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Abstract
In this paper we consider spiral wave solutions of a general class of λ ω−  
systems with a small twist parameter q and we prove that the asymptotic 
wavenumber of the spirals is a ∞C -flat function of the perturbation parameter q.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Rigidly rotating spiral waves are commonly found in many chemical systems and biological 
processes [Kur84, LJD91, Win72, ZZ70]. In particular they are most likely to occur in oscil-
latory models having a rotational symmetry, such as generic λ ω−  systems [Kur84], [Sch98]. 
These can be derived as the normal form of oscillatory reaction-diffusion systems near a Hopf 
bifurcation and read:

( ) ( )λ ω= ∆ + −u u f u f w,t (1)

( ) ( )ω λ= ∆ + +w w f u f w,t (2)

where u  =  u(x, y, t), w  =  w(x, y, t), ∆ denotes the Laplacian and λ and ω are real functions 

of the modulus = +f u w2 2 . The conditions that λ usually satisfies are: ( )λ =1 0, to ensure 
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that the system has a spatially independent limit solution and λ <′ 0, to guarantee that this limit 
cycle is stable with respect to homogeneous (space independent) perturbations (see [NK81]). 
As for ω, based on stability considerations, it is usually assumed that ω| |′  is small.

Numerical computations reveal that the system (1) and (2) exhibits solutions in the shape of 
n-spirals (see for instance [BHO97, GB05]) and more precisely, in the shape of Archimedian 
spiral waves with a specific frequency Ω. More concretely, these rigidly rotating solutions of 
(1) and (2) can then be written like

( ) ( ) ( )

( ) ( ) ( )

∫

∫

φ φ

φ φ

= Ω + −

= Ω + −

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

u r t f r t n v s s

w r t f r t n v s s

, , cos d ,

, , sin d ,

r

r

0

0

 
(3)

being = +r x y2 2  the polar radius and φ the azimuth coordinate of the plane and thus the 
Laplacian can be expressed as / /∆ = ∂ +∂ + ∂φφr rrr r

2. Therefore, since f (r) plays the role of 
a modulus, ( ) ⩾f r 0 ∀ >r 0 and also f (0)  =  0 in order for u and w to be regular at r  =  0. Also, 
in order for these functions to have the shape of a spiral, the phase must increase or decrease 
monotonically as one moves away from the centre of the spiral and so v(r), which is usually 
denoted as the local wavenumber, must have a constant sign for all ⩾r 0. In the particular case 
where n  =  0, the phase is purely radial (it only depends on r) and the solutions u, w in (3) are 

usually denoted as target patterns since the lines of constant phase ( )( )∫ =v s s cd
r

0
 become 

concentric rings of radius r  =  rc, that is to say, along any radial line, the pattern is asymptoti-
cally that of a plane wave.

Substituting the particular expressions (3) in the partial differential equations (1) and (2) 
one obtains a set of ordinary differential equations in terms of the radial polar variable, ⩾r 0, 
that reads

( ) ( ) ( ) ( ( ( )) ( ))″ λ= + − + −
′

f r
f r

r
f r

n

r
f f r v r0 ,

2

2
2 (4)

( ) ( ) ( ) ( ) ( ) ( ) ( )( ( ( )))ω= + + + Ω−′ ′f r v r
f r v r

r
f r v r f r f r0 2 . (5)

We note that any arbitrary constant can be added to the phase of the sine and cosine functions 
of u and w in (3) and they would still yield the same equations (4) and (5).

Now we describe the boundary conditions that the solutions of (4) and (5) have to satisfy 
to give rise to an Archimedian spiral wave. We first deal with the function v(r). We note that, 
using the identity

+ + =′ ′
′

f r v r
f r v r

r
f r v r

f r v r r

rf r
2 ,

2

( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) )
( )

 (6)

along with the fact that ( ( ) ( ) ) =| =f r v r r 0r
2

0 , equation  (5) can be expressed in the integral 
form,

( ) ( ( )) ( )( ( ( )) )∫ ω= −Ω−v r rf r tf t f t td ,
r

2 1

0

2

and this yields v(0)  =  0 using the Hôpital’s rule. Archimedian spiral waves are character-
ized by the fact that the distance between two neighbouring fronts of the isophase lines 
tends to a constant, as →∞r . That is to say, if we consider two points of an isophase line 
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( ( )∫φ− =n v s s Cd
r

0
, where R∈C  is a constant value) one with coordinates ( )φ r,  and the fol-

lowing one on the same radial line with coordinates ( ( ))φ π δ+ +r r2 , , one obtains,

( ) ( ) ( )
( )

∫ ∫φ φ π+ = + +
δ+

n v s s n v s sd 2 d .
r r r

0 0
 (7)

The separation between these two fronts is thus here represented by ( )δ r  and satisfies

( )
( )

∫ π=
δ+

v s s nd 2 .
r

r r

For Archimedian spiral waves to exist, it is expected that ( ) →δ <∞r D  as →∞r . Using the 
mean value theorem in the last equality gives ( ) → <∞∞v r v  as →∞r  with /π=∞v n D2 , that 
is to say, ∞v  is proportional to the inverse of the spirals’ front separation D, and it is usually 
known as the asymptotic wavenumber.

As for the modulus, f (r), the type of solutions that have been observed are such that f (r) has 
a bounded limit and ( ) →′f r 0 as →∞r . We will therefore focus on solutions of (4) and (5) 
such that f (0)  =  0, f (r) and v(r) have bounded limits and ( ) →′f r 0 as →∞r .

Summarizing, Archimedian spiral waves correspond to solutions of (4) and (5) with bound-
ary conditions:

( ) ( )
( ) ( ) ( )

( )     ( )       
→ → →

= =
= <∞ = = <∞

> ∀ >

′
∞

∞
∞ ∞

∞

f v

f r f f r v r v

f r v r r

0 0 0,
lim , lim 0, lim

0 and has constant sign 0.
r r r 

(8)

These are too many restrictions to a singular third order system of differential equations which 
suggests that there exists a selection mechanism for the frequency Ω, that is to say, Ω cannot 
be arbitrary.

As in previous works [Gre81, Hag82, NK81], in this paper we assume that ω| |′ � 1. 
Therefore we write ( ) ¯( )ω ω ω= +z q z0 , introducing the small parameter ⩽ �q0 1. We also 
introduce a new parameter Ω̄ like ¯ωΩ = + Ωq0 . Dropping the bars to simplify the notation, 
equations (4) and (5) read

( ) ( ) ( ) ( )( ( ( )) ( ))″ λ= + − + −
′

f r
f r

r
f r

n

r
f r f r v r0 ,

2

2
2 (9)

( ) ( ) ( ) ( ) ( ) ( ) ( )( ( ( )))ω= + + + Ω−′ ′f r v r
f r v r

r
f r v r q f r f r0 2 , (10)

where < �q0 1 and RΩ∈  are the new parameters. As for the boundary conditions, we also 
consider the ones given in (8) which are also used in [NK81]. The parameter q has indeed 
a physical meaning and it is usually denoted as the twist parameter. As we shall show (see 
remark 2.3), when q  =  0, the solution is v(r)  =  0. Therefore the isophase lines (7) become 
straight lines emanating from the origin and for this reason these solutions are often known as 
radial hedgehog solutions, specially in the context of liquid crystals. In this sense, the effect 
of q  >  0 is that of ‘twisting’ the isophase lines to become spirals.

To illustrate the behavior of the solutions of system (9) and (10), along with the boundary 
conditions provided in (8) we integrate numerically the system for some particular functions λ 
and ω. As an example we consider the complex Ginzburg–Landau case, which corresponds to 

( )λ = −z z1 2 and ( )ω =z z2 and in figure 1 we plot the solutions (f (r; q), v(r; q)) for different 
small values of q ranging from q  =  0.05 to q  =  0.45 for n  =  1.
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Spiral wave solutions of systems of the type in (9) and (10) with boundary conditions (8) have 
been studied by numerous researchers. Kopell & Howard in [NK81], using singular perturba-
tion theory, establish the existence of spiral wave solutions ( ≠n 0) and target patterns (n  =  0) 
under the hypotheses ( )λ =1 0, λ <′ 0 and ω <′ 0 for a particular value of ( )Ω = Ω q  if q is small 
enough. Hagan in [Hag82] considers the particular case of the complex Ginzburg–Landau equa-
tion where ( )λ = −z z1 2 and ( )ω =z z2. He uses the method of matching formal asymptotic 
expansions to construct spiral wave solutions for small values of the parameter q. In particular, 
he formally finds an asymptotic formula for the asymptotic wavenumber ( )→=∞ ∞v v rlimr  and 
Ω+ 1 which are exponentially small in q. Also, Greenberg in [Gre81] uses a formal perturbation 
technique to construct solutions of (8)–(10) when ( )λ = −z z1  and ( )ω = −z z 1.

Other than the results in [NK81] there is no proof of the existence of ( )Ω = Ω q  which 
guarantees the existence of solutions of (8)–(10). Furthermore, the result in [NK81] does not 
give any quantitative information of ( )Ω = Ω q  and ( )=∞ ∞v v q  when q is small.

In this paper we consider a general class of λ ω−  systems (equations (9) and (10)) with the 
following conditions:

 (A1)  λ and ω belong to ( )R∞C  and they are such that ( )λ =1 0 and ( )λ <′ 1 0. We remark that 
by suitably rescaling of the radius variable r and the phase function v a new function λ̄ 
may be written such that ¯( )λ 0  has any prescribed value. Therefore, and without loss of 
generality, we also assume that ( )λ =0 1.

 (A2)  ( )λz z  is concave, that is to say, ( ( ))λ∂ <z z 0z
2  if [ ]∈z 0, 1 .

Under the above assumptions, we prove that a necessary condition for the problem (8)–(10) 

to have a solution is that ( )Ω = Ω q  has to be a ∞C  function of q such that ( )∂ Ω =0 0q
k , for 

all ⩾k 1. To prove this result we provide a formal expansion in q of the solutions (f (r; q), 
v(r; q)) of equations (9) and (10) with boundary conditions (8) and the parameter ( )Ω q , see 
the expansions in (12). We obtain an infinite set of differential equations with suitable bound-
ary conditions, one for each order in q, and we rigorously prove that all these equations have 
a unique bounded solution if and only if ( ) ( )Ω − Ωq 0  is a ∞C -flat function of q. Therefore, 
equations (9) and (10) with boundary conditions (8) can be solved up to any order in q.

As a straightforward consequence of our results we can give the following quantita-
tive information about the solutions obtained in [NK81]: the parameter ( ) ( )Ω − Ωq 0  

Figure 1. Solutions (f (r; q), v(r; q)) of the complex Ginzburg–Landau system (9) and 
(10) with boundary conditions (8) for different values of q ranging from q  =  0.05 to 
q  =  0.45 with step 0.05, for a winding number of n  =  1. The curves are ordered in q so 
that the lower ones correspond to the higher values of q.

M Aguareles et alNonlinearity 30 (2017) 90
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and the wavenumber ( ) ( )→=∞ ∞v q v r qlim ;r  are ∞C -flat functions of q at q  =  0. That is 
( ) ( ) ( )Ω − Ω =q q0 O k  and ( ) ( )=∞v q qO k  for all ⩾k 1. Results about the ∞C  flatness of rel-

evant functions have been provided by many authors. For instance for smooth convex billiards 
tables, in [MM82] and [CdV84], it is proven that, under suitable conditions, the difference of 
lengths between two periodic billiard trajectories of the same period →∞T , LT is of ( )−TO k  
for all ⩾k 1.

The results obtained in this paper are a first step towards a more challenging problem: 
to obtain rigourous asymptotic formula for the value of ( ) ( )Ω − Ωq 0  and ( )∞v q  as →q 0 
which has to be exponentially small in q. In particular in the cases considered in [ACW10, 
Hag82], we plan to give a rigorous proof for the validity of the asymptotic formulas formally 
deduced in these works. This rigorous study will require different techniques, see for instance 
[BFGS12, Gel99, MRRTS16b] and references therein, and will be the goal of a forthcoming 
paper. In fact, in [MRRTS16b] it is proven that, under the assumptions in the previous work 
[MM82] above mentioned, the quantity LT is actually exponentially small in 1/T.

The paper is organised as follows. We start in section 2 by posing the formal solution of (9) 
and (10) as a power series of q. We then introduce our main result, theorem 2.2, of existence 
and uniqueness of this formal solution provided the power series for ( )|Ω − Ω |0  has vanishing 
terms. In section 3 we prove the main result as follows: we write an infinite set of differential 
equations and boundary conditions that each term in the asymptotic expansion satisfies and we 
then proceed by induction to prove that these equations have indeed solutions.

2. Main result: a formal solution

In this section we introduce and justify the expected particular form of the asymptotic expan-
sion in q for the solution of system (9) and (10) with boundary conditions (8). The first result, 
lemma 2.1 states that the frequency Ω is indeed a function of q, that is ( )Ω = Ω q . We then 
formulate our main result which establishes the existence of a unique formal solution of our 
problem provided ( ) ( )ωΩ −q 1  is a flat function in q.

Lemma 2.1. If system (9) and (10) with boundary conditions (8) has a solution (f (r), v(r)) 
then

( ) ( )λ ω− = −Ω =∞ ∞ ∞v f f0, 0,2 (11)

where ( )→=∞ +∞v v rlimr  and ( )→=∞ +∞f f rlimr . In addition, ( )→ =′∞ v rlim 0r  and the 
param eter Ω has to be a suitable function of q, i.e.: ( )Ω = Ω q .

Proof. Let ( ( ) ( )) ( ( ) ( ))= Ω Ωf r v r f r q v r q, ; , , ; ,  be a solution of system (9) and (10) with 
boundary conditions (8). We will omit the dependence on the parameters if there is no danger 
of confusion.

Note that when q  =  0, for any value of Ω equation (10) becomes

( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) )
( )

= + + =′ ′
′

f r v r
f r v r

r
f r v r

f r v r r

f r r
0 2 ,

2

so ( ) ( ) ≡f r v r r c2 , which, upon evaluating at r  =  0 gives c  =  0. Since we are interested in non 
trivial solutions for f (r), we obtain that ( )≡v r 0. As a consequence, =∞v 0 when q  =  0 which 
implies ( )=∞v qO  if ≠q 0.

Now we check that ≠∞f 0 for any value of q. Assume that =∞f 0. In this case, since 

( )=∞v qO , we have that ( ) ( )λ λ= =∞ ∞�v f1 02  taking q small enough. It follows that, for r0 
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sufficiently large, / ( ( )) ( )λ< −n r f r v r2 2 2 , for all ⩾r r0 and using that f is a positive solution 
of (9):

( ( )) ( ) ( ) ⟹ ( ) ( ) ⟹ ( ) ( ) ( ) ( )″= + < < − <′ ′ ′ ′ ′ ′ −rf r rf r f r f r
r

r
f r f r f r r f r r r0 log .0

0 0 0 0 0
1

Since =∞f 0 and f (r)  >  0, one can take r0 sufficiently large such that ( )<′f r 0 for ⩾r r0. 
Taking →∞r  in the above inequality, we find a contradiction with the fact that f is a bounded 
function.

According to equation (9) and using that ( )→ =′+∞ f rlim 0r , we obtain that ″ =∞ f rlimr ( )→  
( ( ) )λ− −∞ ∞ ∞f f v ,2  while equation  (10) provides that ( ) ( ( ))→ ω=− Ω−′∞ ∞ ∞ ∞v r f q f flimr . 

Then, taking into account that ≠∞f 0 and the simple fact that:

  ( )              ( )    
→

> = =′
+∞

h r r h r b bif is bounded for all 0 and lim , then 0,
r

which is immediate by Hôpital’s rule, it is found that ″ =+∞ f rlim 0r ( )→  and ( )→ =′+∞ v rlim 0r . 
Therefore, one is left with the couple of equations for the boundary values at infinity:

( ) ( )λ ω− = Ω− =∞ ∞ ∞f v f0, 0.2

Finally, if we explicitly write the dependence on Ωq, , we have that, in particular, to have 
solutions of our problem it is required that:

χ ωΩ = Ω− Ω =∞q f q, : , 0.( ) ( ( ))

Note that, when q  =  0, for any value of Ω, ( )Ω =v r; 0, 0 and the modulus f has to satisfy the 
equation

( ) ( ) ( ) ( ) ( ( ))″ λ= + − +
′

f r
f r

r
f r

n

r
f r f r0

2

2

which is independent of Ω so that ( )Ω =∞ ∞f f0, 0  does not depend on Ω and thus ∂ Ω =Ω ∞f 0, 0( ) . 
Therefore, differentiating ( )χ Ωq,  with respect to Ω one is left with ( ( ))χ ω∂ = ≠Ω ∞f0, 1 00 , 
which along with the fact that ( ( ))χ ω =∞f0, 00 , the implicit function theorem defines a func-
tion ( )Ω q  such that ( ( ))χ Ω =q q, 0 if | |q  is small enough. □

Lemma 2.1 above implies that the solution of system (8)–(10) only depends on the small 
parameter q. We will call it ( f (r; q), v(r; q)). Analogously we will write:

( ) ( ) ( ) ( )
→ →

= = = =∞ ∞
+∞

∞ ∞
+∞

v v q v r q f f q f r qlim ; , lim ; .
r r

By inspecting equations  (9) and (10), one deduces that the modulus f (r; q), as well as the 
unknown frequency ( )Ω q , are even functions of q, that is ( ) ( )= −f r q f r q; ;  and ( ) ( )Ω = Ω −q q , 
while v is an odd function of q, and so v(r; q)  =  −v(r; −q). We can thus restrict our attention 
to positive values of q without lost of generality. Moreover, using this even and odd character 
of the functions with respect to q we shall formally find the solutions to (9) and (10) as power 
series in q of the form:

( ) ( ) ( ) ( ) ( )
⩾ ⩾ ⩾
∑ ∑ ∑= = Ω = Ωf r q f r q v r q q v r q q; , ; , .
k

k
k

k
k

k
k

k

0

2

0 0

2
 (12)
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Since we will deal with the behaviour as →r 0 and →+∞r , we also introduce the notation

⟺ ( ) ( ) → ( ) ( ) →ψ ψ ψ∈ = = +∞−r r r r r rO O , 0 and O , ,m
l m l (13)

and

⟺ ( ) ( ) → ( ) ( ) →ψ ψ ψ∈ = = +∞−r r r r r r rO O , 0 and O log , ,m
l j m l j,

which will be used throughout this paper without further special mention.
The main result in this paper is:

Theorem 2.2. Assume hypotheses (A1)–(A2) hold. Then the system (9) and (10) with 
boundary conditions (8) has a unique formal solution of the form (12) with ( )→ =+∞ f rlim 1r 0  
and satisfying that for all ⩾k 0:

= = ∞f v f r v r are bounded as r0 0 0 and ,k k k k( ) ( ) ( ) ( )       →

if and only if

ωΩ = Ω = ∀and k1 , 0, 1.k0 ( )       ⩾

Moreover, the functions ( ) ( )f r v r,k k  also satisfy that

( ) ( )
→ →

= =′
∞ ∞

v r v rlim 0, lim 0,
r r

0 0

and

( ) ( )    
→ →

= = >
∞ ∞

f r v r klim lim 0, for all 0.
r

k
r

k

Furthermore,

″

″

= − = +∞

∈ ∈

∈ ∈ ∈

′

′

−

− −

f r r r f r r r

f f

v v v

O as 0, 1 O as .

O , O

O , O , O

n

n n

0 0
2

0 1
3

0 max 2,0
4

0 1
1,1

0 0
2,1

0 0
3,1

( ) ( ) → ( ) ( ) →

{ }

and for ⩾k 1,

{ }″

″

∈ ∈ ∈

∈ ∈ ∈

′

′

− −

+ + +

f f f

v v v

O , O , O

O , O , O .

k n
k

k n
k

k n

k
k

k
k

k
k

2,2
1

3,2
max 2,0
3

1
1,2 1

0
2,2 1

0
3,2 1

Finally if ω is a monotone function, v0 has constant sign.

From this theorem we conclude that, if system (9) and (10) with boundary conditions (8) 
has a solution (f (r; q), v(r; q)) then ( ) ( ) ( )→= =∞ ∞v q v r q O qlim ;r

k , ⩾∀ k 0, that is, ( )∞v q  is 
∞C -flat in q. Therefore, the value of ( )∞v q , which is beyond all orders, cannot be captured by 

any of the terms of the power expansion of v(r; q) in (12).
In fact, numerical computations reveal that v(r; q) is indeed not zero at infinity. As an exam-

ple we have considered a Ginzburg–Landau system with n  =  1, which corresponds to system 
(9) and (10) with ( )λ = −z z1 2 and ( )ω =z z2, that is:

( ) ( ) ( ) ( )( ( ) ( ))″= + − + − −
′

f r
f r

r
f r

r
f r f r v r0

1
1 ,

2
2 2 (14)
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( ) ( ) ( ) ( ) ( ) ( ) ( )( ( ))= + + + Ω−′ ′f r v r
f r v r

r
f r v r qf r f r0 2 .2 (15)

with boundary conditions (8). To solve (14), (15), (8) we have used a MATLAB routine to 
obtain ( )∞v q  which uses a finite difference scheme implementing the three-stage Lobatto Illa 
formula. This routine provides a C1-continuous solution that is fourth-order accurate uniformly 
in the interval of integration. We have computed ( )∞v q  and we compare our results with the 
expression /∼∞ − −v A qe B q 1 formally obtained in [Hag82] and [ACW10]. Performing a linear 
fit of ( ( ))∞qv qlog  with 95% confidence we obtain =B 1.588 191 499 224 517 using moderate 
values of [ ]∈q 0.2, 0.5  (see figure 2), which agrees with their predicted value /π=B 2.

A rigorous numerical computation of A and B would require working with multiprecision 
and it is beyond the scope of this paper, see for instance [MRRTS16a] where a exponentially 
small quantity in the billiard tables  setting, is numerically computed. Moreover, from the 
analytic point of view, the natural and significantly more difficult question is to prove an 
asymptotic formula for ∞v  as a function of q in terms of some universal constants, usually 
called Stokes’ constants. As we pointed out in the introduction, other different techniques that 
the ones used in this work are required to deal with this beyond all order phenomenon.

Remark 2.3. As we saw in the proof of lemma 2.1 ( ) ( )→= =∞ +∞v v r0 lim ; 0 0r  which 
implies that ( ) ( )=∞v q qO . Henceforth, equations  (11) imply that ( ( ))λ =∞f 0 0 and 

( ) ( ( ))ωΩ = ∞f0 0 . Since by assumption (A1) ( )λ =1 0 it seems natural to choose ( ) =∞f 0 1. 
In fact, if one assumes ( )λ <′ z 0, then ( )λ ≠z 0 for 0  <  z  <  1 and the only choice for ( )∞f 0  is 
to be 1, see [AB11].

Moreover, since ( )λ <′ 1 0 and ( ) ( )=∞v q qO , by the implicit function theorem the equa-
tion ( ( )) ( )λ =∞ ∞f q v q2  has a solution ( )∞f q  satisfying that ( ) ( )| − | =∞f q q1 O 2 , if | |q  is small 
enough.

We finally point out that if ( )λ z  has another zero z0  <  1 satisfying ( )λ <′ z 00 , theo-
rem 2.2 can also be applied in this case by rescaling =f f z0. In conclusion, the condition 

( )→ =+∞ f rlim 1r 0  is not restrictive.

In what follows, in section  3, we will find the differential equations  and the boundary 
conditions that fk(r) and vk(r) have to satisfy. To solve these differential equations we will find 
that ( )ωΩ = 10  and that all the following terms in the expansion of the frequency Ωk, for ⩾k 1, 
must vanish.

Figure 2. Value of ( )∞qvlog  as a function of 1/q, with [ ]∈q 0.2, 0.5  for the system (14)–(15).
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3. Power series expansions: proof of theorem 2.2

The idea of the proof is as follows: we first start by describing the system of equations for 
f v,k k, ⩾k 0 introduced in (12). We then deduce the boundary conditions that f v,k k must satisfy 
in order to have bounded solutions of these equations. This is done in section 3.1. As we will 
see in proposition 3.1, it turns out that the leading order terms f0 and v0 satisfy nonlinear differ-
ential equations while fk and vk, for ⩾k 1, satisfy non-homogeneous linear equations with the 
same homogeneous linear part. We then prove in proposition 3.2, section 3.2, that ( )ωΩ = 10  
and some useful properties of f v,0 0. Finally, in section 3.3, we prove the existence of f v,k k, for 

⩾k 1, provided Ω = 0k  using an induction procedure along with a suitable fixed point equation.
We emphasize that, in this work, we are not interested in the convergence of the expansions 

of f (r; q), v(r; q) and ( )Ω q  in (12), that is to say, we focus on the formal procedure and, in par-
ticular, we do not pay special attention to some constants which, of course, could grow with 
respect to k at any formal step. For this reason we sometimes avoid the exact computation of 
some of these constants and we indeed may use the same name to denote different constants.

To avoid cumbersome notation, we shall in general omit the dependence on the parameter 
q and the independent variable r unless such omission leads to confusion.

3.1. Differential equations for f v,k k

We are going to describe the equations that { } ⩾f v,k k k 0 have to satisfy. As usually, the equa-
tions  for the leading order terms f0 and v0 will be nonlinear while the equations  for f v,k k 
will be found to be non-homogeneous linear equations. To shorten the notation we introduce 

( ) ( )λ=F z z z  and ˜( ) ( )ω ω=z z z  and we use DF(z) and ˜( )ωD z  to denote the derivatives with 
respect to z of these functions.

With this notation and omitting the dependence on r and q of f, v, equations (9) and (10) 
read:

( )″= + − + −
′

f
f

r
f

n

r
F f fv0 ,

2

2
2 (16)

( ˜( ))ω= + + + Ω−′ ′fv
fv

r
f v q f f0 2 , (17)

and we consider the formal expansions defined in (12):

( ) ( ) ( ) ( ) ( )
⩾ ⩾ ⩾
∑ ∑ ∑= = Ω = Ωf r q f r q v r q q v r q q q; , ; , .
k

k
k

k
k

k

k
k

k

0

2

0

2

0

2

Proposition 3.1. The leading order terms f0 and v0, satisfy the equations

( )″= + − +
′

f
f

r
n

f

r
F f0 ,0

0 2 0
2 0 (18)

˜( )ω= + + + Ω −′ ′f v
f v

r
f v f f0 2 .0 0

0 0
0 0 0 0 0 (19)

For ⩾k 1, fk and vk satisfy the linear nonhomogeneous equations:

( ) ( )″ + − + =
′

f
f

r
n

f

r
DF f f b r ,k

k k
k k

2
2 0 (20)
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( )+ + + Ω =′ ′f v
f v

r
f v f c r2 ,k

k
k k k0

0
0 0 (21)

where

∑ ∑ ∑∑=− +
= + + =

−
= =

− − −�
�

b r D F f r f r f r f r v r v rk
i

k
i

k k k
k k

k k
i

k

l

i

k i l i l
1

2
0

1 1
1 1

1
i

j

i

1
1

( ) ( ( )) ( ) ( ) ( ) ( ) ( )

⩽ ⩽

 (22)

( ) ( ( )( ( ) ( )) ( ) ( )) ( )

˜( ( )) ( ) ( )

⩽

∑ ∑

∑ ∑ω

= + + + Ω

−

′ ′
=

−

−
−

−
=

−

−

= + + =
�

�

c r f r v r r v r f r v r f r

D f r f r f r

2k
i

k

k i i i k i i
i

k

k i i

i

k
i

k k k
k

k k

0

1
1

0

1

1

2
2

0

1
i

j

i

1

1

 
(23)

with ( ) ( )λ=F z z z  and ˜( ) ( )ω ω=z z z . In particular, bk is independent of fk and vk and ck is 
independent of vk.

Proof. By substituting expression (12) in (16), one obtains equation (18) for f0. As for v, 
equation (17), gives to leading order equation (19) for v0. The solutions ( ( ) ( ))f r v r,0 0  are rep-
resented in figure 3.

We now deal with f v,k k, for ⩾k 1. To illustrate the procedure we start by obtaining the par-
ticular equations for f v,1 1. Expanding equation (16) in powers of q, the order ( )qO 2  provides 
an equation for f1 in terms of v0 and f0, which reads,

( )″ + − + =
′

f
f

r
n

f

r
DF f f f v ,1

1 2 1
2 0 1 0 0

2 (24)

giving ( ) ( ) ( )=b r f r v r1 0 0
2.

Expanding equation (17) in powers of q, the order ( )qO 3  provides an equation for v1 in 
terms of f0, f1 and v0:

Figure 3. Leading order terms: solutions of (18) and (19).
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( ( )) ( )ω+ + + Ω − =′ ′f v
f v

r
f v f f D f c r20 1

0 1
0 1 0 1 1 0 1

with

ω=− Ω − − − −′ ′−c r f r f r f r v r r f r v r v r f r2 .1 1 0 0 1 0
1

1 0 0 1( ) ( )( ( ( ))) ( ) ( ) ( ) ( ) ( ) ( )
 (25)

To deal with the general case we first observe that the ansatz (12) may also be expressed in 
terms of a Taylor expansion of f, v and Ω with respect to q. Therefore,

=
∂

=
∂

+
Ω =

∂ Ω+

f r
f r

k
v r

v r

k k

; 0

2 !
,

; 0

2 1 !
and

0

2 !
.k

q
k

k
q
k

k
q
k2 2 1 2

( )
( )

( )
( )

( )
( )

( )
( )

 (26)

As a consequence, in order to obtain the equations  for f v,k k and a general expression 
for b c,k k it is enough to differentiate equations (16) and (17) with respect to q. We shall use 

Leibnitz’s rule along with Faa di Bruno formula for ( )( )∂ �F f r; 0q
N , which we recall here for 

N  =  2k:

( )( )
( )

( ( ))
( ) ( )

⩽

∑ ∑
∂

=
∂ ∂

= + + =

�
�

�

F f r

k
D F f r

f r

k

f r

k

; 0

2 !
; 0

; 0

!

; 0

!
.

q
k

i

k
i

k k k
k

q
k

q
k

i

2

1

2

2
1

1i

j

i

1

1

 (27)

We first deal with the differential equation (16). We must compute the 2k- derivative with 
respect to q of the nonlinear term F( f )  −  fv2 and then evaluate at q  =  0. Using Faa di Bruno’s 
formula in (27) and the identity (26) gives

∂
= +

�F f r

k
DF f r f r b r

; 0

2 !
,

q
k

k k

2

0
1( )( )

( )
( ( )) ( ) ( )

where, upon using once more identity (26) along with ( )∂ =+ f r; 0 0q
l2 1 , bk

1 is found to read:

( ) ( ( ))) ( ) ( )

⩽ ⩽

∑ ∑=
= + + =

−

�
�

b r D F f r f r f r: .k
i

k
i

k k k
k k

k k
1

1

2
0

1 1
i

j

i

1

1

We note that the last sum does only depend on fl with 0  <  l  <  k.

We now proceed likewise with ( )( )∂ fv r; 0q
k2 2 . Here we also note that ( )∂ =v r; 0 0q

l2 . Then, 
using Leibnitz rule:

∑

∑ ∑

∑∑

= ∂ = ∂ ∂

= ∂ ∂ ∂

=

=

−

= =

−
− −

= =
− − −

⎜ ⎟
⎛
⎝

⎞
⎠

b r fv r k
i

f r v r

k
j

j
m

f r v r v r

k f r v r v r

: ; 0 2 ; 0 ; 0

2
2

2 ; 0 ; 0 ; 0

2 ! ,

k q
k

i

k

q
k i

q
i

j

k

m

j

q
k j

q
m

q
j m

j

k

l

j

k j l j l

2 2 2

2

2
2 2

1 1

2 1
2 2 2

1 1
1

( )
( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

 

(28)

so bk
2 only depends on fl, vl with ⩽ <l k0 .
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Using the above expressions for ( ( ) )∂ −F f fvq
k2 2 , (subtracting (27) and (28)) we compute 

the 2k-derivative of equation (16) with respect to q and, evaluating at q  =  0, one finds that 

( ) ( )/( )=∂f r f r k; 0 2 !k q
k2  is a solution of the linear equation

″ + − + + − =
′

f r
f r

r
f r

n

r
DF f r f r b r

b r

k2 !
0.k

k
k k k

k
2

2 0
1

2

( ) ( ) ( ) ( ( )) ( ) ( )
( )

( )

Therefore, fk satisfies equation (20) with =− +b b b k2 !k k k
1 2/( )  having the form (22).

We now deal with equation (17). The procedure is exactly analogous to the one for equa-
tion (16). First, we observe that, using the Leibnitz’s rule, as well as identity (26),

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

∂ + +

= + + + +

′ ′

′ ′

+ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

f r v r
f r v r

r
f r v r

k f r v r
v r

r
f r v r c r

; 0 ; 0
; 0 ; 0

2 ; 0 ; 0

2 1 ! 2 ,

q
k

k
k

k k

2 1

0 0
1

where,

∑= + + +′ ′
=

−

− −⎜ ⎜ ⎟ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠c r k f r v r

v r

r
f r v r2 1 ! 2 .k

i

k

k i i
i

k i i
1

0

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

It only remains to compute the 2k  +  1-derivative with respect to q of the nonlinear term 

( ( ) ( ))ωΩ −q f q f . First, we define ( ) ( )Ω = Ω
∼

q q q  and we compute ( ( ) ( ))∂ Ω
∼+ f r; 0 0q

k2 1 . We 
obtain, using Leibnitz’s rule,

∑∂ Ω = + ∂ ∂ Ω

= + Ω +

∼ ∼+

=

+
+ −⎜ ⎟

⎛
⎝

⎞
⎠f r k

i
f r

k f c r

; 0 0 2 1 ; 0 0

2 1 ! ,

q
k

i

k

q
k i

q
i

k k

2 1

0

2 1
2 1

0
2

( )( ) ( ) ( ) ( )

( ) ( )

where

( ) ( ) ( )∑= + Ω
=

−

−c r k f r2 1 ! .k
i

k

k i i
2

0

1

We now introduce ˜( ) ( )ω ω=z z z  and compute ( ) ( ˜( ( )))ω= ∂ +
| =c r q f r q: ;k q

k
q

3 2 1
0:

( )
( ) ( )

˜( ( ))

˜( ( ))
( ) ( )

˜( ( )) ( ) ( )

⩽

⩽

∑ ∑

∑ ∑

ω

ω

ω

+
= ∂

=
∂ ∂

=

= + + =

= + + =

⎛
⎝
⎜

⎞
⎠
⎟

�

�

�

�

c r

k k
f r

D f r
f r

k

f r

k

D f r f r f r

2 1 !

1

2 !
; 0

; 0
; 0

!

; 0

!

k
q
k

i

k
i

k k k
k

q
k

q
k

i

i

k
i

k k k
k

k k

3
2

1

2

2
1

1

1

2

0

1

i

j

i

i

j

i

1

1

1
1
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Finally we compute the 2k  +  1-derivative with respect to q of equation (17) and we obtain 

that ( ) ( )/( )=∂ ++v r v r k; 0 2 1 !k q
k2 1  satisfies equation (21) with ck defined as in (23). □

3.2. The leading order term

We have already proved that the leading order terms f0 and v0, have to be solutions of the 
boundary problems:

″ λ= + − +

= =

′

∞

f
f

r
n

f

r
f f

f f r

0

0 0, lim 1,
r

0
0 2 0

2 0 0

0 0

( )

( ) ( )
→

 (29)

and

( ( ))

( ) ( )
→

ω= + + + Ω −

= <+∞

′ ′

∞

f v
f v

r
f v f f

v v r

0 2

0 0, lim .
r

0 0
0 0

0 0 0 0 0

0 0

 (30)

It is clear that the nonlinear equation for f0 is qualitatively different to the ones for fk with 
⩾k 1, which are all of them nonhomogeneous linear equations. Moreover, in order to begin an 

induction procedure (which will be our strategy to prove theorem 2.2) we also need to prove 
the existence and some properties of v0. For this reason we study the leading order terms sepa-
rately. The following proposition proves the part of theorem 2.2 related to f0 and v0.

Proposition 3.2. The boundary problem (29) has a bounded solution f0  >  0. Moreover, f0 
satisfies the following inequalities

( ) ⩽ ( )< >′rf r n f r r0 , 0,0
2

0

and it has the asymptotic expansions,

( ) ( ) → ( ) ( ) →α
β

= + = − + +∞+ −f r r r as r and f r
n

r
r as rO , 0 1 O , .n n

0
1

0

2

2
4

with ( )β λ= − ′ 1 . We also have that ∈′ −f On0 1
3  with =′

β+∞ r f rlim 2r
n3

0
2

( )→  and { }″ ∈ −f O n0 min 0, 2
4 .

The problem (30) has a bounded solution v0 if and only if ( )ωΩ = 10 . Moreover,

( ) ( ( )) ( ) ( ( ( )) )∫ ω= −Ω−v r rf r tf t f t td ,
r

0 0
2 1

0
0

2
0 0 (31)

and it satisfies the asymptotic expansions

( ) ( ) → ( ) ( ) ( ) ( / ) →ω
β

= + = − + +∞
′

v r Cr r r v r
n r

r
r rO as 0,

1 log
O 1 as .0

2
0

2

 

(32)

We also have that ∈′v O0 0
2,1, ″ ∈v O0 0

3,1.
When ω is a monotone function the solution v0 has constant sign.
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Proof. As it is shown in [AB11], the boundary problem (29) has a unique bounded solu-
tion. The inequalities and the expansions for f0(r) were rigourosly proven in [AB11] for the 
case that λ is an analytic function (section 2 as →r 0 and sections 4 and 5 as →+∞r ). The 
expansion for r small enough is also true in the case λ∈ ∞C  and the behaviour as →+∞r  
can be straightforwardly deduced from lemma 2.14 and remark 2.15 in [AB11]. Then, re-
writting equation (29) we obtain the identity λ= −′ ′ −rf r n r f r f r f r0

2 1
0 0 0( ( )) ( ) ( ) ( ( )). From this 

identity we deduce the asymptotic expansions for ′f0  and ″f0 . In [AB11] it is also shown that 
( )→ ′+∞ r f rlimr

3
0  exists. To compute this limit, we use L’Hôpital’s rule, and the asymptotic 

expansion for f0:

( ( )) ( ) ( )
→ → →∫β

ξ ξ= − = =′
′

+∞ +∞

+∞

+∞

n
r f r r f

r f r
lim 1 lim d lim

2r r r r

2
2

0
2

3

and so the results for f0 are proven.
As for v0, since v0(0)  =  0 and it satisfies equation (30), using identity (6), gives to leading 

order expression (31). Now, using the asymptotic behaviour of f0(r) as →∞r  in (31), gives

( ) ( /( ) ( )) ( ) ( ( ( )) )

( ) ( ( ( ) ) ( )) ( )

⎜
⎛
⎝

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟

∫

∫

β ω

ω
β

ω ω

= − + −Ω

+ −Ω − −Ω + +′

− −

−

v r r n r o r tf t f t t

t
n

t
t t

2 d

1 2 1 1 o d ,

r

r

r

0
2 2 1 1

0
0

2
0 0

0

2

2 0
2

0

0

provided ⩾r r0 and r0 is sufficiently large. This last expression shows that in order for v0 to be 
bounded at infinity, we have to impose ( )ω = Ω1 0 and so this gives the asymptotic behaviour 
of v0(r) as →∞r  presented in (32).

Also, the asymptotic behaviour of v0(r) as →r 0 is easily obtained by using the asymptotic 
expression of f0 in equation (31),

( )
( ( ) ( )) ( ) ( ) ( )

∫ α ω α ω

α
ω ω

∼
−

=
−
+

++v r
t t t t

r n
r r

1 d 0 1

2 2
O .

r n n

n0
0

2 2

2 2 1
2

The asymptotic behaviour of both ′v0 and ″v0  follows from the fact that ∈v O0 1
1,1 is a solution 

of equation (30) along with the asymptotic behaviour of ′f f,0 0 .
It only remains to check that v0(r) has constant sign when ( )ω z  is a monotone function.  

For instance, according to (31) if ( )ω z  is decreasing, since ( )ωΩ = 10 , ( ) ⩾ ( ( ))ω ω−Ω −f r0 0 0   
ωΩ − Ω =1 00 0⩾ ( ) , and hence ( ) ⩾v r 00  for all ⩾r 0. Likewise, if ( )ω z  is increasing, ( ) ⩽v r 00  

for all ⩾r 0. □

3.3. Existence and properties of fk. An induction procedure

In this section we are going to prove the results of theorem 2.2 related to f v,k k for ⩾k 1. We 
will use the notation and results from proposition 3.1. More precisely, we will prove that the 
problems:

( ) ( )

( ) ( ) ⩾

″ + − + =

=

′
f

f

r
n

f

r
DF f f b r

f f r r0 0, bounded 0

k
k k

k k

k k

2
2 0 (33)
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with ( ) ( )λ=F z z z , and

( )

( ) ( ) ⩾

+ + + Ω =

=

′ ′f v
f v

r
f v f c r

v v r r

2 ,

0 0, bounded 0

k
k

k k k

k k

0
0

0 0 (34)

have solutions fk and vk provided

Ω = 0.k

Recall that bk, ck, were defined in proposition 3.1, for ⩾k 1. To prove this result we will use an 
induction procedure.

We first recall that, if … −f f f, , , k0 1 1 and … −v v v, , , k0 1 1 are known, then, the independent 
term bk of (33) is determined and henceforth fk satisfies a linear non-homogeneous equation. 
If we are able to prove the existence of such a solution, then, by property (6) and taking into 
account that vk(0)  =  0, we will have an explicit expression for vk which depends on Ωk and ck:

( ) ( ( )) ( )( ( ) ( ) )∫= − Ω−v r rf r tf t c t f t tdk

r

k k0
2 1

0
0 0 (35)

Recall here that ck depends only on …f f, , k0  and … −v v, , k0 1.
Therefore, once one knows how to solve the equation for fk, the function vk is totally deter-

mined. Since all the equations for fk have the same shape, it is necessary to study the existence 
of solutions of linear equations of the form

( ) ( ) ( ) ( ( )) ( ) ( )

( ) ( ) ⩾

″ + − + =

=

′
g r

g r

r
n

g r

r
DF f r g r h r

g g r r0 0, bounded 0.

2
2 0 (36)

We state the following technical lemma which will be proven in section 3.4 by using the fixed 
point theorem in a suitable Banach space.

Lemma 3.3. Let [ ) →R+∞h : 0,  be a C2 function. We define

[ ]( ) ( ) ( ) ( ) [ ( ( )) ] ( )″ β= + − + +
′

E h r h r
h r

r
h r

n

r
DF f r h r:

2

2 0

with ( ) ( )λ=F z z z  and ( )β λ= − ′ 1 . Assume that [ ]∈ −E h On 1
3 , that is:

[ ]( ) ( ) → [ ]( )( ) ( ) →= = +∞− −E Eh r r r h r r r rO , 0, O , .n 1 3 (37)

Then there exists a unique bounded solution g of the boundary problem (36). Moreover, if 
δ β= + −g g h: 1, we have that

{ }″δ δ δ∈ ∈ ∈′ − −g g gO , O , O .n n n
3

1
3

max 2,0
3

In particular, ( )→ =+∞g rlim 0r .

Now we begin our induction scheme. We begin with f1 which satisfies equation (24), that is:

″ + − + =
′

f
f

r
n

f

r
DF f f b r1

1 2 1
2 0 1 1( ) ( )
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with ( ) ( ) ( )=b r f r v r1 0 0
2 . We want to apply lemma 3.3 and so we check that [ ]∈ −E b On1 1

3 . We 
point out that, by proposition 3.2, = ∈ +b f v On1 0 0

2
2

2,2 , ∈′ +b On1 1
3,2 , ″ ∈b On1

4,2 and, consequently:

( ) ( ) ( )″ + − ∈
′

b r
b r

r
b r

n

r
O .n1

1
1

2

2
4,2

In addition, [ ( ( )) ] ( ) ( )β+ = +DF f r b r rO n
0 1

2  as →r 0 and, since ( ) ( )λ β= = −′DF 1 1 , and 
using proposition 3.2 for the asymptotics of f0 as →∞r  yields

( )( ( )) ( ) ( )β+ = − = −⎡⎣ ⎤⎦DF f r f r rO 1 O0 0
2

 (38)

and this gives [ ( ( )) ] ( ) ( )β+ = −DF f r b r r rO log0 1
4 2 . Therefore we conclude that 

[ ] ⊂∈ −E b O On n1
4,2

1
3 . Then, lemma 3.3 gives the existence of a solution f1 of problem (33) for 

k  =  1 with δ β= + −f f b1 1
1

1 satisfying

{ }″δ δ δ∈ ∈ ∈′ − −f f fO , O , O ,n n n1
3

1 1
3

1 max 2,0
3

which gives:

{ }″∈ ∈ ∈′ − −f f fO , O , O .n n n1
2,2

1 1
3,2

1 max 2,0
3

Now we deal with v1 and Ω1. As we state in (35),

( ) ( ( )) ( )( ( ) ( ) )∫= − Ω−v r rf r tf t c t f t td ,
r

1 0
2 1

0
0 1 0 1

with c1 defined in proposition 3.1, formula (25). Using that ∈f On1
2,2, ∈′ −f On1 1

3,2 , along with 
∈v O0 1

1,1 and ∈′v O0 0
2,1, we have that ∈c On1

2,2. Therefore, v1 will be a bounded solution if and 
only if ( )( ( ) ( ) )− Ωrf r c r f r0 1 0 1  is a bounded function. This implies that

( ) ( )
→

= − Ω = Ω
+∞

c r f r0 lim .
r

1 0 1 1

Hence we actually have that

( ) ( ( )) ( ) ( )∫= −v r rf r tf t c t td .
r

1 0
2 1

0
0 1

Now we need to compute the asymptotic behaviour of v1. Clearly, for →r 0, since ∈c On1
2,2, 

( ) ( )=v r rO1 . Now we deal with →+∞r . We notice that, if r0 is sufficiently large,

( ) ( ) ⩽ ⩽∫ ∫tf t c t t C
t

t
t C rd

log
d log .

r

r

r

r

0 1

2
3

0 0

Then

( ) ⩽ →| | +∞v r C
r

r
r

log
, as .1

3

Summarizing, ∈v O1 1
1,3. Moreover, from (34) with k  =  1:

( ) ( ) ( ) ( ) ( ) ( ) ( )= − −′ ′ −f r v r c r f r v r r f r v r20 1 1 0 1
1

0 1

which implies that ∈′v O1 0
2,3. We can also deduce that ″ ∈v O1 0

3,3.
Now we state the induction hypothesis: the unique bounded solution fk−1, ⩾k 2, of problem 

(33) satisfies

( ) ( )
{ }″∈ ∈ ∈′−

−
− −

−
− −f f fO , O , O .k n

k
k n

k
k n1

2,2 1
1 1

3,2 1
1 max 2,0

3 (39)
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Moreover, problem (34) has bounded solution vk−1 if and only if Ω =− 0k 1  and in this case,

″∈ ∈ ∈′−
−

−
−

−
−v v vO , O , O .k

k
k

k
k

k
1 1

1,2 1
1 0

2,2 1
1 0

3,2 1 (40)

We begin first by checking that ∈ +b Ok n
k
1

2,2  and ∈c Ok n
k2,2 . Indeed, by the induction hypoth-

esis (39) and (40) and formula (22) for bk, we have that

⊂∈ ∩ + +b O O O .k n
k

n
k

n
k

2
2,2

2
2,2

1
2,2

We emphasize that if n  =  1, 2n  <  n  +  2, but if ⩾n 2, ⩾ +n n2 2. To unify both cases we have 
considered ∈ +b Ok n

k
1

2,2 . Analogously one sees that ∈c Ok n
k2,2 .

In order to compute the orders for ′bk and ′ck we take into account that, by the induction 
hypothesis if ⩽ −l k 1, the functions ( ) ( ) ( )″′ ′f r v r v r, ,l l l  are of order of ( ) −f r rl

1, ( ) −v r rl
1 and 

( ) −v r rl
2 respectively, so the same happens for the products of these functions. Moreover, 

{ }″ ∈ −f Ol nmax 2,0
3 , for ⩽ −l k 1. Then, tedious but easy computations yield:

″∈ ∈ ∈′+ −b b bO , O , Ok n
k

k n
k

k n1
2,2 3,2

1
3 (41)

and

∈ ∈′ −c cO , O .k n
k

k n
k2,2
1

3,2 (42)

The first consequence is that [ ]∈ −E b Ok n 1
3  and hence by lemma 3.3 there exists a unique 

solution fk of problem (33) satisfying that

{ }″ ″β β β+ ∈ + ∈ + ∈′ ′− −
−

−
−f b f b f bO , O , Ok k n k k n k k n

1 3 1
1

3 1
max 2,0
3

and taking into account the expansions of bk in (41), the induction hypothesis (39) is fullfilled 
for fk.

Finally we deal with vk. We proceed likewise as v1. From identity (35),

( ) ( ( )) ( )( ( ) ( ) )∫= − Ω−v r rf r tf t c t f t td ,k

r

k k0
2 1

0
0 0

vk will be a bounded solution if and only if ( )( ( ) ( ) )− Ωrf r c r f rk k0 0  is a bounded function and 
consequently, since ∈c Ok n

k2,2 ,

( ) ( )
→

= − Ω = Ω
+∞

c r f r0 lim .
r

k k k0

Therefore the induction hypothesis for Ωk is also satisfied. We rewrite vk as

( ) ( ( )) ( ) ( )∫= −v r rf r tf t c t td ,k

r

k0
2 1

0
0

and compute the asymptotic behaviour of vk. Since ( ) ( ) ( )=c r f r r, Ok
n

0  as →r 0, one deduces 
that ( ) ( )=v r rOk . As in the case k  =  1, if r0 is sufficiently large,

( ) ( ) ⩽ ⩽∫ ∫ +tf t c t t C
t

t
t C rd

log
d log

r

r

k
r

r k
k

0

2
2 1

0 0

and hence

( ) ⩽ →| | +∞
+

v r C
r

r
r

log
, as .k

k2 1

M Aguareles et alNonlinearity 30 (2017) 90



107

Summarizing, ∈ +v Ok
k

1
1,2 1. Moreover,

( ) ( ) ( ) ( ) ( ) ( ) ( )= − −′ ′ −f r v r c r f r v r r f r v r2k k k k0 0
1

0

implies that ∈′ +v Ok
k

0
2,2 1 and we finally deduce that ″ ∈ +v Ok

k
0
3,2 1 by using (42).

This ends the proof of theorem 2.2.

3.4. Proof of lemma 3.3

We first write equation (36) in a more suitable way, i.e. as a fixed point equation. Adding and 
subtracting the term β g, where ( )β λ= − ′ 1 , which is positive since ( )λ <′ 1 0, performing the 

change of variables β=s r and denoting by ˜( ) ( / )β=g s g s , ˜( ) ( / )β β= −h s h s1  yields

˜ ( ) ˜ ( ) ˜( ) ˜( ) ˜( )
( ˜ ( ))

˜( ) ˜( ) ⩾

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥″

β
+ − + = − +

=

′
g s

g s

s
g s

n

s
h s g s

DF f s

g g s s

1 1

0 0, bounded 0,

2

2
0

 (43)

where we call ˜ ( ) ( / )β=f s f s0 0 .
As we showed in (38)

(˜ ( )) ( ) →β + = +∞− −DF f s s s1 O , as .1
0

2 (44)

This implies that the dominant term of equation  (43) as →∞s  is the singular equa-
tion  ˜( ) ˜( )− =g s h s , therefore, it is natural to write ˜ ˜ δ= − +g h g with δg being a solution of

˜[ ˜]( )
( ˜ ( ))

″δ
δ

δ δ
β

+ − + =− − +
′ ⎛

⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟Eg

g

s
g

n

s
h s g

DF f s
1 1 ,

2

2
0 (45)

and ˜[ ˜]E h  is defined by

˜[ ˜]( ) [ ]( / ) ˜ ( )
˜ ( ) ˜( )

(˜ ( )) ˜( )
⎡

⎣
⎢

⎤

⎦
⎥″

β
β

β
= = + − + +

′
E Eh s h s h s

h s

s
h s

n

s

DF f s
h s

1
1 .

2

2

2
0

Recall that the operator E is defined in the statement of lemma 3.3. The boundary conditions 
are ( )δ =g 0 0 and ( )δg s  bounded for ⩾s 0.

Our goal now is to write equation (45) as a fixed point equation. We emphasize that the 
dominant part of this equation is the left hand side. Indeed, on the one hand, using (44), one 
sees that the linear term in the right hand side of equation (45), contributes a small quantity 
to the equation  for large values of s, being the left hand side of equation  (45) the domi-
nant part as →∞s . On the other hand, as →s 0, even if this linear term is of order one, the 
dominant part of equation (43) is provided by the first three terms of the left hand side, that 
is ( ) ( )/ ( ) /″δ δ δ+ −′g s g s s g s n s2 2, and so the right hand side in (43) is also relatively small for 
small values of s.

To obtain a fixed point equation we note that the homogeneous modified Bessel equation

( ) ( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟″ϕ

ϕ
ϕ+ − + =

′
s

s

s
s

n

s
1 0

2

2

has two well-known linearly independent solutions, namely In(s) and Kn(s) known as the 
modified Bessel functions of the first and second kind respectively (see [AS64]). Hence, a 

M Aguareles et alNonlinearity 30 (2017) 90



108

fundamental matrix of solutions of the homogeneous equation corresponding to having zero 
at the left hand side in (43) reads,

( )
( ) ( )
( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟=

′ ′
M s

K s I s

K s I s
,

n n

n n

whose Wronskian is known to be ( ( ) ( )) /=W K s I s s, 1n n . We denote by

[ ]( ) ˜[ ˜]( ) ( )
(˜ ( ))⎛

⎝
⎜

⎞

⎠
⎟δ δ

β
= + +R Eg s h s g s

DF f s
1 .0 (46)

We recall here that δg has to be a bounded solution of problem (45) with boundary condition 
( )δ =g 0 0. Therefore, using the variation of parameters formula, equation  (45) becomes a 

fixed point equation:

∫ ∫δ δ ξ ξ δ ξ ξ ξ ξ δ ξ ξ= = +
∞

F R Rg s g s K s I g I s K g: d d .n

s

n n
s

n0
( ) [ ]( ) ( ) ( ) [ ]( ) ( ) ( ) [ ]( )

 
(47)

In order to prove the existence of the solution of (47) (and consequently of problem (43)), 
we will prove that the linear operator F  is contractive in some appropriate Banach space X . 
However to guarantee the uniqueness of this solution in the space of bounded functions, we 
need to carefully study the following linear operator:

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ψ ξ ξ ψ ξ ξ ξ ξ ψ ξ ξ= +
∞

T s K s I I s Kd d ,n

s

n n
s

n
0

 (48)

where ψ is a function defined on [ )= +∞J 0, . We notice that = �F T R.
The operators T  and F  are studied in the lemmas 3.4 and 3.5 whose proofs are deferred to 

the end of this section.

Lemma 3.4. Let T  be the linear operator defined in (48). Let ψ be a function defined on 
[ )= +∞J 0, . We take ⩽ < −m n0 1 and ⩾l 0. Then

⟹ [ ]ψ ψ∈ ∈ +TO O ,m
l

m
l

2

where the notation Om
l  was introduced in (13). In particular, if ψ is bounded, then ( )ψ ∈T O2

0.
In the cases ψ∈ −On

l
1 or ψ∈On

l  we can only conclude that [ ]ψ ∈T On
l .

In addition, if ( )ψ∈ C Ji , then [ ] ( )ψ ∈ +T C Ji 1  and

⟹ [ ]ψ ψ∈ ∈′ +TO O .m
l

m
l

1

In the cases ψ∈ −On
l

1 or ψ∈On
l  we conclude [ ]′ψ ∈ −T On

l
1.

We now define the Banach space where the solution δg will belong. We consider the weight 
function

β= ′w s f s0( ) ( / ) (49)

and the functional space

→ ( ) ( )
( )

R
⎧
⎨
⎩

⎫
⎬
⎭

ϕ ϕ
ϕ

= ∈ <+∞X CJ J
s

w s
: , , .0
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We endow X  with the norm

∥ ∥ ( )
( )⩾

ϕ
ϕ

=
s

w s
sup ,w
s 0

and it becomes a Banach space. In addition, since by proposition 3.2, ∈ −w On 1
3 ,

( )= ∩−X C JO ,n 1
3 0 (50)

that is to say, ψ∈X  if and only if ψ∈ −On 1
3  and ( )ψ∈ C J0 .

Lemma 3.5. For any given ϕ∈X , let ϕF  be the linear operator defined by (47):

∫ ∫ξ ξ ξ ξ ξ ξ ξ ξ= +ϕ ϕ ϕ
∞

F R Rg s K s I g I s K gd dn

s

n n
s

n
0

[ ]( ) ( ) ( ) [ ]( ) ( ) ( ) [ ]( )

where, analogously to (46), we denote ϕR  by

[ ]( ) ( ) ( )
(˜ ( )

ϕ
β

= + +ϕ

⎛

⎝
⎜

⎞

⎠
⎟R g s s g s

DF f s
1 .0

Then,

 (i) If ∈Xg , then [ ] ( )∈ϕF Cg J1  and [ ] [ ]′ ∈ϕ ϕF F Xg g, . In fact [ ]( )∈ϕF g s On
3.

 (ii) ϕF  is contractive in X .

End of the proof of lemma 3.3.  We have to deal with both, existence and uniqueness 
of solutions of problem (43). We recall that we look for g̃ as ˜ ˜ δ= − +g h g, being δg a solution 
of the fixed point equation  [ ] [ [ ]]δ δ δ= =F T Rg g g  given in (47). For the existence we will 
use mainly lemma 3.5 where ( ) ˜[ ˜]( )ϕ = Es h s . Then, hypothesis (37) of lemma 3.3 and the fact 

that ˜ ∈′ −f On0 1
3 , guarantees that ˜[ ˜]E h  belongs to X  and henceforth lemma 3.5 provides a solu-

tion δ ∈Xg  such that δ ∈g On
3, δ ∈′ −g On 1

3 . In addition, since δg is a solution of the differential 
equation (45), { }″δ ∈ −g O nmax 2,0

3 .
Now it only remains to check that ˜ ˜ δ= − +g h g is the unique bounded solution of our 

problem or equivalently, we shall see that δg is the only bounded solution of (45). Let ¯δg 
be a bounded solution of equation (45). Then it has to a be solution of the fixed point equa-
tion  ¯ [ ¯] ( )[ ¯]δ δ δ= = �F T Rg g g . We note that

δ δ| | + | |R Eg s C g s h s .[ ¯]( ) ⩽ ¯( ) ˜[ ˜]( )

Therefore, since at least ¯δg is bounded and ˜[ ˜]∈E Xh , lemma 3.4 with l  =  m  =  0 implies that 
¯( ) ( )δ =g s sO 2  as →s 0, then applying iteratively this lemma, we obtain that ¯( ) ( )δ =g s sO n  as 
→s 0. In particular, since ( )∈ −w s On 1

3 :

¯( ) ⩽ ( ) →δ| |g s Cw s s, as 0.

Now we study the behaviour of ¯δg as →+∞s . We first recall that, according to (44) 
(˜ ( )) ( )β + =− −DF f s s1 O .1

0
2  Then, since ˜[ ˜] ⊂∈ −E Xh On 1

3  and ¯( )δ ∈g s On
0, we conclude that 

[ ¯]δ ∈ −R g On 1
2 . Now we apply lemma 3.4 and we obtain that ¯ [ ¯ ] [ [ ¯]]δ δ δ= = ∈F T Rg g g On

2. 

Therefore, repeating the previous argumentation, since ˜[ ˜]∈ −E h On 1
3  and ¯δ ∈g On

2 we obtain that 
¯δ ∈g On

3. Hence, as ¯δ ∈Xg  and F  is a contractive operator over X , ¯δ δ=g g. ◻
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The remaining part of this section is devoted to prove the technical lemmas 3.4 and 3.5.

3.4.1. Proof of lemma 3.4. Let m  <  n  −  1, ⩾l 0 and [ ) →Rψ = +∞J: 0,  be a function in 
Om

l . To study the behavior of [ ]ψT  (see (48)) as →s 0 and →∞s , we recall the asymptotic 
expansions of the modified Bessel functions K I,n n and their derivatives.

When →s 0 one has:

( ) ( ) ( / ) ( )
( )

( / )∼
Γ

∼
Γ +

−K s
n

s I s
n

s
2

2
1

1
2 ,n

n
n

n

( ) ( ) ( / ) ( )
( )

( / )∼−
Γ

∼
Γ +

′ ′− − −K s
n n

s I s
n

n
s

4
2 ,

2 1
2 .n

n
n

n1 1

And when →∞s :

( ) / ( ) /π π∼ ∼−K s s I s se 2 , e 2n
s

n
s

( ) / ( ) /π π∼− ∼′ ′−K s s I s se 2 , e 2 .n
s

n
s

From now on we will use the expansions of the Bessel functions without explicit mention.
We start by proving the behaviour of [ ]ψT  as →s 0. Since ψ∈Om

l , there exists C  >  0 such 
that ( ) ⩽ψ| |s Csm for any ∈s J. Let s0  >  0 be such that the above expansions for →s 0 are true 
for ⩽ <s s0 0. We have that

[ ]( ) ⩽ ( ) ( ) ( ) ( )

⩽ ( )

⩽ ¯ { } ¯

∫ ∫

∫ ∫ ∫

ψ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

| | +

+ +

=

+∞

− + + − + +
+∞

+

+ +

⎜
⎛
⎝

⎞
⎠
⎟

T s CK s I CI s K

c s s s K

c s s cs

d d

d d d

max , .

n

s

n
m

n
s

n
m

n
s

n m n

s

s
n m n

s

m
n

m n m

0

0

1 1 1

2 2

0

0

where ¯c c,  are generic constants depending only on n and, s0. We have used that, by hypothesis, 

m  <  n  −  1 and that ( )∫ ξ ξ ξ
+∞ + K d

s
m

n
1

0
 is bounded.

We proceed likewise with the behavior of [ ]( )ψT s  as →∞s . We take s1  >  0 be such that 
the expansions of the Bessel functions for →∞s  are true for s  >  s1. As ψ∈Om

l , there exists C  
such that ( ) ⩽ψ| | −s Cs l for s  >  s1 and ( ) ⩽ψ| |s C  for any ∈s J. We obtain

∫ ∫

∫ ∫ ∫

ψ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

| | +

+ +ξ ξ

−
+∞

− − − +
+∞

− + −

−

⎜ ⎟
⎛
⎝

⎞
⎠

T s CK s I CI s K

c s I

cs

d d

e d e d e d

,

n

s

n
l

n
s

n
l

s
s

n
s

s
l

s

l

l

0

1 2

0

1 2 1 2
1

1

[ ]( ) ⩽ ( ) ( ) ¯ ( ) ( )

⩽ ( )

⩽ ¯

/ / /

where, as before, the values of ¯c c,  only depend on n and s1. Therefore [ ]ψ ∈ +T Om
l

2. In 
par ticular, applying the above inequalities for m  =  l  =  0, that is ψ bounded, we have that 

[ ]ψ ∈T O2
0.

In addition, if ψ is continuous, and since every integral in the definition of T  is uniformly 
convergent, we have that

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫′ψ ξ ξ ψ ξ ξ ξ ξ ψ ξ ξ= +′ ′
∞

T s K s I I s Kd d .n

s

n n
s

n
0
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is also a continuous and bounded function. We proceed as above to check the asymptotic 
expansions for ψ ′T [ ]  and lemma 3.4 is proven.

3.4.2. Proof of lemma 3.5. We notice that =ϕ ϕ�F T R . Let ∈Xg . It is clear that [ ]∈ϕR Xg  
and, by (50), [ ]∈ϕ −Rg g, On 1

3 . In consequence, the first item is a straightforward consequence 
of lemma 3.4.

To prove (ii) we need to show that there exists a constant 0  <  K  <  1 such that, for any 
∈Xg g,1 2 , ∥ [ ] [ ]∥ ⩽ ∥ ∥− −ϕ ϕF Fg g K g gw w1 2 1 2 . We first point out that, since ⩽ ˜ ( ) ⩽f s0 10  and by 

hypothesis (A2), ( ( ))λ∂ <z z 0z
2 , the function ( ) ( ) ( )λ λ= +′DF z z z z  is decreasing. Therefore, 

using that by hypothesis (A1), ( )λ =1 0:

( ) ( ) ( ) (˜ ( )) ⩽ ( ) ( )β λ λ λ− = + = < = =′ DF DF f s DF1 1 1 0 0 1,0

which gives

(˜ ( ))
β β

< + < +
DF f s

0 1
1

1.0 (51)

Now we find that

[ ]( ) [ ]( ) ⩽ ( ) ( )
( ˜ ( ))

( ) ( )

( ) ( )
(˜ ( ))

( ) ( )

⩽∥ ∥ ( )

∫

∫

ξ ξ
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ξ ξ ξ

ξ ξ
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β
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− + | − |

+ + | − |

−
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∞

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

F Fg s g s K s I
DF f

g g

I s K
DF f

g g

g g T s

1 d

1 d

n

s

n

n
s

n

w

1 2
0

0
1 2

0
1 2

1 2

where the function T is defined by

( ) ( ) ( )
(˜ ( ))

( )

( ) ( )
(˜ ( ))

( )

∫

∫

ξ ξ
ξ

β
ξ ξ

ξ ξ
ξ

β
ξ ξ

= +

+ +
∞

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

T s K s I
DF f

w

I s K
DF f

w

: 1 d

1 d .

n

s

n

n
s

n

0

0

0

 

(52)

We first observe that T(s)  >  0 if ⩾s 0 since both Kn(s), In(s) are positive, the weight function 
(see (49)) ( )>w s 0 and inequality (51).

We now want to show that ∥ ∥ <T 1w . We begin by rewriting T in a more appropriate way. 
Concretely, we will check that

( ) ( ) [ ]( )

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ξ ξ ξ ξ ξ ξ ξ ξ

= −

= − −
+∞

TT s w s h s

w s K s I h I s K hd dn

s

n n
s

n

0

0
0 0

 (53)

being T  the linear operator defined in (48) and

( ) ˜ ( )
⎡

⎣
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎤

⎦
⎥
⎥

β

β β
= − ′h s

s
n f s

s
f

s
2 .0 3

2
0 0 (54)

To prove expression (53) we deal with the differential equation that ( )′f r0  satisfies. Indeed, 
since f0(r) is a solution of equation (18), ( )′f r0  is a solution of the nonhomogeneous linear 
equation:
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( ) ( ) ( ) ( ( )) ( ) ( ) ( )″ϕ
ϕ

ϕ ϕ+ − + = − +
′

′r
r

r
r

n

r
DF f r r

n

r
f r

r
f r

2 1
.

2

2 0

2

3 0 2 0

Performing the change ( ) ( / )ψ ϕ β=s s  to this equation  and taking into account that 
˜ ( ) ( / )β=f s f s0 0 , we get that ( ) ( / )β= ′w s f s0  is a solution of

( ) ( ) ( )
( ˜ ( ))

( ) ˜ ( ) ( / )″ψ
ψ

ψ
β

ψ
β

β+ − + =− +
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(55)

We define

[ ]( ) ( ) ( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟″ψ ψ

ψ
ψ= + − +

′
L s s

s

s
s

n
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1 .

2

2

We notice that [ ] [ ]= =L LK I 0n n  and that equation (55), for w, can be rewritten as

(˜ ( ))
( ) [ ]( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟

β
+ = − −L

DF f s
w s w s h s1 .0

0 (56)

The linear differential operator L satisfies that, upon integrating by parts,

∫ ξ ξ ψ ξ ξ ξψ ξ ξ ξψ ξ ξ− =− +′ ′LB B Bd ,
a

b

n n a
b

n a

b
( ) [ ]( ) ( ) ( ) ( ) ( ) (57)

being either =B Kn n or =B In n. This property was strongly used in [AB11]. Using that w sat-
isfies equation (56), property (57) and that ( ( ) ( ) ( ) ( ))− =′ ′s I s K s K s I s 1n n n n , we have that defini-
tion (52) of T becomes

∫ ∫
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( ) ( ) ( ) [ ]( ) ( ) ( ) [ ]( )

( ) ( ) ( ) ( ) ( ) ( )

( ) [ ]( )

and (53) is proven.
Since by proposition 3.2, for any ⩾r 0, ( ) ⩽ ( )′r f r n f r0

2
0 , we have that the function h0, defined 

in (54), satisfies that h0(s)  >  0 if s  >  0, and therefore [ ]( )>T h s 00 , if s  >  0. Consequently:

⩽ ( ) ( )< >T s w s s0 , 0.

Now, in order to check that ∥ ∥ <T 1w  it only remains to see that

[ ]( )
( )

[ ]( )
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0 0

Indeed, recalling again definition (49) of w, and using proposition 3.2, we have that
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Let s0  >  0 be small enough. By applying Hôpital’s rule
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Now we deal with →+∞s . Let then s0  >  0 be sufficiently large. Then,
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This ends the proof of lemma 3.5.
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