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Abstract
We consider families of one and a half degrees of freedom rapidly forced
Hamiltonian systems which are perturbations of one degree of freedom
Hamiltonians with a homoclinic connection. We derive the inner equation for
this class of Hamiltonian system which is expressed as the Hamiltonian–Jacobi
equation of a one a half degrees of freedom Hamiltonian. The inner equation
depends on a parameter not necessarily small.

We prove the existence of special solutions of the inner equation with a
given behaviour at infinity. We also compute the asymptotic expression for the
difference between these solutions. In some perturbative cases, this asymptotic
expression is strongly related with the Melnikov function associated with our
initial Hamiltonian.

Mathematics Subject Classification: 37J45, 37G20, 35B40, 34E10, 34M99

1. Introduction

The phenomenon known as splitting of separatrices has been widely studied by several authors.
This phenomenon arises, for instance, when we consider a differential equation in R

2 with a
fixed point having coincident branches of stable and unstable manifolds and we perturb it by
a periodic or quasi-periodic function on time.

The simplest framework—the regular case—is when the perturbation is regular with
respect to the perturbation parameter, ε. For such a situation, Melnikov [18] (developing
some ideas by Poincaré) gave a tool, which is called Poincaré–Melnikov function, to provide
asymptotic expressions of the distance (and other related quantities) between the perturbed
invariant manifolds when ε → 0.
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If the perturbation is not regular for ε, for instance, because it depends periodically on t/ε,
then the Poincaré–Melnikov function does not give, a priori, the right estimate of the measure
of the splitting of separatrices, which in the Hamiltonian case is always exponentially small
in ε (see [10] for the periodic case). These singular cases are also known as rapidly forced
systems. The phenomenon of exponentially small splitting of separatrices had already been
discovered by Poincaré [21] in a near integrable case.

In 1964, Arnold [2], when studying the diffusion on the action variables of the near
integrable systems h0(I ) + εh1(ϕ, I, ε), realized that the splitting of separatrices associated
with partially hyperbolic tori was exponentially small in ε.

In the setting of planar systems with high frequency periodic perturbations, upper bounds
of the splitting of separatrices have been given in [10, 11, 16]. If we restrict ourselves to one
and a half degrees of freedom rapidly forced Hamiltonian systems, under suitable conditions,
asymptotic expressions validating the prediction given by the Poincaré–Melnikov function can
be found in [3, 7, 8, 13] (see also references therein). Two of the more important techniques
used in these studies are the suitable flow box coordinates around the stable invariant manifold
and the extension lemma. In [25] a more general perturbation of the pendulum is considered.
The author uses a different method, based on a continuous averaging procedure, for proving
an asymptotic formula of the splitting of separatrices which differs from the one predicted by
the Poincaré–Melnikov function.

In the examples above the given asymptotic expressions are of the form εre−a/ε, but it is
possible to find systems where the true asymptotic formula does not have this form (see [24]).

This problem can also be studied for planar maps. Lazutkin wrote the first study on
this subject, [17], in which he gave an asymptotic formula for the splitting of separatrices of
the standard map. The complete proof of this can be found in [14]. In this context in [12]
exponentially small upper bounds for the splitting of separatrices are proved for analytic
families of diffeomorphisms close to the identity. In [6] is proved an asymptotic expression
for the splitting of separatrices for some perturbations of the McMillan map, which is also
exponentially small and, in fact, coincides with the prediction given by the Poincaré–Melnikov
function.

In [23], the author introduces a new method to study the splitting of separatrices in
Hamiltonian systems which is illustrated in the generalized Arnol’d model with d+1 degrees of
freedom (d � 2). In the model considered in [23] a fixed torus with stable and unstable invariant
manifolds is left invariant after perturbation. The stable and unstable invariant manifolds are
given as solutions of the Hamilton–Jacobi equation. The main tool for studying the splitting
of separatrices is a characteristic vector field, which is defined on a part of the configuration
space, has constant coefficients in good variables and acts on the difference of the stable and
unstable manifold by zero. Actually upper bounds of the splitting of separatrices are given in
a general setting and also lower bounds for special cases are proved.

Recently, resurgence theory (see [5, 9]) has also been used in the problem of the
exponentially small splitting of separatrices. In [22] the author studies the rapidly forced
pendulum by using parametric resurgence. Resurgence theory can also be used in the study
of the exponentially small splitting of separatrices for a map, see [15], where the authors deal
with the Hénon map.

The study we present in this paper is close to another strategy based on matching complex
techniques (see [4]). This method will allow us to study the splitting of separatrices in the
singular case, for instance in the case of one and a half degrees of freedom rapidly forced
Hamiltonian, Hµ,ε of the form

Hµ,ε(x, y, t/ε) = h0(x, y) + µh1(x, y, t/ε, µ, ε), (1.1)
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where h1 is 2π -periodic with respect to t/ε. Suppose that H0,ε has a homoclinic connection
and that it can be parametrized by a complex parameter u ∈ {z ∈ C : |Imz| < a} for some
a > 0. Assume that this parametrization has only two singularities on {z ∈ C : |Imz| = a}
located at points u = ±ia. These hypotheses are satisfied, for instance, by the pendulum.
Roughly speaking, the method is as follows.

(1) To simplify the exposition, we consider the Hamilton–Jacobi equation associated with
equation (1.1). The perturbed invariant manifolds will be described by means of two
special solutions of the Hamilton–Jacobi equation, φ±, satisfying an asymptotic condition.

(2) We prove the existence of parametrizations, φ±, of the perturbed invariant manifolds
in the so called outer domain, O. In this domain, the invariant manifolds φ± are well
approximated by the homoclinic connection.

(3) We look for good approximations of the perturbed invariant manifolds near the singularities
of the homoclinic connection. For this, we derive the inner equation, which is independent
of ε. These approximations are merely special solutions, φ±

in , of the so called inner
equation and they are useful only in a small neighbourhood of the singularities: the inner
domain, I . In the inner domain the homoclinic connection is not a good approximation of
the invariant manifolds. It is necessary that I ∩O �= ∅ and O ∪ I = {z ∈ C : |Imz| < a}.
We also compute the asymptotic expression of the difference between φ+

in and φ−
in .

(4) By using matching complex techniques, the functions φ±
in in the inner domain must be

connected with the invariant manifolds φ± in the outer domain.
(5) Finally, it is necessary to prove that the dominant term of the splitting of separatrices,

φ− − φ+, is given by the one obtained in the inner domain, φ−
in − φ+

in.

By using this strategy it seems possible to deal with larger perturbations. See [19] for a good
summary.

In this work we perform step (3) mentioned above by considering an inner equation which
comes from a quite general one and a half degrees of freedom rapidly forced Hamiltonian.
In [20], an inner equation derived from an example of a rapidly forced pendulum is studied
by using equational resurgence. Note that we will not use resurgence theory; our approach is
close to the one given in [23].

Using the results of this paper, we plan, in a forthcoming work, to give an asymptotic
expression for the splitting of separatrices for one and a half degrees of freedom rapidly forced
Hamiltonian systems having more general perturbations than the ones considered up to now.

The paper is organized as follows. In section 2 we explain the problem and the motivation
to study it. In section 3 we introduce notation and state the main results. Sections 4–6 are
devoted to the proof of the results of section 3. Finally, even though the proofs we will present
in this work deal with the analytic case, we have included an appendix where we state and prove
results similar to the ones given in section 3 for Hamiltonians which are only differentiable
with respect to time. We distinguish between the analytic and the non-analytic dependence on
time in order to clarify the exposition.

2. Context and motivation

2.1. The problem

Consider the Hamiltonian H = H0 + µH1, where µ is a not necessarily small parameter,

H0(z, w) = 1

2
w2z2r − 1

2z2r
, H1(z, w, τ, µ) = 1

z�

N∑
j=0

Aj(τ, µ)wjz2rj , (2.1)
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r � 1, � ∈ R, N ∈ N. Moreover {Aj }j∈{0,...,N} are arbitrary analytic functions in (τ, µ),
2π -periodic and having zero mean with respect to τ .

Our goal is to study the existence and properties of two special solutions φ±
in of the

Hamilton–Jacobi equation associated with the Hamiltonian H:

∂τφ + H(z, ∂zφ, τ, µ) = 0, (2.2)

satisfying that φ±
in are analytic in some complex domain E±, φ±

in are 2π -periodic with respect
to τ and have the asymptotic property

lim
Re z→±∞

∂zφ
±
in(z, τ, µ) = 0. (2.3)

We are also interested in computing the asymptotic expression of the difference ∂z(φ
−
in −

φ+
in)(z, τ, µ) as µ → 0 and Imz → −∞.

To shorten the notation, along this work we will denote φ±
in simply by φ±.

2.2. The model: an inner equation

The Hamiltonian defined by H arises naturally from Hamiltonians of the form

Hµ,ε(q, p, t/ε) = 1
2p2 + V (q) + µεmh1(q, p, t/ε, µ, ε) (2.4)

such that the unperturbed system (given by H0,ε) has a homoclinic connection. Indeed, assume
that V is an analytic function, h1 is analytic with respect to (p, q, µ) and 2πε-periodic with
respect to t . Moreover assume that the Hamiltonian system given by Hµ,ε, when µ = 0 has
the origin as a saddle fixed point, that one branch of the stable invariant manifold coincides
with one branch of the unstable one, giving rise to a homoclinic connection, which can be
parametrized by a complex parameter u. We denote it by γ0(u) = (q0(u), p0(u)) and we
suppose that γ0(u) is analytic in the complex strip Sa = {u ∈ C : |Imu| < a}, that it has
singularities at u = ±ia, that it has no other singularities in {u ∈ C : |Imu| = a} and that in
a neighbourhood of ±ia, there exist r > 1, C± ∈ C and functions g, h with g(0) = h(0) = 0
in such a way that γ0 can be written as

q0(u) = − C±
(r − 1)

1

(u ∓ ia)r−1
(1 + g(u ∓ ia)), p0(u) = C±

(u ∓ ia)r
(1 + h(u ∓ ia)). (2.5)

Without loss of generality we can assume that V (0) = 0. Hence

V (q0(u)) = −p2
0

2
= − C2

±
(u ∓ ia)2r

(1 + f (u ∓ ia)) (2.6)

with f (0) = 0.
We now consider the symplectic change of variables given by

τ = t

ε
, q = q0(u), p = v

p0(u)
,

which is well defined, in a neighbourhood of ia intersected with Sa . We notice that the
homoclinic orbit can be expressed locally in the new variables as (u, p2

0(u)) and the new
Hamiltonian is merely H̄µ,ε(u, v, τ ) = εHµ,ε(q0(u), v/p0(u), τ ). With this change of
variables we have control over the definition domain of the variable u (which will be a
neighbourhood of ±ia intersected with the complex strip Sa). Moreover, since in these
variables the homoclinic connection γ0 can be written as the graph of a suitable function,
we expect that the invariant manifolds of the new Hamiltonian also will be expressed as the
graph of adequate functions.
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We are looking for a new Hamiltonian H which will be a good approximation of Hµ,ε

in a neighbourhood of the singularity u = ia (one can proceed in an analogous way to study
the singularity u = −ia). For this reason, we perform the change of variables given by
z = (u − ia)/ε, w = ε2rC−2

+ v. This change has constant determinant and therefore the new
system is also Hamiltonian with Hamiltonian

Hµ,ε(z, w, τ) = ε2r−1C−2
+ Hµ,ε(εz + ia, wε−2rC2

+, τ )

= ε2rC−2
+

(
C4

+w2

ε4rp2
0(εz + ia)

+ V (q0(εz + ia))

)

+ C−2
+ µεm−2rh1

(
q0(εz + ia),

C2
+w

ε2rp0(εz + ia)
, τ, µ, ε

)
.

We assume another condition over h1: h1 is a polynomial in the (q, p) variables, that is,
h1(q, p, τ, µ, ε) = ∑

0�i,j�M ai,j (τ, µ, ε)qipj . Therefore we can define

� = max{(r − 1)i + rj : ∀µ0, ε0 > 0, ∃(τ, µ, ε) ∈ [0, 2π ] × [−µ0, µ0] × (0, ε0)

s.t. ai,j (τ, µ, ε) �= 0}.
In other words, � is the greatest order of the singularities ±ia among all the monomials of h1.
This quantity � was also defined in [8].

Using expressions (2.5) and (2.6) of q0(u), p0(u) and V (q0(u)) and taking into account
the definition of �, we conclude that

Hµ,ε(z, w, τ) = H0(z, w) + µεm−�+2rH1(z, w, τ, µ)(1 + fε) + gε (2.7)

where H0 and H1 are of the form (2.1) and f0 = g0 = 0.

Remark 2.1. It is not difficult to see that we also obtain a system of the form (2.7) if both V

and h1 are trigonometric polynomials with respect to q, and h1 is a polynomial with respect
to p. In this case we allow r � 1.

Taking m = �− 2r , and considering system (2.7) for ε = 0, we get a Hamiltonian system
with Hamiltonian H. Hence, the study of the existence and properties of solutions φ± of the
Hamilton–Jacobi equation (2.2) is strongly related to the study of the invariant manifolds of
Hamiltonian systems of the form (2.4). Obviously, if m > � − 2r we can rename µεm−�+2r by
µ and proceeding as in the case m = � − 2r . The case m < � − 2r remains unknown.

Remark 2.2. Consider system (2.7) for µ = ε = 0. In this case, the approximation of the
piece of the stable (or unstable) invariant manifold we are dealing with can be represented in
the new variables (z, w) as (z, 1/z2r ).

Remark 2.3. The previous procedure is a generalization of the idea given in [20] for obtaining
an inner equation for a perturbed pendulum. In our case the homoclinic connection is not
a Lagrangian manifold, thus we cannot deal with the Hamilton–Jacobi equation from the
beginning as in [20].

3. Main results

Before presenting the precise statement of the results, let us fix some notation.
For any b > 0 and µ0 > 0 we introduce the complex strip Sb = {τ ∈ C : |Imτ | < b} and

the open ball B(µ0) = {µ ∈ C : |µ| < µ0}.
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Let γ, ρ > 0. We define the complex domains

D+
γ,ρ = {z ∈ C : |Imz| > −γ Re z + ρ}, D−

γ,ρ = −D+
γ,ρ,

Eγ,ρ = D+
γ,ρ ∩ D−

γ,ρ ∩ {z ∈ C : Imz < 0}. (3.1)

To shorten the notation we write D±
γ,ρ,b = D±

γ,ρ ×Sb ×B(µ0) and Eγ,ρ,b = Eγ,ρ ×Sb ×B(µ0).
The first result is related to the existence of analytic solutions, φ±, of the Hamilton–Jacobi

equation (2.2), satisfying that limRe z→±∞ ∂zφ
± = 0 and that are 2π -periodic with respect to τ .

Theorem 3.1. Consider the Hamiltonian H = H0 + µH1, where

H0(z, w) = 1

2
w2z2r − 1

2z2r
and H1(z, w, τ, µ) = 1

z�

N∑
j=0

Aj(τ, µ)wjz2rj , (3.2)

with r � 1, � ∈ R, N ∈ N.
Assume that {Aj }j∈{0,...,N} are analytic functions on Sb0 × B(µ0) for some b0 > 0 and

µ0 > 0 and that they are 2π -periodic, with zero mean, with respect to τ .
Then, if � � 2r , for any γ > 0 and 0 < b < b0 there exists ρ0 = ρ0(γ, b, �, r, µ0) > 0,

such that the Hamilton–Jacobi equation associated with H
∂τφ + H(z, ∂zφ, τ, µ) = 0 (3.3)

has solutions φ± : D±
γ,ρ0,b

→ C of the form

φ±(z, τ, µ) = − 1

(2r − 1)z2r−1
+ µφ±

1 (z, τ, µ) + ξ±, ξ± ∈ C,

where φ±
1 are analytic functions in all their variables and 2π -periodic with respect to τ .

Moreover the derivatives ∂zφ
±
1 are uniquely determined by the condition

sup
(z,τ,µ)∈D±

γ,ρ0 ,b

|z�+1∂zφ
±
1 (z, τ, µ)| < +∞. (3.4)

Remark 3.2. We define ετ = (b0 − |Imτ |)/2 and the complex set

Dγ (τ, µ) = {z ∈ C : |Im z| > −γ Re z + ρ0(γ, |Im τ | + ετ , �, r, |µ|)}.
It can be proved that the solutions of the Hamilton–Jacobi equation given in theorem 3.1, φ±,
are analytic functions in (z, τ, µ) ∈ Dγ (τ, µ) × Sb0 × B(µ0), respectively, and therefore we
do not lose the analyticity domain with respect to (τ, µ) provided z ∈ Dγ (τ, µ).

The proof of theorem 3.1 is given in section 4.
Let φ± be two solutions of the Hamilton–Jacobi equation (3.3) satisfying the conclusions

of theorem 3.1. Our goal now will be to give an asymptotic expression for the difference
between ∂zφ

− and ∂zφ
+ as Im z → −∞.

To state the next result properly we need to introduce some notation. We write

Qj(τ, µ) =
N∑

k=j

(
k

j

)
Ak(τ, µ), j = 0, . . . , N

and we define F0 such that ∂τF0 = Q0 and 〈F0〉 = 0 where 〈·〉 denotes, as usual, the mean
with respect to τ .

Theorem 3.3. Under the conditions of theorem 3.1, there exist ρ1 = ρ1(γ, b, �, r, µ0) � ρ0,
an analytic function C(µ) defined on B(µ0) and an analytic function g : Eγ,ρ1,b → C such
that, for any two solutions φ± of equation (3.3) given by theorem 3.1,

∂z(φ
− − φ+)(z, τ, µ) ∼ −iµC(µ)e−i(z−τ+µg(z,τ,µ)) as Im z → −∞. (3.5)



One and a half degrees of freedom rapidly forced Hamiltonian 1421

We also have that

− iC(0)e−i(z−τ) ∼ �

∫ +∞

−∞

Q0(τ + t, 0)

(z + t)�+1
dt as Im z → −∞, (3.6)

where {Aj }j∈{0,···,N} are defined by (3.2).
Moreover the function g satisfies that

sup
(z,τ,µ)∈Eγ,ρ1 ,b

|z�−2rg(z, τ, µ)| < ∞ if � > 2r,

sup
(z,τ,µ)∈Eγ,ρ1 ,b

|(log |z|)−1g(z, τ, µ)| < ∞ if � = 2r and either Q1 �= 0 or 〈F0 · Q2〉 �= 0,

sup
(z,τ,µ)∈Eγ,ρ1 ,b

|zg(z, τ, µ)| < ∞ if � = 2r, Q1 = 0 and 〈F0 · Q2〉 = 0.

Remark 3.4. We emphasize that the function g given in theorem 3.3 does not depend on the
choice of φ±. In fact we will see that g only depends on ∂zφ

± which are determined uniquely
by condition (3.4).

The proof of theorem 3.3 will be left to section 5. The main idea of proving this theorem
is to exploit the fact that the difference ∂z(φ

− − φ+) satisfies a linear equation with suitable
properties. This idea was already introduced in [23] although the way we deal with this linear
equation is different.

Let us denote ak(µ) the k-Fourier coefficient of Q0(τ, µ). The following corollary gives
an explicit asymptotic formula of ∂z(φ

− − φ+) as µ → 0 and Imz → −∞.

Corollary 3.5. Under the same assumptions of theorem 3.1 and the condition a1(0) �= 0, the
following asymptotic formulas hold.

(i) If either � > 2r or � = 2r , Q1 = 0 and 〈F0 · Q2〉 = 0,

∂z(φ
− − φ+)(z, τ, µ) ∼ µi�+1 2π�

�(� + 1)
a1(0)e−i(z−τ), Im z → −∞, µ → 0.

(ii) If � = 2r and either Q1 �= 0 or 〈F0 · Q2〉 �= 0,

∂z(φ
− − φ+)(z, τ, µ)∼ µi�+1 2π�

�(� + 1)
a1(0)e−i(z−τ+µg(z,τ,0)), Im z →−∞, µ → 0.

We will check corollary 3.5 in section 6.
If there is no danger of confusion, we will omit the dependence with respect to the

parameters µ and µ0 in the notation. Throughout the paper this dependence will be analytic.

3.1. Remarks

• We stress that theorems 3.1 and 3.3 apply for not necessarily small values of µ.
• Note that our results are only valid if � � 2r . The case � < 2r must be treated differently.
• Our results agree with those on the difference between φ+ and φ− given in [20] for the

particular case

∂τφ − 1

8
z2(∂zφ)2 + 2

1

z2
(1 − µ sin τ) = 0.

Performing the linear change φ = −4ψ we obtain equation (3.3) for r = 1, � = 2 and
H1 = z−2(sin τ)/2. In this case, N = 0 and hence Q1 = 0 and 〈F0 · Q2〉 = 0.
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• We notice that the asymptotic expression given in corollary 3.5 is closely related to the
Melnikov function M of the Hamiltonian system Hµ,ε, defined in (2.4). In this case we
are considering µ to be a small parameter. In fact, assuming the hypotheses of section 2.2
if either � > 2r or � = 2r , Q1 = 0 and 〈F0 · Q2〉 = 0, we have that

µε�M(u, ε) ∼ 2 Re(C2
+∂z(φ

+ − φ−)((u − ia)/ε, 0)). (3.7)

Indeed, let J (q, p, τ ) = {h0, h1}(q, p, τ ) and let Jk(q, p) be its k-Fourier coefficient. It
is clear that there exist functions h±

k satisfying h±
k (0) = 0 such that

Jk(q0(u), p0(u)) = J±
k,0

(u ± ia)�+1
(1 + h±

k (u ± ia)),

in a neighbourhood of u = ∓ia, respectively. We note that J +
k,0 = J−

k,0. In [3] and [8] (for
� ∈ N) it is proved that, if J−

1,0 �= 0, then

ε�M(u, ε) ∼ 4π

�(� + 1)
Re(i�+1J−

1,0e−iu/ε)e−a/ε.

Following the changes of variables given in section 2.2, tedious but easy computations
show that

N∑
j=0

Aj(τ, µ) = 1

�C2
+

∑
k∈Z\{0}

J−
k,0eikτ .

Thus J−
1,0 = a1(0)�C2

+. Finally formula (3.7) follows from the asymptotic expression
given in (i) of corollary 3.5.

• In the case � = 2r and either Q1 �= 0 or 〈F0 · Q2〉 �= 0, the difference ∂z(φ
− − φ+) has an

extra term given by the function g which is not related (a priori) to the Melnikov function.
We expect that, in the cases where g be of order log |z|, the Melnikov function will not
measure the splitting of separatrices even when the parameter µ is small.
This case is fulfilled, for instance, if we look for the inner equation for the perturbed
pendulum

Hµ,ε(q, p, t/ε) = 1
2p2 + (1 − cos q) + µ(p2 cos(t/ε) + cos q sin(t/ε)).

Indeed, the homoclinic orbits are given by

(q0(u), p0(u)) = (±2 arctan(sinh u), ±2 sech u).

Let us consider the + sign. The second component has poles of order 1 at u = ±iπ/2+2kπ .
Hence, following the notation given in section 2, one has that r = 1, a = π/2 and
C+ = −2i. Writing h1(q, p, τ, µ, ε) = p2 cos(t/ε) + cos q sin(t/ε), we obtain

ε2

C2
+

h1

(
q0(εz + ia),

C2
+w

ε2p0(εz + ia)
, τ, µ, ε

)
= 1

z2

(
1

2
sin τ + w2z4 cos τ

)
(1 + O(εz))

and consequently,

H1(z, w, τ, µ) = 1

z2

(
1

2
sin τ + w2z4 cos τ

)
.

Obviously, in this case, � = 2r , Q0(τ ) = 1
2 sin τ + cos τ and hence F0(τ ) = − 1

2 cos τ +
sin τ , Q1(τ ) = 2 cos τ and Q2(τ ) = cos τ . We have that Q1(τ ) �= 0 and 〈F0 ·Q2〉 = − 1

4 .
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4. Solutions of the Hamilton–Jacobi equation

In this section we prove theorem 3.1. To do so we look for solutions of the Hamilton–Jacobi
equation (3.3):

∂τφ
± + H(z, ∂zφ

±, τ ) = 0 (4.1)

of the form

φ±(z, τ ) = φ0(z) + µφ±
1 (z, τ ) + ξ±, ξ± ∈ C. (4.2)

where φ0(z) = −1/((2r − 1)z2r−1) with the condition that, given γ > 0, 0 < b <

b0 and ρ big enough, φ±
1 is analytic on D±

γ,ρ,b, 2π -periodic with respect to τ and
sup(z,τ )∈D±

γ,ρ,b
|z�+1∂zφ

±
1 (z, τ )| < ∞.

We observe that both ±φ0 are solutions of equation (4.1) for µ = 0, but since, by
remark 2.2, the homoclinic orbit of H0,ε can be approximated by (z, ∂zφ0) in the (z, w) variables
we choose the + sign.

Below we split the proof of theorem 3.1 into five steps which are developed in
sections 4.1–4.5.

Our strategy for proving theorem 3.1 will be to apply a suitable version of the fixed point
equation. For that first we define the Banach space we will work with. Actually, such Banach
spaces are functional spaces of Fourier series having Fourier coefficients with potential decay
when |z| → ∞. The precise definition and properties of these Banach spaces are given in
section 4.1.

In section 4.2 we deduce a partial differential equation for both ϕ± := ∂zφ
±
1 . Such an

equation can be expressed in the form

∂τϕ
± + ∂zϕ

± = F(ϕ±) (4.3)

with F a known analytic function.
Clearly the operator L(ψ) = ∂τψ + ∂zψ is not bijective but has left-side inverse in the

Banach spaces introduced above, which are studied in section 4.3. We denote them by B±.
In section 4.4, we prove that the fixed point equations ψ = B±(F (ψ)) deduced from

equation (4.3) have two solutions ϕ± (one for the + case and another one for the − case) such
that sup(z,τ )∈D±

γ,ρ,b
|z�+1ϕ±(z, τ )| is bounded.

Finally it only remains to show that there exist solutions φ± of the initial equation (4.1)
such that ∂zφ

± = ∂zφ0 + µϕ±. This is done in section 4.5.
We denote by 〈·〉 the mean with respect to τ .

4.1. The Banach spaces: definition and properties

This subsection is devoted to introducing the Banach spaces that we will deal with. We also
state some of their useful properties.

On the one hand, we observe that all the 2π -periodic with respect to τ solutions of the
unperturbed Hamilton–Jacobi equation ∂τφ + H0(z, ∂zφ) = 0 going to 0 as |z| goes to ∞, do
not depend on τ and they satisfy that ∂zφ(z) = ±z−2r . On the other hand we are looking for
2π -periodic solutions of the Hamilton–Jacobi equation (2.2); hence we will consider spaces
of Fourier series with Fourier coefficients having potential decay to 0 as |z| → ∞.

Now we give a precise definition of our Banach spaces.
For ν ∈ R and γ, ρ > 0, we write D

±
γ,ρ = D±

γ,ρ × B(µ0), with D±
γ,ρ defined in (3.1), and

we define the functional spaces

Xν
± = {h : D

±
γ,ρ → C : h is analytic and sup

(z,µ)∈D
±
γ,ρ

|zνh(z, µ)| < +∞}.



1424 I Baldomá

It is clear that Xν
± equipped with the norm

‖h‖ν = sup
(z,µ)∈D

±
γ,ρ

|zνh(z, µ)| (4.4)

is a Banach space.
Now we define the space X ν,±

γ,ρ,b of Fourier series with coefficients in Xν
±. That is, a

function f : D±
γ,ρ × Sb × B(µ0) → C belongs to X ν,±

γ,ρ,b if and only if

(i) f is analytic on D±
γ,ρ × Sb × B(µ0).

(ii) f is 2π -periodic with respect to its second variable.
(iii) Let fk be the k-Fourier coefficient of f . We ask fk to satisfy:

fk ∈ Xν
± and

∑
k∈Z

‖fk‖νe|k|b < +∞.

We endow X ν,±
γ,ρ,b with the norm

‖f ‖X ν,±
γ,ρ,b

=
∑
k∈Z

‖fk‖νe|k|b

and it becomes a Banach space. The proof of this fact can be found in [23].
We will write X ν

γ,ρ,b = X ν,±
γ,ρ,b when we will state common properties of both Banach

spaces. If there is no danger of confusion about the definition domain D±
γ,ρ × Sb × B(µ0), we

will denote

‖ · ‖ν,b = ‖ · ‖X ν
γ,ρ,b

, and X ν = X ν
γ,ρ,b.

Remark 4.1. We emphasize that checking that a 2π -periodic function f belongs to X ν is
equivalent to proving that it is analytic with respect to µ, that the k-Fourier coefficient belongs
to Xν

± for k ∈ Z and that ‖f ‖ν,b < +∞. In other words the analyticity with respect to τ is an
immediate consequence of (ii) and (iii).

Remark 4.2. Assume that f ∈ X ν . We denote its k-Fourier coefficient by fk . We note that

sup
(z,τ,µ)∈D±

γ,ρ,b

|zνf (z, τ, µ)| �
∑
k∈Z

|zνfk(z, µ)ekτ | � ‖f ‖ν,b.

Conversely, if f : D±
γ,ρ × Sb′ × B(µ0) → C is an analytic function, satisfying that

sup(z,τ,µ)∈D±
γ,ρ,b′ |zνf (z, τ, µ)| < +∞, then for all b < b′, f ∈ X ν

γ,ρ,b. This fact follows from

the estimate

‖fk‖ν � sup
(z,τ,µ)∈D±

γ,ρ,b

|zνf (z, τ, µ)|e−|k|b′′
, for b < b′′ < b′

which is obtained by using the equality

fk(z, µ) = 1

2π

∫ 2π

0
f (z, τ, µ)e−ikτ dτ = e−|k|b′′ 1

2π

∫ 2π

0
f (z, τ ± ib′′, µ)e−ikτ dτ,

taking the + sign if k < 0 and if k � 0, we choose the − sign.

The next lemma provides fundamental properties of the Banach spaces X ν .

Lemma 4.3. Let γ, ρ, b > 0 and ν, η ∈ R.

(i) If ν � η, X ν ⊂ X η. Moreover denoting aγ = (1 + γ 2)−1/2

‖h‖η,b � (ρaγ )η−ν‖h‖ν,b, if h ∈ X ν . (4.5)
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(ii) If h ∈ X ν and g ∈ X η, the product hg ∈ X ν+η and

‖hg‖ν+η,b � ‖h‖ν,b‖g‖η,b. (4.6)

(iii) If h ∈ X ν
γ,ρ,b, then there exists a constant Aγ,ν such that for l ∈ N{0} we have that

∂l
zh ∈ X l+ν

2γ,4ρ,b and ‖∂l
zh‖l+ν,b � l!C−l

γ Aγ,ν‖h‖X ν
γ,ρ,b

. (4.7)

Proof. We observe that, if z ∈ D±
γ,ρ , then |z| � ρ(1 + γ 2)−1/2 and therefore, formula (4.5)

follows easily from the definition of the norms.
Now we check (ii). Let h ∈ X ν and g ∈ X η. We denote by hk , gk and (hg)k the k-Fourier

coefficients of h, g and hg respectively. It is clear that, for z ∈ D±
γ,ρ ,

|zν+η(hg)k(z)| �
∑
i∈Z

|zνhi(z)||zηgk−i (z)| �
∑
i∈Z

‖hi‖ν‖gk−i‖η < +∞.

Therefore, since |k| � |k − i| + |i|,
‖hg‖ν+η,b �

∑
k,i∈Z

‖hi‖ν‖gk−i‖ηe|k|b � ‖h‖ν,b‖g‖η,b

and we obtain bound (4.6).
Finally we prove (iii). Let l ∈ N\{0}. It is clear that ∂l

zh satisfies conditions (i) and
(ii) of the definition of the Banach spaces X l+ν

2γ,4ρ,b. To checking condition (iii), we introduce

the constant Cγ = γ
(
4(1 + γ 2)1/2(1 + 4γ 2)1/2

)−1
< 1/4. Geometric arguments allow us to

deduce that

{u ∈ C : |u − z| � Cγ |z|} ⊂ D±
γ,ρ, if z ∈ D±

2γ,4ρ. (4.8)

Let hk be the k-Fourier coefficient of h. By Cauchy’s formula,

|∂l
zhk(z)| � l!

2π |z|lCl
γ

∫ 2π

0
|hk(z + |z|Cγ eiθ )| dθ � ‖hk‖ν l!

|z|l+νCl
γ max{(1 + Cγ )ν, (1 − Cγ )ν} ,

for z ∈ D±
2γ,4ρ and hence, summing the corresponding Fourier series, we deduce (4.7). �

The following lemma deals with the composition of functions belonging to the spaces X κ

and X ν of the form F(z + µf (z, τ ), τ ).

Lemma 4.4. Let γ, ρ, b > 0, ν ∈ R and κ > −1. We fix F ∈ X ν
γ,ρ,b and f ∈ X κ

γ,ρ,b.
Assume that ρ satisfies the inequality

µ0C
−1
γ ‖f ‖X κ

γ,ρ,b
� 1

2

(
ρ

(1 + γ 2)1/2

)κ+1

(4.9)

with Cγ satisfying property (4.8). We define the formal expression

TF (f )(z, τ ) =
∑
l�1

1

l!
∂l
zF (z, τ )µlf l(z, τ ). (4.10)

Then there exists a constant Bγ,ν such that

TF (f ) ∈ X ν+κ+1
2γ,4ρ,b, ‖TF (f )‖ν+κ+1,b � µ0Bγ,ν‖F‖X ν

γ,ρ,b
‖f ‖X κ

γ,ρ,b
. (4.11)

Moreover, the function F̃ (z, τ ) = F(z + µf (z, τ ), τ ) belongs to X ν
2γ,4ρ,b.
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Proof. We fix γ, b, ρ, ν > 0 and κ > −1. From now on we will denote X η

2γ,4ρ,b simply by
X η and consequently we will write ‖ · ‖η,b = ‖ · ‖X η

2γ,4ρ,b
.

Given F ∈ X ν
γ,ρ,b, by (iii) of lemma 4.3, we get that for all l ∈ N\{0}

∂l
zF ∈ X l+ν and ‖∂l

zF‖l+ν,b � l!C−l
γ Aγ,ν‖F‖X ν

γ,ρ,b
. (4.12)

Let now f ∈ X κ
γ,ρ,b ⊂ X κ . Since κ + 1 > 0, by (ii) lemma 4.3 and property (4.12), we have

that ∂l
zF ·f l ∈ X l(κ+1)+ν ⊂ X κ+1+ν . Denoting ργ = ρ(1 + γ 2)−1/2 and using again lemma 4.3,

we have that

‖∂l
zF · f l‖κ+1+ν,b � ρ(−l+1)(κ+1)

γ ‖∂l
zF‖l+ν,b‖f ‖l

κ,b

� l!Aγ,νC
−1
γ (ρκ+1

γ Cγ )−l+1‖F‖X ν
γ,ρ,b

‖f ‖l
κ,b.

Then we have that TF (f ) is a series of functions belonging to X κ+1+ν . Moreover, since ρ sat-
isfies condition (4.9) and ‖f ‖κ,b � ‖f ‖X κ

γ,ρ,b
, the constant ργ satisfies ρ−κ−1

γ µ0C
−1
γ ‖f ‖κ,b �

1/2 and therefore we have that

‖TF (f )‖κ+1+ν,b �
∑
l�1

1

l!
|µ|l‖∂l

zF · f l‖κ+1+ν,b

� Aγ,νC
−1
γ ‖F‖X ν

γ,ρ,b

∑
l�1

(ρκ+1
γ Cγ )−l+1µl

0‖f ‖l
κ,b

� 2Aγ,νC
−1
γ µ0‖F‖X ν

γ,ρ,b
‖f ‖X κ

γ,ρ,b
(4.13)

and property (4.11) is proved.
Finally, we note that since the condition (4.9) is fulfilled by f and ρ, by remark 4.2,

|µf (z, τ )| � |z|−κµ0‖f ‖ν,b � |z|ρ−κ−1
γ µ0‖f ‖X ν

γ,ρ,b
< Cγ |z|.

Hence by property (4.8), z + µf (z, τ ) ∈ Dγ,ρ for all (z, τ ) ∈ D±
2γ,4ρ × Sb. Then it is

clear that, by Taylor’s theorem F̃ = F + TF (f ) and therefore by (4.11), F̃ ∈ X ν provided
TF (f ) ∈ X κ+1+ν ⊂ X ν . �

From now on we deal only with the + case, the − case being analogous. For this reason
we will skip the + sign of our notation in the remaining part of this section.

4.2. The partial differential equation ∂zφ1 satisfies

Since φ0 is a solution of equation (3.3), for µ = 0, φ = φ0 + µφ1 will be solutions of the
Hamilton–Jacobi equation (3.3) if and only if φ1 satisfy the equation:

∂τφ1 + ∂zφ1 + H1(z, ∂zφ0 + µ∂zφ1, τ ) +
µ

2
z2r (∂zφ1)

2 = 0. (4.14)

In order to shorten the notation, we introduce

Qj(τ) =
N∑

k=j

(
k

j

)
Ak(τ), χ�

1 (z, τ ) = − �

z�+1
Q0(τ ), (4.15)

χ�
2 (z, w, τ) = 1

z�
Q1(τ )µz2rw, χ�

3 (z, w, τ) = µ

2
z2rw2 +

1

z�

N∑
j=2

Qj(τ)(µz2rw)j

and we recall that {Ak}k∈{0,...,N} are determined by H1(z, w, τ) = ∑N
k=0 Ak(τ)wkz2rk−�.

Finally, differentiating equation (4.14) with respect to z and denoting ∂zφ1 by ϕ, it is not
difficult to check that ϕ must satisfy

∂τϕ + ∂zϕ + χ�
1 (z, τ ) + ∂z(χ

�
2 (z, ϕ, τ ) + χ�

3 (z, ϕ, τ )) = 0. (4.16)
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4.2.1. The case � = 2r . We study the particular case � = 2r . Since Q1 has zero mean, the
function determined by ∂τF1 = Q1 and 〈F1〉 = 0 is 2π -periodic. Performing the change of
variables given by

u = z − µF1(τ ), ϕ̃(u, τ ) = ϕ(u + µF1(τ ), τ )

and denoting again ϕ̃ by ϕ and u by z, equation (4.16) becomes

∂τϕ + ∂zϕ + χ�
1 (Z(z, τ ), τ ) + ∂z(χ

2r
3 (Z(z, τ ), ϕ, τ )) = 0, (4.17)

where Z(z, τ ) = z + µF1(τ ).

4.2.2. The final equation for ∂zφ1 in the case � � 2r . To write equations (4.16) and (4.17)
in a unified way we introduce the functions

ψ�
1 (z, τ ) =

{−χ�
1 (z, τ ) if � > 2r,

−χ2r
1 (Z(z, τ ), τ ) if � = 2r

(4.18)

and

ψ�
2 (ϕ)(z, τ ) =

{−χ�
2 (z, ϕ, τ ) − χ�

3 (z, ϕ, τ ) if � > 2r,

−χ2r
3 (Z(z, τ ), ϕ, τ ) if � = 2r.

(4.19)

With this notation, equations (4.16) and (4.17) become

∂τϕ + ∂zϕ = ψ�
1 + ∂z(ψ

�
2 (ϕ)). (4.20)

4.3. The operator B

In this section we will study the operator B formally defined by

B(h)(z, τ ) =
∫ 0

+∞
h(z + t, τ + t) dt. (4.21)

Remark 4.5. We note that, differentiating formally under the integral sign, ∂τB(h)+∂zB(h) =
h. Hence the operator B is a (formal) left-inverse of L(ψ) = ∂τψ + ∂zψ .

The next lemma ensures that the operator B is actually a left-inverse of L in X ν
γ,ρ,b.

Lemma 4.6. Let ρ, γ, b > 0 and ν > 1. Then

(i) The operator B : X ν → X ν−1 is well defined. Moreover, there exists a constant Kν,γ

depending only on ν and γ , such that

‖B(h)‖ν−1,b � Kν,γ ‖h‖ν,b if h ∈ X ν .

(ii) Let h ∈ X ν . Then ∂zB(h) ∈ X ν and there exists a constant Cν,γ such that

‖∂zB(h)‖ν,b � Cν,γ ‖h‖ν,b.

(iii) For h ∈ X ν with 〈h〉 = 0, we have that B(h) ∈ X ν , 〈B(h)〉 = 0 and

‖B(h)‖ν,b � Cν,γ ‖h‖ν,b. (4.22)

Proof. First we observe that if h ∈ X ν , for all (z, τ ) ∈ Dγ,ρ × Sb, |h(z, τ )| � |z|−ν‖h‖ν,b.
Therefore, if ν > 1, using Fubbini’s theorem, we can express the k-Fourier coefficient
of B(h) as

(B(h))k(z) =
∫ 0

+∞
eikthk(z + t) dt, (4.23)

where hk denotes the k-Fourier coefficient of h.
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We fix ρ, γ, b > 0, ν > 1 and h ∈ X ν . First we deal with (i). On the one hand,∫ +∞

0

1

|z + t |ν dt � Kν,γ

1

|z|ν−1
if z ∈ Dγ,ρ, (4.24)

where Kν,γ = 2(1 + γ 2)(ν−1)/2γ 1−ν
∫ +∞

0 (1 + t2)−ν/2 dt . Bound (4.24) is straightforward by
using the fact that if Re z < 0 and z ∈ Dγ,ρ , γ |z| � (1 + γ 2)1/2|Imz|. The case Re z � 0 is
obvious.

On the other hand, using |hk(z + t)| � ‖hk‖ν |z + t |−ν in equation (4.23) and applying
bound (4.24) we deduce

|(B(h))k(z)| � ‖hk‖ν

∫ +∞

0

1

|z + t |ν dt � Kν,γ ‖hk‖ν

1

|z|ν−1
, if z ∈ Dγ,ρ.

Hence ‖(B(h))k‖ν−1 � Kν,γ ‖hk‖ν and by using the definition of ‖ · ‖ν,b we conclude that
‖B(h)‖ν−1,b � Kν,γ ‖h‖ν,b.

Before checking (ii) and (iii) we claim that if h ∈ X ν ,

‖(B(h))k‖ν � C̃ν,γ |k|−1‖hk‖ν for k ∈ Z\{0} (4.25)

with C̃ν,γ = (sin γ̃ )−ν−1 and γ̃ = (arctan γ /2). Indeed, we fix k > 0 and z ∈ Dγ,ρ . Clearly,
z + teiγ̃ ∈ Dγ,ρ , for t � 0. Then, since hk is analytic in Dγ,ρ and limRe z→+∞ zhk(z) = 0,
Cauchy’s theorem implies that we can move the path of integration z + t to z + teiγ̃ :

(B+(h))k(z) =
∫ 0

+∞
eikthk(z + t) dt =

∫ 0

+∞
eikteiγ̃

hk(z + teiγ̃ )eiγ̃ dt. (4.26)

On the other hand, using the fact that arg(z) ∈ (−π + arctan γ, π − arctan γ ), it is easy to
check that |z + teiγ̃ | � |z| sin γ̃ and therefore, bounding the last integral in equation (4.26),

|(B(h))k(z)| � ‖hk‖ν

∫ +∞

0

e−kt sin γ̃

|z + teiγ̃ |ν dt � ‖hk‖ν

1

|k||z|ν(sin γ̃ )ν+1
. (4.27)

In the same way, if k < 0, we choose the path of integration t = se−iγ̃ , s � 0 in equation (4.23)
and we obtain the same bound as in (4.27). This proves bound (4.25).

Next we prove (ii). We have already seen that B(h) ∈ X ν−1. Therefore, integrating by
parts in equation (4.23), we obtain an expression for the k-Fourier coefficient of ∂zB(h) which
is ∂z(B(h))k = hk − ik(B(h))k . Now bound (4.25) implies (ii):

‖∂zB(h)‖ν,b � ‖h‖ν,b +
∑

k∈Z\{0}
|k|‖(B(h))k‖νe|k|b � (1 + C̃ν,γ )‖h‖ν,b.

To check (iii) is straightforward. Indeed, by (4.23), if h0 = 〈h〉 = 0, then 〈B(h)〉 = 0.
Finally, bound (4.22) follows from (4.25). �

Remark 4.7. Given ν > 1 and h ∈ X ν , if ψ is a solution of L(ψ) = h such that
limRe z→+∞ ψ(z, τ ) = 0, then ψ = B(h).

Indeed, let ψ be a solution of L(ψ) = h. By lemma 4.6, B(h) is a solution of
L(ψ) = h; thus there exists a function χ such that ψ = B(h) + χ(z − τ). Moreover, since
ψ and B(h) are 2π -periodic with respect to τ and they both satisfy limRe z→+∞ ψ(z, τ ) =
limRe z→+∞ B(h)(z, τ ) = 0, the function χ is 2π -periodic and it also satisfies that
limζ→∞ χ(ζ ) = 0. This implies that χ ≡ 0.
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4.4. Existence, uniqueness and asymptotic properties of ∂zφ1

We have seen in section 4.2 that ϕ := ∂zφ1 has to be a solution of the partial differential
equation (4.16). This subsection is devoted to proving that equation (4.16) has only one
solution with the properties required for ∂zφ1. Concretely we will prove the following.

Proposition 4.8. Let γ > 0 and 0 < b < b0. If � � 2r , there exists ρ0 depending on γ, b, r

and �, such that the partial differential equation (4.16) has only one solution ϕ 2π -periodic with
respect to τ and with the asymptotic property limRe z→+∞ ϕ(z, τ ) = 0. Moreover ϕ ∈ X �+1

γ,ρ0,b

and ϕ − B(ψ�
1 ) ∈ X �+1+η� with η� = � − 2r if � > 2r and η� = 1 if � = 2r .

Let us consider equation (4.20).

∂τϕ + ∂zϕ = ψ�
1 + ∂z

(
ψ�

2 (ϕ)
)
.

(We recall that {ψ�
i }i=1,2 were defined by formulae (4.18) and (4.19)). We also stress that

equation (4.20) was deduced from equation (4.16) simply by performing a change of variables
if � = 2r . If � > 2r both equations are the same.

We observe that equation (4.20) can be (formally) written as a fixed point equation. Indeed,
we only need to take into account that the operator B is linear and by remark 4.5, B = L−1.
Moreover B ◦ ∂z = ∂z ◦ B (differentiating formally under the integral sign). Hence equation
(4.20) can be formally expressed as

ϕ = B(ψ�
1 ) + ∂zB(ψ�

2 (ϕ)). (4.28)

To prove proposition 4.8 we perform two steps. The first is devoted to proving that
equation (4.28) has a fixed point ϕ belonging to X �+1

γ,ρ̃0,b
with ρ̃0 large enough.

Later we will check that ϕ is a solution of equation (4.20) provided that (after restricting
our definition domain Dγ,ρ̃0,b if necessary) the linear operators ∂z and B actually commute.
Note that this fact implies that equation (4.28) is equivalent to

ϕ = B
(
ψ�

1 + ∂z(ψ
�(ϕ))

)
and hence by remark 4.5, ϕ is a solution of equation (4.20). The uniqueness of this solution
comes from remark 4.7.

Finally, taking into account the relation between equations (4.20) and (4.16) we will
conclude that ϕ is a solution of equation (4.16) if � > 2r . If � = 2r , we will need to perform
the change of coordinates given by ϕ̃(z, τ ) = ϕ(z − µF1(τ ), τ ), with F1 a suitable periodic
function, to obtain the solution of equation (4.16) that we are looking for.

4.4.1. The fixed point equation. Before dealing with fixed point equation (4.28), we state an
auxiliary lemma which works in a more general setting.

Lemma 4.9. We fix γ, b, ρ > 0, ν > 1 and h0 ∈ X ν and we define R0 = 8‖h0‖ν,b + 1/2. We
denote by B(R) the open ball of X ν of radius R > 0 and centred at the origin.

Let R be an analytic operator R : B(R0) → X 0 such that there exist C, η > 0 satisfying

R(0) = 0, ∂
j

hR(0) ∈ X η−(j−1)ν and ‖∂j

hR(0)‖η−(j−1)ν,b � C
j !

(2R0)j
, for j � 1.

Then there exists ρ1 = ρ1(γ, b, ν, η, ρ) big enough such that the operator

F(h) := h0 + ∂zB(R(h))

has a fixed point h ∈ X ν
γ,ρ1,b

.
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Proof. To shorten the notation, along this proof we will denote X ν
γ,ρ1,b

and ‖ · ‖X ν
γ,ρ1 ,b

simply
by X ν and ‖ · ‖ν,b, respectively.

We take ρ1 = max{ρ, (1 + γ 2)1/2(16CR−1
0 Cν,γ )1/η} where Cν,γ is the constant defined in

(ii) of lemma 4.6. This choice will be justified below.
In [1] it was proved that if f is an analytic operator defined in a complex Banach space,

satisfying that f (B(R)) ⊂ B(θR) for some θ < 1/2, then f has a unique fixed point belonging
to B(θR). Since the operator F is analytic, we are allowed to use this result. Specifically we
will see that F(B(R0)) ⊂ B(R0/4).

We fix h ∈ B(R0). We claim that,

R(h) ∈ X ν+η and ‖R(h)‖ν+η,b � C (4.29)

with C the constant given in lemma 4.9. Indeed, since R is analytic and R(0) = 0, we
have that, formally

R(h) =
∑
j�1

∂
j

hR(0)
hj

j !
.

Since ∂
j

hR(0) ∈ X η−(j−1)ν , using the fact that h ∈ B(R0) ⊂ X ν and (ii) of lemma 4.3, we
have that for all j � 1, ∂

j

hR(0)hj ∈ X η−(j−1)ν+jν = X η+ν and moreover, taking into account
that ‖h‖ν,b � R0 and ‖∂j

hR(0)‖η−(j−1)ν,b � ‖∂j

hR(0)‖X η−(j−1)ν

γ,ρ,b
� Cj !(2R0)

−j ,

‖∂j

hR(0)hj‖η+ν,b � ‖∂j

hR(0)‖η−(j−1)ν,b‖h‖j

ν,b � Cj !
1

2j
.

Hence, R(h) ∈ X ν+η and

‖R(h)‖ν+η,b �
∑
j�1

C2−j = C.

This proves property (4.29).
On the one hand, we observe that, R(h) ∈ X ν+η ⊂ X ν , therefore, by property (4.29) and

(i) of lemma 4.3 we obtain

‖R(h)‖ν,b � ρ
−η

1 (1 + γ 2)η/2‖R(h)‖ν+η,b � Cρ
−η

1 (1 + γ 2)η/2. (4.30)

On the other hand, since R(h) ∈ X ν , we deduce that ∂zB(R(h)) ∈ X ν using (ii) of
lemma 4.6, and hence F(h) ∈ X ν . Again by (ii) of lemma 4.6, we can bound the norm of
∂zB(R(h)) and finally using the definitions of R0 and ρ1 and bound (4.30) of ‖R(h)‖ν,b, we
obtain that

‖F(h)‖ν,b � ‖h0‖ν,b + ‖∂zB(R(h))‖ν,b � R0

8
+ Cν,γ Cρ

−η

1 (1 + γ 2)η/2 � R0

8
+

R0

16
<

R0

4
and the lemma is proved. �

Lemma 4.10. For any γ > 0, 0 < b < b0, there exists ρ̃0 = ρ̃0(γ, b, �, r) such that the fixed
point equation

ϕ = F�(ϕ) := B(ψ�
1 ) + ∂zB(ψ�

2 (ϕ)) (4.31)

has a solution ϕ ∈ X �+1
γ,ρ̃0,b

. Moreover ψ�
2 (ϕ) ∈ X �+1+η�

γ,ρ̃0,b
with η� = � − 2r if � > 2r and η� = 1

if � = 2r .

Proof. The notation used along this proof was introduced in section 4.2.
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We fix γ > 0, 0 < b < b0 and ρ = (1 + γ 2)1/2 + 8µ0C
−1
γ /2(1 + γ 2)1/2‖F1‖0,b > 0.

Such a choice will be justified later. We notice that since F1 does not depend on z, ‖F1‖0,b is
independent of ρ.

In order to prove this result, we are going to check that the hypotheses of lemma 4.9 are
satisfied for ν = � + 1, η� > 0, h0 = B(ψ�

1 ) and R = ψ�
2 . If the hypotheses of lemma 4.9 are

fulfilled, check that ψ�
2 (ϕ) ∈ X �+1+η�

γ,ρ̃0,b
is straightforward from property (4.29).

We note that since the functions Qj are 2π -periodic and analytic in Sb0 , they belong to
X 0

γ,s,b for all s > 0.
First we deal with the case � > 2r which is simpler. By definition (4.18) of ψ�

1 , it is clear
that ψ�

1 ∈ X �+1. Moreover, 〈ψ�
1 〉 = 0. Therefore, by (iii) of lemma 4.6, B(ψ�

1 ) ∈ X �+1. As in
lemma 4.9, we define R0 = 8‖B(ψ�

1 )‖�+1,b + 1/2.
On the other hand, definition (4.19) of ψ�

2 implies that it is analytic (in fact it is a polynomial
in ϕ), ψ�

2 (0) = 0 and moreover,

∂ϕψ�
2 (0) = −µQ1(τ )z−�+2r ∈ X �−2r ,

∂2
ϕψ�

2 (0) = −µz2r − 2µ2z4r−�Q2(τ ) ∈ X −2r ⊂ X �−2r−(�+1)

∂j
ϕψ�

2 (0) = −j !µjz2rj−�Qj (τ ) ∈ X �−2rj ⊂ X �−2r−(j−1)(�+1), if 3 � j � N,

∂j
ϕψ�

2 (0) = 0, if j > N,

provided � > 2r . We also note that, since ρ � (1 + γ 2)1/2, by (i) of lemma 4.3,

‖∂j
ϕψ�

2 (0)‖�−2r−(j−1)(�+1) � µ0 + j !µj

0‖Qj‖0,b, if 1 � j � N.

Hence, the hypotheses of lemma 4.9 are satisfied by R = ψ�
2 with η� = � − 2r , ν = � + 1 and

C = max0�j�N(µ0 + µ
j

0‖Qj‖0,b)(2R0)
j .

Now we deal with the case � = 2r . First we check that B(ψ2r
1 ) ∈ X 2r+1. Looking

at definition (4.18) of ψ2r
1 one deduces that ψ2r

1 = −χ1 + T−χ1(F1) where χ1 was
given in definition (4.15) and T−χ1 is the operator defined in lemma 4.4. Hence, since
χ1 ∈ X 2r+1

γ /2,ρ/4,b, again using lemma 4.4, we have that T−χ1(F1) ∈ X 2r+2 provided that

ρ � 8µ0C
−1
γ /2(1 + (γ /2)2)1/2‖F1‖0,b. Therefore, by (i) of lemma 4.6, B(T−χ1(F1)) ∈ X 2r+1.

Finally, we observe that 〈χ1〉 = 0. Thus (iii) of lemma 4.6 implies that B(−χ1) ∈ X 2r+1 and
henceforth, B(ψ2r

1 ) ∈ X 2r+1.
Now we check that R = ψ2r

2 satisfies the hypotheses of lemma 4.9 with η� = 1 and
ν = 2r + 1. Indeed, we note that ψ2r

2 (0) = 0 and, since z + µF1(τ ) ∈ X 1,

∂1
ϕψ2r

2 (0) = 0,

∂2
ϕψ2r

2 (0) = −µ(z + µF1(τ ))2r − 2µ2(z + µF1(τ ))2rQ2(τ ) ∈ X 1−(2r+1),

∂j
ϕψ2r

2 (0) = −j !µj(z + µF1(τ ))2r(j−1)Qj (τ ) ∈ X 1−(j−1)(2r+1) if 3 � j � N,

∂j
ϕψ2r

2 (0) = 0 if j > N.

Therefore, using the definition of ρ, we realize that

‖∂j
ϕψ2r

2 (0)‖1−(j−1)(2r+1) �
(
µ0 + j !µj

0‖Qj‖0,b

) (
1 +

Cγ/2

8

)2r(j−1)

, if 1 � j � N

and the proof is complete. �
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4.4.2. Proof of proposition 4.8 We fix γ > 0, 0 < b < b0 and we define ρ0 =
max{4(4 + γ 2)1/2C−1

γ /2‖F1‖0,b, 8ρ̃0(γ /4, b, �, r)}, where ρ̃0 was given in lemma 4.10. This
choice of ρ0 is justified by the following computations.

By lemma 4.10 the fixed point equation (4.31) has a solution ϕ ∈ X �+1
γ /4,ρ0/8,b such that

ϕ − B(ψ�
1 ) ∈ X �+1+η�

γ /4,ρ0/8,b. We claim that

∂zB(ψ�
2 (ϕ)) = B(∂zψ

�
2 (ϕ)) on Dγ/2,ρ0/4 × Sb. (4.32)

Indeed, since ψ�
2 (ϕ) ∈ X �+1+η�

γ /4,ρ0/8,b, using (iii) of lemma 4.3 we get that ∂zψ
�
2 (ϕ) ∈ X �+2+η�

γ /2,ρ0/4,b.
Therefore, by remark 4.2,

|∂zψ
�
2 (ϕ)(z, τ )| � |z|−�−2−η�‖∂zψ

�
2 (ϕ)‖X �+2+η�

γ /2,ρ0/4
, for all (z, τ ) ∈ Dγ/2,ρ0/4 × Sb,

and we obtain formula (4.32) by differentiating under the integral sign B(ψ�
2 (ϕ)).

Equality (4.32) implies that ϕ is a solution of equation ϕ = B(ψ�
1 ) + B(∂zψ

�
2 (ϕ)) and

hence, since (∂τ + ∂z) ◦ B = Id (remark 4.5), ϕ is a solution of equation (4.20) belonging to
X �+1

γ /2,ρ/4,b. Moreover, ϕ − B(ψ�
1 ) ∈ X �+1+η�

γ /2,ρ0/4,b.
Taking into account the relation between equations (4.20) and (4.16) given in section 4.2,

clearly, if � > 2r we deduce that ϕ is a solution of equation (4.16) belonging to X �+1
γ /2,ρ0/4,b ⊂

X �+1
γ,ρ0,b

and in this case we are done.
In the case � = 2r , the function ϕ̃(z, τ ) = ϕ(z−µF1(τ ), τ ) is a solution of equation (4.16).

Moreover, since ϕ ∈ X 2r+1
γ /2,ρ0/4,b applying lemma 4.4 we obtain that ϕ̃ ∈ X 2r+1

γ,ρ0,b
provided that

ρ0 � 4(4 + γ 2)1/2C−1
γ /2‖F1‖0,b. We also note that, since ϕ̃ − ϕ = Tϕ(F1) ∈ X 2r+2

γ,ρ0,b
, we have

that ϕ − B(ψ2r
1 ) ∈ X 2r+2

γ,ρ0,b
.

Finally, the uniqueness of the solution ϕ follows from remark 4.7.

4.5. End of the proof of theorem 3.1

Given γ > 0 and 0 < b < b0, let ϕ be the solution of equation (4.16) belonging to X �+1
γ,ρ0,b

,
where ρ0 = ρ0(γ, b, �, r) is the constant given by proposition 4.8.

We claim that the solutions of equation (4.14) such that their derivative with respect
to z belong to X �+1

γ,ρ0,b
are defined up to constant. Indeed, let φ1, φ2 be two solutions of

(4.14). Clearly ∂zφ
1, ∂zφ

2 are solutions of equation (4.16). Assuming that they belong
to X �+1

γ,ρ0,b
, by proposition 4.8, ∂zφ

1 = ∂zφ
2. Hence ∂τ (φ

1 − φ2) = 0 which implies that

φ1(z, τ ) = φ2(z, τ ) + φ̃(z) and thus, using that ∂zφ
1 = ∂zφ

2, we conclude that ∂zφ̃ = 0.
For any ξ ∈ C, we define

φ1(z, τ ) =
∫ 0

+∞
ϕ(z + t, τ ) dt + ξ. (4.33)

Obviously ∂zφ1 = ϕ and moreover the condition ϕ ∈ X �+1
γ,ρ0,b

implies φ1 − ξ ∈ X �
γ,ρ0,b

. We
note that, by remark 4.2, we have that sup(z,τ )∈Dγ,ρ0 ×Sb

|z�+1∂zφ1(z, τ )| < +∞.

From the fact that ϕ are solutions of equation (4.16) and ϕ ∈ X �+1
γ,ρ0,b

, it is straightforward
to check that φ1 defined by formula (4.33) are solutions of equation (4.14) for any ξ . This ends
the proof of theorem 3.1.

5. Distance between ∂zφ
+ and ∂zφ

−

Let γ > 0 and 0 < b < b0. We fix φ± = φ0 + µφ±
1 satisfying the conclusions of

theorem 3.1.



One and a half degrees of freedom rapidly forced Hamiltonian 1433

In order to prove theorem 3.3 we define �φ1 = φ−
1 −φ+

1 . This function has the following
immediate properties which come from those of φ±

1 .

(i) �φ1 is 2π -periodic with respect to τ .
(ii) It is analytic on Eγ,ρ0 × Sb × B(µ0). This is due to the fact that Eγ,ρ0 ⊂ D−

γ,ρ0
∩ D+

γ,ρ0
.

We recall that Eγ,ρ was defined in (3.1).
(iii) sup(z,τ )∈Eγ,ρ0 ×Sb

|z�+1∂z�φ1| < +∞.

Since φ±
1 are necessarily solutions of equation (4.14), subtracting equation (4.14) for φ−

1
and φ+

1 , respectively, we obtain that �φ1 satisfies a partial differential equation of the form

∂τϕ + (1 + µG�(z, τ ))∂zϕ = 0, (5.1)

where G� is an analytic function on Eγ,ρ0 × Sb, 2π -periodic on τ , depending not on φ±
1 but

on ∂zφ
±
1 . Later on, in section 5.2, we will write it in a more detailed way.

Next let us assume that equation (5.1) has a solution ϕ0 such that ψ0(z, τ ) = (ϕ0(z, τ ), τ )

is injective in Eγ,ρ × Sb for ρ � ρ0 big enough. We claim that any solution of equation (5.1)
defined in Eγ,ρ × Sb can be written as ϕ = χ(ϕ0) for some function χ (this is a well-known
property of homogeneous linear partial differential equations). Indeed, we note that, since
ψ0 is invertible, ∂zϕ0 ◦ ψ−1

0 �= 0 in Eγ,ρ ; hence using that both ϕ and ϕ0 are solutions of
equation (5.1),

∂τ (ϕ ◦ ψ−1
0 ) = 1

∂zϕ0 ◦ ψ−1
0

( − ∂zϕ ◦ ψ−1
0 · ∂τϕ0 ◦ ψ−1

0 + ∂τϕ ◦ ψ−1
0 · ∂zϕ0 ◦ ψ−1

0

) = 0.

Therefore, ϕ ◦ ψ−1
0 (ξ, τ ) does not depend on τ and this implies that there exists a function χ

such that ϕ◦ψ−1
0 (ξ, τ ) = χ(ξ) and the claim is proved evaluating this equality at ξ = ϕ0(z, τ ).

Section 5.4 is devoted to proving the existence and useful properties of such a solution
ϕ0 of equation (5.1). Specifically we will prove that there exists a solution of the form
ϕ0(z, τ ) = z − τ + µg(z, τ ), with g 2π -periodic with respect to τ and satisfying all the
properties stated in theorem 3.3. We will also prove that limImz→−∞ ∂zg(z, τ ) = 0. Finally
we will see that (ϕ0(z, τ ), τ ) is injective in Eγ,ρ1 with ρ1 � ρ0 big enough.

In section 5.5, using this fact and properties (i)–(iii) that �φ1 satisfies, we will end the
proof of theorem 3.3. We sketch below the process that we will follow.

On the one hand, since �φ1 is a solution of equation (5.1) analytic in Eγ,ρ1 × Sb × B(µ0)

(property (ii)), there exists an analytic function χ such that �φ1(z, τ ) = χ(z − τ + µg(z, τ )).
On the other hand, �φ1 is 2π -periodic with respect to τ . This implies that χ1 has to be a
2π -periodic function in such a way that �φ1 has to be of the form

�φ1(z, τ ) =
∑
k∈Z

χk(µ)eik(z−τ+µg(z,τ )).

(We notice that, χk are analytic functions in B(µ0).) Finally, using that �φ1 goes to 0 as
Imz → −∞ (property (iii)), one can check that χk = 0 for k > 0. Henceforth

∂z�φ1(z, τ ) =
∑
k<0

ikχk(µ)eik(z−τ+µg(z,τ ))(1 + µ∂zg(z, τ )) (5.2)

and since limImz→−∞ ∂zg(z, τ ) = 0, we obtain the asymptotic expression (3.5) of theorem 3.3
as a consequence of (5.2).

In order to obtain asymptotic expression (3.6) we need only to look for the independents
of µ terms of the functions ∂zφ

±
1 and compute their difference.

The subsection below is devoted to introducing the notation we will use throughout this
section.



1434 I Baldomá

5.1. Notation

As in section 4, we will denote by 〈·〉 the mean with respect to τ . For any 2π -periodic function,
h, we also introduce {h} = h − 〈h〉.

Now we introduce the Banach spaces we deal with during this section. These spaces
will be analogous to the ones defined in section 4.1 for functions defined on the domain
Eγ,ρ × Sb × B(µ0) (we recall that Eγ,ρ was defined in (3.1)). We observe that the function
�φ1 = φ−

1 − φ+
1 is defined on such a complex domain.

For any γ, ρ, b > 0 and ν ∈ R, to shorten the notation, we will write

Eγ,ρ = Eγ,ρ × B(µ0), Eγ,ρ,b = Eγ,ρ × Sb × B(µ0).

We define the spaces

Y ν = {h : Eγ,ρ → C : h is analytic and ‖h‖ν := sup
(z,µ)∈Eγ,ρ

|zνh(z, µ)| < +∞}

if ν �= 0 and

Y 0 = {h : Eγ,ρ → C : h is analytic and ‖h‖0 := sup
(z,µ)∈Eγ,ρ

|h(z, µ)|
| log |z|| < +∞}

for ν = 0. It is clear that the functional spaces Y ν equipped with the norm ‖ · ‖ν are Banach
spaces.

We also introduce the spaces of Fourier series

Yν
γ,ρ,b =

{
f : Eγ,ρ,b → C : analytic, f (z, τ, µ) =

∑
k∈Z

fk(z, µ)eikτ , fk ∈ Y ν

and ‖f ‖ν,b :=
∑
k∈Z

‖fk‖νe|k|b < +∞
}

(5.3)

The functional space Yν
γ,ρ,b of Fourier series endowed with the norm ‖ · ‖ν,b is a Banach space.

We also define the auxiliary Banach space

Y0
γ,ρ,b =

{
f : Eγ,ρ,b → C : analytic, f (z, τ, µ) =

∑
k∈Z

fk(z, µ)eikτ

and ‖f ‖0,b :=
∑
k∈Z

sup
(z,µ)∈Eγ,ρ

|fk(z, µ)|e|k|b < +∞
}
.

For notational need we introduce Yν

γ,ρ,b = Yν
γ,ρ,b and ‖ · ‖ν,b = ‖ · ‖ν,b if ν �= 0.

Remark 5.1. We note that X ν,± ⊂ Yν and X 0,± ⊂ Y0
.

Let φ± = φ0 +φ±
1 satisfying the conclusions of theorem 3.1. We note that, by remark 4.2,

∂zφ
±
1 ∈ X �+1,±

γ,ρ,b , respectively, for any γ > 0, ρ � ρ0 and 0 < b < b0. Hence the function
�φ1 = φ−

1 − φ+
1 satisfies that ∂z�φ1 belongs to Y�+1

γ,ρ,b.

We will denote Yν
γ,ρ,b simply by Yν (and Yν

γ,ρ,b by Yν
) so that there is no danger of confusion

on the definition domain. We will also write ‖ · ‖Yν
γ,ρ,b

= ‖ · ‖ν,b and ‖ · ‖Yν

γ,ρ,b
= ‖ · ‖ν,b, when

it is necessary to emphasize the complex domain where the functions are defined.
The Banach spaces Yν

(and henceforth, Yν for ν �= 0), satisfy the same properties as the
ones given in section 4.1 for X ν . Specifically we have the following lemma.
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Lemma 5.2. Let γ, b, ρ > 0 and ν, η ∈ R.

(i) If η � ν, then Yη ⊂ Yν and Yη ⊂ Yν
. Moreover we have that

‖h‖ν,b � ρν−η‖h‖η,b, if h ∈ Yν
.

(ii) If h ∈ Yν
and g ∈ Yη

, then the product hg ∈ Yν+η
and

‖hg‖ν+η,b � ‖h‖ν,b‖g‖η,b.

(iii) If h ∈ Yν

γ,ρ,b, then there exists a constant Aγ,ν such that for l ∈ N\{0} we have that

∂l
zh ∈ Y l+ν

2γ,2ρ,b and ‖∂l
zh‖l+ν,b � l!2−lC−l

γ Aγ,ν‖h‖Yν

γ,ρ,b
,

where the constant Cγ was defined by property (4.8).
(iv) Assume that η > −1. We fix F ∈ Yν

γ,ρ,b and f ∈ Yη

γ,ρ,b. Let ρ be such that

µ0C
−1
γ ‖f ‖Yη

γ,ρ,b
� ρη+1. (5.4)

We define the formal expression

TF (f )(z, τ ) =
∑
l�1

1

l!
∂l
zF (z, τ )µlf l(z, τ ).

Then there exists a constant Bγ,ν such that

TF (f ) ∈ Yν+η+1
2γ,2ρ,b, ‖TF (f )‖ν+η+1,b � µ0Bγ,ν‖F‖Yν

γ,ρ,b
‖f ‖Yη

γ,ρ,b
.

Moreover, the function F̃ (z, τ ) = F(z + µf (z, τ ), τ ) belongs to Yν

2γ,2ρ,b.

(v) Let η > −1, F ∈ Y0
γ,ρ,b and f ∈ Yη

γ,ρ,b with F satisfying that ∂zF ∈ Y1
γ,ρ,b. If ρ satisfies

condition (5.4), then

TF (f ) ∈ Yη+1
2γ,2ρ,b, ‖TF (f )‖η+1,b � µ0Bγ,0‖∂zF‖Y1

γ,ρ,b
‖f ‖Yη

γ,ρ,b
.

Moreover F̃ (z, τ ) = F(z + µf (z, τ ), τ ) belongs to Y0
2γ,2ρ,b.

Proof. The proof of (i)–(iii) of lemma 5.2 is completely analogous to the proof of lemma 4.3.
We only have to take into account two facts: the first is that if z ∈ Eγ,ρ , then |z| � ρ; the
second we need is that

{u ∈ C : |u − z| < 2Cγ |z|} ⊂ Eγ,ρ, z ∈ E2γ,2ρ. (5.5)

Item (iv) is proved as in lemma 4.3 by using property (5.5). To check (v) we apply (iii) to
∂zF and we proceed in a way completely analogous to the one in (iv) of lemma 4.3. �

5.2. The equation for φ−
1 − φ+

1

Let γ > 0 and 0 < b < b0. According to theorem 3.1 there exist infinitely many solutions
φ± = φ0 + µφ±

1 of the Hamilton–Jacobi equation (3.3) analytic on the domain D±
γ,ρ0

× Sb,
2π -periodic with respect to τ and such that ∂zφ

±
1 are the unique possible choices satisfying that

sup
(z,τ )∈D±

γ,ρ0
×Sb

|z�+1∂zφ
±
1 (z, τ )| < +∞.

We recall that ρ0 = ρ0(γ, b, �, r) was given in theorem 3.1.
For any two of those solutions φ± we denote �φ1 = φ−

1 − φ+
1 which is defined on

Eγ,ρ0 × Sb ⊂ D+
γ,ρ0

∩ D−
γ,ρ0

× Sb. Since, φ±
1 are solutions of equation (4.14), subtracting

equation (4.14) for both φ−
1 and φ+

1 , respectively, we get

∂τ�φ1 + ∂z�φ1 + H1(z, ∂zφ
−, τ ) − H1(z, ∂zφ

+, τ ) +
µ

2
z2r

[
(∂zφ

−
1 )2 − (∂zφ

+
1 )2

] = 0.
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Denoting

G�(z, τ ) =
N∑

j=1

µj−1Qj(τ)z2rj−�

j−1∑
k=0

(∂zφ
−
1 )k(∂zφ

+
1 )j−1−k +

1

2
z2r

(
∂zφ

−
1 + ∂zφ

+
1

)
, (5.6)

it is straightforward to see that �φ1 satisfies the equation

∂τϕ + (1 + µG�(z, τ ))∂zϕ = 0. (5.7)

Lemma 5.3. The function G� −Q1z
−�+2r belongs to Y�−2r+1 and it can be written in the form

G�(z, τ ) = Q1(τ )z−�+2r +
1

2
z2r (∂zφ

−
1 + ∂zφ

+
1 )(1 + 2z−�+2rµQ2(τ )) + G

�
(z, τ ) (5.8)

with Q1 having zero mean with respect to τ and G
� ∈ Y3(�−2r)+2. Moreover

〈G�〉 ∈
{

Y2 if � = 2r, Q1 = 0 and 〈F0 · Q2〉 = 0,

Y�−2r+1 otherwise,
(5.9)

where F0 is such that ∂τF0 = Q0 and 〈F0〉 = 0.

Proof. Formula (5.8) is straightforward from the definition of G�. Moreover, using that

∂zφ
±
1 ∈ X �+1,±, we easily get that G

� ∈ Y3(�−2r)+2.
Now we deal with the statement related to 〈G�〉. We observe that G�−Q1z

�−2r ∈ Y�−2r+1.
Hence, since Q1 has zero mean, in any case we have that 〈G�〉 ∈ Y�−2r+1. It only remains to
check that if � = 2r , Q1 = 0 and 〈F0 · Q2〉 = 0, 〈G�〉 ∈ Y2. First we claim that, in this case,

∂zφ
±
1 − 2r

F0

z2r+1
∈ Y2r+2. (5.10)

Indeed, we deal with the + case, being the − case analogous. By proposition 4.8,
∂zφ

+
1 − B(ψ2r

1 ) ∈ X 2r+2,+. Trivially,

B(ψ2r
1 ) = 2r

∫ 0

+∞

Q0(τ + t)

(z + t)2r+1
dt = 2r

F0(τ )

z2r+1
+ 2r(2r + 1)B(F0z

−2r−2)

and therefore, B(ψ2r
1 ) − 2rF0(τ )z−2r−1 ∈ X 2r+2,+ ⊂ Y2r+2 because F0 has zero mean.

Looking at expression (5.8) of G�, and using property (5.10), we deduce that

G� − 4rz−1F0(1 + µQ2) ∈ Y2

and henceforth, property (5.9) is proved provided that 〈F0〉 = 〈F0 · Q2〉 = 0. �

Remark 5.4. Since G� depends on ∂zφ
±
1 , but not on φ±

1 themselves, it is independent of the
choice of the solutions φ±.

As we pointed out at the beginning of this section, the next step in proving theorem 3.3
is to find a solution of the partial differential equation (5.7) of the form ϕ0(z, τ ) = z −
τ + µg(z, τ ). To obtain such a solution, we will need to solve explicitly the linear equation
∂τh + ∂zh = ψ with ψ ∈ Yν a known function. The next subsection is devoted to studying this
equation.
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5.3. An explicit solution of equation ∂τh + ∂zh = ψ in Yν
γ,ρ,b

We fix b, ρ, γ > 0, ν � 0 and ψ ∈ Yν . We denote by ψk the k-Fourier coefficient of ψ and
we consider the operator G formally defined by

G(ψ)(z, τ ) =
∑
k∈Z

(G(ψ))k(z)e
ikτ , (5.11)

where its Fourier coefficients are given by

(G(ψ))0(z) =
∫ z

−iρ
ψ0(t) dt if 0 � ν � 1 (5.12)

(G(ψ))0(z) =
∫ z

−i∞
ψ0(t) dt if ν > 1 (5.13)

(G(ψ))k(z) =
∫ z

−iρ
eik(t−z)ψk(t) dt if k > 0 (5.14)

(G(ψ))k(z) =
∫ z

−i∞
eik(t−z)ψk(t) dt if k < 0. (5.15)

The following lemma proves that, under suitable conditions, G(ψ) is well defined. This implies
that h = G(ψ) is a solution of equation ∂τh + ∂zh = ψ .

Lemma 5.5. Let γ, b, ν > 0 and ρ � max{2ν, 1}. For any ψ ∈ Yν
γ,ρ,b we have that

(i) G(ψ) ∈ Yν−1
γ,ρ,b and ∂zG(ψ) ∈ Yν

γ,ρ,b. Moreover, there exists a constant Cν,γ only
depending on ν and γ such that,

‖G(ψ)‖ν−1,b � Cν,γ ‖ψ‖ν,b and ‖∂zG(ψ)‖ν,b � Cν,γ ‖ψ‖ν,b. (5.16)

(ii) If ψ has zero mean with respect to τ , then G(ψ) ∈ Yν
γ,ρ,b, 〈G(ψ)〉 = 0 and

‖G(ψ)‖ν,b � Cν,γ ‖ψ‖ν,b.

Proof. We write h = G(ψ) and we denote by hk its k-Fourier coefficient. To prove (i) and (ii)
we have to bound hk . We claim that for all z ∈ Eγ,ρ ,

(a) If either k < 0 and ν > 0, or k = 0 and ν > 1,

|hk(z)| � ‖ψk‖ν

∫ 0

−∞

e−kt

(|z|2 + t2)ν/2
dt. (5.17)

(b) Otherwise, denoting cγ = γ −1(1 + γ 2)1/2,

|hk(z)| � cγ ‖ψk‖ν

∫ |Imz+ρ|

0

e−kt

|t + Imz|ν dt. (5.18)

Indeed, in the case (a) hk is defined by equation (5.15) and equation (5.13), respectively. The
condition ψ ∈ Yν

γ,ρ,b implies that eiksψk(s) is analytic on Eγ,ρ and limIms→−∞ eikssψk(s) = 0
(either if k = 0 and ψ0 ∈ Yν

γ,ρ,b with ν > 1, or k < 0 and ψk ∈ Yν
γ,ρ,b with ν > 0). Thus, by

Cauchy’s theorem we can change the path of integration to z + it and therefore

|hk(z)| �
∣∣∣∣i ∫ 0

−∞
e−ktψk(z + it) dt

∣∣∣∣ � ‖ψk‖ν

∫ 0

−∞

e−kt

|z + it |ν dt.

Finally, since |z + it |2 � |z|2 + t2 if t < 0, we get bound (5.17). In the case (b), bounding the
integrals in definitions (5.12) and (5.14),

|hk(z)| � |z + iρ|
|Im z + ρ| ‖ψk‖ν

∫ |Im z+ρ|

0

e−kt

|t + Im z|ν dt

and, since |z + iρ||Im z + ρ|−1 � cγ , (5.18) holds.
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Now we claim that

‖hk‖ν � 2cν+1
γ |k|−1‖ψk‖ν for k �= 0. (5.19)

Indeed, let z ∈ Eγ,ρ . First we deal with k < 0. Obviously, bound (5.17) implies that

|zνhk(z)| � ‖ψk‖ν

∫ 0

−∞
e−kt dt = |k|−1‖ψk‖ν � 2cν+1

γ |k|−1‖ψk‖ν

provided that cγ > 1. If k > 0 we define Iν = ∫ |Im z+ρ|
0 e−kt |t + Im z|−ν dt . Integrating by

parts Iν , it is easily checked that Iν � k−1
(|Im z|−ν + νρ−1Iν

)
. Thus, since ρ � 2ν, we obtain

bound (5.19) from (5.18) by using the fact that |z| � cγ |Im z|.
We prove (i). Let ν > 0. We define the constants Bν,γ = (1 − ν)−1cγ if ν < 1, B1,γ = cγ

and Bν,γ = ∫ +∞
0 (1 + s2)−ν/2 ds if ν > 1. With this notation

‖h0‖ν−1 � Bν,γ ‖ψ0‖ν . (5.20)

Proving bound (5.20) is straightforward by computing the integrals in formulae (5.17) and
(5.18) in the corresponding cases. We take Cν,γ = max{1 + 2cν+1

γ , Bν,γ } and we notice that
bounds (5.20), (5.19) and (i) of lemma 4.3 imply

‖h‖ν−1,b = ‖h0‖ν−1 +
∑

k∈Z\{0}
‖hk‖ν−1e|k|b

� Bν,γ ‖ψ0‖ν + 2cν+1
γ ρ−1

∑
k∈Z\{0}

‖ψk‖νe|k|b � Cν,γ ‖ψ‖ν,b

provided that ρ � 1. In this way we get the first bound in property (5.16).
Next we prove the second bound in property (5.16). Taking derivatives in

formulae (5.12)–(5.15),

∂zhk = −ikhk + ψk, for all k ∈ Z. (5.21)

Hence we have that ∂zh0 = ψ0 and, from bound (5.19), ‖∂zhk‖ν � (1 + 2cν+1
γ )‖ψk‖ν for

k �= 0. From the Fourier series of ∂zh and the definition of the norm ‖ · ‖ν,b, we get
‖∂zh‖ν,b � Cν,γ ‖ψ‖ν,b.

Finally, we prove (ii). Let ν > 0. We observe that, 〈ψ〉 = 0 implies h0 = 0. Thus (ii)
follows from property (5.19). �

Remark 5.6. By using equality (5.21) one checks that G(ψ) is a solution of equation
∂τh + ∂zh = ψ .

5.4. A solution ϕ0 of equation (5.7) of the form ϕ0(z, τ ) = z − τ + µg(z, τ )

Our goal in this subsection is to prove the following result.

Proposition 5.7. Let γ > 0 and 0 < b < b0. There exists ρ1 = ρ1(γ, b, �, r) such that the
equation (5.7)

∂τϕ + ∂zϕ(1 + µG�) = 0 (5.22)

has a solution ϕ0 of the form ϕ0(z, τ ) = z − τ + µg(z, τ ) with g satisfying that g ∈ Y�−2r
γ,ρ1,b

and ∂zg ∈ Y�−2r+1
γ,ρ1,b

.
In the special case that � = 2r , Q1 = 0 and 〈F0 · Q2〉 = 0, then g ∈ Y1

γ,ρ1,b
and

∂zg ∈ Y2
γ,ρ1,b

.
Moreover, ψ0(z, τ ) = (ϕ0(z, τ ), τ ) defines an injective map on Eγ,ρ1 .
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A function ϕ0 is a solution of equation (5.22) of the form ϕ0(z, τ ) = z − τ + µg(z, τ ) if
and only if g is a solution of the equation

∂τg + ∂zg(1 + µG�) = −G�. (5.23)

To check that equation (5.23) has solutions satisfying the conclusions of proposition 5.7 we
state a technical lemma which will be proved later.

Lemma 5.8. We fix γ, b, ρ > 0. Let H ∈ Yη

γ/2,ρ,b be such that G(H) ∈ Yν
γ /2,ρ,b for some

η > 0 and ν � 0.
If either ν > 0, or ν = 0 and η � 1, there exists ρ2 = ρ2(γ, b, ν, η, ρ) such that the

equation

∂τh + ∂zh(1 + µH) = −H (5.24)

has a solution h ∈ Yν
γ,ρ2,b

satisfying that ∂zh ∈ Yν+1
γ,ρ2,b

.

To prove proposition 5.7 from lemma 5.8 we have to check that in each case G� satisfies
the hypotheses of this lemma.

Proof of proposition 5.7. We fix γ > 0 and 0 < b < b0. We are forced to distinguish the
following three cases.

• Case � > 2r . By lemma 5.3, G� = Q1z
−�−2r + G̃� with G̃� ∈ Y�−2r+1

γ,ρ0,b
. Therefore

G� ∈ Y�−2r
γ,ρ0,b

. Moreover, since Q1 has zero mean with respect to τ , by lemma 5.5,

G(G�) ∈ Y�−2r
γ,ρ0,b

and lemma 5.8 can be applied in this case with H = G� and
ν = η = � − 2r > 0.

• Case � = 2r , Q1 = 0 and 〈F0 · Q2〉 = 0. Again using lemma 5.3 one deduce that
G� = 〈G�〉 + {G�} with 〈G�〉 ∈ Y2

γ,ρ0,b
and {G�} ∈ Y1

γ,ρ0,b
having zero mean with respect

to τ . Using similar arguments as in the previous case, we conclude that we can apply
lemma 5.8 with H = G� and ν = η = 1.

• Case � = 2r but either Q1 �= 0 or 〈F0 · Q2〉 �= 0. The change of coordinates

z = u + µF1(τ ), g̃(u, τ ) = g(u + µF1(τ ), τ )

transforms equation (5.23) into

∂τ g̃ + ∂ug̃(1 + µG̃�) = −Q1 − G̃�

with G̃�(u, τ ) = G�(u + µF1(τ ), τ ) − Q1(τ ). We note that, by lemma 5.3, G� − Q1 ∈
Y1

γ /8,ρ̃0/8,b
, with ρ̃0 = max{8ρ0, 8µ0C

−1
γ /8‖F1‖0,b}. Therefore, by (iv) of lemma 5.2,

G̃� ∈ Y1
γ /4,ρ̃0/4,b

. We take g̃ = −F1 + g and we notice that g has to satisfy the equation

∂τg + ∂ug(1 + µG̃�) = −G̃�. (5.25)

This equation is under the hypotheses of lemma 5.8. Indeed, we have already seen that
G̃� ∈ Y1

γ /4,ρ̃0/4,b
. Moreover by lemma 5.5, G(G̃�) ∈ Y0

γ /4,ρ̃0/4,b
. Hence lemma 5.8 works

in this case with H = G̃�, η = 1 and ν = 0.
Let g be the solution of equation (5.25) given by lemma 5.8. We have that g ∈ Y0

γ /2,ρ2,b

and ∂ug ∈ Y1
γ /2,ρ2,b

. Going back to the original variables (z, τ ), it is clear that

g(z, τ ) = −F1(τ ) + g(z − µF1(τ ), τ )

is a solution of equation (5.23). Moreover, since by lemma 5.8 g ∈ Y0
γ /2,ρ2,b

and
∂ug ∈ Y1

γ /2,ρ2,b
, applying (v) from lemma 5.2, we have that g ∈ Y0

γ,ρ̃1,b
with ρ̃1 =

max{2ρ2, 2µ0C
−1
γ /2‖F1‖0,b}. We also have that ∂zg ∈ Y1

γ,ρ̃1,b
. This is due to the fact that

∂zg(z, τ ) = ∂ug(u − µF1(τ ), τ ) and hence we are allowed to apply (iv) of lemma 5.2 to
∂ug ∈ Y1

γ /2,ρ2,b
⊂ Y1

γ /2,ρ̃1/2,b
.
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We have proved that equation (5.22) has a solution ϕ0 of the form ϕ0(z, τ ) = z −
τ + µg(z, τ ) with g satisfying at least that g ∈ Y0

γ,ρ̃1,b
and ∂zg ∈ Y1

γ,ρ̃1,b
. Now we check

that ψ0(z, τ ) = (ϕ0(z, τ ), τ ) is injective in Eγ,ρ1 × Sb if ρ1 is big enough. Indeed, let
(z1, τ1), (z2, τ2) ∈ Eγ,ρ × Sb be such that ψ0(z1, τ1) = ψ0(z2, τ2). Clearly τ1 = τ2. Assume
that z1 �= z2. Then by the mean’s value theorem,

|z1 − z2| � |µ|‖∂zg‖1,b|z1 − z2|ρ−1
1 < |z1 − z2|

if ρ1 � max{ρ̃1, 2µ0‖∂zg‖1,b}, which is a contradiction. �

5.4.1. Proof of lemma 5.8. To prove lemma 5.8 we will find an explicit solution of equation
(5.24) by means of a suitable linear operator.

We fix γ, b, ρ > 0 and ν, η, H satisfying the hypotheses of lemma 5.8 and we define the
linear operator

F(f ) = −∂zG(µH · f ). (5.26)

Lemma 5.9. There exists ρ2 = ρ2(γ, b, ν, η, ρ) � 2ρ such that the operator (Id − F) is
invertible in Yν+1

γ,ρ2,b
.

Proof. Let ρ2 = max{2ρ,
(
2µ0Cν+1,γ ‖H‖Yη

γ,ρ,b

)1/η} where Cν+1,γ is the constant defined in

lemma 5.5. We denote Y l
γ,ρ2,b

and ‖ · ‖Y l
γ,ρ2 ,b

simply by Y l and ‖ · ‖l,b, respectively.

Since F is a linear map we only need to check that ‖F‖ν+1,b < 1. Let f ∈ Yν+1. We have
that H ∈ Yη

γ,ρ,b ⊂ Yη, hence by (ii) of lemma 5.2, we deduce that H · f ∈ Yν+η+1 ⊂ Yν+1

provided η > 0. Moreover, ‖H · f ‖ν+1,b � ρ
−η

2 ‖H‖η,b‖f ‖ν+1,b. Therefore, by lemma 5.5
and using definition (5.26) of F , we have that

‖F(f )‖ν+1,b � µ0Cν+1,2γ ‖H · f ‖ν+1,b � µ0Cν+1,2γ ρ
−η

2 ‖H‖η,b‖f ‖ν+1,b < 1
2‖f ‖ν+1,b

provided that ‖H‖η,b � ‖H‖Yη

γ,ρ,b
and ρ

η

2 � 2µ0Cν+1,γ ‖H‖Yη

γ,ρ,b
. �

We claim that if either ν > 0 or, ν = 0 and η � 1,

∂zG(H) ∈ Yν+1
γ,ρ2,b

(5.27)

with ρ2 defined in lemma 5.9. Indeed, first we deal with the case ν > 0. By hypothesis
G(H) ∈ Yν

γ /2,ρ,b, therefore using (iii) of lemma 5.2, ∂zG(H) ∈ Yν+1
γ,2ρ,b ⊂ Yν+1

γ,ρ2,b
provided that

ν > 0. In the case ν = 0 and η � 1, we recall that H ∈ Yη

γ/2,ρ,b. Thus, using lemma 5.5
we conclude that ∂zG(H) ∈ Yη

γ/2,ρ,b. The claim is proved in this case taking into account that
η � 1.

Now we define the functions

h = (
Id − F

)−1
(−∂zG(H))

and

h = −G(H) − G(µH · h). (5.28)

We notice that, by (5.27) and lemma 5.9, h ∈ Yν+1
γ,ρ2,b

.
It only remains to check that h so constructed is a solution of equation (5.24). First we

note that, since F(h) = h + ∂zG(H), we have that

∂zh = −∂zG(H) − ∂zG(µH · h) = −∂zG(H) + F(h) = h.

Therefore ∂zh ∈ Yν+1
γ,ρ2,b

. Moreover, substituting h by ∂zh in equation (5.28) we obtain that

h = −G(H) − G(µH · ∂zh).
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Consequently h is a solution of equation (5.24). Finally, using that H ∈ Yη

γ/2,ρ,b, that

G(H) ∈ Yν
γ /2,ρ,b and lemma 5.5, we conclude that h ∈ Yν

γ /2,ρ,b ∩ Yν+η

γ,ρ2,b
⊂ Yν

γ,ρ2,b
and the

lemma is proved.

5.5. End of the proof of theorem 3.3

We fix γ > 0, 0 < b < b0. We write ϕ0(z, τ ) = z − τ + µg(z, τ ) where g is the function
that satisfies the conclusions of proposition 5.7. As we claimed in the previous subsection this
implies that ϕ0 is a solution of equation (5.7). Moreover ψ0(z, τ ) = (ϕ0(z, τ ), τ ) is injective
on Eγ,ρ1 where ρ1 is given by proposition 5.7.

Therefore as we pointed out at the beginning of this section, any solution of equation (5.7)
can be expressed as a function of ϕ0. In particular, there exists an analytic function χ such that

�φ1 = χ(ϕ0).

5.5.1. Proof of the asymptotic expression (3.5) of theorem 3.3. We claim that ∂ζχ(ζ )

goes to 0 as Im ζ → −∞. Indeed, we notice that, if z ∈ Eγ,ρ1 with |Im z| big enough,
|Re z| < −γ −1Im z and |Im τ | < b � −Im z/3. Then, since g ∈ Y�−2r

γ,ρ1,b
, we have that

|Im µg(z, τ )| � −Im z/3, if |Im z| is big enough, and thus

5Im z/3 � Im(z − τ + µg(z, τ )) � Im z/3.

Moreover, from the fact that ∂z�φ1(z, τ ) goes to 0 as Imz → −∞:

lim
Imζ→−∞

∂ζχ(ζ ) = lim
Imz→−∞

∂ζχ(z − τ + µg(z, τ ))

= lim
Imz→−∞

∂z�φ1(z, τ )(1 + µ∂zg(z, τ ))−1 = 0. (5.29)

In the last equality we have used that ∂zg ∈ Y�−2r+1
γ,ρ1,b

and that �φ1 = χ(ϕ0).
On the other hand, since �φ1 and g are 2π -periodic with respect to τ ,

χ(z − τ + µg(z, τ )) = χ(z − τ − 2π + µg(z, τ + 2π)) = χ(z − τ − 2π + µg(z, τ ))

which implies that χ is 2π -periodic. Hence, ∂ζχ can be expressed as a Fourier series of
the form

∂ζχ(ζ ) =
∑
k∈Z

ikχk(µ)eikζ (5.30)

where {χk}k∈Z are analytic functions in B(µ0).
Finally the property ∂ζχ(ζ ) → 0 as Imζ → −∞ implies that χk(µ)eikζ goes to 0 as

Imζ → −∞ and hence χk(µ) = 0 for k > 0. Then, since ∂zg ∈ Y1
γ,ρ1,b

at least, we have that

∂z�φ1(z, τ ) =
∑
k<0

ikχk(µ)eik(z−τ+µg(z,τ ))(1 + µ∂zg(z, τ ))

∼ − iχ−1(µ)e−i(z−τ+µg(z,τ )) as Imz → −∞. (5.31)

This gives asymptotic expression (3.5) taking C(µ) = χ−1(µ).

5.5.2. The asymptotic expression (3.6) for C(0). Since ∂zφ
±
1 satisfy equation (4.16) we

have that [
∂τ (∂zφ

±
1 ) − ∂z(∂zφ

±
1 )

]
(z, τ ) = �Q0(τ )z−�−1 + O(µ)
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and therefore, from the fact that ∂zφ
±
1 are the unique solutions of (4.16) belonging to X �+1,±

γ,ρ1,b
,

respectively, we obtain that

∂z(φ
−
1 − φ+

1 )(z, τ ) = �

∫ +∞

−∞

Q0(τ + t)

(z + t)�+1
dt + O(µ).

Finally formula (3.6) follows from the asymptotic expression (5.31) and the fact that
∂z(φ

− − φ+) = µ∂z(φ
−
1 − φ+

1 ).

6. Proof of corollary 3.5

First we state a technical lemma.

Lemma 6.1. Let k ∈ Z
+\{0}. For any γ > 0, ρ big enough and z ∈ Eγ,ρ ,∫ +∞

−∞

eikt

(z + t)�+1
dt = i�+1|k|� 2π

�(� + 1)
e−ikz(1 + O(|Imz|−1)), (6.1)

where � is the Gamma function.
Moreover, if k < 0,∣∣∣∣∫ +∞

−∞

eikt

(z + t)�+1
dt

∣∣∣∣ � 2K�+1,γ e−2|k||Im z| 1

|z|� f or z ∈ Eγ,ρ

where K�+1,γ is the constant defined in lemma 4.6.

Now we prove corollary 3.5. Substituting the definitions of ak in expression (3.6) and
using the asymptotic expressions of the integrals in lemma 6.1 we get

−iC(0)e−i(z−τ) ∼ �i�+1 2π

�(� + 1)

∑
k>0

ak|k|�e−ik(z−τ)(1 + O(|Im z|−1)) as Im z → −∞.

Therefore, since a1 �= 0,

C(0) = −i�
2π�

�(� + 1)
a1 �= 0. (6.2)

Finally (i) from corollary 3.5 follows from the asymptotic expression (3.5), (6.2) and the fact
that g goes to 0 as Im z → −∞ and (ii) is proved from equations (3.5) and (6.2).

Proof of lemma 6.1. Let z ∈ Eγ,ρ . First we deal with k < 0. By Cauchy’s theorem we can
move the path of integration obtaining∫ +∞

−∞

eikt

(z + t)�+1
dt = e−2kImz

∫ +∞

−∞

eikt

(z + t + 2iImz)�+1
dt. (6.3)

Let z̃ = z + 2iImz. We note that z̃, −z̃ ∈ D+
γ,ρ ∩ D−

γ,ρ and |z̃| � |z|. Using bound (4.24) in
formula (6.3) we get the result.

Now we deal with k > 0. Performing trivial changes of variables we have that∫ +∞

−∞

eikt

(z + t)�+1
dt = e−ikRe z

|Imz|�
∫ +∞

−∞

eikt |Imz|

(t − i)�+1
dt. (6.4)

In [3, p 80, formula (6.28)], the following expression is given:∫ +∞

−∞

eikt/ε

(t − ic)�+1
dt = i�+1

(
k

ε

)� 2π

�(� + 1)
e−kc/ε(1 + O(ε)) (6.5)

with ε > 0, c > 0 and k > 0. Putting ε = |Imz|−1 and c = 1 in expression (6.5) we get
formula (6.1) from expression (6.4).

We point out that, if � ∈ N, the asymptotic expressions of this lemma can be easily
obtained by using residues theory. �
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Appendix

In this study, we have restricted ourselves to the case in which our initial Hamiltonian
H = H0 + µH1 is analytic with respect to τ , but this hypothesis is, in fact, not necessary.
The purpose of this appendix is to justify that our proofs are also valid in a more general
setting: the differentiable case with respect to τ .

First we present the precise statement of the results which ensures that, with the obvious
changes, theorems 3.1 and 3.3 and corollary 3.5 are also valid in the differentiable case.

Theorem 6.2. Consider the Hamiltonian system H = H0 + µH1 with

H0(z, w) = 1

2
w2z2r − 1

2z2r
, H1(z, w, τ) = 1

z�

N∑
j=0

Aj(τ, µ)z2rjwj

where r � 1, � ∈ R, N ∈ N and {Aj }j∈{0,···,N} are arbitrary 2π -periodic functions with respect
to τ , analytic with respect to µ in B(µ0), for some µ0 > 0, Cq with respect to τ and such that
the Fourier series of Aj is uniformly convergent for all j ∈ {0, · · · , N}.

Then, if � � 2r , for all γ > 0 there exists ρ0 = ρ0(γ, q, �, r) > 0 such that the Hamilton–
Jacobi equation associated with H has solutions φ± : D±

γ,ρ0,b
→ C of the form φ± = φ0 +µφ±

1 ,
Cq+1 and 2π -periodic with respect to τ , and analytic with respect to (z, µ). Moreover ∂zφ

±
1

is determined by the condition

sup
(z,τ,µ)∈D±

γ,ρ0 ,b

|z�+1∂zφ
±
1 (z, τ, µ)| < +∞.

Theorem 3.3 and corollary 3.5 are also true in this new setting taking into account the new
regularity of g with respect to τ , that is, g is Cq , analytic with respect to (z, µ) ∈ Eγ,ρ ×B(µ0)

and such that the Fourier series of g is uniformly convergent.

To justify this result we take advantage of the fact that our results are valid for spaces of Fourier
series satisfying the properties given in section 4.1 (and consequently in section 5.1).

The appropriate Banach spaces in this case are defined as follows. Let γ, ρ > 0 and
ν ∈ R. We define the space Zν,±

γ,ρ of Fourier series f (z, τ, µ) = ∑
k∈Z

fk(z, µ)eikτ , with
fk ∈ Xν

± analytic with respect to (z, τ ) ∈ D±
γ,ρ × B(µ0), C0 and such that the Fourier series

of f is uniformly convergent. We endow Zν,±
γ,ρ with the norm

‖f ‖ν,0 =
∑
k∈Z

‖fk‖ν

and it becomes a Banach space. This fact can be proved as in [23].
It is straightforward to check that the Banach spaces Zν,±

γ,ρ satisfy the properties given in
lemma 4.3 and lemma 4.4. (We only need to take b = 0 and replace analyticity with respect
to τ by continuity.)

Without any change in the procedure given in section 4 we can check that there exists a
solution, ϕ+ ∈ Z�+1,+

γ,ρ of the fixed point equation ϕ+ = B(ψ�
1 + ∂zψ

�
2 (ϕ+)) and hence ϕ+ is

C1 with respect to τ since ∂τϕ
+ = ψ�

1 + ∂zψ
�
2 (ϕ+) − ∂z

(
B(ψ�

1 + ∂zψ
�
2 (ϕ+)). If either � > 2r ,

or � = 2r with Q1 = 0 and 〈F0 · Q2〉 = 0, we have that ∂zφ
+
1 = ϕ+ and therefore ∂zφ

+
1 is

differentiable with respect to τ . Moreover, using definition (4.33) of φ+
1 we conclude that φ+

1
is differentiable with respect to τ , differentiating under the integral sign. In the special case
� = 2r and either Q1 �= 0 or 〈F0 · Q2〉 �= 0, we have that ∂zφ

+
1 (z, τ ) = ϕ+(z − µF1(τ ), τ ).

Hence ϕ+ is C1 with respect to τ and henceforth, we have the same property for ∂zφ
+
1 and φ+

1 .
We deal with the − case in an analogous way.
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Therefore we conclude that there exist solutions φ± = φ0 + µφ±
1 of the Hamilton–Jacobi

equation ∂τφ
± +H(z, ∂zφ

±, τ ) of the form stated in theorem 6.2 and satisfying that they are C0,
that their Fourier series is uniformly convergent.

Finally we observe that, since φ± = φ0 + φ±
1 with ∂zφ

±
1 ∈ Z�+1,±

γ,ρ , then ∂zφ
± ∈ Z2r,±

γ,ρ . In
particular, we have that ∂zφ

± is C0 and the Fourier series of φ± are uniformly convergent. On
the one hand, we notice that since φ± are analytic with respect to z, ∂zφ

± and consequently
H(z, ∂zφ

±, τ ) are C0 (here we have used that H is Cq). On the other hand, since φ± is a
solution of the Hamilton–Jacobi equation associated with H, ∂τφ

± = −H(z, ∂zφ
±, τ ) and

thus φ± is C1. An inductive argument allows us to conclude that φ± is Cq+1.
For the second part of theorem 6.2, we follow the same steps as in section 5. We omit the

details of the proof because they are quite analogous. section 6 works without any change.
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