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Spiral patterns

Spiral patterns are commonly observed in certain chemical, biological and physical systems

Social amoebas
Belousov- Dictyostelium
Zhabotinskii discoideium

Cardiac muscle
tissue

» These systems are governed by chemical or biological reaction and spatial diffusion.
0-U = DAU + F(U, a), D a diffusion matrix, F the reaction nonlinearity

U= U(r,%) e R, 2 € R? and a is a parameter (for instance some catalyst
concentration).
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https://www.youtube.com/watch?v=PnOy1fSxBdI&t=21s
https://www.youtube.com/watch?v=PnOy1fSxBdI&t=21s
https://www.youtube.com/watch?v=2HA9jOYdj1E
https://www.youtube.com/watch?v=2HA9jOYdj1E
https://www.youtube.com/watch?v=2HA9jOYdj1E

The Ginzburg-Landau equation

» Assume that 9 U = F(U, a) undergoes a supercritical Hopf bifurcation for (Up, ag) with
eigenvalues +ijw and eigenvectors vi.
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The Ginzburg-Landau equation

» Assume that 9 U = F(U, a) undergoes a supercritical Hopf bifurcation for (Up, ag) with
eigenvalues £iw and eigenvectors v .

> Takee? =a— ag >0, small, t = £27. Then the modulation of local oscillations with
frequency w )
U(r,%,a) = Up + ¢[A(t,X)e'“T vy + c.c.] + 0(52)‘

» and (after some scalings) the (complex) amplitude A, satisfies the celebrated complex
Ginzburg-Landau equation

% — (14 ia)AA+A—(1+iB)AAP,

where A(X,t) € C and «, (8 are real parameters (dispersion parameters).
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> Takee? = a— ag >0, small, t = £27. Then the modulation of local oscillations with

frequency w )
U(r,%,a) = Up + ¢[A(t, X)e™T vy + c.c.] + O(e?).

» and (after some scalings) the (complex) amplitude A, satisfies the celebrated complex
Ginzburg-Landau equation

g = (14 ia)AA+ A — (1+iB)AJA]?,

where A(X,t) € C and «, (8 are real parameters (dispersion parameters).
Y. Kuramoto, Chemical oscillations, waves and turbulence

P. Hagan, Spiral waves in Reaction-Diffusion equations

» It appears in a wide range of different physical contexts: chemical reaction processes, as a
model for pattern formation mechanisms, description of some ecological and in phase
transitions in superconductivity

I.S Aranson, L. Kramer. The world of the complex Ginzburg-Landau equation
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Spiral waves. Definition

» We focus on infinite domains, X = (rcos p, rsinp) € R2.

» The wave trains are solutions of the one dimensional GL in polar coordinates of the form
A(t, r) = Ax(—ks«r + Qt) with A.(-) a periodic function.
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» The wave trains are solutions of the one dimensional GL in polar coordinates of the form
A(t, r) = Ax(—ks«r + Qt) with A.(-) a periodic function.

» The spiral waves are bounded solutions that asymptotically tends to a wave train.
Namely, solutions of the form A(t, r, ) = As(r, ne + Qt) satisfying

As(0,1)) bounded, lim [|As(r,v) — Ax(—ker +6(r) +)|| =0

with A.(-) a wave train, 6 smooth and lim ¢’(r) — 0.
r—oo
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» In the co-rotating frame, (1) = ny + Qt), they can be seen as an heteroclinic connection
(with r as independent variable)
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Spiral waves. Definition

» We focus on infinite domains, X = (rcos ¢, rsin ) € R2.

» The wave trains are solutions of the one dimensional GL in polar coordinates of the form
A(t, r) = Ax(—ksr + Qt) with A.(-) a periodic function.

» The spiral waves are bounded solutions that asymptotically tends to a wave train.
Namely, solutions of the form A(t, r,¢) = As(r, np + Qt) satisfying

As(0,) bounded, lim [|As(r,v) — Ac(—ker +6(r) +)|| =0

with A, () a wave train, @ smooth and lim ¢’(r) — 0.
r—oo

» In the co-rotating frame, (1) = ny + Qt), they can be seen as an heteroclinic connection
(with r as independent variable)

B. Sandstede, A. Scheel, Spiral waves: linear and nonlinear theory
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Wave trains and spiral waves in Ginzburg-Landau

equation
» The only possible wave trains are A, (Qt — kir) = Ce'(Qt=k«r) \with Q and k. satisfying

C=\V1-K, Q=9(k)=-8+K(5-a).

The last condition is the associated dispersion relation and the quantity
vg = —0Ok, Q(k«) = 2k« (e — ) the group velocity.
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Wave trains and spiral waves in Ginzburg-Landau

equation

» The only possible wave trains are A, (Qt — kir) = Ce/(@t=k=1) \ith Q and k. satisfying

C=+/1-k2 Q= Q(ks) = =8+ Kk2(8 — ).

The last condition is the associated dispersion relation and the quantity
vg 1= — 0Ok, Q(ks«) = 2k«(a — B) the group velocity.

» As a consequence an spiral wave has to tend as r — oo to

Ac(Qt + x(r) + np) =1 — kgei(9t+x(’)+n¢)

with x(r) = —k«r + 0(r) ~ —ks«r and Q, ks satisfying the dispersion relation.
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Wave trains and spiral waves in Ginzburg-Landau
equation

» The only possible wave trains are A, (Qt — kir) = Ce/(@t=k=1) \ith Q and k. satisfying

C=+/1-k2 Q= Q(ks) = =8+ Kk2(8 — ).
The last condition is the associated dispersion relation and the quantity
vg 1= — 0Ok, Q(ks«) = 2k«(a — B) the group velocity.

» As a consequence an spiral wave has to tend as r — oo to

A (Qt + x(r) + np) = /1 — k2&/(ttx(r)+ne)

with x(r) = —k«r + 0(r) ~ —k«r and Q, ks satisfying the dispersion relation.
» We look for spirals waves n-armed of the form

A(t, r, ) = f(r)exp (i(Qt + x(r) + np)),

with f,x, X’ bounded and

lim x'(r) = —k«, lim f(r)=1/1— k2.
r—oo r—»oo

6/16



Where is the spiral shape?
» For any constant c, Re(A*(Qt — kyr + n<p)e7"m> = c, that is —k«r + np = ¢ isa

archimedian spiral with wavelength (distance between two spiral arms) 27n|k.| !

n=1 n=3 n=5 n=1
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Where is the spiral shape?
» For any constant c, Re(A*(Qt — kyr + n@)e7i9t> = c, that is —k«r + np = cisa

archimedian spiral with wavelength (distance between two spiral arms) 27n|k.| !

n=1 n=3 n=5 n=1

> Below, the surface Re(A(t, r, p)e ") for different values of r.
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Where is the spiral shape?
» For any constant c, R,O(A*(Qt — kyr + np)ef"m) = c, that is —k«r + np = ¢ isa

archimedian spiral with wavelength (distance between two spiral arms) 27n|ki| ™

n=5,20<r<100 n=>5, 100 < r < 500




Spiral1.mp4
Media File (video/mp4)


Spiral2.mp4
Media File (video/mp4)


Spiral3.mp4
Media File (video/mp4)


The result

» We introduce the twist parameter
[ —a

9= 1+ap

Theorem ‘

If |q| is small enough, the Ginzburg-Landau equation possesses a spiral wave n-armed with one
defect (f(0;q) =0, f(r;q) > 0 for r > 0) and f'(r; q) > 0, if and only if

1 2 S — 5
k*:k*(q):”mk(q), k(q)=;e ” e Al (1+0(q))), (1)

with ~ the Euler’s constant and

Ch = lim </r£f2(§;0)(1 — £2(&;0)) d¢ — n? log r) .
r— o0 0

Notice that k«(q) = k(q)(1+ O(q)).
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Comments

» The case g = 0, can be reduced to the real
Ginzburg Landau equation

A= AA+A— AA]P
» If g =0, k. = 0 and there is no spiral waves.

» In our perturbative setting, these lines bend to
form the spirals.
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Comments

» The case g = 0, can be reduced to the real
Ginzburg Landau equation

A= AA+A— AA]P

» If g =0, k« =0 and there is no spiral waves.

P In our perturbative setting, these lines bend to
form the spirals.

Previous works

» N. Kopell and L. N. Howard (1981). A serie of papers concerned with pattern formation
in the Belousov-Zhabotinskii reaction. The existence and uniqueness of the asymtptotic
wavenumber k. = k«(q) as a function of g was proven.

The analytic methods used by Kopell et al, do not allow to obtain an expression for k.«(q).

» P.S. Hagan (1982), J. Greenberg (1980), M. Aguareles, S. Chapman, T. Witelski (2010)
used asymptotic methods to compute an explicit asymptotic formula for k(q).

The asymptotic methods are a consistent and systematic way to conjecture true results
but does not provide rigorous proofs.
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Setting
» We forget PDE because f(r) and v(r) = x/(r) has to satisfy

f/

1 n” 2 _ 2 r v vf’! 242
r r r

together with

lim v(r) = —k, lim f(r)=+/1— k2.

r—oo r—oo

» In order to f, v being bounded at r = 0, we need to impose f(0) = v(0) = 0.
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Setting
» We forget PDE because f(r) and v(r) = x/(r) has to satisfy

f'/ 2 f'/
f”+7—f%+f(1—f2—v2):0, \/+¥+2"7+q(1—f2—k2)=o.

together with

lim v(r) = —k, lim f(r)=+/1— k2.

r—oo r—oo

» In order to f, v being bounded at r = 0, we need to impose f(0) = v(0) = 0.

More conditions
Notice that the equations remain by changing g —q). We set then g > 0.
Since we want f'(r) >0, lim f/(r)=0and f r)<17k so that

r—oo

fl
(f2vr)' = f2r (v + — +2VT> = ffzrq(l — 2 k2) <0

that implies v(r) < 0. As a consequence k > 0.
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Setting
» We forget PDE because f(r) and v(r) = x/(r) has to satisfy

f/

7 n” 2 2 r Y vf’ 2 2
f—i———f—z-‘,—f(l—f—v):O, V+—+2T+q(1—f—k):().
r r r

together with

lim v(r) = —k, lim f(r)=+/1— k2.

r—oo r—oo

» In order to f, v being bounded at r = 0, we need to impose f(0) = v(0) = 0.

More conditions
Notice that the equations remain by changing g —q). We set then g > 0.
Since we want f'(r) >0, lim f/(r)=0and f r)<17k so that

r—oo

fl
(f2vr)' = f2r (v + — +2VT> = ffzrq(l — 2 k2) <0

that implies v(r) < 0. As a consequence k > 0.

» There are too many conditions. This indicates a selection mechanism for k.
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Counting dimensions

» We want to connect (f,f’,v,r) =(0,0,0,0) to (f,f,v,r) = (/1 — k2,0, —k, 00).
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Counting dimensions

» We want to connect (f,f’,v,r) =(0,0,0,0) to (f,f,v,r) = (y/1— k2,0, —k, c0).
Dynamics around r ~ 0

» w="F2vrand r=¢°.

» Dominant dynamics
" =n?f, W = —F2q(1 — k).

» (f,f',v) =(0,0,0) has 1 unstable
direction.
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» Dominant dynamics
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direction.

Dynamics around r ~ oo

» Dominant dynamics

/= —f(1-f>—v?),
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Counting dimensions
» We want to connect (f,f’,v,r) = (0,0,0,0) to (f,f,v,r) = (1/1— k2,0, —k, 00).

) Dynamics around r ~ oo
Dynamics around r ~ 0

5 » Dominant dynamics
» w="f%vrandr=¢€°.

» Dominant dynamics = —f(1 -2 —v?),
F1r 27~ 72 2 ’ vf! 2 2
" =n°f, W =—Fq(1 — k). V:foq(lfffk)
» (f,f’,v) =(0,0,0) has 1 unstable , 5
S > (f,f',v) = (/1 — k2,0, —k) has 1

stable direction.

In the extended phase space, R®
(r=1,k=0)
» W= have dimension 3.

» Generically they intersect in a
curve (a solution).

» We need to select k.
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Beyond all order phenomenon

First approach: perturbation theory with respect to |q| < 1.
> By symmetry write k(q) = ko + ¢%ki + q*ko + - - -

f(r) = fo(l‘) + qul(r) + q4f2(r)~ ce, V(I‘) = q(VO(r) =+ qzvl(r) + q4\/2(r) + - )
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» For g =0, we have that there exists fy such that f(0) =0 and lim fo(r) = 1.
r—oo
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Idea of the proof (I)

» We are not able to deal directly with the existence of solutions for r > 0.

> We are forced to divide the problem between r € [0, ro] (inner region) and r € [ry, o)
(outer region) with ry = e?/9, 0 < p < 1.
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Idea of the proof (I)

v

We are not able to deal directly with the existence of solutions for r > 0.

v

We are forced to divide the problem between r € [0, ry] (inner region) and r € [rg, c0)
(outer region) with ry = e?/9, 0 < p < 1.

v

The boundary conditions; in the inner region f(0) = v(0) = 0 and in the outer region

lim f(r)=+/1— k2, lim v(r) = —k

r—oo r—oo

v

These boundary conditions, does not provide uniqueness of the solution.
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» We are not able to deal directly with the existence of solutions for r > 0.

» We are forced to divide the problem between r € [0, ro] (inner region) and r € [ry, o)
(outer region) with ry = e?/9, 0 < p < 1.

» The boundary conditions; in the inner region f(0) = v(0) = 0 and in the outer region

lim £(r)=/1-K,  lim v(r) = —k

r— o0 r—o00

» These boundary conditions, does not provide uniqueness of the solution.

fo(r,ask,q) » Two families of
solutions depending
on (a, k) and (b, k).

» Remember that the
ODE is of second
order; f/ has also to
be take into account.
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Idea of the proof (II)

» We match the two families in the common point r = rp. Namely we impose that

fOUt(r[), a; k, q) = fin(ro, b; k, q)
0rf*(ro, a1 k, q) = 0, (r0, bi k, q)

v (ry,a; k,q) = vin(ro7 b; k, q).
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Idea of the proof (Il)

» We match the two families in the common point r = rp. Namely we impose that

£ (ro,a; k, q) = £ (ro, b; k, q)
0r " (ro,a; k, q) = O™ (ro, b k, q)

voU(ro,a; k, q) = v*(ro, b; k, q).

» This is a system with three unknowns (a, b, k) and three equations (depending on q).

n

We start by matching v°ut, v
» We manage to prove that for r ~ rgy

Ki/nq(qu)

veul(r ark,q) = —k—— ...
( ) King(kqr)

n 0
= ——tan (nqlogr+nq|og(kq)+5+nq’y+---) + e

r
2

) G
vii(r,b; k,q) = 7qn— log r + qatn
r

r

with Kjnq the Bessel function of second kind.
» Then we see that v°%(ry, a; k, ) = v®(ro, b; k, q) if and only if

1 _ =~ C
k(q) = nae 2nq, B = 2exp (*’Y + ,T; +V(a,b, p; q))
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Idea of the proof (ll)

We match now Ut £ and their derivatives.
» We prove that

2
fOU(r,a; 1, q) = Ko(rv2)a + \/1 - % = (veut(r,aip, q)2 + - .

2
£ (r,b; 1, q) = In(rv2)b + 1 — 2"_2 o
r
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Idea of the proof (l11)

We match now Ut £ and their derivatives.

» We prove that

2
FOU(r, a; 1, q) = Ko(rv/2)a+ '\/1 - :'7 = (veut(r,aip, q)2 + -
. n2
£ (r,b; 11, q) = In(rv2)b+ 1 — 52 T
.

» Then, matching the solutions at r = ryp we have that

Ko(rov2)a — In(rov/2)b = F(a, b, 1; g)
Ki(rov/2)a — Ih(rov/2)b = G(a, b, 1; q)
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Idea of the proof (l11)

We match now Ut £ and their derivatives.
» We prove that

2
fout(r,a;p, q) = Ko(rv2)a + '\/1 - % —(veut(r,a;p, q)2 +--- .

n2

£ (r b p1,.q) = In(rv2)b + 1 —
2r2

» Then, matching the solutions at r = rp we have that

Ko(rov/2)a — I,(rov/2)b
Kj(roV2)a — I (r0v/2)b

F(a,b, i; q)
G(a,b,11; q)

» As a consequence we can write

(a,b, n) = H(a,b, 11; q).
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Idea of the proof (l11)

We match now Ut £ and their derivatives.
» We prove that

2
fout(r,a;u,q) — Ko(l’\/é)a + \/1 — % _ (v“‘”(r,a;u,q)2 4+

. 2
2 (r, b p, q) = ln(r\@)b +1-— 2"72 I
r

» Then, matching the solutions at r = rp we have that

Ko(rov2)a — In(rov2)b = F(a, b, 11; q)
Kj(rov2)a — Il (r0V2)b = G(a, b, ; q)

» As a consequence we can write
(a,b, 1) = H(a,b, 1; q).

» A thorough control of the error terms, allow us to prove the existence of a fixed point
solution by the Brouwer's theorem with

u=2e>q>< v+ . )(1+0(q))
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Thanks for your attention
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