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Spiral patterns
Spiral patterns are commonly observed in certain chemical, biological and physical systems

Belousov-
Zhabotinskii

Social amoebas
Dictyostelium
discoideium Cardiac muscle

tissue

▶ These systems are governed by chemical or biological reaction and spatial diffusion.

∂τ U = D∆U + F (U, a), D a diffusion matrix, F the reaction nonlinearity

U = U(τ, x⃗) ∈ RN , x⃗ ∈ R2 and a is a parameter (for instance some catalyst
concentration).
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The Ginzburg-Landau equation
▶ Assume that ∂τ U = F (U, a) undergoes a supercritical Hopf bifurcation for (U0, a0) with

eigenvalues ±iω and eigenvectors v±.
▶ Take ε2 = a − a0 > 0, small, t = ε2τ . Then the modulation of local oscillations with

frequency ω
U(τ, x⃗ , a) = U0 + ε[A(t, x⃗)eiωτ v+ + c.c.] + O(ε2).

▶ and (after some scalings) the (complex) amplitude A, satisfies the celebrated complex
Ginzburg-Landau equation

∂A
∂t

= (1 + iα)∆A + A − (1 + iβ)A|A|2,

where A(x⃗ , t) ∈ C and α, β are real parameters (dispersion parameters).

Y. Kuramoto, Chemical oscillations, waves and turbulence

P. Hagan, Spiral waves in Reaction-Diffusion equations
▶ It appears in a wide range of different physical contexts: chemical reaction processes, as a

model for pattern formation mechanisms, description of some ecological and in phase
transitions in superconductivity

I.S Aranson, L. Kramer.The world of the complex Ginzburg-Landau equation
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Spiral waves. Definition

▶ We focus on infinite domains, x⃗ = (r cosφ, r sinφ) ∈ R2.
▶ The wave trains are solutions of the one dimensional GL in polar coordinates of the form

A(t, r) = A∗(−k∗r + Ωt) with A∗(·) a periodic function.
▶ The spiral waves are bounded solutions that asymptotically tends to a wave train.

Namely, solutions of the form A(t, r , φ) = As(r , nφ+ Ωt) satisfying

As(0, ψ) bounded, lim
r→∞

∥As(r , ψ) − A∗(−k∗r + θ(r) + ψ)∥ = 0

with A∗(·) a wave train, θ smooth and lim
r→∞

θ′(r) → 0.

▶ In the co-rotating frame, (ψ = nφ+ Ωt), they can be seen as an heteroclinic connection
(with r as independent variable)

B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory
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Wave trains and spiral waves in Ginzburg-Landau
equation

▶ The only possible wave trains are A∗(Ωt − k∗r) = Cei(Ωt−k∗r) with Ω and k∗ satisfying

C =
√

1 − k2
∗, Ω = Ω(k∗) = −β + k2

∗(β − α).

The last condition is the associated dispersion relation and the quantity
vg := −∂k∗ Ω(k∗) = 2k∗(α− β) the group velocity.

▶ As a consequence an spiral wave has to tend as r → ∞ to

A∗(Ωt + χ(r) + nφ) =
√

1 − k2
∗ei(Ωt+χ(r)+nφ)

with χ(r) = −k∗r + θ(r) ∼ −k∗r and Ω, k∗ satisfying the dispersion relation.
▶ We look for spirals waves n-armed of the form

A(t, r , φ) = f (r)exp
(

i(Ωt + χ(r) + nφ)
)
,

with f , χ, χ′ bounded and

lim
r→∞

χ′(r) = −k∗, lim
r→∞

f (r) =
√

1 − k2
∗.
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Where is the spiral shape?
▶ For any constant c, Re

(
A∗(Ωt − k∗r + nφ)e−iΩt

)
= c, that is −k∗r + nφ = c′, is a

archimedian spiral with wavelength (distance between two spiral arms) 2πn|k∗|−1

▶ Below, the surface Re(A(t, r , φ)e−iΩt) for different values of r .

n = 5, 6 ≤ r ≤ 20 n = 5, 20 ≤ r ≤ 100 n = 5, 100 ≤ r ≤ 500
7 / 16
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The result

▶ We introduce the twist parameter
q =

β − α

1 + αβ

Theorem

If |q| is small enough, the Ginzburg-Landau equation possesses a spiral wave n-armed with one
defect (f (0; q) = 0, f (r ; q) > 0 for r > 0) and f ′(r ; q) > 0, if and only if

k∗ = k∗(q) =
√

1
1 − αq(1 − k2(q))

k(q), k(q) =
2
q

e− Cn
n2 −γe− π

2n|q| (1 + O(|q|)), (1)

with γ the Euler’s constant and

Cn = lim
r→∞

(∫ r

0
ξf 2(ξ; 0)(1 − f 2(ξ; 0)) dξ − n2 log r

)
.

Notice that k∗(q) = k(q)(1 + O(q)).

8 / 16



Comments
▶ The case q = 0, can be reduced to the real

Ginzburg Landau equation

∂tA = ∆A + A − A|A|2.

▶ If q = 0, k∗ = 0 and there is no spiral waves.
▶ In our perturbative setting, these lines bend to

form the spirals.

Previous works

▶ N. Kopell and L. N. Howard (1981). A serie of papers concerned with pattern formation
in the Belousov-Zhabotinskii reaction. The existence and uniqueness of the asymtptotic
wavenumber k∗ = k∗(q) as a function of q was proven.
The analytic methods used by Kopell et al, do not allow to obtain an expression for k∗(q).

▶ P. S. Hagan (1982), J. Greenberg (1980), M. Aguareles, S. Chapman, T. Witelski (2010)
used asymptotic methods to compute an explicit asymptotic formula for k(q).
The asymptotic methods are a consistent and systematic way to conjecture true results
but does not provide rigorous proofs.

9 / 16
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Setting
▶ We forget PDE because f (r) and v(r) = χ′(r) has to satisfy

f ′′ +
f ′

r
− f

n2

r2 + f (1 − f 2 − v2) = 0, v ′ +
v
r

+ 2
vf ′

f
+ q(1 − f 2 − k2) = 0.

together with
lim

r→∞
v(r) = −k, lim

r→∞
f (r) =

√
1 − k2.

▶ In order to f , v being bounded at r = 0, we need to impose f (0) = v(0) = 0.

More conditions

Notice that the equations remain by changing (v , q) to (−v ,−q). We set then q > 0.
Since we want f ′(r) > 0, lim

r→∞
f ′(r) = 0 and f 2(r) < 1 − k2 so that

(f 2vr)′ = f 2r
(

v ′ +
v
r

+ 2
vf ′

f

)
= −f 2rq(1 − f 2 − k2) < 0

that implies v(r) < 0. As a consequence k > 0.

▶ There are too many conditions. This indicates a selection mechanism for k.
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Counting dimensions

▶ We want to connect (f , f ′, v , r) = (0, 0, 0, 0) to (f , f ′, v , r) = (
√

1 − k2, 0,−k,∞).

Dynamics around r ∼ 0

▶ w = f 2vr and r = es .
▶ Dominant dynamics

f̃ ′′ = n2 f̃ , w̃ ′ = −f̃ 2q(1 − k2).

▶ (f , f ′, v) = (0, 0, 0) has 1 unstable
direction.

Dynamics around r ∼ ∞
▶ Dominant dynamics

f ′′ = −f (1 − f 2 − v2),

v ′ = −2
vf ′

f
− q(1 − f 2 − k2)

▶ (f , f ′, v) = (
√

1 − k2, 0,−k) has 1
stable direction.

In the extended phase space, R5

(r ′ = 1, k′ = 0)
▶ W s,u have dimension 3.
▶ Generically they intersect in a

curve (a solution).
▶ We need to select k.
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Beyond all order phenomenon
First approach: perturbation theory with respect to |q| ≪ 1.

▶ By symmetry write k(q) = k0 + q2k1 + q4k2 + · · ·

f (r) = f0(r) + q2f1(r) + q4f2(r) · · · , v(r) = q(v0(r) + q2v1(r) + q4v2(r) + · · · ).

▶ For q = 0, we have that there exists f0 such that f0(0) = 0 and lim
r→∞

f0(r) = 1.

▶ Equating orders O(qm) and computing the ODE for fm, vm, it turns out that, for m ≥ 1

v ′
m +

vm

r
+ 2

vmf ′
0

f0
= −f0km + o(r−1)

▶ Since f ′
m, v ′

m → 0 as r → ∞, taking r → ∞ we have that km = 0.
▶ The previous analysis provides that k = k(q) satisfies k(q) = O(qm) for any m ≥ 0.

M. Aguareles, I.B., T.M.Seara, On the asymptotic wavenumber of spiral waves in
λ− ω systems, (2017).
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Idea of the proof (I)

▶ We are not able to deal directly with the existence of solutions for r ≥ 0.
▶ We are forced to divide the problem between r ∈ [0, r0] (inner region) and r ∈ [r0,∞)

(outer region) with r0 = eρ/q , 0 < ρ ≪ 1.
▶ The boundary conditions; in the inner region f (0) = v(0) = 0 and in the outer region

lim
r→∞

f (r) =
√

1 − k2, lim
r→∞

v(r) = −k

▶ These boundary conditions, does not provide uniqueness of the solution.

▶ Two families of
solutions depending
on (a, k) and (b, k).

▶ Remember that the
ODE is of second
order; f ′ has also to
be take into account.
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Idea of the proof (II)
▶ We match the two families in the common point r = r0. Namely we impose that

f out(r0, a; k, q) = f in(r0, b; k, q)

∂r f out(r0, a; k, q) = ∂r f in(r0, b; k, q)

vout(r0, a; k, q) = v in(r0, b; k, q).

▶ This is a system with three unknowns (a, b, k) and three equations (depending on q).
We start by matching vout, v in

▶ We manage to prove that for r ∼ r0

vout(r , a; k, q) = −k
K ′

inq(kqr)
Kinq(kqr)

+ · · ·

= −
n
r

tan
(

nq log r + nq log(kq) +
π

2
+ nqγ + · · ·

)
+ · · ·

v in(r , b; k, q) = −q
n2

r
log r +

qCn

r
+ · · ·

with Kinq the Bessel function of second kind.
▶ Then we see that vout(r0, a; k, q) = v in(r0, b; k, q) if and only if

k(q) = µ
1
q

e− π
2nq , µ = 2exp

(
−γ +

Cn

n2 + V(a, b, µ; q)
)
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Idea of the proof (III)
We match now f out, f in and their derivatives.

▶ We prove that

f out(r , a;µ, q) = K0(r
√

2)a +

√
1 −

n2

r2 − (vout(r , a;µ, q)2 + · · · .

f in(r , b;µ, q) = In(r
√

2)b + 1 −
n2

2r2 + · · ·

▶ Then, matching the solutions at r = r0 we have that

K0(r0
√

2)a − In(r0
√

2)b = F(a, b, µ; q)

K ′
0(r0

√
2)a − I′

n(r0
√

2)b = G(a, b, µ; q)

▶ As a consequence we can write

(a, b, µ) = H(a, b, µ; q).

▶ A thorough control of the error terms, allow us to prove the existence of a fixed point
solution by the Brouwer’s theorem with

µ = 2exp
(

−γ +
Cn

n2

)
(1 + O(q))

.
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Thanks for your attention
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