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Transverse Homoclinic Orbits

A join work with A. Florio, M. Leguil and T.M. Seara

We will prove that, generically, the dynamics associated with
an analytic convex billiard table is chaotic and therefore
generic analytic convex billiards are not integrable.

More concretely, a generic analytic convex billiard table
satisfies the following property: For any m/n rational
number, there is a hyperbolic periodic orbit with rotation
number m/n whose stable and unstable invariant manifold
intersect transversally.
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Preliminary definitions and notation
Let f : M Æ M a diffeomorphism defined on some manifold M.

- P0 is a n–periodic point if fn(P0) = P0 and fm(P0) 6= P0 if
m < n. The corresponding orbit is a periodic orbit:

P = O(P0) = {P0, f(P0), f2(P0), · · · , fn–/1 (P0)}
- P0 is hyperbolic if specDfn(P0) Ã {|l| 6= /1 }
- The unstable and stable invariant manifold of P0 are

Wu,s(P) =
n–/1[

j=0
Wu,s(Pj), Pj = fj(P0)

with
Wu(Pj) = {x Œ M : lim

kÆ–1
dist(fk(x), fk(Pj)) = 0}

Ws(Pj) = {x Œ M : lim
kÆ1

dist(fk(x), fk(Pj)) = 0}
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- Q is a homoclinic point associated to O(P0) if

Q Œ Wu(Pj) « Ws(Pk), j, k Œ {0, · · · , n – /1 }.

- Q is a transverse homoclinic point if the tangent spaces
of Wu(Pj) and Ws(Pk) generate the tangent space to M.
We write

Q Œ Wu(Pj)tWs(Pk)

- In general, to prove the existence of transverse
homoclinic points for a given dynamical system is difficult.

- There are computable formulas only in the perturbative
setting.
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Measuring transversality (I)

- Periodic perturbations of planar systems having a saddle
point P0, with homoclinic connection (x0(t) when m = 0)

ẋ = g0(x)+mg/1 (x, t; m), g/1 (x, t+/1; m) = g/1 (x, t; m), x Œ IR2

- The Melnikov function is

M(t0) =
Z 1

–1
g0(x0(t)) Ÿ g/1 (x0(t), t + t0; 0)dt

- Simple zeros of M(t0) lead to transverse homoclinic
points, for |m| ⌧ 1.

- More general scenarios have been considered Delshams,
Gonchencko, Gutiérrez, Motonaga, Yagasaki
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Measuring transversality (II)
- Planar Analytic symplectic maps. The Melnikov potential is

an infinite sum depending on the generating function
of the map, Delshams, Ramírez-Ros.

- Let fe be a family of symplectic maps with generating
function Le = L0 + eL/1 + O(e2).

- Assume that f0 has a saddle point P0 with eigenvalues
{l, l–1}

- Assume that P0 has associated a homoclinic connection
parameterizated by x0(t) and

f0(x0(t)) = x0(t + h), h = log l
- Then the Melnikov potential is

M(t) = L(t), L(t) =
X

jŒZI
L1(x0(t + jh), x0(t + (j + 1)h))

- Has been computed for some examples, McMillan map,
standard like maps and elliptic billiards. 6 /31



1. Some information about x0(t) is needed.

2. When g/1 (x, t + 2pe; m) = g/1 (x, t; m), e⌧ /1 then,

M(t0) ~ ce–a/e

and M(t0) can be used a priori only when m = O(e–a/e).
3. This is the exponentially small splitting of separatrices
4. For one and a half degrees of freedom rapidly forced

hamiltonians the works by Baldomá, Delshams, Fiedler, Fontich,
Gaivao, Gelfreich, Giralt, Guardia, Holmes, Jorba, Lombardi, Marsden, Martin,
Neishtadt, Paradela, Sauzin, Sheurle, Simó, Treshev provide conditions
to guarantee transverse homoclinic points, using either
Melnikov function or the inner equation.

5. Toy model for near integrable hamiltonians close to
resonances and it is a crucial ingredient for the proof
of Arnold’s diffusion in the analytic setting.

6. The exponentially small splitting of separatrices appear in
several instances of the 3-body problem.

7 /31



1. Some information about x0(t) is needed.
2. When g/1 (x, t + 2pe; m) = g/1 (x, t; m), e⌧ /1 then,

M(t0) ~ ce–a/e

and M(t0) can be used a priori only when m = O(e–a/e).

3. This is the exponentially small splitting of separatrices
4. For one and a half degrees of freedom rapidly forced

hamiltonians the works by Baldomá, Delshams, Fiedler, Fontich,
Gaivao, Gelfreich, Giralt, Guardia, Holmes, Jorba, Lombardi, Marsden, Martin,
Neishtadt, Paradela, Sauzin, Sheurle, Simó, Treshev provide conditions
to guarantee transverse homoclinic points, using either
Melnikov function or the inner equation.

5. Toy model for near integrable hamiltonians close to
resonances and it is a crucial ingredient for the proof
of Arnold’s diffusion in the analytic setting.

6. The exponentially small splitting of separatrices appear in
several instances of the 3-body problem.

7 /31



1. Some information about x0(t) is needed.
2. When g/1 (x, t + 2pe; m) = g/1 (x, t; m), e⌧ /1 then,

M(t0) ~ ce–a/e

and M(t0) can be used a priori only when m = O(e–a/e).
3. This is the exponentially small splitting of separatrices

4. For one and a half degrees of freedom rapidly forced
hamiltonians the works by Baldomá, Delshams, Fiedler, Fontich,
Gaivao, Gelfreich, Giralt, Guardia, Holmes, Jorba, Lombardi, Marsden, Martin,
Neishtadt, Paradela, Sauzin, Sheurle, Simó, Treshev provide conditions
to guarantee transverse homoclinic points, using either
Melnikov function or the inner equation.

5. Toy model for near integrable hamiltonians close to
resonances and it is a crucial ingredient for the proof
of Arnold’s diffusion in the analytic setting.

6. The exponentially small splitting of separatrices appear in
several instances of the 3-body problem.

7 /31



1. Some information about x0(t) is needed.
2. When g/1 (x, t + 2pe; m) = g/1 (x, t; m), e⌧ /1 then,

M(t0) ~ ce–a/e

and M(t0) can be used a priori only when m = O(e–a/e).
3. This is the exponentially small splitting of separatrices
4. For one and a half degrees of freedom rapidly forced

hamiltonians the works by Baldomá, Delshams, Fiedler, Fontich,
Gaivao, Gelfreich, Giralt, Guardia, Holmes, Jorba, Lombardi, Marsden, Martin,
Neishtadt, Paradela, Sauzin, Sheurle, Simó, Treshev provide conditions
to guarantee transverse homoclinic points, using either
Melnikov function or the inner equation.

5. Toy model for near integrable hamiltonians close to
resonances and it is a crucial ingredient for the proof
of Arnold’s diffusion in the analytic setting.

6. The exponentially small splitting of separatrices appear in
several instances of the 3-body problem.

7 /31



1. Some information about x0(t) is needed.
2. When g/1 (x, t + 2pe; m) = g/1 (x, t; m), e⌧ /1 then,

M(t0) ~ ce–a/e

and M(t0) can be used a priori only when m = O(e–a/e).
3. This is the exponentially small splitting of separatrices
4. For one and a half degrees of freedom rapidly forced

hamiltonians the works by Baldomá, Delshams, Fiedler, Fontich,
Gaivao, Gelfreich, Giralt, Guardia, Holmes, Jorba, Lombardi, Marsden, Martin,
Neishtadt, Paradela, Sauzin, Sheurle, Simó, Treshev provide conditions
to guarantee transverse homoclinic points, using either
Melnikov function or the inner equation.

5. Toy model for near integrable hamiltonians close to
resonances and it is a crucial ingredient for the proof
of Arnold’s diffusion in the analytic setting.

6. The exponentially small splitting of separatrices appear in
several instances of the 3-body problem.

7 /31



- Analytic area preserving maps close to integrable; for
instance the standard map:

(x, y) 7Æ f(x, y) = (x + y + e sin(x), y + e sin(x))

Lazutkin in 1984, was the first proving a formula for
measuring the angle between Wu(0) and Ws(0)

f ~ p I

e
Je–p2/

p
e, J Œ IC\{0}

- The constant J = J(f) is the Stokes constant and is not
related with the Melnikov approach.

- The proof was ended by Gelfreich in 1999.
- Other works are due to

Delshams, Fontich, Gil Ramis, Martín, M-Seara, Ramírez-Ros, Sauzin, Simó
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Comments on direct methods
- The transversality of Wu,s(P0) is guarantee only if some

constant is different from 0.

- This constant can either come from a Melnikov approach
(difficult to compute) or it is a Stokes constant J(f)
(no closed formula to compute it).

- However, this constant is analytic with respect to f.
- For the perturbed pendulum, the Standard map, the

Henon map and the McMillan it can be proven that
J(f) 6= 0 using resurgence theory
Gelfreich, Martín, M-Seara, Olivé, Sauzin

- In some cases, J(f) can be computed by means of
computer assisted proofs
Baldomá, Capinsky, Gil Ramis, Giralt, Guardia, Martín, T.M. Seara

- These methods are constructive, providing computable
conditions to guarantee the existence of transverse
homoclinic points.
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Genericity
- Another strategy is presented in this work.

- Instead of dealing with a concrete dynamical system, we
are concerned with the abundance of dynamical systems
exhibiting chaotic behaviour.

- Genericity: A property is generic if it is shared for the
elements of a residual set.

- Residual set: A set that is the countable intersection of
open and dense sets (in some topology). The topology has
the Baire property if a residual set is also dense.

The question is then
- For a given class E of dynamical systems, the subset

R Ã E having transverse homoclinic points is residual?
- In particular, if so, when E has the Baire property, for any

f Œ E, there exists a diffeomorphism g Œ R as close as
we want of f having transverse homoclinic points
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Some previous results about genericity
- Smooth symplectic diffeomorphisms,

R={f :MÆM, every hyperbolic periodic orbit has a homoclinic orbit}.

Then R is residual in
I Takens, 197–2: for M=IR2 in Cr, r= 1, symplectic diffeomorphism.
I Pixton, 1982: for M=SI 2 in Cr, rŒ[1,+1], diffeomorphism.
I Oliveira, 1987–: for M=TI 2 , in Cr, rŒ[1,+1], diffeomorphism.
I Oliveira, 2000: for (most) genus(M)≥ 1.

- Smooth convex billiards
I Donnay, 2003. There are C1 curves, C2 close to the ellipse whose billiard

table have transverse homoclinics points.
I Zhihong Xia, Pengfei Zhang, 2013. All the hyperbolic periodic points have

transverse homoclinic orbits for generic Cr billiards r≥ 1. Also Dias
Carneiro, O. Kamphorst, S. Pinto de Carvalho, 2007–, for r=2.

I Bessa, del Magno, Lopes Dias, Gaivao, 2024. There exists a C2 open and
dense set of convex bodies IRd whose billiard maps have an hyperbolic set
(positive entropy).

11 / 31



Some previous results about genericity
- Smooth symplectic diffeomorphisms,

R={f :MÆM, every hyperbolic periodic orbit has a homoclinic orbit}.

Then R is residual in
I Takens, 197–2: for M=IR2 in Cr, r= 1, symplectic diffeomorphism.
I Pixton, 1982: for M=SI 2 in Cr, rŒ[1,+1], diffeomorphism.
I Oliveira, 1987–: for M=TI 2 , in Cr, rŒ[1,+1], diffeomorphism.
I Oliveira, 2000: for (most) genus(M)≥ 1.

- Smooth convex billiards
I Donnay, 2003. There are C1 curves, C2 close to the ellipse whose billiard

table have transverse homoclinics points.
I Zhihong Xia, Pengfei Zhang, 2013. All the hyperbolic periodic points have

transverse homoclinic orbits for generic Cr billiards r≥ 1. Also Dias
Carneiro, O. Kamphorst, S. Pinto de Carvalho, 2007–, for r=2.

I Bessa, del Magno, Lopes Dias, Gaivao, 2024. There exists a C2 open and
dense set of convex bodies IRd whose billiard maps have an hyperbolic set
(positive entropy).

11 / 31



Genericity in the analytic setting

- Planar Analytic symplectic diffeomorphisms having an
elliptic fixed point.
I Homoclinic Points Near Elliptic Fixed points, by Zehnder,

1973. The set of analytic symplectic diffeomorphisms having
the origin as an elliptic point with transverse homoclinic
points in every neighborhood of the origin is residual in
some analytic topology.

I Transversal homoclinic orbits near elliptic fixed points of
area preserving diffeomorphism of the plane, by Genecand,
1993. Same result as Zehnder but using Aubrey-Mather
theory. He extended the results to some analytic geodesic
flows and hamiltonians.

Those works construct small perturbations having the
property we want to deal with and belonging to a desired
functional space.
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Billiard dynamics
We set TI = IR/ZI .

- A strictly convex billiard table W Ã IR2 is a bounded domain
satisfying @W = g(TI ) with g : TI ,! IR2 a curve with
strictly negative curvature.

- g is an embedding and we take anticlockwise orientation

- The billiard map is

(s,f) 7Æ f(s,f) = (s0,f0)

- g(s) is a point in @W

- f is the angle between the
inward normal vector, –n(s), and
g(s0) – g(s)

- The incidence angle is the same
as the reflection

13/31
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Properties of billiard maps
Define

A I = TI x [ – p I

2
,p I

2], fAI = IRx [ – p I

2
,p I

2]
- f : A I Æ AI, f(s,p I

2) = f(s, –p I

2) = s.

- If g is analytic (resp. Cr), then f is analytic (resp. Cr ).

- If F : fAI Æ fAI is a lift of f, F(s + /1,f) = F(x,f) + /1, we define
the rotation number

r(s,f) = lim
kÆ1

p/1 Fk(s,f) – s I
k

- In particular for P0 = (s0,f0) a n–periodic point, r(P0) = m
n

with m the number of times that O(P0) winds around @W
before closing

14/31



Topology
For a given r > 0, we define

TI r = {s Œ IC : Re s Œ TI , | Im s| < r }

The functional space

Cwr (TI , IRk) = {g : TI r Æ IRk, real analytic and continuous onTI r }

endowed with the norm

||g ||r := max
sŒTI r

|g(s)|

is a Banach space.
The space of real analytic functions on TI satisfies

Cw(TI , IRk) =
[

r>0
Cwr (TI , IRk)

15/31



The main result
Any strictly convex analytic billiard W is characterized (not
uniquely) as an element of the open set

Br = {g Œ Cwr (TI , IRk), g : TI ,! IR2, g(TI ) strictly convex}.

We write W = W(g).

Theorem (Transverse homoclinic orbits)
Fix r > 0. There exists a generic set B0

r Ã Br such that for all
g Œ B0

r the following property holds:

For any rational rotation number m/n, the billiard map
associated to W(g) has at least one hyperbolic periodic orbit
with rotation number m/n, having associated transverse
homoclinic intersections.
The result is not perturbative
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Preliminary considerations
- Br is a Baire space because is an open set of a Banach

space. Therefore, B0
r is dense.

- The result is and straightforward consequence of

Theorem (Fixing a rational rotation number)
Fix m/n Œ IQ « (0, /1) and let Vm/n

r be the set of g Œ Br such
that the billiard map with table W(g) has a transverse
homoclinic orbit associated to a periodic orbit with rotation
number m/n.
Then, Vm/n

r is open and dense in Br in the analytic topology.
- As a consequence the set

B0
r =

\

m/n Œ IQ
Vm/n

r Ã Br

is residual in the analytic topology.
17 /31



- For a given m/n Œ IQ « (0, /1), the property of being
hyperbolic and transverse is open, so Vm/n

r is open.
- To prove the density of Vm/n

r in Br it is enough to
construct suitable analytic deformations of the billiard
table having transverse intersections.

Theorem (Density using suitable analytic deformations)
Fix m/n Œ IQ « (0, /1) and g Œ Br. Denote by n(s) the unitary
outward normal vector at g(s).
Then for all e > 0, there exists le Œ Cwr (TI , IR) with

|| le ||r < e

such that, letting

ge(s) = g(s) + le(s)n(s)

the billiard map of W(ge) has a periodic hyperbolic orbit of
rotation number m/n with transverse homoclinic points.
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Comments on billard tables
- g will be parameterizated by arc-length, but ge will not.
- Let l,g, eg(s) = g(s) + l(s)n(s) and the corresponding

billiards f,ef. Even if l only modify an small region of @W,
it affects a big region in A I:

- t(s, s0) = ||g(s) – g(s0)|| is a generating function of f:
@/1 t(s, s0) = –sinf, @2t(s, s0) = sinf0

- The map f = (f/1 , f2) satisfies the twist condition,
@/1 f2 > 0

- The Aubrey-Mather theory works for billiards.
19 /31
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Sketch of the proof (I)
Fix r > 0, m/n Œ IQ « (0, /1) and g Œ Br.

- We consider G0 : l 7Æ f +Df the map that sends a
deformation l to the new billiard map.

- G0 is C/1 –Fréchet differentiable.
- Use Aubrey-Mather theory to guarantee the existence

of a hyperbolic periodic orbit P of rotation number m/n
having a homoclinic point Q Œ Wu(P) « Ws(P).

- Assume that Q is not transverse.
- Construct H : ef 7Æ (H/1 (ef),H2(ef)) Œ IR2 such that

H/1 (ef) = 0 () Q homoclinic point
H/1 (ef) = 0, H2(ef) 6= 0 () Q transverse homoclinic point

- We have that HoG0(0) = (0, 0).
- H is C/1 –Fréchet differentiable
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Sketch of the proof (II)
- Fix e > 0. The goal is to prove that there exists
l Œ Cw(TI , IR) such that

||l||r < e, HoG0(l) = (0, a)
with a 6= 0.

- Compute d(HoG0)(0)l = dH(f)dG0(0)l for functions l
C1 compactly supported (otherwise is impossible!)

- Prove that there exists bl/1 ,bl2 such that

d(HoG0)(0)bl/1 = (/1, 0), d(HoG0)(0)bl2 = (0, /1)

- By continuity, there are l/1 , l2 trigonometric polynomial,
close to bl/1 ,bl2 in some C` norm, such that

d(HoG0)(0)l/1 = w/1 , d(HoG0)(0)l2 = w2

with [w/1 ,w2] = IR2.
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Sketch of the proof (III)
- Consider F : IR2 ¥ IR Æ IR2 the C1 map defined by

(c/1 , c2, a) 7Æ HoG0(c/1 l/1 + c2l2) – (0, a)

- Apply the implicit function theorem. Recall that F is C1,
F(0, 0, 0) = (0, 0), Dc/1 ,c2F(0, 0, 0) = (w/1 ,w2) is invertible.

- There exist c/1 (a), c2(a) such that
F(c/1 (a), c2(a), a) = 0, |c/1 (a)|, |c2(a)| . a

- Letting l = c/1 (a)l/1 + c2(a)l2, the billiard map G0(l) has Q
as transverse homoclinic point.

- Notice that ||l/1 ||r, ||l2||r is in general (very) big. However
we can take a as small as we want, so that

||l||r . |a| · ||l/1 ||r + |a| · ||l2||r < e
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The action of the perturbation on the billiard
map (I)
Fix r > 0, m/n Œ IQ « (0, /1) and g Œ Br.

- Computation of the first order in e of the billiard map fe
with billiard table W(ge) and

ge(s) = g(s) + el(s), l Œ C`(TI , IR).

Denoting (s0,f0) = f(s,f), t = t(s, s0) = ||g(s) – g(s0)|| and
K(s) the curvature:

s0e =s – e I/1
cosf0

(l0(s)t+ l(s) sinf – l(s0) sinf0) + O(e2)

f0e =f0 – e IK(s’)
cosf0

(l0(s)t+ l(s) sinf – l(s0) sinf0)

+ e(l0(s0) – l0(s)) + O(e2).

Uniformity away from the boundary of A I.
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The action of the perturbation on the billiard
map (II)

- For any d > 0, consider the set

A Id = {(s,f) Œ AI, f Œ [ – p I

2
+ d,p I

2
– d]}.

Let Gd : C`(TI , IR) Æ C`(A Id) the map sending l to the
billiard map restricted to AId of billiard table with
boundary

g[l](s) = g(s) + l(s)n(s)
The map Gd is C/1 –Fréchet differentiable and

dGd/1 (0)l = – I/1
cosf0

(l0(s)t+ l(s) sinf – l(s0) sinf0)

dGd2(0)l = – IK(s’)
cosf0

(l0(s)t+ l(s) sinf – l(s0) sinf0)

+ l0(s0) – l0(s).
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Existence of homoclinic points
- Aubrey-Mather theory assures there is a minimal

periodic orbit P = O(P0) with rotation number m/n.

- There exists d = d(m, n) such that P ,Wu,s(P) Ã A Id
- P is the unique minimal periodic orbit of the

perturbed billiard Gd(l0) with

l0(s) = –e
m–/1Y

i=0
sin2(s – si), P = {(si,fi)}m–/1

i=0

- Then, using again Aubrey-Mather theory P is
hyperbolic and has associated homoclinic points. Let
Q be one of them.

- Assume that Q is not transverse, otherwise we
are done, and rename f = Gd(l0).
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Measuring the transversality (I)

- Zehnder works with the map fn.
- We follow the more geometric approach by Genecand

- Consider f = Gd(l0) the (new) original billiard map,

Er = {f̃ Œ C1, ||f – f̃||C/1 £ r}

with r small enough, and the following construction:
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Measuring the transversality (II)
- Let H : Er Æ IR2 defined by

H(ef) = ( It0
||t0||

Ÿ [Qu
0(f̃) – Qs

0(ef)], It0
||t0||

Ÿ [tu
0(ef) – ts

0(ef)])
- H(f) = (0, 0)
- H/1 (ef) = 0 implies the existence of homoclinic points
- H2(ef) 6= 0 implies transversality.

- Genecand proves that H is C/1 –Fréchet differentiable and

dH/1 (f)h = Â
iŒZI

ti+/1 Ÿ h(Qi)

dH2(f)h = Â
iŒZI

ti+/1 Ÿ Dh(Qi)ti + bH
Q0 = Q
Qi = fi(Q0)

where t±/1 = Df±/1 (Q0)t0 and bH is independent on h.
- This formula can not be computed in general
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Compact supported deformations (I)
- Q = (s0,f0) Œ Wu(Pj) « Ws(Pk)
- Again using Aubrey-Mather theory,
p/1 : O(Q) » P Æ TI is injective.

- For any U, neigbourhood of P ,
there is a finite quantity of
Qi = fi(Q) at A I\U
- There exists a vertical strip

V = [s0 – h, s + h] ¥ [ – p I

2
,p I

2]
such that, for i 6= 0, Qi = fi(Q) œ V.

- Let S = [s0 – h, s0 + h] and consider l compactly
supported at S
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Compact supported deformations (II)
- If Q = (s0,f0) and Qj = (sj,fj), then l(sj) = 0 if j 6= 0.

- Remember that, (s0,f0) = f(s,f) and

dGd(0)l = A(s,f, s0,f0)
✓
l(s)
l0(s)

◆
+ B(s, s0,f,f0)

✓
l(s0)
l0(s0)

◆

- Therefore, h := dGd(0)l, satisfies that h(Qj) = 0 and
Dh(Qj) = 0, for j 6= 0,–/1 and

dH/1 (f)h = Â
iŒZI

ti+/1 Ÿ h(Qi) = t/1 Ÿ h(Q0) + t0 Ÿ h(Q–/1 )

dH2(f)h = Â
iŒZI

ti+/1 Ÿ Dh(Qi)ti + Ĥ

= t/1 Ÿ Dh(Q0)t0 + t0 Ÿ Dh(Q–/1 )t–1 + Ĥ

is a (more or less manegable) explicit formula.
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dGd(0)l = A(s,f, s0,f0)
✓
l(s)
l0(s)

◆
+ B(s, s0,f,f0)

✓
l(s0)
l0(s0)

◆

- Therefore, h := dGd(0)l, satisfies that h(Qj) = 0 and
Dh(Qj) = 0, for j 6= 0,–/1 and

dH/1 (f)h = Â
iŒZI

ti+/1 Ÿ h(Qi) = t/1 Ÿ h(Q0) + t0 Ÿ h(Q–/1 )

dH2(f)h = Â
iŒZI

ti+/1 Ÿ Dh(Qi)ti + Ĥ

= t/1 Ÿ Dh(Q0)t0 + t0 Ÿ Dh(Q–/1 )t–1 + Ĥ

is a (more or less manegable) explicit formula.
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Compact supported deformations (III)

- Finally we prove that d(HoGd)(0) : C1
supp Æ IR2 is

exhaustive.
- Let Q = (s0,f0). IF l/1 (s0) = 0 and l0/1 (s0) = /1, then

v/1 := d(HoGd)(0)l/1 = (cosf0(cosf0 + cosf/1 ), something)

- IF l2(s0) = l02(s0) = 0 and l002(s0) = /1, then

v2 := d(HoGd)(0)l2 = (0, cosf0 · [p/1 t0]2)

- By the twist condition, one can always assume that
p1t0 6= 0 and therefore

det(v/1 , v2) = cos2 f0(cosf0 + cosf/1 ) · [p/1 t0]2 6= 0.
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Thank you!

31 /31


