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Abstract

We validate the Poincaré–Melnikov method in the singular case of high-frequency periodic
perturbations of the Hamiltonianh0(x, y) = (1/2)y2 − x3 + x4 under appropriate conditions,
which among other things, imply that we are considering the bifurcation case when the character
of the fixed point changes from parabolic in the unperturbed case to hyperbolic in the perturbed
one. The splitting is exponentially small.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given a one-degree-of-freedom Hamiltonian systemh0(x, y) with a homoclinic con-
nection�0 associated to some fixed pointp and a perturbation of it

h0(x, y) + εh1(x, y, t, ε), (1)

the Poincaré–Melnikov method[Me] is a tool to detect transversal intersection of the
perturbed invariant manifolds. Moreover, in case of intersection, it provides asymptotics
for the area of the lobe generated by the invariant manifolds between two consecutive
homoclinic points and for the angle of the invariant manifolds at homoclinic points.
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The standard theory applies to hyperbolic fixed points and regular perturbations, that
is whenh1 is of classCr , r�3.

The case of singular perturbationsh1(x, y, t/ε, ε) is very important because it appears
when one reduces two degrees of freedom near integrable systems near a periodic orbit.
In this case, if the manifolds split, the area and the angle are exponentially small with
respect toε.

More generally, exponentially small splitting of invariant manifolds of invariant tori
appears in near integrable Hamiltonian systems and it is a very important issue in
the study of Arnold diffusion[Ar] . It is a difficult problem and satisfactory results
have only appeared recently. However, since we deal with perturbations of a one-
degree-of-freedom Hamiltonian, our result does not apply in this higher-dimensional
setting.

Exponentially small phenomena also appear in one step discretizations of autonomous
differential equations[FiS].

However this case was already encountered by Poincaré[Po]. He studied a model
which is a special perturbation of the pendulum and he found that the splitting of sepa-
ratrices is exponentially small in a perturbation parameter. He overcome the difficulties
introducing an extra parameter and letting it to be exponentially small with respect to
the other one.

Much later Neishtadt[Ne] provided exponentially small upper bounds for the splitting
in the singular case with only one parameter. Asymptotic expressions have appeared
recently, mainly for particular non-perturbed systems, such as the pendulum, the Duffing
equation, etc.[An,DS1,Ge1,HMS,Tr]. In these examples the asymptotics are of the form
cεr exp(−a/ε). However this is not always the case as it is shown by an example
presented in[SMH] (see also the discussion in[GL]).

Exponentially upper bounds for general systems with sharp exponents are found in
[Fo1,Fo2,FoS].

The papers[DS2,Ge2] address the problem of obtaining, under certain conditions,
the asymptotics from the formal Melnikov function although this is not always the
case[Tr] .

Poincaré maps associated to (1) are near identity area preserving maps.
Lazutkin [La] gave the asymptotic formula for the splitting for the standard map and

introduced new analytic ideas to study the problem. The proof of the formula was later
completed by Gelfreich[Ge3].

There exists also a Poincaré–Melnikov theory for the setting of maps. For the regular
case see[DR1,Ea]. For a singular case see[DR2]. A more detailed account of these
results, both for maps and one and a half degrees of freedom Hamiltonians, can be
found in [GL] .

The case of a parabolic fixed point is much less studied. In this case the first problem
is to ensure the existence of invariant manifolds for the perturbed system. This strongly
depends on the higher order terms at the fixed point. For the regular parabolic case
see[CFN].

In [BF] we consider the singular parabolic case. We consider non-perturbed Hamil-
tonians h0(x, y) = 1

2 y2 + V (x) with V (x) = anx
n + · · ·, n�3, and perturbations

which do not destroy the parabolic character of the fixed point. Under appropriate
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hypotheses we prove that the formal Melnikov function gives the right exponentially
small asymptotics.

In the present paper we consider a bifurcation case, that is, the fixed point is parabolic
for the unperturbed system but is hyperbolic for the perturbed one and hence it has
small eigenvalues. It is important to mention that the main part of this work is related
to finding suitable parameterizations of the invariant manifolds of the fixed point of
the perturbed system.

Once we have the parameterizations we can apply some of the results obtained in
[BF] which also apply in this case. Due to some technical difficulties, we restrict
ourselves to the particular non-perturbed Hamiltonianh0(x, y) = 1

2 y2 − x3 + x4.
This paper is organized as follows. In Section2, we introduce notation and the

hypotheses. In Section3, we state the main results. In Section4, we prove the existence
of suitable parameterizations of the invariant manifolds of the perturbed system and
finally in Section 5 we give the sketch of the proof of the asymptotic formulas for
the area of the lobes and the angle between the invariant manifolds at a homoclinic
point which are exponentially small inε. Actually, under the stated hypotheses onh1,
we get that the formal Melnikov function associated to the problem gives the right
asymptotics.

2. Notation and hypotheses

We consider Hamiltonian systems of the form

H(x, y, t/ε,�, ε) = h0(x, y) + �εph1(x, y, t/ε,�, ε), ε > 0, (2)

where

h0(x, y) = y2

2
+ V (x) and V (x) = −x3 + x4.

The unperturbed system has the homoclinic orbit�0 = (�0,�0) given by

�0(t) = 2

2 + t2 , �0(t) = − 4t

(2 + t2)2 . (3)

Note that�0 has two poles of order 1 att = ±i
√

2.

2.1. Hypotheses

H1. The functionh1(x, y, �,�, ε) is C0, 2�-periodic in �, has zero average:∫ 2�

0
h1(x, y, �,�, ε) d� = 0

and is real analytic with respect to(x, y,�).
H2. The functionh1(x, y, �,�, ε) is a polynomial of order 2 and degree� in the (x, y)

variables:

h1(x, y, �,�, ε) =
�∑

i+j=2

bij (�,�, ε)xiyj .
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We introduce the functionsBij , determined by the conditions:

��Bij = bij ,

∫ 2�

0
Bij (�,�, ε) d� = 0.

H3. With the above-introduced notation∫ 2�

0
b11(�, 0, 0)B20(�, 0, 0) d� > 0.

Consider the termsbij (�, 0, 0)xiyj of h1 evaluated on�0. We define� to be the

greatest order of the poles±i
√

2 corresponding tobij (�,�, ε)�i
0(u)�

j
0(u). That is:

� = max{i + 2j : ∀�0, ε0 > 0 ∃(�,�, ε) ∈ [0, 2�]
×(−�0,�0) × (0, ε0) s.t. bij (�,�, ε) �= 0}. (4)

Also we define� = p − � and we ask that:
H4. The constant� is greater or equal than 0.

Remark 2.1. The previous hypotheses implyp�3. Indeed, by hypothesis H3,b11 �= 0.
The order of the pole of the termb11xy evaluated at the homoclinic orbit is 3, hence,
by definition of �, ��1 + 2 = 3.

Remark 2.2. We will study in detail the associated Poincaré map and we will see H3
implies that the origin is a saddle point when� �= 0 andε > 0 small.

Remark 2.3. Hypothesis H4 controls the growth of the perturbation term evaluated at
the homoclinic orbit for values of time close to the singularities.

3. Main results

3.1. Parameterizations of the stable and unstable manifolds

First we introduce some notation. GivenT, 	 > 0, we define the sets

Ds = Ds(T , 	) = {(t, s) ∈ R × C : t + Re s�T , | Im s|�	},
Du = Du(T , 	) = {(t, s) ∈ R × C : t + Re s� − T , | Im s|�	}

and for 
 > 0, k, l ∈ R, (k, l�0) we define the spaceX l
k = X l

k (
) of functions
h : Ds → C such that
(a) h is continuous,
(b) for t fixed, s �→ h(t, s) is analytic,
(c) h(t, s + 2�ε) = h(t + 2�ε, s) for all (t, s) ∈ Ds,
(d) ‖h‖k,l := sup{(t + Re s)ke
l(t+Res)|h(t, s)| : (t, s) ∈ Ds} < ∞.
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We can prove thatX l
k is a Banach space with the norm‖ · ‖k,l and that

X l
k2

⊂ X l
k1

if k2 > k1, and X l2
k ⊂ X l1

k if l2 > l1.

In an analogous way we define the spacẽX l
k of functions defined onDu. The next

result gives the existence and some properties of a special parameterization of the stable
and the unstable invariant manifolds.

Theorem 3.1. Assuming hypothesesH1–H4, there existT > 0 big enough and param-
eterizations�s

�,ε(t, s), �u
�,ε(t, s) of the local stable and unstable invariant manifolds of

the origin of (2), defined inDs(T ,
√

2), Du(T ,
√

2), respectively, such that(∗ stands
for s or u):

(1) t �→ �∗
�,ε(t, s) is a solution of the equation associated to(2) and s �→ �∗

�,ε(t, s)

is real analytic. Moreover the map(t, s,�, ε) �→ �∗
�,ε(t, s) is continuous, C1 with

respect to t and analytic with respect to(s,�).
(2) For all (t, s) ∈ D∗(T ,

√
2), �∗

�,ε(t ± 2�ε, s) = �∗
�,ε(t, s ± 2�ε), + for ∗ = s and−

for ∗ = u.
(3) For � = 0, �∗

�,ε(t, s) coincides with the restriction of the homoclinic solution

�0(t + s) to D∗(T ,
√

2), and for � �= 0 the following estimate holds:

�∗
�,ε(t, s) = �0(t + s)+�εp+1G�,ε(�0(t + s), t/ε)+O(�εp+2), (t, s) ∈ D∗(T ,

√
2),

where ��G�,ε(x, y, �) = (�yh1(x, y, �,�, ε),−�xh1(x, y, �,�, ε)) and has zero av-
erage.

(4) �∗
�,ε(t, s) = �0(t + s) + �εp+1�∗

�,ε(t, s) where�∗
�,ε(t, s) ∈ X 0

2 × X 0
2 if ∗ = s and

�∗
�,ε(t, s) ∈ X̃ 0

2 × X̃ 0
2 if ∗ = u.

The proof of Theorem3.1 is similar to that of Theorem 3.1 in[BF], but here, for
� �= 0 the behavior of�∗ is exponential in time and hence we face to a competition
between the algebraic (� = 0) and the exponential (� �= 0) characters. Therefore we
have to take a different first approximation of�∗

�,ε and we have to be much more
explicit in some computations.

3.2. Asymptotic formula for the splitting of separatrices

Let M(s,�, ε) be the Melnikov function defined by

M(s,�, ε) =
∫ ∞

−∞
{h0, h1}(�0(t + s), t/ε,�, ε) dt.

We denote byP t0 the Poincaré map fromt0 to t0 + 2�ε of system (2), by A the area
of the lobe generated by the stable and unstable manifold between two consecutive
primary homoclinic points and byϑ the angle between the stable and unstable invari-
ant manifolds at a homoclinic point. We recall that, since the Poincaré map is area
preserving, the areaA will not depend on the concrete primary homoclinic points we
consider.
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Theorem 3.2. Under hypothesesH1–H4, for ε → 0+, � → 0, the following formulas
hold:

A = �εp
∫ s̄0

s0

M(�,�, ε) d� + O(�2ε2�+2,�2ε�+p+1,�εp+2)e−√
2/ε,

sinϑ = �εp
M ′(s0,�, ε)
|�̇0(t0 + s0)|2 + O(�2ε2�,�2ε�+p−1,�εp)e−√

2/ε,

wheres0 < s̄0 are the two zeros of the Melnikov function(associated to two consecutive
homoclinic points), closest to zero.

We define the functionJ (x, y, �,�, ε) = {h0, h1}(x, y, �,�, ε). This function is 2�-
periodic in � and has zero average with respect to�. Let Jk(x, y,�, ε) be its Fourier
coefficients. It is clear that, for allk ∈ Z\{0}, Jk(�0(u), 0, 0) has a pole of order at
most � + 1 at u = ±i

√
2, then, near the singularitiesu = ∓i

√
2, Jk(�0(u), 0, 0) has

the form

Jk(�0(u), 0, 0) = 1

(u ± i
√

2)�+1

J±
k,0 +

∑
m�1

J±
k,m(u ± i

√
2)m

 .

We introduce the further hypothesis:
H5. The Fourier coefficientsJ±1 evaluated on(x, y) = �0(u), � = 0, ε = 0, that is

J±1(�0(u), 0, 0), have singularities of order exactly� + 1 at the pointsu = ±i
√

2.

Remark 3.3. Hypothesis H5 is generic because it is equivalent to assume that some
coefficient of the Laurent expansion ofJ±1(�0(u), 0, 0) is different from zero.

Under this additional hypothesis we can obtain an explicit asymptotic expression of
the Melnikov function which provides the asymptotics for the area and the angle.

Corollary 3.4. If H1–H5 hold, then for ε → 0+, � → 0,

A ∼ �ε�+18�|J−
1,0|

1

�! e
−√

2/ε,

| sinϑ| ∼ �ε�−14�|J−
1,0|

1

�! e
−√

2/ε 1

|�̇0(t0 + s0)|2 .

3.3. An example

In order to illustrate the practical application of formulas given in Corollary3.4
we provide an easy example. Consider the Hamiltonian given byH(x, y, t/ε,�, ε) =
h0(x, y) + �εph1(x, y, t/ε,�, ε) with

h1(x, y, t/ε,�, ε) = b20(t/ε,�, ε)x2 + b11(t/ε,�, ε)xy + b02(t/ε,�, ε)y2
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and satisfying hypotheses H1 and H3. An easy computation proves that, near the
singularity u = i

√
2,

{h0, h1}(�0(u), t/ε,�, ε) = 1

(u − i
√

2)5
(−2b02(t/ε,�, ε) + O(u − i

√
2)).

Let bk02 be the k-Fourier coefficient ofb02 when � = 0, ε = 0. Hypothesis H5 is
equivalent to assume thatb1

02 �= 0 which is the constant−J−
1,0/2. In this case,� = 4.

Then, if p�� = 4, we have the following asymptotic formulas:

A ∼ �εp−316�|b1
02|

1

�! e
−√

2/ε,

| sinϑ| ∼ �εp−58�|b1
02|

1

�! e
−√

2/ε 1

|�̇0(t0 + s0)|2 .

4. Proof of Theorem 3.1

In this section we prove the existence of special parameterizations of the stable and
unstable manifolds in domains independent of the parameters� and ε. In fact, we
prove the existence of such parameterization for the stable manifold but it is easy to
see that, with slight changes, the proof works for the unstable one.

Since the time parameterization of the homoclinic orbit of the unperturbed system
near the fixed point (that is, whent → ±∞) has an algebraic character, and we know
that the parameterization of the stable manifold near a hyperbolic fixed point (which
will be the case for the perturbed system) is exponential in time, it seems natural to
suspect that the homoclinic orbit of the unperturbed system is not a good approximation
of the stable curve of the perturbed one. Actually, for� small, there is a competition
between the algebraic and the exponential character. Therefore we need a better initial
approximation for the stable manifold, which will be obtained as a parameterization of
the stable manifold of an auxiliary system. First we will have to obtain well adapted
coordinates.

4.1. Averaging and Floquet theory

As in [BF] we perform some steps of averaging in order to obtain a suitable change
of coordinates to deal with. The Floquet theory is used to reduce the linear part of the
system to a system with constant coefficients.

We introduce the following notation:

Definition 4.1. Let U be an open subset ofC2. Given l ∈ Z
+, we denote byPl the

set of functionsp : U × R × B(0,�0) × [0, ε0) → C that are continuous, 2�-periodic
in �, analytic in (x, y,�), and have orderl, i.e. they can be represented in the form,

p(x, y, �,�, ε) =
∞∑

i+j=l

ai,j (�,�, ε)xiyj ,

where the coefficientsai,j (�,�, ε) are continuous, 2�-periodic in � and analytic in�.



I. Baldomá, E. Fontich / J. Differential Equations 210 (2005) 106–134 113

To simplify the notation we will not write the dependence on�, ε of certain functions
unless we want to stress it.

In this subsection we will prove the following result:

Proposition 4.2. There exists a change of variablesC, defined in a neighborhood of
the origin, which transforms the Hamiltonian equations associated to H into(

ẋ

ẏ

)
=
(
y

�2ε2p+1(bx − cx2) − V ′(x)

)
+ �εp+4F3(x, y, t/ε), (5)

where b = b(�, ε) = b0(1 + O(�, ε)), b0 = (2/�)
∫ 2�

0 b11(�, 0, 0)B20(�, 0, 0) d� > 0,
and c = c(�, ε) do not depend ont/ε and F3 ∈ P3.
Moreover, the changeC is continuous, C1 and2�-periodic in t/ε, analytic in (x, y,�)

and is of the form,

C(x, y, t/ε,�, ε) = (x, y) + �εp+1G�,ε(x, y, t/ε) + �εp+2r2(x, y, t/ε), (6)

whereG�,ε satisfies��G�,ε = (�yh1,−�xh1) and has zero average, and r2 ∈ P2.

First we scale the time by� = t/ε. We get the Hamiltonian systemεH(x, y, �,�, ε).
In order to move the contribution of the perturbation to terms of higher order in the

parameters we will do some steps of averaging. For this we quote Lemma 3.2 in[BF]:

Lemma 4.3. Let εH = εh0 + �εp+1h1, with h0(x, y) = y2/2 + V (x), V (x) = O(xn)

and h1(x, y, �,�, ε) = O(|(x, y)|k). Assume that V is analytic, h1 is C0, analytic with
respect to(x, y,�) and 2�-periodic in �. Then, there exists a canonical change of
variables (x, y) = C0(x̄, ȳ, �,�, ε) which is C0 in (x̄, ȳ, �,�, ε), C1 and 2�-periodic
in � and analytic in(x̄, ȳ,�) that transforms the HamiltonianεH into

εH0 = εh0 + �εp+2n+3F2n−2 + �2ε2p+2R2k−2

in a neighborhood of the origin, where F2n−2 ∈ P2n−2 and has zero average with
respect to�, R2k−2 = �yh1�xS

1
1 + εr2k−2 ∈ P2k−2, with S1

1 such that��S
1
1 = −h1 and

has zero average, and r2k−2 ∈ P2k−2. MoreoverH0 is continuous in(x̄, ȳ, �,�, ε) and
analytic in (x̄, ȳ,�).

From the proof of Lemma4.3 we obtain that

C0(x, y, �,�, ε) = (x, y) + �εp+1G�,ε(x, y, �) + �εp+2r2(x, y, �),

whereG�,ε satisfies��G�,ε = (�yh1,−�xh1) and has zero average.
Applying Lemma4.3 to εH with n = 3 andk = 2 we obtain

εH0(x, y, �,�, ε) = εh0(x, y) + �εp+9F4(x, y, �,�, ε) + �2ε2p+2R2(x, y, �,�, ε),

where F4 ∈ P4 and has zero average with respect to�, R2 = �yh1�xS
1 + εr2 ∈ P2

with S1 such that��S
1(x, y, �) = −h1(x, y, �) and has zero average with respect to
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�, and r2 ∈ P2. Computing in detail the expression forR2 we obtain

R2(x, y, �) = −[2b11(�)B20(�)x2 + [b11(�)B11(�) + 4b02(�)B20(�)]xy
+2b02(�)B11(�)y2] + εr2(x, y, �) + R3(x, y, �) (7)

with R3 ∈ P3.
To make the quadratic terms ofεH0 independent of� we apply Floquet’s theory.
We introducez = (x, y) and we let

N =
(

0 1
0 0

)
and A(�) = A�,ε(�) =

(
�yxR2 �yyR2

−�xxR2 −�xyR2

)
, (8)

where the derivatives ofR2 are evaluated atz = 0. Then, the linear part of the
equation associated toεH0 at z = 0 can be written as (prime means derivative with
respect to�)

z′ = ε(N + �2ε2p+1A(�))z. (9)

Lemma 4.4. There exists a canonical linear change of variablesC1 that transforms
(9) into

w′ = ε

(
0 1

�2ε2p+1b(�, ε) 0

)
w,

where b(�, ε) = (2/�)
∫ 2�

0 b11(�)B20(�) d� + O(�, ε). MoreoverC1 is continuous, C1

and 2�-periodic in �, analytic in � and C1 = Id + O(�2ε2p+1).

Proof. Let (�) be the fundamental solution of (9) such that(0) = Id. It is clear that
there existsa > 0 such that‖(�) − Id ‖�aε for � ∈ [0, 2�]. Moreover

(�) = Id +εN� + �2ε2p+2
∫ �

0
A(�) d� + O(�2ε2p+3).

Indeed, if we introduce�(�) = (�) − Id −εN� − �2ε2p+2
∫ �

0 A(�) d�, we have that

�′ = εN� + �2ε2p+2U(�), �(0) = 0,

with U(�) = A(�) − A(�) + εN
∫ �

0 A(�) d� = O(ε). By the variation of constants

formula we get�(�) = �2ε2p+2
∫ �

0 eεN(�−�)U(�) d�. Then �(�) = O(�2ε2p+3).
By Floquet’s theory there exist a constant matrixM and a 2�-periodic matrixP(�),

such that(�) = P(�)eM�, with M = M�,ε = 1
2� log((2�)). Moreover, the change

of coordinatesz = P(�)w transforms Eq. (9) into

w′ = Mw. (10)

Since (9) is Hamiltonian, det(�) = 1. Therefore trM = 0 and detP(�) = 1.
This implies that the changez = P(�)w is canonical and then the transformed

system will also be Hamiltonian. SinceN2 = 0, it is not difficult to see thatM =
1

2� log((2�)) = εN + O(�2ε2p+2), and thus

P(�) = (�)e−M� = Id +O(�2ε2p+2). (11)
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To estimate the eigenvalues of(2�), we write∫ 2�

0
A(�) d� =

(
A11 A12
A21 A22

)
+ O(ε), (12)

where A11 = −A22 = −4
∫ 2�

0 b02(�)B20(�) d�, A12 = −4
∫ 2�

0 b02(�)B11(�) d� and

A21 = 4
∫ 2�

0 b11(�)B20(�) d�. Note that
∫ 2�

0 b11(�)B11(�) d� = 0.

If we write (2�) as

(
1 + a b

c 1 + d

)
, the condition det(2�) = 1 becomesa+d =

−(ad − cb). Therefore tr(2�) = 2 + a + d = 2 + 2��2ε2p+3A21 + O(�2ε2p+4). The
characteristic equation of(2�) is �2 − (2 + 2��2ε2p+3A21 + O(�2ε2p+4))� + 1 = 0
and hence the eigenvalues of(2�) are

�± = 1 ±√
2�A21�εp+3/2 + O(�εp+5/2)

and the eigenvalues ofM are

�± = 1

2�
log(�±) = ±�εp+3/2

√
A21/(2�) + O(�εp+5/2).

Let M = (aij ) and C = (cij ) be defined byc11 = √
a12/ε, c12 = 0, c21 =

−a11/
√
εa12 and c22 = √

ε/a12. C has the form Id+O(�2ε2p+1) and the change
z = Cw transforms Eq. (10) to

w′ = ε

(
0 1

�2ε2p+1b(�, ε) 0

)
w,

whereb(�, ε) = A21/(2�) + O(�, ε). We takeC1z = CP(�)z. �
SinceC1 is area preserving the transformed Hamiltonian becomes

εH1 = εy2/2 − �2ε2p+2bx2/2 + εV (x) + �εp+9F4 + �2ε2p+2R3, R3 ∈ P3.

Finally, we will remove all cubic terms ofR3 but one. We observe that, if� �= 0,
standard normal form calculations give that all cubic terms ofR3 can be eliminated,
but, in general, the corresponding change of variables is not regular at� = 0. However
we have Lemma4.5.

Let us write

R3(x, y, �) = a30(�)x3 + a21(�)x2y + a12(�)xy2 + a03(�)y3 + r4(x, y, �)

with r4 ∈ P4. We will also denote byaij the average ofaij .

Lemma 4.5. There exists a change of variablesC2 defined in a neighborhood of the
origin which transforms the Hamiltonian systemεH1 into(

x′
y′
)

= ε

(
y

�2ε2p+1(bx − cx2) − V ′(x)

)
+ �εp+9

(
�yF4(x, y, �)

−�xF4(x, y, �)

)
+�2ε2p+2s3(x, y, �),
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with c = c(�, ε) = 3a30 + O(�2ε2p+1) and s3 ∈ P3. Moreover the changeC2 is
continuous, C1 and 2�-periodic with respect to�, analytic with respect to(x, y,�)
and it satisfiesC2 = Id + O(�2ε2p+1).

Proof. We look for a change of variables of the form

C2(u, v, �) = (u, v) + �2ε2p+1(f (u, v, �), g(u, v, �)), (13)

where f and g are 2�-periodic with respect to� and have the form

f (u, v, �) = f20(�)u2 + f11(�)uv + f02(�)v2,

g(x, y, �) = g20(�)u2 + g11(�)uv + g02(�)v2.

A direct computation shows that

(
u′
v′
)

= ε

(
v

�2ε2p+1bu − V ′(u)

)
+ �2ε2p+1(u2B20(�, ε) + uvB11(�, ε) + v2B02(�, ε))

+�εp+9

(
�vF4(u, v, �)

−�uF4(u, v, �)

)
+ �2ε2p+2s3(u, v, �),

where s3 ∈ P3 and

B20 =
(−f ′

20 + εa21 + εg20 − b�2ε2p+2f11

−g′
20 − 3εa30 + b�2ε2p+2(f20 − g11)

)
,

B11 =
(−f ′

11 + 2εa12 + ε(g11 − 2f20) − 2b�2ε2p+2f02

−g′
11 − 2εa21 − 2εg20 + b�2ε2p+2(f11 − 2g02)

)
,

B02 =
(−f ′

02 + 3εa03 + εg02 − εf11

−g′
02 − εa12 − εg11 + b�2ε2p+2f02

)
.

We askBij to satisfyB11 = B02 = 0 andB20 = (0, εd)T with d = d(�, ε) independent
of � to be determined later.

First of all we observe that, by imposing the above conditions onBij , fij and gij
satisfy a linear system with constant coefficients and periodic non-homogeneous terms.
For the functionsh1 = f11 + 2g02 and h2 = g11 + 2f20 we have

h′
1 = −εh2, h′

2 = −b�2ε2p+2h1. (14)

The only periodic solution of (14) is h1(�) = h2(�) = 0. Therefore,f11 = −2g02 and
g11 = −2f20. This permits to reduce the number of equations.
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We introduce� = �2ε2p+1, Z = (f02, g02, f20, g20)
T , A = (3a03,−a12, a21,−(3a30+

d))T and

C =


0 3 0 0

b� 0 2 0

0 2b� 0 1

0 0 3b� 0

 .

With this notation the conditions we impose onfij and gij become

Z′ = εCZ + εA(�). (15)

We want to prove the existence of periodic solutions of system (15) being analytic
with respect to�. Let Z(�, Z0) be the solution of (15) such thatZ(0, Z0) = Z0. Z is
a 2�-periodic solution of (15) if and only if

Z0 = −ε(Id − e−2�εC)−1
∫ 2�

0
e−sεCA(s) ds. (16)

We notice that, if� = �2ε2p+1 �= 0, (Id −e−2�εC) is invertible. Indeed, it follows from
the fact that, if� �= 0, C is invertible, and therefore

(Id − e−2�εC)−1 = 1

2�ε
C−1

Id +
∑
k�2

1

k! (−1)k−1(2�εC)k−1

−1

= 1

2�ε
C−1(Id + 2�εCf (2�εC)),

where f is an analytic function. Also we can writee−sεC = Id − sεCg(sεC) with g
analytic. Then Eq. (16) takes the form

Z0 = − 1

2�
C−1(Id + 2�εCf (2�εC))

∫ 2�

0
(Id − sεCg(sεC))A(s) ds

= − 1

2�
C−1

∫ 2�

0
A(s) ds + O(ε).

Now we are going to determined. We observe that

C−1 = 1

(3b�)2


0 9b� 0 −6

3(b�)2 0 0 0

0 0 0 3b�

−6(b�)3 0 (3b�)2 0

 ,
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thus, by definition ofA,

Z0 = −



− 1

b�
a12 + 2

3(b�)2 (3a30 + d)

a03

− 1

3b�
(3a30 + d)

−2b�a03 + a21


+ O(ε).

Choosingd = −3a30 + (3b�/2)a12 we get thatZ0 = −(0, a03,−a12/2, a21) + O(ε).
Therefore with this choice ofd we get that the unique 2�-periodic solution of (15) is
analytic in �, and the change (13) is �2ε2p+1 close to the identity. �

We defineF 1
3 = ε4�vF4 +�εp−3s1

3 andF 2
3 = −ε4�uF4 +�εp−3s2

3; recall thatp�3.
Finally, we scale back to the original time. LetC be the composition of all changes.

It is not difficult to see thatC has form (6). This ends the proof of Proposition4.2.

4.2. Estimates for the Poincaré map

In this section, we provide an expression of the Poincaré map associated to Eq. (5).
We introduce
 > 0 such that
2 = �2ε2p+1b(�, ε), � = t/ε and �0 = t0/ε.

We write the right-hand side of (5) as

X�,ε(z, �) = Y�,ε(z) + �εp+4F3(z, �),

whereY�,ε is the auxiliary vector field defined by

Y�,ε(x, y) = (y,�2ε2p+1(bx − cx2) − V ′(x))T (17)

with b = b(�, ε) andc = c(�, ε) and we introduce the matrix (solution of the linearized
vector field at the origin)

A(�) = A�,ε(�) =
(

cosh(
�) 
−1 sinh(
�)


 sinh(
�) cosh(
�)

)
. (18)

For any fixedt0 ∈ R, we consider the Poincaré maps

P t0
�,ε(z) = ��,ε(t0 + 2�ε, t0, z) (19)

and

P̂�,ε(z) = �,ε(2�ε, 0, z), (20)

where��,ε(t, t0, z) is the solution of equatioṅz = X�,ε(z, t/ε) such that��,ε(t0, t0, z)

= z and�,ε(t, t0, z) is the solution of equatioṅz = Y�,ε(z) such that�,ε(t0, t0, z) = z.
We will denote them by��,ε(t) and �,ε(t), respectively, if the initial conditions do
not play an important role.
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The goal of this section is to prove the following result:

Proposition 4.6. The Poincaré mapŝP�,ε and P
t0
�,ε have the form,

P̂�,ε(z) = A(2�ε)z + 2�ε(0,−V ′(x))T + ε2G1
2(z, ε) + �2ε2p+2G2

2(z,�, ε)

and
P t0

�,ε(z) = P̂�,ε(z) + �εp+5T3(z, t0/ε),

where G1
2,G

2
2 ∈ P2 and T3 ∈ P3. All functions areC0, C1 and 2�-periodic with

respect tot0/ε and analytic with respect to(z,�).

We will need a technical lemma which is a small variation of Lemma 3.6 in[BF]
and it is proved exactly in the same way.

To deal with the regularity conditions it is more convenient to work with the scaled
equationsz′ = εX�,ε(z, �) and z′ = εY�,ε(z), respectively, where here prime means
derivative with respect to�. Let �̃�,ε(�) = �̃�,ε(�, �0, z) be the solution ofz′ =
εX�,ε(z, �), with �̃�,ε(�0) = z and ̃�,ε(�) = ̃�,ε(�, �0, z) the solution of z′ =
εY�,ε(z), with ̃�,ε(�0) = z.

Clearly P
t0
�,ε and P̂�,ε can also be expressed as̃��,ε(t0/ε + 2�, t0/ε, z) and

̃�,ε(2�, 0, z), respectively.

Lemma 4.7.With the above-introduced notation, there exist some constants C, �0 and
ε0 such that for all� ∈ [�0, �0 + 2�] and z belonging to a neighborhood of the origin,
|�|��0 and |ε|�ε0 the following bounds hold:

(1) ‖�̃�,ε(�)‖�C‖z‖, ‖̃�,ε(�)‖�C‖z‖.

(2) ‖�̃�,ε(�) − z‖�εC‖z‖, ‖̃�,ε(�) − z‖�εC‖z‖.

(3) The solutions�̃�,ε(�) and ̃�,ε(�) can be expressed as

̃�,ε(�) = �0(�) + �2ε2p+2��,ε(�, �0, z) and

�̃�,ε(�) = ̃�,ε(�) + �εp+5��,ε(�, �0, z)

with ‖��,ε(�, �0, z)‖�C‖z‖3.
Furthermore, ��,ε and��,ε are C0, C1 with respect to� and �0 and analytic

with respect to� and the initial condition z.
(4) The functions

T1(z, �0) := ��,ε(�0 + 2�, �0, z) = ��,ε(2�, 0, z) and

T3(z, �0) := ��,ε(�0 + 2�, �0, z)

are 2�-periodic in �0 and satisfy thatTj ∈ Pj .
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Proof of Proposition 4.6. It is a simple consequence of Lemma4.7. Indeed we write

̃�,ε = (̃
1
�,ε, ̃

2
�,ε) and we note that the solutioñ�,ε(�) can be expressed as

̃�,ε(�) = A(ε�)

(
z + ε

∫ �

0
A−1(εs)

(
0

−�2ε2p+1c(̃
1
�,ε(s))

2 − V ′(̃1
�,ε(s))

)
ds

)
.

(21)

Since
2 = O(�2ε2p+1), we have that for� ∈ [0, 2�], A(�) = Id +�N + O(�2ε2p+1).
Using the last equality, conclusion (2) of Lemma4.7 and formula (21) for � = 2� we
obtain

̃�,ε(2�) = A�,ε(2�ε)z + 2�ε(0,−V ′(x))T + ε2G1
2(z, ε) + �2ε2p+2G2

2(z,�, ε),

with G1
2,G

2
2 ∈ P2. The conclusion forP t0

�,ε follows from

P t0
�,ε(z) = �̃�,ε(t0/ε + 2�, t0/ε, z)

= ̃�,ε(t0/ε + 2�, t0/ε, z) + �εp+5��,ε(t0/ε + 2�, t0/ε, z). �

4.3. The homoclinic orbit of the auxiliary system

In this subsection we prove that the auxiliary systemż = Y�,ε(z) has a homoclinic
connection and that isO(�2ε2p+1) close to the homoclinic connection of the unper-
turbed system. This is the contents of the following result:

Proposition 4.8. Let �0 be the homoclinic orbit for the unperturbed system. Then there
exists a parameterization, �̂(u), of the stable invariant manifold oḟz = Y�,ε(z) and there
exist T ,M > 0 independent ofε, such that

‖�̂(u) − �0(u)‖��2ε2p+1M

for all u such thatRe u�T and | Im u|�√
2.

Proof. By direct substitution it is immediately checked that�̂(u) = (�̂(u), �̂(u)) defined
by

�̂(u) = k1
2

k2 cosh(
u) − 1
, �̂(u) = − k1k2
3 sinh(
u)

(k2 cosh(
u) − 1)2 , (22)

where

k1 = 3

3 − �2ε2p+1c
= 1 + c

3b

2 + O(
4) and k2 =

√
1 + 2
2k2

1

is a homoclinic solution of equatioṅz = Y�,ε(z). Since�̂(u)− �0(u) and �̂(u)− �0(u)

go to 0 as Reu → ∞, by the maximum principle, it is clear that the maximum values
of |�̂(u) − �0(u)| and |�̂(u) − �0(u)| on the set{u ∈ C : Reu�T , |Im u|�√

2} are
taken at points of its boundary. Since the functions are real analytic it is enough to
bound them in the boundary intersected with{u ∈ C : Im u�0}. We consider the larger
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domain {u ∈ C : Reu�T , |Im u|�√
2 + �}, 0���1/2, and the following segments

of its boundary:

I1
1 = {u ∈ C : T �Reu�
−1, Im u = √

2 + �},
I2

1 = {u ∈ C : Reu�
−1, Im u = √
2 + �},

I2 = {u ∈ C : Reu = T , 0� Im u�
√

2 + �}.

We introducec∗ = cos((
√

2+ �)
) and s∗ = sin((
√

2+ �)
). If u = t + (
√

2+ �)i, then

�̂(u) − �0(u)

= k1
2(t2 + 2(
√

2 + �)ti − 2
√

2� − �2) − 2k2c
∗ cosh(
t) − i2k2s

∗ sinh(
t) + 2

[k2 cosh(
t + 
(
√

2 + �)i) − 1] [2 + (t + (
√

2 + �)i)2] .

We decompose the numerator as−(h1
1 + h2

1 + h3
1) + ih2, where

h1
1(t) = 2k2c

∗(cosh(
t) − 1 − 
2t2/2),

h2
1(t) = 2k2c

∗ − 2 + (2
√

2� + �2)
2,

h3
1(t) = 
2((k2c

∗ − k1)t
2 + (k1 − 1)(2

√
2� + �2)),

h2(t) = 2(
√

2 + �)k1
2t − 2k2s
∗ sinh(
t)

and we write the denominator asg1g2 where

g1(t) = k2 cosh(
t + 
(
√

2 + �)i) − 1,

g2(t) = 2 + (t + (
√

2 + �)i)2.

We have to bound the corresponding quotients on the segmentsI1
1 , I2

1 and I2.
For that we use the inequalitiesx coshx� sinhx for all x�0, |z−sinhz|� |z|2 sinh|z|

for all z ∈ C and | coshz−1−z2/2|� |z|4 cosh|z| for all z ∈ C as well as the following
simple but tedious lemmas:

Lemma 4.9. Let �1(t) = Reg1(t) = k2c
∗ cosh(
t) − 1. Given T >

√
3 there exists


0 > 0 such that if
 ∈ (0,
0) then �1 is strictly increasing. Therefore

�1(t)��1(T ) > 0 for t ∈ [T ,∞) and �1(T )� T 2 − 3

2

2 + O(
4).

Lemma 4.10. Let �2(x) = x2 coshx(k2c
∗ coshx − 1)−1. Given T > 0 there exists
0

with 
0T < 1, such that if
 ∈ (0,
0) then

0 < �2(x)� max(�2(
T ), �2(1))�C, x ∈ [
T , 1]
with C independent of
 and T.
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Lemma 4.11. Let �3(x) = sinhx(k2c
∗ coshx − 1)−1. We have that0 < �3(x)�C
−1

for all x�
T .

After some calculations we get that|�̂(u) − �0(u)|�M
2, for u ∈ I1
1 ∪ I2

1 . In an
analogous but simpler way we also obtain|�̂(u) − �0(u)|�M
2, for u ∈ I2.

To bound �̂ − �0 we use that�̂ − �0 = �̂′ − �′
0. Given T, let Ds

� = {u ∈ C :
Reu�T − �, |Im u|�√

2+ �} with 0���1/2. Applying Cauchy’s theorem with some
� > 0 we get that, foru ∈ Ds

|�̂(u) − �0(u)|�
1

�
sup
v∈Ds

�

|�̂(v) − �0(v)|� 1

�
�2ε2p+1M. �

The next result is proved using analogous estimates.

Proposition 4.12.We have that

|u2e(2/3)
u�̂(u)|�C, |u3e(2/3)
u�̂(u)|�C, u ∈ Ds,

with C independent of�, ε and T, and

|u2�̂(u)|�2 + O(
2) + O(1/T 2), u ∈ Ds.

4.4. The operatorB

The Banach spaces we use in this section were defined at the beginning of Section
3. For everyε > 0 we define the operatorB : X l

k × X l
k → X l

k × X l
k by the expression

(B�)(t, s) = �(t + 2�ε, s) − A(2�ε)�(t, s),

where� = (�1,�2) and A(�) is defined in (18).
Let k1, k2, l1 and l2 be positive real numbers. We endow the product spaceX =

X l1
k1

× X l2
k2

with the norm

‖�‖X = �1‖�1‖k1,l1 + �2‖�‖k2,l2 (23)

with �1, �2 > 0 to be chosen later on. We note that the product space becomes a
Banach space and that the operatorB is a well defined linear continuous operator.

We look for a formal right inverse ofB. For that we rewrite the conditionB� = �
as

�(t, s) = −A−1(2�ε)�(t, s) + A−1(2�ε)�(t + 2�ε, s). (24)

Applying (24) iteratively we obtain

�(t, s) = −
N∑

j=0

A−(j+1)(2�ε)�(t+2�εj, s)+A−(N+1)(2�ε)�(t+2�ε(N +1), s). (25)

Since

A−j (2�ε) =
(

cosh(2�ε
j) −
−1 sinh(2�ε
j)

−
 sinh(2�ε
j) cosh(2�ε
j)

)
= A(−2�εj),
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if �∈X l1
k1

×X l2
k2

with l1, l2�1 andk1, k2>0, thenA−(N+1)(2�ε)�(t+2�ε(N+1), s)→0

as N → ∞ and thus from (25) we obtain a formal expression forB−1:

�(t, s) = (B−1�)(t, s) = −
∞∑
j=0

A−(j+1)(2�ε)�(t + 2�εj, s).

The following lemma establishes useful bounds for the right inverse of the operator
B. From now on we will simply writeA = A(2�ε).

Lemma 4.13. Let k > 2 and l�1. The operatorB has a right inverseB−1 : X l
k ×

X l
k → X l

k−2 × X l
k−1 with

‖[B−1�]1‖k−2,l �
e2�ε


2�ε

[
1

(k − 1)T
‖�1‖k,l + 1

(k − 1)(k − 2)
‖�2‖k,l

]
+ K

T
‖�‖X

and

‖[B−1�]2‖k−1,l �
1

2�ε
e2�ε


(k − 1)

[

2
‖�1‖k,l + ‖�2‖k,l

]
+ K

T
‖�‖X

for any choice of�1, �2 in the definition of‖ · ‖X , where K is independent ofε.

Proof. We define�N(t, s) = −∑N
j=0 A−(j+1)�(t + 2�εj, s) and hence(B−1�)(t, s) =

limN→∞ �N(t, s). First we claim that if� ∈ X l
k × X l

k , �N converges uniformly on
Ds(T ,

√
2). Indeed, from

|[A−(j+1)�(t + 2�εj, s)]1|� e−
lT

(T + 2�εj)k

(
‖�1‖k,l + 1

2

‖�2‖k,l

)
and

|[A−(j+1)�(t + 2�εj, s)]2|� e−
lT

(T + 2�εj)k

(

2

‖�1‖k,l + ‖�2‖k,l
)

the claim follows from the M-test of Weierstrass. As a consequence[B−1�]1 and
[B−1�]2 satisfy the first three conditions which defineX l

k−2 and X l
k−1, respectively.

For u > 0 we introduce the auxiliary functions

Sk
1(u) =

∞∑
j=0

uk−1

(u + 2�εj)k
= 1

2�ε

∞∑
j=0

2�ε
u

1

(1 + 2�εj
u

)k
,

Sk
2(u) =

∞∑
j=0

2�εjuk−2

(u + 2�εj)k
= 1

2�ε

∞∑
j=0

2�ε
u

1

(1 + 2�εj
u

)k

2�εj
u

and we observe that, fork > 1 we have that

Sk
1(u)�

1

2�ε

[
2�ε
u

+
∫ ∞

0

1

(1 + x)k
dx

]
� 1

u
+ 1

2�ε(k − 1)
(26)
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and for k > 2

Sk
2(u) � 1

2�ε

[
2�ε
u

1

(k − 1)e
+
∫ ∞

0

x

(1 + x)k
dx

]
= 1

(k − 1)eu
+ 1

2�ε(k − 1)(k − 2)
. (27)

We write t + Re s = u. Let � ∈ X l
k × X l

k . We have that:

‖[B−1�]1‖k−2,l � sup
u�T

∞∑
j=0

uk−2

(u + 2�εj)k
e−2�ε
lj cosh(2�ε
(j + 1))‖�1‖k,l

+ sup
u�T

∞∑
j=0

uk−2

(u + 2�εj)k
e−2�ε
lj 1



sinh(2�ε
(j + 1))‖�2‖k,l .

Using that forx�0, e−x coshx�1 and sinhx�x coshx, and bounds (26) and (27)
we obtain

‖[B−1�]1‖k−2,l � e2�ε
 sup
u�T

[
1

u
Sk

1(u)(‖�1‖k,l + 2�ε‖�2‖k,l) + Sk
2(u)‖�2‖k,l

]

� e2�ε


2�ε

[
1

(k − 1)T
‖�1‖k,l + 1

(k − 1)(k − 2)
‖�2‖k,l

]
+ K

T
‖�‖X ,

whereK depends on�1, �2, but can be chosen independently ofε. Analogously we
obtain

‖[B−1�]2‖k−1,l � sup
u�T

∞∑
j=0

uk−1

(u + 2�εj)k
e−2�ε
lj
 sinh(2�ε
(j + 1))‖�1‖k,l

+ sup
u�T

∞∑
j=0

uk−1

(u + 2�εj)k
e−2�ε
lj cosh(2�ε
(j + 1))‖�2‖k,l

and using that forx�0, e−x sinhx�1/2 ande−x coshx�1 we obtain

‖[B−1�]2‖k−1,l � e2�ε
 sup
u�T

Sk
1(u)((
/2)‖�1‖k,l + ‖�2‖k,l)

� 1

2�ε

[
e2�ε
l

k − 1
((
/2)‖�1‖k,l + ‖�2‖k,l)

]
+ K

T
‖�‖X ,

whereK depends on�1, �2, but can be chosen independently ofε. �
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4.5. The fixed point equation

We look for a parameterization�s
�,ε(t, s) of the stable manifold of Eq. (5) such

that t ∈ R is the time ands ∈ C is a complex parameter. For this we will look for
a parameterization of the stable manifold of the Poincaré mapP t

�,ε, which we will
denote by�̃s

�,ε by means of imposing the invariance condition:

P t
�,ε(�̃

s
�,ε(t, s)) = �̃s

�,ε(t + 2�ε, s). (28)

Let �,ε(t, t0, w) be the flow of the auxiliary systeṁz = Y�,ε(z). The following

remarks are elementary but provide useful properties of�̂(u) = (�̂(u), �̂(u)). Since the
auxiliary system is autonomous, we have that

P̂�,ε(�̂(t + s)) = �,ε(2�ε, 0, �̂(t + s)) = �̂(t + s + 2�ε). (29)

We consider�̂ as a first approximation of̃�s
�,ε and therefore we look for̃�s

�,ε of the
form,

�̃s
�,ε(t, s) = �̂(t + s) + �εp+2�(t, s)

with � = (�1,�2) ∈ X 1
4 × X 1

5 and satisfying�̃s
�,ε(t + 2�ε, s) = �̃s

�,ε(t, s + 2�ε). From
condition (28) we will derive a fixed point equation for�.

In order to simplify the exposition we introduce

B(z) = (0, 3x2 − 4x3)T , Q2(z) = G1
2(z, ε) + �2ε2pG2

2(z,�, ε), (30)

thus, by Proposition4.6

P̂�,ε(z) = A(2�ε)z + 2�εB(x) + ε2Q2(z)

and
P t

�,ε(z) = P̂�,ε(z) + �εp+5T3(z, t/ε).

By Taylor’s theorem

P t
�,ε(�̃

s
�,ε(t, s)) = P̂�,ε(�̂(t + s)) + �εp+5T3(�̂(t + s), t/ε)

+�εp+2DP̂�,ε(�̂(t + s))�(t, s) + �2ε2p+7DT3(�̂(t + s), t/ε)�(t, s)

+�2ε2p+4R(�)(t, s), (31)

whereR(�)(t, s) is defined by (31) and, taking into account that the second derivatives
of P̂�,ε andT3 are bounded independently of�, ε we get that|R(�)(t, s)|�M|�(t, s)|2.

Using (29), the conditionP t
�,ε(�̃

s
�,ε(t, s)) = �̃s

�,ε(t + 2�ε, s) can be rewritten as

�(t + 2�ε, s) = A(2�ε)�(t, s) + 2�εDB(�̂(t + s))�(t, s)

+ε2DQ2(�̂(t + s))�(t, s) + ε3T3(�̂(t + s), t/ε)

+�εp+5DT3(�̂(t + s), t/ε)�(t, s) + �εp+2R(�)(t, s).



126 I. Baldomá, E. Fontich / J. Differential Equations 210 (2005) 106–134

We introduce the notation

G(�)(t, s) = DQ2(�̂(t + s))�(t, s) + εT3(�̂(t + s), t/ε)

+�εp+3DT3(�̂(t + s), t/ε)�(t, s) + �εpR(�)(t, s) (32)

and

F(�) = 2�εDB(�̂)� + ε2G(�). (33)

We can reduce the problem to finding� such that

� = B−1F(�). (34)

In the remaining part of this section we endow the product spaceX l1
k1

× X l2
k2

with
the norm

‖�‖X l1
k1

×X l2
k2

= ‖�1‖k1,l1 + 1

7
‖�‖k2,l2. (35)

We introduceX ∗ = X 1
4 × X 1

5 and B(r) ⊂ X ∗ the closed ball of radiusr of X ∗. We
look for � ∈ X ∗ satisfying (34).

Lemma 4.14. If T is big and�, ε are small, there existsr > 0 such that the operator
N given by

N (�) = B−1F(�) (36)

sendsB(r) into B(r) and is a contraction.

Proof. We recall that�̂ ∈ X 2/3
2 ×X 2/3

3 and that the norm of̂� in this space is bounded
independently of�, ε. From Proposition4.12 we know that‖�̂‖X 2/3

2 ×X 2/3
3

�C with C

independent of�, ε, and ‖�̂‖2,0�2 + O(1/T 2) + O(
2).
Let � = (�1,�2) ∈ B(r) ⊂ X ∗. Then

‖[DB(�̂)�]2‖6,1 = sup
(t,s)∈Ds

(t + Res)6e
(t+Res)|6�̂(t + s) − 12�̂2
(t + s)| |�1(t, s)|

= 6 sup
(t,s)∈Ds

(t + Res)2|�̂(t + s)| |1 − 2�̂(t + s)|

×(t + Res)4e
(t+Res)|�1(t, s)|
� 6(2 + O(1/T 2) + O(
2))(1 + O(1/T 2))‖�1‖4,1.

ThereforeDB(�̂)� ∈ {0}×X 1
6 and‖DB(�̂)�‖X 1

6 ×X 1
6
�(12+O(1/T 2)+O(
2))‖�‖X ∗ .

Proceeding in the same way, using thatQ2 ∈ P2 and T3 ∈ P3, we get that

DQ2(�̂(t + s))�(t, s) ∈ X 5/3
6 × X 5/3

6 ,

T3(�̂(t + s), t/ε) ∈ X 2
6 × X 2

6 , DT3(�̂(t + s), t/ε)�(t, s) ∈ X 7/3
8 × X 7/3

8
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and

R(�)(t, s) ∈ X 2
8 × X 2

8 .

Hence, from definition (33) of F we have thatF(�) ∈ X 5/3
6 × X 5/3

6 ⊂ X 1
6 ×

X 1
6 . Moreover, the norms of all the previous functions in the corresponding spaces

are bounded independently of�, ε. By Lemma 4.13, B−1F(�) ∈ X ∗ and therefore
N (�) ∈ X ∗.

Next we prove that‖N (�)‖X ∗ < r if ‖�‖X ∗ �r. Indeed, let� ∈ B(r) ⊂ X ∗, with r
small enough, but independent of�, ε. By definitions (30), (32) and (33) of B, G and
F , respectively, and the previous estimates we have that

‖[F(�)]1‖6,1 � Mε2‖�‖X ∗ + Mε3,

‖[F(�)]2‖6,1 � 2�ε[12+ O(1/T 2) + O(
2)]‖�‖X ∗ + Mε2‖�‖X ∗ + Mε3.

Therefore by Lemma4.13 with k = 6 and l = 1,

‖B−1F(�)‖X ∗ = ‖[B−1F(�)]1‖4,1 + 1

7
‖[B−1F(�)]2‖5,1

� e2�ε


2�ε

[
1

5T
‖[F(�)]1‖6,1 + 1

20
‖[F(�)]2‖6,1

]

+1

7

1

2�ε
e2�ε


5

[

2

‖[F(�)]1‖6,1 + ‖[F(�)]2‖6,1

]
+ K

T
‖F(�)‖X 1

6 ×X 1
6

=
[

33

35
+ O

( ε

T

)
+ O(ε)

]
‖�‖X ∗ + O(ε2).

Therefore,

‖N (�)‖X ∗ �
[

33

35
+ O

( ε

T

)
+ O(ε)

]
‖�‖X ∗ + O(ε2) < r

if T is big enough andε is small enough.
To check thatN is a contraction we have to estimate‖N (�̄) − N (�)‖X ∗ =

‖B−1[F(�̄) − F(�)]‖X ∗ . The more delicate term to bound is 2�εB−1DB(�̂)(�̄ − �).
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We have

‖2�εB−1DB(�̂)(�̄ − �)‖X ∗

= 2�ε‖[B−1DB(�̂)(�̄1 − �1)]1‖5,1 + 2�ε
7

‖[B−1DB(�̂)(�̄1 − �1)]2‖5,1

� e2�ε


20
‖[DB(�̂)(�̄1 − �1)]1‖6,1 + 1

7

e2�ε


5
‖[DB(�̂)(�̄1 − �1)]2‖6,1

+O(ε/T )‖DB(�̂)(�̄1 − �1)‖X 1
6 ×X 1

6

�
(

33

35
+ O(ε) + O(ε/T )

)
‖�̄ − �‖X ∗ .

Studying the remaining terms we conclude thatN is a contraction. �

4.6. End of the proof of Theorem3.1

By Lemma 4.14 we can apply the fixed point theorem and we obtain that there
exists a unique� ∈ X ∗ such that

P t
�,ε(�̂(t + s) + �εp+2�(t, s)) = �̂(t + 2�ε + s) + �εp+2�(t + 2�ε, s).

This provides a parameterization of the local stable manifold of system (5) which, in
general, is not a solution with respect tot. To have a parameterization which is a
solution with respect tot we follow the same scheme as in[BF]. Let T be big enough
such that the previous results hold and lett1 = T − 2�ε. We define

�s
�,ε(t, s) = ��,ε(t, t1, �̃

s
�,ε(t1, s)), t > T − 2�ε, Re s > 2�ε, | Im s|�√

2,

where here��,ε(t, t1, x, y) is the general solution of Eq. (5).
For t > T − 2�ε, Re s > 2�ε we have

�s
�,ε(t, s + 2�ε) = ��,ε(t, t1, �̃

s
�,ε(t1, s + 2�ε))

= ��,ε(t + 2�ε, t1 + 2�ε, �̃s
�,ε(t1 + 2�ε, s))

= ��,ε(t + 2�ε, t1 + 2�ε, P t1
�,ε(�̃

s
�,ε(t1, s))) = �s

�,ε(t + 2�ε, s).

This relation permits to extend�s
�,ε to Ds and moreover the extension is a solution of

Eq. (5) with respect tot and it is analytic with respect tos.
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Now we will check that for(t, s) ∈ Ds, �s
�,ε(t, s) = �0(t + s) + �εp+2r(t, s) with

r(t, s) = O(|t + Re s|−2). Indeed, letk ∈ Z such that|t − 2�εk − T | < 2�ε. Then

�s
�,ε(t, s) = ��,ε(t − 2�εk, t1 − 2�εk, �̃s

�,ε(t1, s))

= ��,ε(t − 2�εk, t1, �̃
s
�,ε(t1 + 2�εk, s))

= ��,ε(t − 2�εk, t1, �̃
s
�,ε(t1, s + 2�εk))

= �,ε(t − 2�εk, t1, �̂
s
�,ε(t1 + s + 2�εk))

+�εp+2O(|�|) + �εp+5O(|�̃s
�,ε|3) + �2ε2p+4O(|�̃s

�,ε|2)
= �̂(t + s) + �εp+2O(|t + Res|−4)

= �0(t + s) + �εp+2O(|t + Res|−2).

Going back to the original variables we obtain the result we have stated in
Theorem3.1. �

5. Proof of Theorem 3.2 and Corollary 3.4

Once we have proved Theorem3.1, Theorem3.2 and Corollary3.4 follow from the
results in [BF]. For the convenience of the reader we provide with a sketch of the
proofs.

5.1. Basic results

The next theorem is proved in[BF] in a more general case. It ensures the existence
of flow-box coordinates in a neighborhood of a piece of the homoclinic connection�0.

Theorem 5.1 (Flow-box coordinates). There exist a neighborhood U independent of
�, ε of a piece of the stable manifold of the unperturbed system and a canonical
change of variables

(x, y, � = t/ε) ∈ U �→ (S,E, �) = (S(x, y, �), E(x, y, �), �) ∈ U
of classC1, 2�-periodic in � and analytic in thex, y variables, such that it transforms
the equations associated to(2) into

Ṡ = 1, Ė = 0

and satisfies

S(x, y, �) = S0(x, y) + O(�εp+1), E(x, y, �) = h0(x, y) + O(�εp+1).

Moreover, given t0 ∈ R and T �0 big enough, U and (S, E) can be taken such
that for all (t, s) such thatT � |t + Re s|�2T and | Im s| < √

2, the parameterization
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�s
�,ε(t, s) of the local stable manifold belongs to U and

S(�s
�,ε(t, s), t/ε) = t − t0 + s + �εp+1X (s) and E(�s

�,ε(t, s), t/ε) = 0

with X (s0) = 0 for somes0, which we can choose freely, depending on initial conditions
on the stable curve. MoreoverX (s) is analytic and2�ε-periodic.
In addition the change(x, y, �) �→ (S,E, �) is continuous in(x, y, �,�, ε) and

analytic in (x, y,�).

The goal of the next theorem is to extend the domain of the parameterization of
the unstable manifold until it enters into the domain of the flow-box coordinates. It is
proved in [DS2] and applies in our case. Let

Dext
ε = {(t, s) ∈ R × C : |t + Re s|�2T , | Im s|�√

2 − ε}.

Theorem 5.2 (Extension theorem). Let z(t, s) = (x(t, s), y(t, s)) be a family of solu-
tions of

ẋ = y + �εp�yh1(x, y, t/ε,�, ε),

ẏ = −V ′(x) − �εp�xh1(x, y, t/ε,�, ε)

defined fort0 + Re s = −2T , for someT > 0, such that

z(t0, s) − �0(t0 + s) − �εp+1G�,ε(�0(t0 + s), t0/ε) = O(�εp+2),

whereG�,ε is the function such that

��G�,ε(x, y, �) = (�yh1(x, y, �,�, ε),−�xh1(x, y, �,�, ε))

and has zero average with respect to�, and (t0, s) ∈ Dext
ε verifies t0 + Re s = −2T .

Let � be defined by(4). We assume hypothesesH1–H4.Then, there existε0, �0 and
K such that the solutionz(t, s) can be extended to values of t∈ [t0, 2T − Re s], with
the bound

|z(t, s) − �0(t + s)|�K�εp−�

for (t, s) ∈ Dext
ε , 0 < ε�ε0 and |�|��0.

Moreover, if (t, s) ∈ Dext
ε ∩ R

2, then z(t0, s) − �0(t0 + s) = O(�εp+1).

5.2. Sketch of the proof of Theorem3.2

We assume hypotheses H1–H5. By Theorem5.2, it is clear that the unstable manifold
can be extended until it enters the domain of the flow-box coordinates. Therefore for
all t0 ∈ R, the expressions

Su(s) = S(�u
�,ε(t, s), t/ε) − (t − t0), Eu(s) = E(�u

�,ε(t, s), t/ε) (37)

are well defined fors ∈ C such thatT � t + Re s�2T and | Im s|�√
2− ε. Moreover,

as a consequence of Theorem5.1, they do not depend on time. We chooset in such a
way thatT � t+Re s�2T . The proof of the following result can be found in[BF,DS2].
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Lemma 5.3. The functionsSu and Eu satisfy the following properties:
(a) The functionsSu(s) − s and Eu(s) are 2�ε-periodic with respect to s. HenceSu

and Eu can be analytically extended for alls ∈ C such that| Im s|�√
2 − ε.

(b) Moreover, for s ∈ R, S = Su(s) is real analytic and invertible, and its inverse
s = su(S) satisfies thatsu(S) − S is O(�εp+1) and 2�ε-periodic in S.

By Theorem5.1, in the (S,E) coordinates the local stable manifold can be written
as

(S,E) = (S(�s
�,ε(t, s), t/ε), E(�s

�,ε(t, s), t/ε)) = (t − t0 + s + �εp+1X (s), 0) (38)

and the local unstable manifold as

(S,E) = (S(�u
�,ε(t, s), t/ε), E(�u

�,ε(t, s), t/ε)) = (t − t0 + Su(s), Eu(s))

for (t, s) such that| Im s|�√
2 − ε and T � t + Re s�2T .

We consider the Poincaré mapP t0
�,ε(x,y) = ��,ε(2�ε + t0, t0, x, y), where

��,ε(t, t0, x, y) is the solution of system (2). Let Cu be the restriction toU of the

unstable curve ofP t0
�,ε. It is not difficult to see thatCu is parameterizated by�u

�,ε(t0, s)

for s ∈ C such thatT � t0 + Re s�2T and | Im s|�√
2 − ε. Moreover, in the(S,E)

coordinates,Cu is represented by

(S,E) = (S(�u
�,ε(t0, s), t0/ε), E(�u

�,ε(t0, s), t0/ε)) = (Su(s), Eu(s)).

Next we writeCu as a graph of a function which will be called the splitting function.
We note that, by property (b) of Lemma5.3, the relationS = Su(s) can be inverted
for values ofs such that| Im s| <

√
2 − ε. Let s = su(S) be its inverse. Thus the

equation

(S) = Eu(su(S)) (39)

definesCu as the graph of a function. We note that it is 2�ε-periodic and hence its
domain extends toR.

Since su(S) − S is O(�εp+1) and 2�ε-periodic in S we can introduce the new
parameterization for the unstable manifold�̃u

�,ε(t, S) = �u
�,ε(t, s

u(S)) which satisfies
the same properties as�u

�,ε does. After this change of parameter, the splitting function
defined in (39) can also be represented in the form

(S) = E(�̃u
�,ε(t, S), t/ε). (40)

Finally, we show that the function given in (39) can be used to measure some
magnitudes related to the splitting and then we will prove the formulas in Theorem3.2.
In the next proposition we prove the existence of primary homoclinic points and we
relate the angle between the invariant manifolds and the area of the lobes with the
splitting function.
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Proposition 5.4. The function : R → R is 2�ε-periodic, real analytic and satisfies
the following properties:

(a) There existshu ∈ R such that�u
�,ε(t, h

u) = �s
�,ε(t, h

s), for all t (giving a homoclinic
orbit), with hs = Su(hu). For n ∈ N, we definehs

n = hs + 2�εn which give
homoclinic points. Clearly, for all n, (hs

n) = 0. Moreover, ′(hs
n) is independent

of n, and

′(hs
n) = �S �̃

s
�,ε(t, h

s
n) ∧ �S �̃

u
�,ε(t, h

s
n)(1 + O(�εp+1))

= ‖�S �̃
s
�,ε(t, h

s
n)‖‖�S �̃

u
�,ε(t, h

s
n)‖ sinϑ(t, hs

n)(1 + O(�εp+1))

for all t, where∧ denotes the exterior product onR2, and ϑ(t, hs
n) is the angle

between�s �̃
u
�,ε(t, h

s
n) and �s �̃

s
�,ε(t, h

s
n).

(b) The area of the lobe between the invariant curves is given by

A =
∣∣∣∣∣
∫ h̄

h

(S) dS

∣∣∣∣∣ ,
where h andh̄ are two consecutive zeros of(S).

(c) 0 = ∫ hn+2�ε
hn

(S) dS = 0.
(d) For S ∈ R, (S) satisfies the estimate

(S) ≡ Eu(su(S)) = �εpM(S, ε) + O(�2ε2�+1,�2ε�+p,�εp+1)e−√
2/ε.

Proof of Proposition 5.4 (Sketch). Let t0 ∈ R. SinceP t0
�,ε is area preserving and it is a

perturbation ofP0,ε, a map which has a homoclinic connection,P
t0
�,ε must have primary

homoclinic points inU ∩ R
2. Let hu, hs ∈ R be such thatT �hu + t0, h

s + t0�2T and

zh = �s
�,ε(t0, h

s) = �u
�,ε(t0, h

u).

By Theorem5.1, we can chooses0 = hs and thenhs = S(�s
�,ε(t, h

s), t/ε)− (t − t0) =
Su(hu), for t ∈ R such thatT �hu + t, hs + t�2T . Consequently,

(hs) = Eu(hu) = Eu(�s
�,ε(t, h

s), t/ε) = 0.

Differentiating expressions (40) and (38) with respect toS, using that �̃u
�,ε(t, h

s) =
�u
�,ε(t, h

u) and making some elementary computations we get the formula stated in (a).
Property (b) follows from the fact that the change given in Theorem5.1, which

transforms the initial coordinates into the flow-box coordinates,(S,E), is canonical
and the Poincaré map is orientation preserving.

We note that, sinceP t0
�,ε is area preserving, the area of two consecutive lobes (one

inner and the other outer) coincide. Therefore, (c) follows from (b).
Finally we prove (d). Estimating the Fourier coefficients ofEu we can prove that,

for s ∈ R,

Eu(s) − Eu
0(ε) = �εpM(s, ε) + O(�2ε2�+1,�εp+1)e−√

2/ε,

whereEu
0(ε) = 1

2�ε

∫ 2�ε
0 Eu(s) ds.
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On the other hand, it is clear that the Melnikov function,M(s, ε), is 2�ε-periodic
with respect tos. We denote byMk(ε) its Fourier’s coefficients. Using residue theory
as in [DS2], or more generally as in[BF], we can prove that

�εpMk(ε) = �ε�2�iJ−
−k,0(−i)�|k|� 1

�! e
−|k|√2/ε(1 + O(ε)) (41)

for k ∈ Z\{0}, thus �εp dM
dS

(S, ε) = O(�ε�−1)e−√
2/ε. Then, by Taylor’s theorem,

(S) = Eu
0(ε) + �εpM(su(S), ε) + O(�2ε2�+1,�εp+1)e−√

2/ε

= Eu
0(ε) + �εpM(S, ε) + O(�2ε2�+1,�εp+1,�2ε�+p)e−√

2/ε. (42)

Since the average ofh1 is zero,M0(ε) = 0 and by (c),0 = 0. ThereforeEu
0(ε) =

O(�2ε2�+1,�εp+1)e−√
2/ε and (d) follows from (42). �

The proof of Theorem3.2 is an immediate consequence of Proposition5.4. Corollary
3.4 can be proved using (41) and Theorem3.2.
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