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BEYOND ALL ORDER PHENOMENON

BEYOND ALL ORDERS PHENOMENON

BEYOND ALL ORDERS PHENOMENON

In a family ẋ = X(x , ε) (ε ∼ 0) if a phenomenon can be described by a flat function ψ(ε) we say
that it is a beyond all orders phenomenon (BOP). Namely ψ(ε) = O(|ε|m) for all m ≥ 0.

A popular setting for BOP are singularly perturbed systems with two different scales:

dx
dt

= f (x , y , ε),
dy
dt

= εg(x , y , ε), equivalent to τ = εt ε
dx
dτ

= f (x , y , ε),
dy
dτ

= g(x , y , ε),

See that as ε= 0 we get

ẋ = f (x , y , 0), ẏ = 0, not equivalent to 0 = f (x , y , 0), y ′ = g(x , y , 0).

Fenichel’s geometric singular perturbation theory is a really useful tool (see Geometric
singular perturbation theory in biological practice (2010) by Geertje Hek).
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THE INVARIANT MANIFOLDS OF L3

THE INVARIANT MANIFOLDS OF L3

We consider a configuration of the 3-body problem (RPC3BP)
having a saddle-center equilibrium point called L3 with a
1-dimensional stable and unstable manifold.

The distance between these manifolds is exponentially small
with respect to some mass parameter.

Authors dealing with L3 J. Font (1984), C. Simó, P.
Sousa-Silva and M. Terra (2013), L. Niederman, A. Pousse
and P. Robutel (2020) and E. Barrabés, J. M. Mondelo and M.
Ollé (2013).

This is a joint work with
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THE INVARIANT MANIFOLDS OF L3

RESTRICTEDPLANARCIRCULAR3BP

We consider:

Planar: the motion takes place into a plane.

Restricted: one body is massless, i.e. m3 = 0.

Circular: the two bodies with mass (primaries) move in a
circular motion of the same period T .

Changing unities: m1 = 1− µ, m2 = µ. We assume µ� 1.

In rotating (synodic) coordinates, the primaries are located at (µ, 0) and (µ− 1, 0) and the
massless body follows a 2 degrees of freedom autonomous hamiltonian system.

µ = 0. A cercle of equilibrium points

q ∈ R2 position
p ∈ R2 momenta

µ > 0. L1, · · · , L5 equilibrium points.
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THE INVARIANT MANIFOLDS OF L3

THE LAGRANGIAN POINT L3

L3 is of saddle-center type having eigenvalues with two scales when µ > 0 is small:

±
√
µ

21
8

(1 +O(µ)), ±i +O(µ).

It has one dimensional stable and unstable manifolds, W u,s which either coincide or have
no intersection (In the figure is the projection of W u,s on the q-plane).

THEOREM

Take a section Σ as in the figure and let (qu,s, pu,s) be the
intersection of W u,s(L3) with Σ. When µ small enough:

‖qu − qs‖+ ‖pu − ps‖ ∼ K µ
1
3 e
−

A
√

µ .

Stokes constant Known constant
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THE INVARIANT MANIFOLDS OF L3

DIFFERENT SCALES

Using Poincaré variables and singular scalings to
write the system as

H(λ,Λ, x , y) ∼ i
xy
√
µ −

3
2

Λ2 + 1− cosλ−
1

√
2 + 2 cosλ

Fast variables Slow variables

The homoclinic connection is the approximation of the
invariant manifolds.

The invariant manifolds can be analytically extended to ΠA.

The difference between them is a solution of a linear
homogeneous system satisfying

∆̇x ∼
i
√
µ

∆x , ∆x(t) ∼ e
i t√

µ C.

Then ∆x(−iA) ∼ e
A√
µ C implies C ∼ e

− A√
µ .

±iA are the singularities of
the homoclinic connection.
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THE UNFOLDINGS OF THE HOPF-ZERO SINGULARITY

HOPF-ZERO SINGULARITIES TRULY UNFOLD CHAOS

We give sufficient and computable conditions to guarantee the occurrence of chaos in
generic analytic unfoldings of some Hopf-Zero singularities.

Authors dealing with these unfoldings: Takens, Guckenheimer, Kutnesov, Broer, Vegter,
Dumortier, Simó.

This is a joint work
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THE UNFOLDINGS OF THE HOPF-ZERO SINGULARITY

SETTING

UNFOLDINGS

Families Xµ,ν : R3 → R3 such that X0,0(0) = 0 and DX0,0(0) has eigenvalues ±iα, 0.
X0,0 is called Hopf-zero singularity and Xµ,ν is called unfolding.

We look for (µ∗, ν∗) ∼ 0 such that Xµ∗,ν∗ undergoes a
Šilnikov orbit:

Xµ∗,ν∗ has a saddle-focus equilibrium point with
eigenvalues λ,−ρ± iω with λ, ρ > 0.

Xµ∗,ν∗ has an homoclinic orbit Γ0 ⊂ W u(p).

If λ− ρ > 0 and (µ, ν) ∼ (µ∗, ν∗), Xµ,ν is chaotic.

Xµ,ν = X k
µ,ν +O(‖x , µ, ν‖k+1) with X k

µ,ν , the truncation of the normal form up to order k .
For k = 2

ż = −µ+ z2 + br2, ṙ = r(ν − az + z2), θ̇ = α.

In this case, for µ > 0, the equilibrium points are S2
± = (0, 0,±√µ) with corresponding

two scales eigenvalues ∼ ±2
√
µ, ν ∓ a

√
µ± iα.

We want S2
± to be saddle-focus equilibrium points, so we assume the open conditions

µ > 0, 0 < a < 2, b > 0, |ν| < a
√
µ.
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THE UNFOLDINGS OF THE HOPF-ZERO SINGULARITY

SETTING

UNFOLDINGS

Families Xµ,ν : R3 → R3 such that X0,0(0) = 0 and DX0,0(0) has eigenvalues ±iα, 0.
X0,0 is called Hopf-zero singularity and Xµ,ν is called unfolding.

We look for (µ∗, ν∗) ∼ 0 such that Xµ∗,ν∗ undergoes a
Šilnikov orbit:

Xµ∗,ν∗ has a saddle-focus equilibrium point with
eigenvalues λ,−ρ± iω with λ, ρ > 0.

Xµ∗,ν∗ has an homoclinic orbit Γ0 ⊂ W u(p).

If λ− ρ > 0 and (µ, ν) ∼ (µ∗, ν∗), Xµ,ν is chaotic.

Xµ,ν = X k
µ,ν +O(‖x , µ, ν‖k+1) with X k

µ,ν , the truncation of the normal form up to order k .
For k = 2
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THE UNFOLDINGS OF THE HOPF-ZERO SINGULARITY

NORMAL FORM AND BEYOND ALL ORDER PHENOMENON

The normal form X k
µ,ν is ż = Z k (r2, z), ṙ = rRk (r2, z), θ̇ = α

ν < νk (µ) ν = νk (µ)
ν > νk (µ)

One dimensional heteroclinic connection, k ≥ 2 .
The two invariant manifolds either coincide or do not intersect.
X k
µ,ν has no Šilnikov orbit.

The one dimensional heteroclinic connection has to be destroyed when the full Xµ,ν is
considered.

Since S±, ν = O(
√
µ), then Xµ,ν − X k

µ,ν = O((
√
µ)k+1). The breakdown of the one

dimensional heteroclinic connection has to be O((
√
µ)k ) for any k .
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THE UNFOLDINGS OF THE HOPF-ZERO SINGULARITY

QUANTITATIVE RESULTS

d1(µ, ν) ∼ Kµ(−1+a)/2e
− απ

2
√

µ .

With K a Stokes constant which satisfies, generically, K 6= 0.

THEOREM (ŠILNIKOV HOMOCLINIC ORBITS)

For 0 < a < 2 and K 6= 0, there is a curve γ = {ν = ν(µ)} such that Xµ,ν(µ)

has a Šilnikov homoclinic orbit.

To prove the existence of Šilnikov orbits from the formula for d1(µ, ν) we use classical
arguments mainly Bolzano and inclination lemma.

We can also prove that the distance between the two invariant manifolds is

d2(θ, µ, ν) ∼ d2(µ, ν) + µ(−2−2a−1)/2e
− πα

2a
√

µ [C1 cos(θ − c log µ) + C2 sin(θ − c logµ)]

where d2(µ, ν) ∼ c1µ+ c2ν, c1, c2 6= 0.

Using this formula we can deal also with the volume preserving case (ν = 0) and to obtain
a better knowledge of the curve γ = {ν = ν(µ)}.
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ASYMPTOTIC WAVENUMBER OF SPIRAL WAVES

ASYMPTOTIC WAVENUMBER OF SPIRAL WAVES

We consider a class of reaction-diffusion systems

We prove that these systems have rotating spiral waves only if some quantity (the
asymptotic wavenumber ) is exponentially small with respect to some parameter (the twist
parameter )

These systems has been studied by many authors, Koppel, Hagan, Greenberg, Coen,
Neu, Rosales, Howards, Fife, Chapman, Paullet, Ermentrout, Troy, etc. Different
techniques have be used (Fenichel’s theory, asymptotic methods, numerical methods).

A joint work with
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ASYMPTOTIC WAVENUMBER OF SPIRAL WAVES

SPIRAL PATTERNS

Spiral patterns are commonly observed in certain chemical, biological and physical systems

Belousov-
Zhabotinskii
reaction

Social amoebas
Dictyostelium
discoideium Cardiac muscle

tissue

These systems are governed by chemical or biological reaction and spatial diffusion.

∂τU = D∆U + F (U, a), D a diffusion matrix, F the reaction nonlinearity

U = U(τ, x , y) ∈ R2 and a is a parameter (for instance some catalyst concentration).
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ASYMPTOTIC WAVENUMBER OF SPIRAL WAVES

SPIRAL WAVES

We focus on the Ginzburg-Landau systems

ut = ∆u + λ
(√

u2 + v2
)
u − ω

(√
u2 + v2

)
w ,

wt = ∆w + ω
(√

u2 + v2
)
u + λ

(√
u2 + v2

)
w ,

with λ(z) = 1− z2, ω(z) = ω0 + qz2 and q the small twist parameter.

The first order of a reaction-diffusion equation near a Hopf bifurcation.

ROTATING SPIRAL WAVES

Are C2 solutions of the form U(t , r , θ) = (u(t , r , θ),w(t , r , θ)) = f (r)exp (i [Ωt + nθ − χ(r)]) .

In the rotating framework, (ũ, w̃)(r , θ) = e−itΩU(t , r , θ) we encounter the spiral patterns by
setting ũ = ctt or w̃ = ctt .
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ASYMPTOTIC WAVENUMBER OF SPIRAL WAVES

SPIRAL WAVES

We focus on the Ginzburg-Landau systems

ut = ∆u + λ
(√

u2 + v2
)
u − ω

(√
u2 + v2

)
w ,

wt = ∆w + ω
(√

u2 + v2
)
u + λ

(√
u2 + v2

)
w ,

with λ(z) = 1− z2, ω(z) = ω0 + qz2 and q the small twist parameter.

The first order of a reaction-diffusion equation near a Hopf bifurcation.

ROTATING SPIRAL WAVES

Are C2 solutions of the form U(t , r , θ) = (u(t , r , θ),w(t , r , θ)) = f (r)exp (i [Ωt + nθ − χ(r)]) .
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ASYMPTOTIC WAVENUMBER OF SPIRAL WAVES

FROM PDE TO ODE. BOUNDARY CONDITIONS

We define the asymptotic wavenumber k as q(1− k2) = Ω− ω0.

We forget PDE because f (r) and v(r) = χ′(r) has to satisfy

f ′′ +
f ′

r
− f

n2

r2
+ f (1− f 2 − v2) = 0,

v ′ +
v
r

+ 2
vf ′

f
+ q(1− k2 − f 2) = 0.

BOUNDARY CONDITIONS

To guarantee that the solutions f (r)ei(nθ−χ(r)) are C2 and archimedian spirals:

f (0) = v(0) = 0, ∃ lim
r→∞

f (r), lim
r→∞

v(r)

f (r) > 0, r > 0, and v(r) has constant sign.

These are too many restrictions to a third order system of ODE. This suggests that there
exists a selection mechanism for k .
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ASYMPTOTIC WAVENUMBER OF SPIRAL WAVES

BEYOND ALL ORDER PHENOMENON

By symmetry write k(q) = k0 + q2k1 + q4k2 + · · ·

f (r) = f0(r) + q2f1(r) + q4f2(r) · · · , v(r) = q(v0(r) + q2v1(r) + q4v2(r) + · · · ).

Only imposing that f0(0) = 0 and it is bounded, lim
r→∞

f0(r) = 1.

Equating orders O(qm), compute the ODE for fm, vm. It turns out that, for m ≥ 1

v ′m +
vm

r
+ 2

vmf ′0
f0

= (cm(r)− f0km)

with cm(r) = o(r−1) as r →∞ a known function (depending f0, · · · , fm−1, v0, · · · , vm−1)
We have that

vm(r) =
1

rf 2
0 (r)

∫ r

0
ξf0(ξ)(cm(ξ)− f0(ξ)km) dξ.

Since vm has to be bounded as r →∞, km = 0.

THEOREM

We rigorously prove that k(q) ∼
A
q

e−
π

2nq with A a constant that only depends on f0.
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ASYMPTOTIC WAVENUMBER OF SPIRAL WAVES

BEYOND ALL ORDER PHENOMENON

By symmetry write k(q) = k0 + q2k1 + q4k2 + · · ·

f (r) = f0(r) + q2f1(r) + q4f2(r) · · · , v(r) = q(v0(r) + q2v1(r) + q4v2(r) + · · · ).

Only imposing that f0(0) = 0 and it is bounded, lim
r→∞

f0(r) = 1.

Equating orders O(qm), compute the ODE for fm, vm. It turns out that, for m ≥ 1

v ′m +
vm

r
+ 2

vmf ′0
f0

= (cm(r)− f0km)

with cm(r) = o(r−1) as r →∞ a known function (depending f0, · · · , fm−1, v0, · · · , vm−1)
We have that

vm(r) =
1

rf 2
0 (r)

∫ r

0
ξf0(ξ)(cm(ξ)− f0(ξ)km) dξ.

Since vm has to be bounded as r →∞, km = 0.

THEOREM

We rigorously prove that k(q) ∼
A
q

e−
π

2nq with A a constant that only depends on f0.

I.B. (UPC) BEYOND ALL ORDER DYNŜ.3BIO 16 / 17
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THANKS!

For its Fixed Point Theorem in Banach spaces which is
the core of our proofs.

and to you...
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