Chaoticity of aeneric analytic convex gilliards

. Baldoma

LPC, CRM | ImTech

March b, 2025



A )our\ work wrtk A Clorlo N\ Leeuﬂ ar\d TN\ Se_ara

Wwe wtll Prove, —tha—t c:.er\er‘mally tke dyr\amms assOciated wrtk
an ar\aly'ue convex: gilliard tarle is chaotic and there#ore :
Generic ar\aletm convex Billiards are NOt intearaele.
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A )om work wu—tk A Clorto M Leeuul ar\d TN\ Saara

We wm Prove, —tha—t c:.e_r\emeally tke. dyr\ar\mcs assomate.d wrtk |
an ar\alyﬂc convex gilliard tarle is chaotic and 'tkereﬁore o
eenertc ar\aly—tm convex gilliards are Not m—tee.ra&le

More cor\ere—tely, 8 Generic analytic convex 5|H|ard ta&le
satisfies the -Pollowmca property: For any m/n r‘a—t|or\al
- num&er‘ there is a kype.r&oue periodic oreit with rota—tuon
NnuMBer m/n whose sta&le ar\d unstaele invariant manifold
intersect transversally. .
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Pr‘enr\mr\ar‘y de—mr\rt\or\s and Nnotation
Let £ M 5Ma dI-P-PeomorPklsm de_-mr\ed on some_ manifold M.

= PO is a r\—Per‘lOdlc point i £ (POB =-Po and £"(Pp) # Py i£
M <N The corresponding oreit is a periodic oreit:

P = OPy) = §Po, 8P F2Py), - A PZ

- P is hypereolic if spea DENPY) c §|N # 13
- The unstarle and stakle invariant manifold of Py are

Nn—/|
WY = | JWHP),  Pj= Py
=0
with
WHP) = fxe M : lim dist(£5(<), 8P = 03
WAP) = fxe M : lim dist(#60), 8P = 03
—00
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- Qisa .Hor\d’oclir\_ic'Poiﬁr\—tassocia—ted to OPp) i£
Qe WUPHAWR,  jke 0, n—13

- Q is 8 transverse homocdlinic point if the tangent spaces
of WHP) and W3 (P, cenerate the tancent space to M.
We write

Q € WHPH MWEPD

- In general, to prove the existence of transverse |
homoclinic points £or a aiven dynamical system is difficult.

- There are computarle £OFMulas only in the pertureative
settina.
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Measuring jtrans'versali—ty (b)

- Periodic pertur&aﬂons oﬁ planar: sys—tems kawr\cq a8 saddle
pOiNnt Po, with komoehme conr\ee—tior\ (xo(‘tﬁ wke_r\ p=0)

X = C-ao(vG—I-p.C:/] (x,‘t; ) e (x;t—l-/l; ) ———_,C.:/] (x,t: ), xelR”
- The Melnikov function is '

Mty = / ol N A G e

o

- Sivple zeros of M(tp) lead t0 transverse homocdlinic
POints, for |u| < L

- More general sce_r\aﬂos have reen considered Delshams,

Gonchencko, Gutiérrez, Motonaaa, Yaaasaki
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Measuring transversality (D

- Planar Analytic sywplectic. aps. The Melnikov potential is
an infinite suM depe_r\dmc: on 'tke caeneratlnca function
of the map, .

- Let £¢ Re a family of synnplee—tm MapPs with cenerating
function Le = LO —+ SL/] + O(e?. '

= Assume that £7 has a saddle point Py with eicenvalues
N3

- Assume that Py has associated a homoclinic connection
Parameterizated By xo(t) and

Folxp(t)) = %ot + ), h=loa A
- Then the Melnikov potenttial is
M) =LY, LAY = Lilkolt =+ jh) ot + () + DR
JeZ-
- Has reen computed for some examPle_s, McMillan map,
standard like maps and elliptice gilliards. L3






. Some information arout xo(t) is needed
2. When & (x;t + 21 ) = a(x, W), £ <4 then,

| M('t@ et fLE.

and M(ty) can Be used a Priori ohly_‘wker\ e Caaley
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. Some information asout xp(t) is needed.
2. When c=4(><—t—l-2_11:e m = 64(>< tiw), £ <1 then,

M(‘tow Qe_a/fc' #

and M(to) can Be. use_d 5 priori or\l_y__.wker\ e Ofegacey
3. This is the exponentially small splittina of separatrices
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. Some information arout xp(t) is Nneeded.
2. When a(x,t =+ 2me W) = Gt p), e <4 then,

.-\'-.U)

| M('t@\ foo

and M(ty) can ge used a Priori o'r’\'ly"v;)ker\ e Ofee ey
This is the e_xpor\ermauy swall SPll‘t‘tlf’\C: Of separatrices

For one and a half dearees of Preedom r‘ap|dly forced
kamu—tomar\s the Works BY Raldoms, Delshams, Fiedler, Fontick,

Gaivao, C:élﬁr‘e’ich, Girakt, Quardia, Holwes, Jorra, Lomrardi, Marsden, Martin,

Neisktadt Paradels, Sauzin, Sheurle, Simd , Treshev P('O\/ide QOr\di’tiOF\S
t0 guarantee transverse homocdalinic points, using elther:
Melnikov function or the iInner equation
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+ W

Some information agout xp(t) is Nneeded.
When G (¢t =+ 2T ) = &kt ), £ <A then,

| M('t(j\ Lo

and M(tg) can Be used a priori ok\ly_‘wker\ L Ofeae)
This is the exponentially small splitting of separatrices

For one and a half dearees of freedom rapidly forced
hamitonians the works gy

Provide conditions
10 guarantee transverse homocdalinic points, using elther
Melnikov function or the Inner equation

Toy model for near inteararle hamitonians close to
resonances and It is a crucial Inaredient for the proof
of Arnold’s diffusion In the analytic settina.

The exponenttially small splittinag Of separatrices appear in
several iInstances of the 3-r0dy prorlem.
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& Ar\alyﬂe area Pre_servmc: maps close €& m—tecqra&le_ for
mstance the s—tar\dard Map '

(x, ﬁ ot -P(x,ﬁ = (x+ y + esm(»d y+ esm(xﬂ
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- Analytic a_rg;a' Preseryina Maps close 0 inteararle; for
Instance the standard map:
. (x,9) > £lx.y) = (x + y‘—F é-si'r\'(k),y +e sin(x))

Lazutkin in (984, was —tke_-ﬁrs%t Proving a formula for
Mmeasuring the anale retween \WH0O) and W (0)

p~Loe ™/VE 9 e@\$O%
€

- The constant © = O(H) is the Stokes constant and i1s NOt
related with the Melnikov approach.
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- Analytic ares Presgryir\'ca Maps close to intearagle; for
 instance the standard map:

) o M) = (ot y + £5inGO),y + £ 5inGO)

Lazutkin in (98, was the first proving a formula for
measuring the anale petween WH0) and W(O)

p~Loe ™/VE @ e@\$O%
€

- - The constant © = O(£) is the Stokes constant and is NoOt
related with the Melnikov approach.
- The proo# was ended By Gelfreich in 1999.

- Other works are due to
Delshams, Forrtich, Gil R.amis, Martin, M-Seara; R.amirez-R.os, Sauzin, Simd
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Commahfts on di-re_e—t methods

- The —trar\sve_rsali—ty of W (Pp) is cuarantee only if some
constant is different from O.
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Comr\neh—ts on direct methods

- The transversality of W" S(POB is Gquarantee only if some
constant is different from O. ;

- This constant can either come ﬁrom a8 Melnikov approach
(difficut to compute) or it is a S—tOke_s constant em
(nO closed ﬁorr\nula t0O compute it).
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Comr\neh—ts on direct methods

- The transversality of W" S(Poﬁ is guarantee only if some
constant is different from O.

- This constant can either come -Prorv\ a8 Melnikov approach
(difficut to compute) or it is a Stokes constant em
(NO closed formula tO compute it).

- However, this constant is analytic with respect to $.
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Comr\neh—ts or\ di-re_e—t vmethods

- The ‘trar\sve_rsan—ty of \N“S(POW Is quarantee only if some
constant is different from O. -~

- This constant can either come ﬁrom a8 Melnikov approach
(difficuHt to compute) or it is a Stokes constant em
(NO closed formula tO compute it).

- However, this constant is analytic with respect to £

- For the perturesed pendulum, the Standard map, the
Henon map and the McMillan it can Be proven that
() # O using resurgence theory
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Comr\neh—ts onN di-ra_e—t methods

- The transversality of W" S(POW is quarantee only if some
constant is different from O.

- This constant can either come ﬁror\n a8 Melnikov approach
(difficurt to compute) or it is a Stokes constant em
(NO closed formula tO compute it).

- However, this constant is analytic with respect to $.

- For the pertureed pendulum, the Standard map, the
Henon map and the McMillan it can Be proven that
() # O using resurgence theory

- In some cases, O(F) can Be computed By means Of
computer assisted prooss
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Commah—ts or\ di-ree—t methods

- The —trar\sve_rsah—ty of \N“S(P(ﬂ is quarantee only if some
constant is different from O.

- This constant can either come -Prorv\ a8 Melnikov approach
(difficut to compute) or it is a Stokes constant em
(no closed formula to compute it).

- However, this constant is analytic with respect to £

- For the pertureed pendulum, the Standard map, the
Henon map and the McMillan it can Be proven that
() # O using resurgence theory

- In some cases, O(F) can Be computed By means Of
computer assisted prooss

- These methods are constructive, providing computarle
conditions to guarantee the exis_—ter\ee of transverse

homoclinie pointts.
9/3|



C-ae_r\eme\—ty

. Ar\o—tker' s—tra—tecqy Is Pr‘eser\—ted in —tHs wWOork.
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C:er\eme\—ty

- Another s—tra—tecqy Is Pr‘eser\—ted iN this work.

- Instead of dealing with a eor\cr'e—te dynamical system, we
are concerned with the aBundance oﬁ dynamical systems
exhiriting chaotic 5eka\/|our
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Generl Ci—ty -

- Ancther stratecay is presented in this work
- Instead of deslinag with a cor\cr'e—te dynamical system, we
are eor\ce,rr\ed with the arundance o-P dynamical sys'tems
exhigiting chaotic 5e_ka\/|our |

- Generiaity: A property is generic w |—t Is shared Por‘ the
elements of a residual set.
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C‘aer\eﬂe\‘ty

- Another strateey Is presar\—ted iN this wWork.
- Instead of dealing with a cor\er'e—te dyr\anmeal system, we
are concerned with the aBundance O-P dynamical systems
exhiriting chaotic &ekawour |

- Generiaity: A Property is generic w it Is shared ﬁor the
elements Of a residual set.

- Residual set: A set that Is the countarle intersection O-P
open and dense sets (in some topoloay). The topoloay has
the Baire propertty i£ a residual set is also dense.
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C:ar\er‘mrty

- Another s—tra—tecqy is presewted in this work.

- Instead of desling with a cor\cre—te dyr\anmeal system, we
are concerned with the apundance 043 dynamical sys'tems
exhilting chaotic 5eka\/|our

- Generiaity: A property is generic w it Is shared ilor‘ the
elements of a residual set.

- Residual set: A set that is the countarle intersection of
opPen and dense sets (in some topoloay). The topoloay kas
the Baire propertty i£ a residual set is also dense.

The Question is then

- For a aiven dass E of dynamical systems, the sueset
R. c E having transverse homoclinic points is residual?
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Genert ci—ty

- Another stra—teey Is pr‘eser\—ted in this work.

- Instead of deslinag with a cor\cr'e—te dynamical system, we
are eor\ee,r'r\ed with the aBundance o# dynamical systems
exhiriting chaotic 5eka\/|our

- Generiaity: A property is generic w it is shared ilor‘ the
elements of a residusl set.

- Residual set: A set that Is the countarle intersection O-P
open and dense sets (in some topoloay). The topoloay Has
the Baire propertty i£ a residual set is also dense.

The Question is then

- For a aiven dass E of dynamical systems, the sueset
R. c E havina transverse homoclinic poirts is residual?

- In partticular, 1£ sO, when E has the Baire property, for any
£ e E, there exists a diffeomorphism G € R as close as

we want of £ having transverse homoclinic points
10/ 3|



Some pre_wous resul—ts a5ou—t c:er\ermrty

= Smoo—tk symPlee—tm dwﬁeomorpmsr\m |
&—51: MM, eve_ry Hyper&ohe pemoduc or&u—t kas a komoehme OrBeits.

Tkar\ R is reS|dual Ta . _
> Taker\s 19F2: for M=IRZ in Cr= |, symplectic diffeomorphism. |
P Dicton 1982 for M=%% in C", rell4o0o]l, diffeomorphism.

P Oliveira, 1981 for M=T%" in ¢, reli#oo], dime_omorpkism.
» Oliveira, 2000: for (Mmost) aenus(Md2 .
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Some pre_wous resul—ts a&ou—t c:er\erlcrty

= Smoo—tk symPleo—tm dl-P-PeOMOr‘PHSMS |
| Q=££..M——>M every hypersolic pemodm oreit has a homaoclinic oraits,

Tker\ R Is' reS|dual in

> Taker\s 9%2: for M=IR* in ¢ r= 1, symPle_c—tm diffeomorphism.
P Dicton 1982 for M=37 in ¢ rell4ool, diffeomorphism.

P Oliveira, 198T: for M=T% | in C", reli+oo], dimeomorpkism.

P Oliveira, 2000: for (most) aenus(M)> |.

- Stmooth convex gilliards

» Donnay, 2003, There are C> curves, C* cdose to the ellipse whose gilliard
tarle have transverse homoclinics points.

P 7 hihone Mia, Penatel 7 hana, 2013, All the hypersolic periodic points have
transverse homoclinic or‘Bi‘ts"ﬁor ceneric C" gilliards r> | Also Dias
Carneiro, O. Kamphorst, S Pinto de Carvalho, 2007, for r=2

P Ressa, del Maano, Lopes Dias, Gaivao, 2024 There exists a ¢+ open and
dense set Of convex Bodies R4 whose BHllar‘d maps have an hypereolic set
(positive enttropy).
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C:er\ericifty; in the analytic setting

- Plar\ar Ar\aly—tm symPlecﬂe dwﬁeamorpmsms kawr\e an
elliptic fixed point. -

» Homoclinic Pom—ts Near Elliptic Cmed Pom—ts By Z-ehnder,

- 1973 The set of analytic symplectia diffeomorphisms having
the oriain as an elliptic point with transverse homoclinic
POiNnts In every nelcheorhood of the oriain Is residual I
sOme analytic topoloay.
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Gener C‘rty; |r\ the ar\aly—tie setting

~ Plar\ar Ar\aly—tm symPleoﬂe dl-P-PeQMOFPHSMS kawr\e an
elliptic fixed point. «

> _Homoclinic Points Near Elhp—t\e Clxed pom—ts By Zehnder,
1973 The set of analytic symplectia diffeomorphisms having
the oriain as an elliptic point with transverse homodlinic
POints in every neichBorhood of the oriain is residual in
sOme analytic topoloay.

» Transversal homoclinic oreits near elliptic mxed POINts Of
area preserving diffeomorphism of the plane, By Genecand,
993, Same resutt as Zehnder put usinag Auerey-Mather
theory. He extended the results to some analytic ceodesic
£lows and hamittonians. .
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Genericity in the analytic settine

~ Plar\ar Ar\aly—tm symPle_eﬂc dl-P-PCQMOFPNSMS havme an
elnp—ue fixed point. -

> Homoclinic Poirts Near Elhp—tm Clxe_d pom—ts By Z.ehnder,
1973, The set of analytic symplectia diffeomorphisms having
the oriain as an elliptic point with transverse homoclinic
points IN every neigheorhood of the oriain is residual in
sOme analytic topoloay.

» Transversal homodlinic orgrits near elliptic mxed pom—ts of -
area preserving diffeomorphism of the plane, By Genecand,
993. Same result as Zehnder But usinag Aurrey-Mather
theory. He extended the results to some analytic ceodesic
Flows and hamiHtonians.

Those wWorks construct small perturrations having the
Property we want to deal with ar\d RelonginG to a desired
functional space.
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Billiard dyr\am'ics
we set T =R/ 7

o s—trtc—tly cor\\/ex 5|H|ard taple €} e IQZ is a 50ur\ded domain
sa—t|s£y|r\ca 90 =T with y: T < IQZ a8 curve with
strictly neaative curvature.

- yYls an e_m&e_ddlr\cq ar\d we take ar\—ueloekwlse_ orle_r\—ta‘tlon

- The Bnh'ard Map is | ’X (s)
(s,0) — £(s,0) = (5", oD Z\(\\S\ )
- ¥(s) is a8 point in 0f2 Lo e /
- @ Is the angle petween the N> o i
inward Normal vector, —n(s), and , . s
Y(s™ — y(s) NN f

- The Incldence anale is the same
as the reflection

\ //

e be )55



Properties __O-P BUHard M8Ps
Detine el |
A= 'Tl'x[ T nax[ e
| Sl L)
i ' el BN e
- £ A s A\, {2(5,—2—) = ﬁ(s, _?:\ 3
- 1& yis analytic (resp. CM), then £ is analytic (resp. C" ).

I8 EA S A s 3 lift of £, Fls+1¢) =F(x ch—M we define
the rotation numerer

NS, — s
pls,p) = lim 4 !
k—00 k

- In particular for Pp = (sp,¢p) 8 n—periadic poirt, p(Pp) =
with m the numrer of times —tka—t O(Py) winds around 8(2
Before closing
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Topoloay
For a cqwer\ r>0, we de-Pme |
T —f_s cC :Res e T \IMS\ <rs§
The functional space e
e ,l&k) =fy:Tr > IRE, réal analytic and continuous onT %
er\dowed with the Nnorm

Y ll- = max|y(s)]

1S Tr

is 8 Banach space.
The space oOf real analytic ﬁuncﬂons on T satisfies

Co(T JRFYy= |- ] CEET IR

—>0

1S /3l



The main resul—t'

Ar\y strictly convex ar\aly'tm gilliard Q is ekar‘ae—ter‘ned (not
uniQuely) as an element of the open set

B.—fye cwﬂr,«w», v T eap s y(‘rr»stricﬂy convexk.
: 2 : : . : )

We write Q = Q(y).

Theorem (Transverse homodlinic oreits) | |
Fix r > 0. There exists a generic set B, c B, such that for all
Y € B/ the following property holds:

For any rational rotation nuvieer m/n, the Billiard map
associated to AY) has at least one hyperrolic periodic orait
with rotation numeer m/n, having associated transverse
homocdalinie intersections.

The result is NoOt perturrative
It/ 3l



Prelir\nir\ar‘y cor\si‘der‘a—tior\s |

- B is 3 58\(‘6 space. BQQause is an oper\ set of a Banack

space. Therefore, B is dense.

- The resukt is and s—tr‘alcak—t-corwar‘d cor\seauer\ee of
Theorem (Cixing a rational rotation num&er\
Fix m/ne QN (OMN and let \/’}"/r\ e the set of y € B, such
that the Billiard map with tasle QAy) has a transverse
homocalinic orelt associated to a periodic oreit with rotation

nuMBer m/n.
Then, \/r}"/ ™ is open and dense in B, in the analytic topoloay.

- As a coNnseqQuence the set
(-] N Bl
Mm/Nne®

Is residual In the analytic topoloay.
1/ 3l



- For a aiven m/n e R N (O, the property of reing
hypereolic and transverse is open, sO V’}"/ " is open

- To prove the density of VY™ in B, it is enouah 1o
construct suitaele analytic deformations of the gilliard
taple havina transverse intersections.

Theorem (Density usina suitagle analytic deformations)

Fix m/ne RN (O N and y € B Denote By N(s) the unitary
outward normal vector at y(s).
Then for all € > 0, there exists A € C2(T IR with

N Aell-< €
such that, letting |
YL (8) = () + A(sIN(s)

the gilliard map of Qvy,) has a periodic hypereolic orgeit of
rotation numrer m/N with transverse homoclinic points.

&/ 3l



Comments on gillard taeles
- v will Be parar\ne:te_r'na—ted By arc-lenath, But v, will not.
- Le—t ALY, Y(s) = y(s) + ANsIn(s) and —tke corresponding

gilliards £, £ Even \£ A only moducy an small realon of 092,
it affects a BiGg recion in A |

e .
L) T e
- Us,sH =||v(s) — v is 8 aenerating function of £:
O ts,sN = —sing, 0 Us,sN = sin g’
- The map £ = (£,,#)) sa—usmes the twist condition,

o189 > 0,

- The Ausrey-Mather theory works £or gilliards.
9/3



Sketch Of the proos (D
Fix r>0,m/ne@RNOMNand ye B
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Sketch 0f the proos (N
Cix r> 0, M/ne&m(O n and y € B

- \We consider &Y h s 4 Abthe Map —tka—t sends a
deformation A to the new Rilliard map.
- & is C'=Fréchet differentiagle.
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Sketch of the proo#$ (D
Fix r>0,m/Nne@RnOMNand ye B, |
- We consider GO\ s £+ AP the map that sends a
deformation A to the new Rilliard map.
- & is (!-Créchet difterentiasle |
- Use Au&r‘ey—/\/\a—tker‘ theory to auarawtee the existence

Of a hypereolic periodic oreit P of rotation numser m/n
having 8 homocdlinic point Q € WP n\W2(P).

- Assume that QR is Not transverse.
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Sketch of the proo#f (D
Fixr>0, M/r\e@m(O N and v € B
- We consider GO\ s P Apthe Map —tha—t sends a
deformation A to the new Bgilliard map.
- & is ('~Créaket differentissle |
- Use Au&r‘ey—/\/\a—tker‘ theory to cquarar\—tee the existence
of a hyperrolic periodic oreit P of rotation numeer m/n
having a8 homodalinic point Q € WHP) n\WA(P).

- Assume that QQ is not transverse.
- Construct H : £ s (H (£) Hy (B e IR% such that

H,( =0 — R homodlinic point
H(B) =0, H, (P # 0 «= Q transverse homodlinic poirt
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Sketch of the proo#f (D
Fixr>0,m/ne@RnNOMNand Ye B, |
- \We consider QY s £+ Abcthe map that sends a
deformation A to the new Bgilliard map.
- & is ('~Créaket differentiasle |
- Use Au&r‘ey—/\/\a—tker‘ theory to c:uar‘ar\‘tee the existence

of a hypereaolic periadic oreit P of rotation numeer m/n
havina a homodlinic point Q € WP n\W2(PY.

- Assume that Q is not transverse.
- Construct H ;: £ s (H (£) Hy (B e IR% such that
H,( =0 — R homodlinie point

H(8) =0, #,(F) # 0 «= Q transverse homocdlinic poirt

- We have that #oG&O) = (0.0).

- His (' —Créchet difberentiarle
20 /3



Ske:tch O£ the Plroo-(i (N
- Fixe>0 The cqoal Is —to prove that there exists
= C‘*’(T l&) suek —tka—t ' 2 -

\\x\\r <8 1 H o-c:Om =(0,8)
with a # O S .
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Sketch of the Pr‘ooﬁ (I
- Fixe>0. Tke c:oal is —to Pr'ove —tka—t —tkere ex|s—ts
= C‘*’(‘ﬂ' l&\ suck —tka—t ' IR kL

\\x\\r <, Ho 6% =02
with a = €] |

- Compute d(H ocqoyo»x = 4GOI Tor punctions X
C>° compactly supported (otherwise is impossizleD
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Sketch Oﬁ the P'r‘oo-(i (1N
- Fix e>0. The caoal Is —to prove that there exists
= C‘*’(T l&) suek —tka—t ' A -

\\x\\r <g,  Ho caOm =0

with a = 0. |
- Compute d(H oc:Oyowx = d—H(de:O(OW)\ for functions A
C> compactly supported (otherwise is impossieleD

- Prove that there exists )\4 ,)\Z such that
dHOGNOW, =(1,0),  dHo GO, = (O0,D
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Ske—tch Oﬁ the Plr‘oo-(i (1N
- Fix e>0. The caoal Is —to pProve that there exists
= C‘*’(T IQB suek —tka—t ' A -

| \\x\\r <, 1o o-c:Om = (o,aw
with 3 # &, |

- Compute d(-H ocqoyo»x = cw«(mdeO(m for functions A
C> compactly supported (otherwise is impossieleD

- Prove that there exists )\4 »)\2 such that
dHO GO, =(1,0),  dHo GO, = (O0,D

- By continuity, there are A\, A\ triconometric polynomial,
close to A\, Ay in some Cf norm, such that

dHOGNOW =w;,  dHOGNON =w;,

with [wy,wy1 =R~ 21/3



Sketch Oﬁ the Plr‘oo-(i (1M
- Cor\5|der £ kz XIR. — l&z the C! map defined Ry
(cy ,cz,aﬁ s Ho &P Y —I-cz)\ﬁ —(0,8)

22./3l



Sketch 0f the proo# (D
- Cor\5|der F I&Z xl& — l&z the C! map defined Ry
ey ,cz,aﬁ s Ho &P Y —I-cz)\@ ~1(0,a)

AP tE Raplick Buneticn thetramn. Reoall ot E Gl
F(0,0,0) =(0,0),  Dq, ,F(0,0,0) = (wy,wy) is invertisle.

Q/] Q9:
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Sketch of the proos (I
- Cor\5|der E IQZ xl& — l&2 the C! map defined By
ey ,ez,aﬁ s Ho &P Y -+e2)\2_3 —(0,8)

_ Boplythe ihaplicrt Pumetion theordmn Recall thotE e €
C(O,Q',O) =(000) e iy L CO DR (wy,wy) is invertigle.

C) Lo

- There exist ¢;(3),0,(3) such that
F(ey(8),0p(8),8) =0, |ci(8))], |ep(8)] < 8
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Sketch of the proos (I
- Cor\5|der E IQZ xl& — l&z the C! map defined Ry
ey ,ez,aﬁ s Ho &P Y -I-ez)\gﬁ —(0,8)

- Apply —tké implicit function —tke_ore_m., Qecall that F is C!,
FO,0,0) = (0,0), -~ Dq, o, FO,0,0) = (wy,w)) is invertigle.

C) Lo

- There exist ¢(3),0,(3) such that
ey (8),0p(8),8) =0, |ci ()], |ep(8)] < 8

- Lettinag A = ¢,(3 YA\ + (8N, the Billiard map Gp(A) has R
as transverse homocalinic poinrt.
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Sketch 0f the proo# (D
- Cor\5|der F I&Z xXIR. — l&z the C! map defined Ry
ey ,cz,aﬁ s Ho &P (e My —I-cz)\ﬁ —(0,8)

- Apply the impliait function e Ordiing R daal that £ 18 e
FO,0,0) = (0,0), o E(e aden (w/, Wy ) s invertisle.

Q/] 29

- There exist ¢;(3),0,(3) such that
F(ey(8),0p(8),8) =0, |ei(3))], |lep (8] < 8

- Lettinag A = ¢,(3)\; + (8N, the Billiard map Gp(A) has R
as transverse homocdalinic point.

- Notice that || Ml |IA2ll- is iIn ceneral (very) Bia. However
we ean take a8 8s swall 8s we want, so that

INI- < 8l - |l 8l -l < e 22./3



The ae—t|0r\ oﬁ —tke per‘—turBa—UOr\ on —tka gilliard
MaPp n | |

Cix r> 0, M/r\e@m(O 2D} ar\d yebB,

- Computation of the first order N € o£ the eilliard map £«
with gilliard tagle Aye) and |

peeT= kN, Aot L

De.r\d‘tir\ca (s, = #(s, ), T = 5,5 = ||y(s) — ¥(s")|| and
K(s) the curvature:

/l

Sc =s—¢ _(N()T =+ M) sin @ — Ns D sin ©" 4+ O™
COS _

Q. =9’ —¢ K(S 3/ (N()T =+ Ns) sin @ — MsD sin "
COS |

4+ e\(s) = N(s) 4+ O

Uniformity away from the roundary of A\
23/3



The ae—t|0r\ o-(i —tke per‘—turBa—hor\ on —tke Rllllard
Map an -
- For any § > O, consider 'the set

A\B—z(s ) € A\ (pe[ i—l—B;—B]S

Let G2 :CUT IR — cf<A\83 the map sendina A to the
Billlard map restricted to Ay of Rilliard taele with
BRoundary

YLA(S) = y(s) + MsHN(s)

The map &° is —Fréchet differentiaele and
: |

dGS (O = — _(N(s)T 4 XY sing — NsN sin @)
QOs @ .
5 K(s’ﬁ / d R /
d&) (0N =— — (N ()T + Ms)sing — AsN sing"
COS @ -
+N(sH=N(s).

24 /3l



E xistence 0f homodlinic poirts
- Auerey-Mather theory assures there is 8 minimal
periodic oreit P = OPp) with rotation numeer m/n




C xistence of homodlinic poirts
- Augrey-Mather ?theor_y assures there Is 8 minimal
periodic oreit P = OPp) with rotation numeer m/n
- There _éxis?ts 5 = 8(v1,N) such that P, WP c A\




C xistence of homoclinic poirts
- Ausrey-Mather ?theory assures there Is 8 minimal
periadic oreit P = OPp) with rotation numeer m/n.
- There e;xis?ts 5 = 8(y,N) such that P, \W"3(P) c A\

- P is the uniQue MmiNnimal perlodm or&rt of the
Per"turBed gilliard Gs(\o) with

L —1
)\o(sﬁ ok H sin’(s —s)), P = {(s.,(p|33"”“4
.



E xistence of homocdlinic points
- Ausrey-Mather theory assures there is a minimal
periadic oreit P = OPp) with rotation numeer m/n
- There e;xis?ts 5 = 8(y,N) such that P, \W"3(P) c A\

- Pis the uniQue minimal perlodte_ or&rt of —tke |
per—turged gilliard Gs(Ao) with

' —/
)\o(sﬁ = —¢ H sin’(s — s, P = i(s.,cp|33"”‘4
=

- Then, using aaain Aukrey-Mather theory P is
hypereolic and has associated homoclinic points. Let
QR e one of them.



E xistence of homocdlinic points
- Auerey-Mather theory assures there is a minimal
periadic oreit P = OPp) with rotation numeer m/n.
- There e;xis?ts 5 = 8(my,N) such that P, \W"3(P) c A\

- P is the uniQue Mminimal perlodle_ or&rt of —tke |
per—tur5ed gilliard Gs(Ao) with

| m—1
)\0(53 =6 H sin’(s — s, P = t(si, ) 3“”‘4
i=0

- Then, using a&ain Ausrey-Mather theory P is
hypergolic and has associated homocdlinic points. Let
QR re one of them.

- Assume that QQ is not transverse, otherwise we

are done, and rename £ = Gx(\y).
25/3



Maasur‘lr\e —tke —trar\sversalrty (N

- Z.ehr\der wor‘ks wrtk the Map £
- \We -Pollow the Mmore ceometric aPProaek By Genecand
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Maasur‘lr\ca —the —trar\sver‘sall—ty (D

- Z.ekr\de_r works wrtk the map £

- \We follow the Mmore ceometric aPProaek By Genecand
- Consider £ = Gs\o) the (new) oriainal gilliard map,

E, =gk C® 18—l s <3

with p small enouch, and the followina construction:

W LPJ)

16/ 3l



Maasur‘ivr\ca —tke —trar\sversali—ty (1M
= lLet —H E,—> l&z de_-Plr\e_d 5y

HE) = (i‘i ALQUEY - QOmJ 'ALchm — 350

G \\ Z

- H(H =0, f
- —H4(-P\ O implies —tke existence of homocalinic points
- H, (8 # O implies transversality. |
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Maasuﬂr\ca —tke —trar\sversalrty (ID
- tet —H i —> IQQ de_-Plr\ed By

HEY = (E_ ALQUEY QOm] 'ALchm — @)

ol \\ il

- Y = (0 1O .

- 444(-(33 O implies —tke existence of homodlinic points

- Hy (8 # O implies transversality. | |
- Genecand proves that H is C'—Frécket differentiassle and

d—H4 (£ = % ‘ti—l-/l N "\(Qﬂ

leZ: : | QO =
dHy (B = Yt ADRQY +H G =B
ieZ

where ., = D8Rty and H is independent on k.
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Maasurlr\e —tke —trar\sversall—ty (I
= Let —H &, IQQ de_-Plr\ed By

44<m = (fi ALQU(EY QOm] “ALchm — (@)

Rl =y \\ il

- H(#) = (0,00 |

- —H4(£3 O implies —the existence of homoclinic points

- H, (B # O implies transversality. |

- Genecand proves that H is ¢'—Créchet differentiarle and

dH (k= Tty ARG

ieZ ' Qo - Q
dHy (D= Yty A bucz w —I-—H | Gl =G
ieZ

where t,;, = D#* (QORO and H is independent on h.

- This formula can NoOt Re computed IN aeneral
271/ 3l



Compact suppor'—ted deformations (D
- Q =(s0,90) € WHP) A WP '

- Acain usinG Au&rey—/v\a—tker theory, = 65
1 OGDUP =T is injective. = 1280
= @,



Compact suppor"ted deformations (D

- Q= (so,cp@ e WHP DO WAP

- Acain using Au&r‘ey—/v\a'tker theory, /) Q e e
T OGP = T s injective 77 = X248 e
- For any U, neickourhood of P, | Q, D

there is a £|r\|—te Quarttity of | ;
R = #(Q) at A\U @y A



Compact suppor'—ted de_-Porma—uor\s (D

La= (SO,(p03 = \N“(Pﬁmws(P,J | ]
- Ae.am usinG Au_Br_ey—Ma—tker theory, 1 m)8 Qi el

T OGO UP =T is injective. _ 4 t/\ |

- For any U, neiagourhood of P, Q /: ;;sb,
there is a finite Quantity of e
& = #(Q) ot ANU GiRO At @

- There exists a vertical strip

V=Lso—n,s+n]x[—%,%]

such that, fOr 120 Q= QY e V.



Compact suppor'—ted deformations (D

- Q= (so,cp@ e WHP, DWAPD
_ Acain usina Au_&rey—/\/\a—tker theory,
T :OCQLYUP > T is iInjective.

- For any U, neigerourhood of P,
there is a finite Quantity of
QR = PR at A\U
- There exists a vertical strip

S n ST T
V = [sg n,s—l—n]x[ 7_,7_]
such that, fori #0, @, = () ¢ V.

- Let S =[sp— 1,50+ 1l 3nd consider A compactly
supported at S
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Compact suppor'*ted deformations (IN
-t Q= <so,q>o» and @ =(s},9,), then Ns) =0 i j# O,

295/ 3l



Compact suppor'—ted deformations (I

- |8 Q =(sp,9) and R = (s),cp)\—tker\ Nspd=0if j#O.
- Qemem&er‘ tkat (s’ ,cp’) = Hs,9) ar\d

ED ANsD
0 / / /
dGNO = Als, 0,5, 9" ( () ) +B(s,5",0,0" ( N (< >
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Compact suPPor"ted deformations (D

- |# Q =(s0,99) and R = (s),cp)ﬁ,—tker\ NspH=0i# j#0O.
- Reememeer tkat (s’ ,cp’) = &s,9) ar\d

NS A
) G et / | / /

- Tkeréﬁdr‘e, h = dGYOM, satisfies that K& =0 and
Dh(&Rj) =0, for j # 0,—1 and

At (Dh = Tty ARG =11 ANGY) +to ARG

ieZ

G (8D = ¥ 4y A DR(Q Y, + 4
ieZ

=11 ADWQo Yty +t0 A DH(Q_4 Yt_; +-H

Is 8 (MOore or less maneaarle) explicit formula.
29/3



COMPaGt supported deformations (I

. Cmally we Prove —tka‘t d(—HoC:@(OB C_iﬁpp — l&2 Is
exhaustive. |

- Let Q = (sp,9p). IE )\4(503 =0 and )\4(503 /l then
vi =dHo GO = (c0s @yeos Pp + a0s 91, 50Mmething)
- IF M(s0) = M (s) =0 and A (sp) =1, then
vy = dlHo GO, = (0,00s @ - LTt 1to12)

- By the twist condition, one can always assumve that
T1tp # O and therefore

det(vy,vo) = cos® @yleos @y +cos @) - Ly tol? # O.
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Thank you!
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