-2}+\frac{4 i}{3} U^{-\frac{2}{3}}(X-Y) \\
& -\frac{4}{9} U^{-1} W(X+Y)+\frac{8}{27} U^{-\frac{5}{3}}(X+Y)-\frac{1}{3} U^{-\frac{4}{3}}\left(X^{2}+Y^{2}\right) \\
& +\frac{10}{9} U^{-\frac{4}{3}} X Y .
\end{aligned}
$$

- Even when the Stokes constant K is transcendental and has no explicit expression, it can be characterized by a methodology that can be adapted for a computed assisted proofs.
- At this point we have not proven chaotic motions, but there are no primary homoclinic connections.
- Are there dynamical consequences of our result if $K \neq 0$?

- The answer is yes, two round homoclinic connection for some values of $\mu \rightarrow 0$ and the existence of chaotic coorbital motions.

More comments

- The hamiltonian H has no closed expression, but it can be studied by means of power series in the excentricity. However, the inner equation is explicit:

$$
\begin{aligned}
\mathcal{H}(U, W, X, Y)= & 1+\frac{4}{9} U^{-\frac{2}{3}} W^{2}-\frac{16}{27} U^{-\frac{4}{3}} W+\frac{16}{81} U^{-2}+\frac{4 i}{3} U^{-\frac{2}{3}}(X-Y) \\
& -\frac{4}{9} U^{-1} W(X+Y)+\frac{8}{27} U^{-\frac{5}{3}}(X+Y)-\frac{1}{3} U^{-\frac{4}{3}}\left(X^{2}+Y^{2}\right) \\
& +\frac{10}{9} U^{-\frac{4}{3}} X Y .
\end{aligned}
$$

- Even when the Stokes constant K is transcendental and has no explicit expression, it can be characterized by a methodology that can be adapted for a computed assisted proofs.
- At this point we have not proven chaotic motions, but there are no primary homoclinic connections.
\rightarrow Are there dynamical consequences of our result if $K \neq 0$? $\operatorname{dist}\left(W^{s,+} \cap \Sigma, W^{u_{2}+} \cap \Sigma\right) \sim K \mu^{\frac{1}{3}} e^{-\frac{A}{\sqrt{\mu}}}$
- The answer is yes, two round homoclinic connection for some values of $\mu \rightarrow 0$ and the existence of chaotic coorbital motions.

More comments

- The hamiltonian H has no closed expression, but it can be studied by means of power series in the excentricity. However, the inner equation is explicit:

$$
\begin{aligned}
\mathcal{H}(U, W, X, Y)= & 1+\frac{4}{9} U^{-\frac{2}{3}} W^{2}-\frac{16}{27} U^{-\frac{4}{3}} W+\frac{16}{81} U^{-2}+\frac{4 i}{3} U^{-\frac{2}{3}}(X-Y) \\
& -\frac{4}{9} U^{-1} W(X+Y)+\frac{8}{27} U^{-\frac{5}{3}}(X+Y)-\frac{1}{3} U^{-\frac{4}{3}}\left(X^{2}+Y^{2}\right) \\
& +\frac{10}{9} U^{-\frac{4}{3}} X Y .
\end{aligned}
$$

- Even when the Stokes constant K is transcendental and has no explicit expression, it can be characterized by a methodology that can be adapted for a computed assisted proofs.
- At this point we have not proven chaotic motions, but there are no primary homoclinic connections.
- Are there dynamical consequences of our result if $K \neq 0$?

$$
\operatorname{dist}\left(W^{s,+} \cap \Sigma, W^{u,+} \cap \Sigma\right) \sim K \mu^{\frac{1}{3}} e^{-\frac{A}{\sqrt{\mu}}}
$$

\Rightarrow The answer is yes, two round homoclinic connection for some values of $\mu \rightarrow 0$ and the existence of chaotic coorbital motions.

More comments

- The hamiltonian H has no closed expression, but it can be studied by means of power series in the excentricity. However, the inner equation is explicit:

$$
\begin{aligned}
\mathcal{H}(U, W, X, Y)= & 1+\frac{4}{9} U^{-\frac{2}{3}} W^{2}-\frac{16}{27} U^{-\frac{4}{3}} W+\frac{16}{81} U^{-2}+\frac{4 i}{3} U^{-\frac{2}{3}}(X-Y) \\
& -\frac{4}{9} U^{-1} W(X+Y)+\frac{8}{27} U^{-\frac{5}{3}}(X+Y)-\frac{1}{3} U^{-\frac{4}{3}}\left(X^{2}+Y^{2}\right) \\
& +\frac{10}{9} U^{-\frac{4}{3}} X Y .
\end{aligned}
$$

- Even when the Stokes constant K is transcendental and has no explicit expression, it can be characterized by a methodology that can be adapted for a computed assisted proofs.
- At this point we have not proven chaotic motions, but there are no primary homoclinic connections.
- Are there dynamical consequences of our result if $K \neq 0$?

$$
\operatorname{dist}\left(W^{s,+} \cap \Sigma, W^{u,+} \cap \Sigma\right) \sim K \mu^{\frac{1}{3}} e^{-\frac{A}{\sqrt{\mu}}}
$$

- The answer is yes, two round homoclinic connection for some values of $\mu \rightarrow 0$ and the existence of chaotic coorbital motions.

Homoclinic phenomena around L_{3}

It was conjectured by E. Barrabés, M. Ollé and J.M. Mondelo (2009) that there exists a sequence of mass rations $\mu_{n} \rightarrow 0$ such that there exist secondary homoclinic connections.

Theorem

The RPC3BP has a 2 -round homoclinc connection to L_{3} between $W^{u,+}$ and $W^{s,-}$, if $K \neq 0$, for a sequence of the form

$$
\mu_{n}=\frac{A}{n \pi} \sqrt{\frac{8}{21}}\left(1+\mathcal{O}\left(\frac{1}{\log n}\right)\right), \quad n \gg 1
$$

- Uniform normal form in a neightbourhood of the fixed point. The result is provided by a work of T. Jezequel, P. Bernard, and E. Lombardi, 2016.
- The new system is almost linear and uncoupled.
- In the picture the saddle (slow) variables.
- The fast variables travel with a velocity of
$\mathcal{O}\left(\frac{1}{\sqrt{\mu}}\right)$.

Homoclinic phenomena around L_{3}

It was conjectured by E. Barrabés, M. Ollé and J.M. Mondelo (2009) that there exists a sequence of mass rations $\mu_{n} \rightarrow 0$ such that there exist secondary homoclinic connections.

Theorem

The RPC3BP has a 2 -round homoclinc connection to L_{3} between $W^{u,+}$ and $W^{s,-}$, if $K \neq 0$, for a sequence of the form

$$
\mu_{n}=\frac{A}{n \pi} \sqrt{\frac{8}{21}}\left(1+\mathcal{O}\left(\frac{1}{\log n}\right)\right), \quad n \gg 1
$$

- The original system has a symmetry plane
- Choose a transversal section close enough of the equilibrium point and translate the section and the symmetry plane to the new normal form variables.
- The intersection of the stable manifold is easy to control.
- Our result asserts that the unstable manifold intersect with the transversal section
- and provides also the coordinates of its intersection.

Homoclinic phenomena around L_{3}

It was conjectured by E. Barrabés, M. Ollé and J.M. Mondelo (2009) that there exists a sequence of mass rations $\mu_{n} \rightarrow 0$ such that there exist secondary homoclinic connections.

Theorem

The RPC3BP has a 2 -round homoclinc connection to L_{3} between $W^{u,+}$ and $W^{s,-}$, if $K \neq 0$, for a sequence of the form

$$
\mu_{n}=\frac{A}{n \pi} \sqrt{\frac{8}{21}}\left(1+\mathcal{O}\left(\frac{1}{\log n}\right)\right), \quad n \gg 1
$$

- The local system is almost uncoupled and linear, the time T_{μ} we need to hit the projection of the simmetry plane in the saddle plane is $T_{\mu} \sim \frac{1}{\mu}$.
- The fast variables pf $\psi_{T_{\mu}}\left(\widetilde{v}_{u}, \widetilde{w}_{u}\right)$ are approximately

$$
R(\mu)\left(\cos \left(\alpha-\frac{c}{\mu}\right), \sin \left(\alpha-\frac{c}{\mu}\right)\right)
$$

- They hits the symmetry axis when $\alpha-\frac{C}{\mu}=n \pi$.

Homoclinic phenomena around L_{3}

It was conjectured by E. Barrabés, M. Ollé and J.M. Mondelo (2009) that there exists a sequence of mass rations $\mu_{n} \rightarrow 0$ such that there exist secondary homoclinic connections.

Theorem

The RPC3BP has a 2-round homoclinc connection to L_{3} between $W^{u,+}$ and $W^{s,-}$, if $K \neq 0$, for a sequence of the form

$$
\mu_{n}=\frac{A}{n \pi} \sqrt{\frac{8}{21}}\left(1+\mathcal{O}\left(\frac{1}{\log n}\right)\right), \quad n \gg 1
$$

- By symmetry we are done!

Chaotic coorbital motions

The next result assures the existence of chaotic motions around L_{3} and its manifolds

Theorem

Fix $c_{1}>1, c_{2}>c_{1}$ and assume that $K \neq 0$. There exists $\mu_{0}>$ such that for $\mu \in\left(0, \mu_{0}\right)$, if the energy level $h(p, q, \mu)=E$ satisfies

$$
c_{1} \frac{\sqrt[3]{2}}{4} K^{2} \mu^{\frac{2}{3}} e^{-\frac{2 A}{\sqrt{\mu}}} \leq\left|E-h\left(L_{3}\right)\right| \leq c_{2} \frac{\sqrt[3]{2}}{4} K^{2} \mu^{\frac{2}{3}} e^{-\frac{2 A}{\sqrt{\mu}}}
$$

there exists a periodic Lyapunov orbit belonging to $\{h(p, q ; \mu)=E\}$, exponentially close to L_{3}, having 2-dimensional stable and unstable manifolds that intersect transversally.

- We prove the existence of Lyapunov orbits in this fast-slow system.

Chaotic coorbital motions

The next result assures the existence of chaotic motions around L_{3} and its manifolds

Theorem

Fix $c_{1}>1, c_{2}>c_{1}$ and assume that $K \neq 0$. There exists $\mu_{0}>$ such that for $\mu \in\left(0, \mu_{0}\right)$, if the energy level $h(p, q, \mu)=E$ satisfies

$$
c_{1} \frac{\sqrt[3]{2}}{4} K^{2} \mu^{\frac{2}{3}} e^{-\frac{2 A}{\sqrt{\mu}}} \leq\left|E-h\left(L_{3}\right)\right| \leq c_{2} \frac{\sqrt[3]{2}}{4} K^{2} \mu^{\frac{2}{3}} e^{-\frac{2 A}{\sqrt{\mu}}},
$$

there exists a periodic Lyapunov orbit belonging to $\{h(p, q ; \mu)=E\}$, exponentially close to L_{3}, having 2-dimensional stable and unstable manifolds that intersect transversally.

- We prove the existence of Lyapunov orbits in this fast-slow system.
- These orbits have two dimensional stable and unstable manifolds living in a 3 dimensional domain.

Chaotic coorbital motions

The next result assures the existence of chaotic motions around L_{3} and its manifolds

Theorem

Fix $c_{1}>1, c_{2}>c_{1}$ and assume that $K \neq 0$. There exists $\mu_{0}>$ such that for $\mu \in\left(0, \mu_{0}\right)$, if the energy level $h(p, q, \mu)=E$ satisfies

$$
c_{1} \frac{\sqrt[3]{2}}{4} K^{2} \mu^{\frac{2}{3}} e^{-\frac{2 A}{\sqrt{\mu}}} \leq\left|E-h\left(L_{3}\right)\right| \leq c_{2} \frac{\sqrt[3]{2}}{4} K^{2} \mu^{\frac{2}{3}} e^{-\frac{2 A}{\sqrt{\mu}}},
$$

there exists a periodic Lyapunov orbit belonging to $\{h(p, q ; \mu)=E\}$, exponentially close to L_{3}, having 2-dimensional stable and unstable manifolds that intersect transversally.

- We prove the existence of Lyapunov orbits in this fast-slow system.
- These orbits have two dimensional stable and unstable
 manifolds living in a 3 dimensional domain.
- Following the strategy in [O. Gomide, M. Guardia, T.M. Seara, 2020] we prove the existence of transversal intersections.

Spiral patterns

Spiral patterns are commonly observed in certain chemical, biological and physical systems

- These systems are governed by chemical or biological reaction and spatial diffusion.

$$
\partial_{\tau} U=D \Delta U+F(U, a), \quad D \text { a diffusion matrix, } F \text { the reaction nonlinearity }
$$

$U=U(\tau, \vec{x}) \in \mathbb{R}^{N}, \vec{x} \in \mathbb{R}^{2}$ and a is a parameter (for instance some catalyst concentration).

The Ginzburg-Landau equation

- Assume that $\partial_{\tau} U=F(U, a)$ undergoes a supercritical Hopf bifurcation for $\left(U_{0}, a_{0}\right)$ with eigenvalues $\pm i \omega$ and eigenvectors $v_{ \pm}$.
\qquad on the central manifold, satisfies the celebrated complex Ginzburg-Landau equation

美 Y. Kuramoto, Chemical oscillations, waves and turbulenceP. Hagan, Spiral waves in Reaction-Diffusion equations
 model for pattern formation mechanisms, description of some ecological and in phase transitions in superconductivity

苛
Ginzburg-Landau equation

The Ginzburg-Landau equation

- Assume that $\partial_{\tau} U=F(U, a)$ undergoes a supercritical Hopf bifurcation for $\left(U_{0}, a_{0}\right)$ with eigenvalues $\pm i \omega$ and eigenvectors $v_{ \pm}$.
- Take $\varepsilon^{2}=a-a_{0}>0$, small, $t=\varepsilon^{2} \tau$. Then the modulation of local oscillations with frequency ω

$$
U(\tau, \vec{x}, a)=U_{0}+\varepsilon\left[A(t, \vec{x}) e^{i \omega \tau} v_{+}+c . c .\right]+\mathcal{O}\left(\varepsilon^{2}\right) .
$$

- and (after some scalings) the (complex) amplitude A, which can be seen as coordinates on the central manifold, satisfies the celebrated complex Ginzburg-Landau equation

$$
\frac{\partial A}{\partial t}=(1+i \alpha) \Delta A+A-(1+i \beta) A|A|^{2}
$$

where $A(\vec{x}, t) \in \mathbb{C}$ and α, β are real parameters (dispersion parameters).
\square Y. Kuramoto, Chemical oscillations, waves and turbulence

R
P. Hagan, Spiral waves in Reaction-Diffusion equations model for pattern formation mechanisms, description of some ecological and in phase transitions in superconductivity
着 I.S Aranson, L. Kramer. The world of the complex Ginzburg-Landau equation

The Ginzburg－Landau equation

－Assume that $\partial_{\tau} U=F(U, a)$ undergoes a supercritical Hopf bifurcation for $\left(U_{0}, a_{0}\right)$ with eigenvalues $\pm i \omega$ and eigenvectors $v_{ \pm}$．
－Take $\varepsilon^{2}=a-a_{0}>0$ ，small，$t=\varepsilon^{2} \tau$ ．Then the modulation of local oscillations with frequency ω

$$
U(\tau, \vec{x}, a)=U_{0}+\varepsilon\left[A(t, \vec{x}) e^{i \omega \tau} v_{+}+c . c .\right]+\mathcal{O}\left(\varepsilon^{2}\right) .
$$

－and（after some scalings）the（complex）amplitude A ，which can be seen as coordinates on the central manifold，satisfies the celebrated complex Ginzburg－Landau equation

$$
\frac{\partial A}{\partial t}=(1+i \alpha) \Delta A+A-(1+i \beta) A|A|^{2}
$$

where $A(\vec{x}, t) \in \mathbb{C}$ and α, β are real parameters（dispersion parameters）．
\square Y．Kuramoto，Chemical oscillations，waves and turbulence
國
P．Hagan，Spiral waves in Reaction－Diffusion equations transitions in superconductivity
差 1．S Aranson，L．Kramer．The world of the complex Ginzburg－Landau equation

The Ginzburg－Landau equation

－Assume that $\partial_{\tau} U=F(U, a)$ undergoes a supercritical Hopf bifurcation for $\left(U_{0}, a_{0}\right)$ with eigenvalues $\pm i \omega$ and eigenvectors $v_{ \pm}$．
－Take $\varepsilon^{2}=a-a_{0}>0$ ，small，$t=\varepsilon^{2} \tau$ ．Then the modulation of local oscillations with frequency ω

$$
U(\tau, \vec{x}, a)=U_{0}+\varepsilon\left[A(t, \vec{x}) e^{i \omega \tau} v_{+}+c . c .\right]+\mathcal{O}\left(\varepsilon^{2}\right)
$$

－and（after some scalings）the（complex）amplitude A ，which can be seen as coordinates on the central manifold，satisfies the celebrated complex Ginzburg－Landau equation

$$
\frac{\partial A}{\partial t}=(1+i \alpha) \Delta A+A-(1+i \beta) A|A|^{2}
$$

where $A(\vec{x}, t) \in \mathbb{C}$ and α, β are real parameters（dispersion parameters）．

國
Y．Kuramoto，Chemical oscillations，waves and turbulence
國
P．Hagan，Spiral waves in Reaction－Diffusion equations
－It appears in a wide range of different physical contexts：chemical reaction processes，as a model for pattern formation mechanisms，description of some ecological and in phase transitions in superconductivity
圊
I．S Aranson，L．Kramer．The world of the complex Ginzburg－Landau equation

The Ginzburg－Landau equation

－Assume that $\partial_{\tau} U=F(U, a)$ undergoes a supercritical Hopf bifurcation for $\left(U_{0}, a_{0}\right)$ with eigenvalues $\pm i \omega$ and eigenvectors $v_{ \pm}$．
－Take $\varepsilon^{2}=a-a_{0}>0$ ，small，$t=\varepsilon^{2} \tau$ ．Then the modulation of local oscillations with frequency ω

$$
U(\tau, \vec{x}, a)=U_{0}+\varepsilon\left[A(t, \vec{x}) e^{i \omega \tau} v_{+}+c . c .\right]+\mathcal{O}\left(\varepsilon^{2}\right)
$$

－and（after some scalings）the（complex）amplitude A ，which can be seen as coordinates on the central manifold，satisfies the celebrated complex Ginzburg－Landau equation

$$
\frac{\partial A}{\partial t}=(1+i \alpha) \Delta A+A-(1+i \beta) A|A|^{2}
$$

where $A(\vec{x}, t) \in \mathbb{C}$ and α, β are real parameters（dispersion parameters）．

國
Y．Kuramoto，Chemical oscillations，waves and turbulence
國
P．Hagan，Spiral waves in Reaction－Diffusion equations
－It appears in a wide range of different physical contexts：chemical reaction processes，as a model for pattern formation mechanisms，description of some ecological and in phase transitions in superconductivity
圊
I．S Aranson，L．Kramer．The world of the complex Ginzburg－Landau equation

Spiral waves. Definition

- We focus on infinite domains, $\vec{x}=(r \cos \varphi, r \sin \varphi) \in \mathbb{R}^{2}$.
- The so called wave trains are solutions of the one dimensional GL in polar coordinates of the form $A(t, r)=A_{*}\left(-k_{*} r+\Omega t\right)$ with $A_{*}(\cdot)$ a periodic functions $A_{*}(\xi)$.
- Ω is the frequency and k_{*} the wavenumber.
- The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely solutions of the form $A(t . r . \omega)=A_{s}(r . n \omega+\Omega t)$ satisfving

$$
A_{5}(0, \psi) \text { bounded, }
$$

with $A_{*}(\cdot)$ a wave train, θ is smooth and $\lim \theta^{\prime}(r) \rightarrow 0$
$\$$ In the co-rotating Trame, $(\psi=n \varphi-52 t)$, they can be seen as an heteroclinic connection (with r as independent variable)

気品
B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

Spiral waves. Definition

- We focus on infinite domains, $\vec{x}=(r \cos \varphi, r \sin \varphi) \in \mathbb{R}^{2}$.
- The so called wave trains are solutions of the one dimensional GL in polar coordinates of the form $A(t, r)=A_{*}\left(-k_{*} r+\Omega t\right)$ with $A_{*}(\cdot)$ a periodic functions $A_{*}(\xi)$.
- Ω is the frequency and k_{*} the wavenumber.
solutions of the form $A(t, r, \varphi)=A_{s}(r, n \varphi+\Omega t)$ satisfying

$$
\bar{A}_{s}(0, \psi) \text { bounded, }
$$

- In the co-rotating frame, $(\psi=n \varphi+\Omega t)$, they can be seen as an heteroclinic connection (with r as independent variable)

気品
B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

Spiral waves. Definition

- We focus on infinite domains, $\vec{x}=(r \cos \varphi, r \sin \varphi) \in \mathbb{R}^{2}$.
- The so called wave trains are solutions of the one dimensional GL in polar coordinates of the form $A(t, r)=A_{*}\left(-k_{*} r+\Omega t\right)$ with $A_{*}(\cdot)$ a periodic functions $A_{*}(\xi)$.
- Ω is the frequency and k_{*} the wavenumber.
- The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely solutions of the form $A(t, r, \varphi)=A_{s}(r, n \varphi+\Omega t)$ satisfying

$$
A_{s}(0, \psi) \text { bounded, } \quad \lim _{r \rightarrow \infty}\left\|A_{s}(r, \psi)-A_{*}\left(-k_{*} r+\theta(r)+\psi\right)\right\|=0
$$

with $A_{*}(\cdot)$ a wave train, θ is smooth and $\lim _{r \rightarrow \infty} \theta^{\prime}(r) \rightarrow 0$.

- In the co-rotating frame, $(\psi=n \varphi+\Omega t)$, they can be seen as an heteroclinic connection (with r as independent variable)

首 B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

Spiral waves. Definition

- We focus on infinite domains, $\vec{x}=(r \cos \varphi, r \sin \varphi) \in \mathbb{R}^{2}$.
- The so called wave trains are solutions of the one dimensional GL in polar coordinates of the form $A(t, r)=A_{*}\left(-k_{*} r+\Omega t\right)$ with $A_{*}(\cdot)$ a periodic functions $A_{*}(\xi)$.
- Ω is the frequency and k_{*} the wavenumber.
- The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely solutions of the form $A(t, r, \varphi)=A_{s}(r, n \varphi+\Omega t)$ satisfying

$$
A_{s}(0, \psi) \text { bounded, } \quad \lim _{r \rightarrow \infty}\left\|A_{s}(r, \psi)-A_{*}\left(-k_{*} r+\theta(r)+\psi\right)\right\|=0
$$

with $A_{*}(\cdot)$ a wave train, θ is smooth and $\lim _{r \rightarrow \infty} \theta^{\prime}(r) \rightarrow 0$.

- In the co-rotating frame, $(\psi=n \varphi+\Omega t)$, they can be seen as an heteroclinic connection (with r as independent variable)

首 B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

Spiral waves. Definition

- We focus on infinite domains, $\vec{x}=(r \cos \varphi, r \sin \varphi) \in \mathbb{R}^{2}$.
- The so called wave trains are solutions of the one dimensional GL in polar coordinates of the form $A(t, r)=A_{*}\left(-k_{*} r+\Omega t\right)$ with $A_{*}(\cdot)$ a periodic functions $A_{*}(\xi)$.
- Ω is the frequency and k_{*} the wavenumber.
- The spiral waves are bounded solutions that asymptotically tends to a wave train. Namely solutions of the form $A(t, r, \varphi)=A_{s}(r, n \varphi+\Omega t)$ satisfying

$$
A_{s}(0, \psi) \text { bounded, } \quad \lim _{r \rightarrow \infty}\left\|A_{s}(r, \psi)-A_{*}\left(-k_{*} r+\theta(r)+\psi\right)\right\|=0
$$

with $A_{*}(\cdot)$ a wave train, θ is smooth and $\lim _{r \rightarrow \infty} \theta^{\prime}(r) \rightarrow 0$.

- In the co-rotating frame, $(\psi=n \varphi+\Omega t)$, they can be seen as an heteroclinic connection (with r as independent variable)

奉
B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory

Wave trains and spiral waves in Ginzburg-Landau equation

- The only possible wave trains are $A_{*}\left(\Omega t-k_{*} r\right)=C e^{i\left(\Omega t-k_{*} r\right)}$ satisfying

$$
C=\sqrt{1-k_{*}^{2}}, \quad \Omega=\Omega\left(k_{*}\right)=-\beta+k_{*}^{2}(\beta-\alpha)
$$

The last condition is the associated dispersion relation and the quantity $v_{g}:=-\partial_{k_{*}} \Omega\left(k_{*}\right)=2 k_{*}(\alpha-\beta)$ the group velocity.
with $\chi(r)=-k_{*} r+\theta(r) \sim-k_{*} r$ and Ω, k_{*} satisfying the dispersion relation

- We look for spirals waves n-armed of the form
with f, χ, χ^{\prime} bounded and

Wave trains and spiral waves in Ginzburg-Landau equation

- The only possible wave trains are $A_{*}\left(\Omega t-k_{*} r\right)=C e^{i\left(\Omega t-k_{*} r\right)}$ satisfying

$$
C=\sqrt{1-k_{*}^{2}}, \quad \Omega=\Omega\left(k_{*}\right)=-\beta+k_{*}^{2}(\beta-\alpha)
$$

The last condition is the associated dispersion relation and the quantity $v_{g}:=-\partial_{k_{*}} \Omega\left(k_{*}\right)=2 k_{*}(\alpha-\beta)$ the group velocity.

- As a consequence an spiral wave has to tend as $r \rightarrow \infty$ to

$$
A_{*}(\Omega t+\chi(r)+n \varphi)=\sqrt{1-k_{*}^{2}} e^{i(\Omega t+\chi(r)+n \varphi)}
$$

with $\chi(r)=-k_{*} r+\theta(r) \sim-k_{*} r$ and Ω, k_{*} satisfying the dispersion relation.

- We look for spirals waves n-armed of the form
with f, χ, χ^{\prime} bounded and

Wave trains and spiral waves in Ginzburg-Landau equation

- The only possible wave trains are $A_{*}\left(\Omega t-k_{*} r\right)=C e^{i\left(\Omega t-k_{*} r\right)}$ satisfying

$$
C=\sqrt{1-k_{*}^{2}}, \quad \Omega=\Omega\left(k_{*}\right)=-\beta+k_{*}^{2}(\beta-\alpha)
$$

The last condition is the associated dispersion relation and the quantity $v_{g}:=-\partial_{k_{*}} \Omega\left(k_{*}\right)=2 k_{*}(\alpha-\beta)$ the group velocity.

- As a consequence an spiral wave has to tend as $r \rightarrow \infty$ to

$$
A_{*}(\Omega t+\chi(r)+n \varphi)=\sqrt{1-k_{*}^{2}} e^{i(\Omega t+\chi(r)+n \varphi)}
$$

with $\chi(r)=-k_{*} r+\theta(r) \sim-k_{*} r$ and Ω, k_{*} satisfying the dispersion relation.

- We look for spirals waves n-armed of the form

$$
A(t, r, \varphi)=f(r) \exp (i(\Omega t+\chi(r)+n \varphi)),
$$

with f, χ, χ^{\prime} bounded and

$$
\lim _{r \rightarrow \infty} \chi^{\prime}(r)=-k_{*}, \quad \lim _{r \rightarrow \infty} f(r)=\sqrt{1-k_{*}^{2}}
$$

Where is the spiral shape?

- Below, the surface $\operatorname{Re}\left(A(t, r, \varphi) e^{-i \Omega t}\right)$ for different values of r.

$n=5,6 \leq r \leq 20$

$n=5,20 \leq r \leq 100$

$n=5,100 \leq r \leq 500$
- The wave train $A_{*}\left(-k_{*} r+\Omega t+n \varphi\right)$ has wavelength L (distance between two spiral arms)

Where is the spiral shape?

- Below, the surface $\operatorname{Re}\left(A(t, r, \varphi) e^{-i \Omega t}\right)$ for different values of r.

$n=5,6 \leq r \leq 20$

$n=5,20 \leq r \leq 100$

$n=5,100 \leq r \leq 500$
- The wave train $A_{*}\left(-k_{*} r+\Omega t+n \varphi\right)$ has wavelength L (distance between two spiral arms)

$$
L=\frac{2 \pi}{\left|k_{*}\right|}
$$

Since L is a constant, it is an archimedian spiral.

Our result

- We introduce the twist parameter

$$
q=\frac{\beta-\alpha}{1+\alpha \beta}
$$

Theorem

If $|q|$ is small enough, the Ginzburg-Landau equation possesses a rigidly archimedian spiral with one defect $(f(0)=0, f(r ; q)>0$ for $r>0)$ and $f^{\prime}(r ; q)>0$, if and only if

$$
\begin{equation*}
k_{*}=k_{*}(q)=\sqrt{\frac{1}{1-\alpha q\left(1-k^{2}(q)\right)}} k(q), \quad k(q)=\frac{2}{q} e^{-\frac{c_{n}}{n^{2}}-\gamma} e^{-\frac{\pi}{2 n|q|}}(1+\mathcal{O}(|q|)), \tag{1}
\end{equation*}
$$

with γ the Euler's constant and

$$
C_{n}=\lim _{r \rightarrow \infty}\left(\int_{0}^{r} \xi f^{2}(\xi ; 0)\left(1-f^{2}(\xi ; 0)\right) d \xi-n^{2} \log r\right)
$$

Notice that $k_{*}(q)=k(q)(1+\mathcal{O}(q))$.

Remarks

- The case $q=0$, can be reduced to the real Ginzburg Landau equation

$$
\partial_{t} A=\Delta A+A-A|A|^{2} .
$$

- If $q=0, k_{*}=0$ and there are no spiral waves.

- In our perturbative setting, these lines bend to

 form the spirals.Other people dealing with spiral waves
\rightarrow N. Kopell and L. N. Howard (1981) A serie of papers concerned with pattern formation in the Belousov-Zhabotinskii reaction. The existence and uniqueness of the asymtptotic wavenumber $k_{*}=k_{*}(q)$ as a function of q was proven.

- PS Hagan (1982) I Greenhero (1980) M Agwareles N. S. Chapman, T. Witelski (2010) used asymptotic methods to compute an explicit asymptotic formula for $k(q)$ The asymptotic methods are a consistent and systematic way to conjecture true results but does not provide rigorous proofs.

Remarks

- The case $q=0$, can be reduced to the real Ginzburg Landau equation

$$
\partial_{t} A=\Delta A+A-A|A|^{2} .
$$

- If $q=0, k_{*}=0$ and there are no spiral waves.
- In our perturbative setting, these lines bend to form the spirals.

Other people dealing with spiral waves

- N. Kodell and L. N. Howard (1981) A serie of papers concerned with pattern formation in the Belousov-Zhabotinskii reaction. The existence and uniqueness of the asymtptotic wavenumber $k_{*}=k_{*}(q)$ as a function of q was proven.
- PS Hagan (1982) I Greenhers (1980) M Agnareles N. S. Chapman. T. Witelski (2010) used asymptotic methods to compute an explicit asymptotic formula for $k(q)$ The asymptotic methods are a consistent and systematic way to conjecture true results but does not provide rigorous proofs.

Remarks

- The case $q=0$, can be reduced to the real Ginzburg Landau equation

$$
\partial_{t} A=\Delta A+A-A|A|^{2} .
$$

- If $q=0, k_{*}=0$ and there are no spiral waves.
- In our perturbative setting, these lines bend to form the spirals.

Other people dealing with spiral waves

- N. Kopell and L. N. Howard (1981). A serie of papers concerned with pattern formation in the Belousov-Zhabotinskii reaction. The existence and uniqueness of the asymtptotic wavenumber $k_{*}=k_{*}(q)$ as a function of q was proven.
- P.S. Hagan (1982), J. Greenberg (1980), M. Aguareles, M. S. Chapman, T. Witelski (2010) used asymptotic methods to compute an explicit asymptotic formula for $k(q)$. The asymptotic methods are a consistent and systematic way to conjecture true results but does not provide rigorous proofs.

Strategy of the proof (I)

- We forget PDE because $f(r)$ and $v(r)=\chi^{\prime}(r)$ has to satisfy

$$
f^{\prime \prime}+\frac{f^{\prime}}{r}-f \frac{n^{2}}{r^{2}}+f\left(1-f^{2}-v^{2}\right)=0, \quad v^{\prime}+\frac{v}{r}+2 \frac{v f^{\prime}}{f}+q\left(1-f^{2}-k^{2}\right)=0 .
$$

together with

$$
\lim _{r \rightarrow \infty} v(r)=-k, \quad \lim _{r \rightarrow \infty} f(r)=\sqrt{1-k^{2}}
$$

- In order to f, v being bounded at $r=0$, we need to impose $f(0)=v(0)=0$.
- The boundary conditions; in the inner region $f(0)=v(0)=0$ and in the outer region,
does not provide uniqueness of the solution.

Strategy of the proof (I)

- We forget PDE because $f(r)$ and $v(r)=\chi^{\prime}(r)$ has to satisfy

$$
f^{\prime \prime}+\frac{f^{\prime}}{r}-f \frac{n^{2}}{r^{2}}+f\left(1-f^{2}-v^{2}\right)=0, \quad v^{\prime}+\frac{v}{r}+2 \frac{v f^{\prime}}{f}+q\left(1-f^{2}-k^{2}\right)=0 .
$$

together with

$$
\lim _{r \rightarrow \infty} v(r)=-k, \quad \lim _{r \rightarrow \infty} f(r)=\sqrt{1-k^{2}} .
$$

- In order to f, v being bounded at $r=0$, we need to impose $f(0)=v(0)=0$.
- There are too many conditions. This indicates a selection mechanism for k.
- The boundary conditions; in the inner region $f(0)=v(0)=0$ and in the outer region,
does not provide uniqueness of the solution.

Strategy of the proof (I)

- We forget PDE because $f(r)$ and $v(r)=\chi^{\prime}(r)$ has to satisfy

$$
f^{\prime \prime}+\frac{f^{\prime}}{r}-f \frac{n^{2}}{r^{2}}+f\left(1-f^{2}-v^{2}\right)=0, \quad v^{\prime}+\frac{v}{r}+2 \frac{v f^{\prime}}{f}+q\left(1-f^{2}-k^{2}\right)=0 .
$$

together with

$$
\lim _{r \rightarrow \infty} v(r)=-k, \quad \lim _{r \rightarrow \infty} f(r)=\sqrt{1-k^{2}} .
$$

- In order to f, v being bounded at $r=0$, we need to impose $f(0)=v(0)=0$.
- There are too many conditions. This indicates a selection mechanism for k.
- First approach: perturbation theory with respect to $|q| \ll 1$ [M. Aguareles, I.B., Seara]. It can be seen that $\partial_{q}^{(n)} k(0)=0$ for all $n \geq 0$.
- The boundary conditions; in the inner region $f(0)=v(0)=0$ and in the outer region,
does not provide uniqueness of the solution.

Strategy of the proof (I)

- We forget PDE because $f(r)$ and $v(r)=\chi^{\prime}(r)$ has to satisfy

$$
f^{\prime \prime}+\frac{f^{\prime}}{r}-f \frac{n^{2}}{r^{2}}+f\left(1-f^{2}-v^{2}\right)=0, \quad v^{\prime}+\frac{v}{r}+2 \frac{v f^{\prime}}{f}+q\left(1-f^{2}-k^{2}\right)=0 .
$$

together with

$$
\lim _{r \rightarrow \infty} v(r)=-k, \quad \lim _{r \rightarrow \infty} f(r)=\sqrt{1-k^{2}} .
$$

- In order to f, v being bounded at $r=0$, we need to impose $f(0)=v(0)=0$.
- There are too many conditions. This indicates a selection mechanism for k.
- First approach: perturbation theory with respect to $|q| \ll 1$ [M. Aguareles, I.B., Seara]. It can be seen that $\partial_{q}^{(n)} k(0)=0$ for all $n \geq 0$.
- We divide the problem between $r \in\left[0, r_{0}\right]$ (inner region) $r \in\left[r_{0}, \infty\right.$) (outer region) with $r_{0}=e^{\rho / q}$ with $\rho \ll 1$.
does not provide uniqueness of the solution.

Strategy of the proof (I)

- We forget PDE because $f(r)$ and $v(r)=\chi^{\prime}(r)$ has to satisfy

$$
f^{\prime \prime}+\frac{f^{\prime}}{r}-f \frac{n^{2}}{r^{2}}+f\left(1-f^{2}-v^{2}\right)=0, \quad v^{\prime}+\frac{v}{r}+2 \frac{v f^{\prime}}{f}+q\left(1-f^{2}-k^{2}\right)=0 .
$$

together with

$$
\lim _{r \rightarrow \infty} v(r)=-k, \quad \lim _{r \rightarrow \infty} f(r)=\sqrt{1-k^{2}}
$$

- In order to f, v being bounded at $r=0$, we need to impose $f(0)=v(0)=0$.
- There are too many conditions. This indicates a selection mechanism for k.
- First approach: perturbation theory with respect to $|q| \ll 1$ [M. Aguareles, I.B., Seara]. It can be seen that $\partial_{q}^{(n)} k(0)=0$ for all $n \geq 0$.
- We divide the problem between $r \in\left[0, r_{0}\right]$ (inner region) $r \in\left[r_{0}, \infty\right.$) (outer region) with $r_{0}=e^{\rho / q}$ with $\rho \ll 1$.
- The boundary conditions; in the inner region $f(0)=v(0)=0$ and in the outer region,

$$
\lim _{r \rightarrow \infty} f(r)=\sqrt{1-k^{2}}, \quad \lim _{r \rightarrow \infty} v(r)=-k
$$

does not provide uniqueness of the solution.

Strategy of the proof (I)

- We forget PDE because $f(r)$ and $v(r)=\chi^{\prime}(r)$ has to satisfy

$$
f^{\prime \prime}+\frac{f^{\prime}}{r}-f \frac{n^{2}}{r^{2}}+f\left(1-f^{2}-v^{2}\right)=0, \quad v^{\prime}+\frac{v}{r}+2 \frac{v f^{\prime}}{f}+q\left(1-f^{2}-k^{2}\right)=0 .
$$

together with

$$
\lim _{r \rightarrow \infty} v(r)=-k, \quad \lim _{r \rightarrow \infty} f(r)=\sqrt{1-k^{2}}
$$

- In order to f, v being bounded at $r=0$, we need to impose $f(0)=v(0)=0$.
- There are too many conditions. This indicates a selection mechanism for k.
- First approach: perturbation theory with respect to $|q| \ll 1$ [M. Aguareles, I.B., Seara]. It can be seen that $\partial_{q}^{(n)} k(0)=0$ for all $n \geq 0$.
- We divide the problem between $r \in\left[0, r_{0}\right]$ (inner region) $r \in\left[r_{0}, \infty\right.$) (outer region) with $r_{0}=e^{\rho / q}$ with $\rho \ll 1$.
- The boundary conditions; in the inner region $f(0)=v(0)=0$ and in the outer region,

$$
\lim _{r \rightarrow \infty} f(r)=\sqrt{1-k^{2}}, \quad \lim _{r \rightarrow \infty} v(r)=-k
$$

does not provide uniqueness of the solution.

Strategy of the proof (II)

- Two families of solutions depending on (\mathbf{a}, k) and (b,k).
- Remember that the ODE is of second order; f^{\prime} has also to be take into account.

[^5]- Controlling the dominant terms in the inner and the outer region we can solve the system and compute $k=k(q)$

Strategy of the proof (II)

- Two families of solutions depending on (\mathbf{a}, k) and (b,k).
- Remember that the ODE is of second order; f^{\prime} has also to be take into account.

- We match the two families in the common point $r=r_{0}$. Namely we impose that

$$
\begin{aligned}
f^{\text {out }}\left(r_{0}, \mathbf{a} ; k, q\right) & =f^{\text {in }}\left(r_{0}, \mathbf{b} ; k, q\right) \\
\partial_{r} f^{\text {out }}\left(r_{0}, \mathbf{a} ; k, q\right) & =\partial_{r} f^{\text {in }}\left(r_{0}, \mathbf{b} ; k, q\right) \\
v^{\text {out }}\left(r_{0}, \mathbf{a} ; k, q\right) & =v^{\text {in }}\left(r_{0}, \mathbf{b} ; k, q\right) .
\end{aligned}
$$

- This is a system with three unknowns $(\mathbf{a}, \mathbf{b}, k)$ and three equations (depending on q)
 and compute $k=k(q)$.

Strategy of the proof (II)

- Two families of solutions depending on (\mathbf{a}, k) and (b,k).
- Remember that the ODE is of second order; f^{\prime} has also to be take into account.

- We match the two families in the common point $r=r_{0}$. Namely we impose that

$$
\begin{aligned}
f^{\text {out }}\left(r_{0}, \mathbf{a} ; k, q\right) & =f^{\text {in }}\left(r_{0}, \mathbf{b} ; k, q\right) \\
\partial_{r} f^{\text {out }}\left(r_{0}, \mathbf{a} ; k, q\right) & =\partial_{r} f^{\text {in }}\left(r_{0}, \mathbf{b} ; k, q\right) \\
v^{\text {out }}\left(r_{0}, \mathbf{a} ; k, q\right) & =v^{\text {in }}\left(r_{0}, \mathbf{b} ; k, q\right) .
\end{aligned}
$$

- This is a system with three unknowns ($\mathbf{a}, \mathbf{b}, k$) and three equations (depending on q).
- Controlling the dominant terms in the inner and the outer region we can solve the system and compute $k=k(q)$.

Gràcies a tothom i bona Jornada SD 2022

[^0]: - The procedure can be generalized for mechanic unperturbed hamiltonian [I.B., E. Fontich, M. Guardia, T.M. Seara, 2012]

[^1]: - The procedure can be generalized for mechanic unperturbed hamiltonian [I.B., E. Fontich, M. Guardia, T.M. Seara, 2012]

[^2]: \rightarrow The procedure can be generalized for mechanic unperturbed hamiltonian [I.B., E. Fontich M. Guardia, T.M. Seara, 2012]

[^3]: Shilnikov orbits in the analytic unfoldings of the Hopf-zero singularity [I.B., O. Castejón, S. Ibáñez, T.M. Seara]

[^4]: - The time parameterization of the homoclinic connection of H_{0} has singularities at $\pm i A$ - There are parameterizations of $W^{\mu, S}\left(L_{3}\right)$ in domains $\sqrt{\mu}$ - close to $\pm i A$ and related with special solutions of the inner equation (matching complex techniques)
 $>$ The inner equation gives a hopefully first order for the difference (in the fast x variable) $\Delta_{0} \times(u)=K e^{-\frac{A}{\sqrt{\mu}}} e^{\frac{1}{\sqrt{\mu}}}$ for $u \in \overline{0, i(A-\sqrt{\mu})}$
 - The difference is written as $\Delta x=\Delta_{0} x+\Delta_{1} x$ with $\left|\Delta_{1} x(u)\right|=O(|\log \mu|)$ and

[^5]: - This is a system with three unknowns ($\mathbf{a}, \mathbf{b}, k$) and three equations (depending on q)

