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Abstract
We consider the positive real-valued solutions of a particular type of ordinary
differential equations that arise when considering defect solutions to semilinear
partial differential equations. We provide sufficient conditions on the nonlinear
term to ensure the existence, uniqueness and monotonicity of solutions to the
ordinary differential equation with the prescribed boundary conditions. We
then focus on the behaviour of such solutions at infinity and we prove that there
is a unique formal expansion at infinity of the Gevrey type, i.e. the coefficients
of the expansion grow as a power of a factorial. Moreover, we show that the
actual solution is indeed asymptotic 1-Gevrey to this formal expansion. We also
present a numerical algorithm to compute the solution for arbitrary values of the
degree n in the particular case of the Ginzburg–Landau equation. In particular,
we address the difficulty in the numerical computations when n is relatively
large due to the fact that the shooting parameter becomes exponentially small
for the whole class of nonlinearities considered in this work.

Mathematics Subject Classification: 34B18, 34E05, 30E25

1. Introduction

In this work we analyse the positive real-valued solutions to the following problem:

f ′′(r) +
f ′(r)

r
− f (r)

n2

r2
+ F(f (r)) = 0, (1)

f (0) = 0, lim
r→∞ f (r) = 1, (2)
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where n may be taken, by symmetry, as a positive real number and F is a smooth function
satisfying F(0) = F(1) = 0.

These types of equations arise as a representation of the so-called vortex or point-defect
solutions in R

2 of semilinear equations of the form

− �u = F(u), (3)

u being a complex-valued scalar field subject to the condition at infinity |u(x)| → 1 as
|x| → +∞. Vortex solutions are characterized by having a non-vanishing total winding
number or degree at infinity, which is given by

deg∞ u = deg

(
u

|u| , ∂BR

)
,

for large enough values of R, with BR = {z ∈ C : |z| < R}. In particular, solutions of the form

u(x) =
(

x

|x|
)n

f (|x|), x ∈ C, (4)

represent vortices with a degree at infinity of n ∈ Z, and moreover, f is readily found to satisfy
the ordinary differential equation (1) along with the boundary conditions (2).

As we shall see, we will be dealing with quite general nonlinear terms F . Essentially
we will consider smooth functions (continuously differentiable) that vanish at least at zero
and one. Examples of this sort of nonlinearities often arise in the continuum description of
problems involving phase transitions, as it happens for instance in superconductivity models,
liquid crystals or relativistic strings (see [33]). In these contexts, the so-called order parameter,
u, has two preferred homogeneous states or phases, namely u = 0 or u = 1, corresponding
to two equilibrium solutions of the partial differential equation. In this sense, vortex solutions
are non-trivial patterns connecting these two stable states, where the solution does vanish only
at a single point and remains close to one elsewhere. The main result in this paper will hence
provide a set of conditions on F for such type of functions to exist as solutions to the ordinary
differential equation (1) with the boundary conditions given by (2).

When F(x) = x(1 − x2), and n is an integer, f represents the modulus of single-vortex
solutions of the celebrated Ginzburg–Landau equation. This particular case has been widely
studied from both the point of view of the partial differential equation and also from the
equation satisfied by its modulus |u| = f . For instance, in the work by Bethuel et al [9], the
authors focus on the structure of the energy associated with equation (3) to prove that there
exist solutions u : C → R

2 with a non-zero degree in bounded domains. They further show
that such solutions may be expressed in terms of a function u(x) as described in (4), but they
leave, as an open problem, the interesting question of whether this solution u is unique and
hence may be just represented by a function of the form (4). Also in [10] the authors deal
with the same problem for solutions in the whole R

2, but again they leave unanswered the
question of the uniqueness of solutions like the one in (4). Later on, Mironescu in [30] finds
that u(x) defined as in (4) is indeed unique when considering solutions in the plane, Millot
and Pisante in [29] also affirmatively answer this same question in dimension three and Farina
in [19] finally provides uniqueness for any dimension greater than or equal to three.

The fact that the solutions to (3) with a non-vanishing degree are uniquely defined by (4)
strongly motivates the analysis of the ordinary differential problem (1)–(2) by itself. In this
case, existence and uniqueness of such solutions have also been determined by some authors
such as Chen et al in [15] or Hervé and Hervé in [23]. In these works the authors use shooting
arguments which also allow us to prove the monotonicity and positivity of the solution f (r).
However, these shooting arguments are quite restrictive since they strongly rely on the precise
structure of the nonlinearity F(x) = x(1−x2), so they prove to be not so useful for more general
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nonlinear terms. In this work we tackle the problem from another perspective that is more
commonly found in the dynamical system approaches, that is turning (1)–(2) into a suitable
fixed point equation. Moreover, this fixed point equation allows us to elucidate in some depth
some features of the structure of the solutions to this general problem. Needless to say that
the techniques and results in this work also apply to the well-known Ginzburg–Landau case.

Another related interesting problem is obtained with F(z) = (1 + iα)z − (1 + iβ)z|z|2,
where now z ∈ C and α, β ∈ R. It is easy to check that when α = β equation (3)
can be reduced to the standard Ginzburg–Landau equation (see for instance [2]), so the
general situation where the parameters differ is usually known as the complex Ginzburg–
Landau equation. In this case it seems that there also exist vortex solutions that may also
be expressed in terms of ordinary differential equations. In particular, such vortex solutions
are also of the form u(x) = (x/|x|)nf (|x|), but now f (r) ∈ C, so it yields a system of two
coupled ordinary differential equations for the real and imaginary part of the modulus of the
solution u. The existence of these solutions in the whole plane remains unsolved. One may
regard this general problem as a perturbation of the problem we have studied in this work.
However, this type of perturbation makes the equation entirely different from the unperturbed
one since the unperturbed equation has an associated energy that allows us to use the techniques
of the calculus of variations that are of no use in the case of the complex Ginzburg–Landau
equation. In this respect, we want to emphasize that the functional analysis setting in this work
is independent of the variational structure of the equation since it is based on a suitable fixed
point equation, so our aim is to apply this new approach to tackle the more difficult case of the
complex Ginzburg–Landau system.

This paper is hence organized in two main parts. The first part is concerned with the
general problem given by (1)–(2), where our main result, theorem 2.1, characterizes some
nonlinearities F for which there exists a unique solution. We note that equation (1) intuitively
seems to have very different behaviours at zero and at infinity; the dynamics of the solution at the
origin is dominated essentially by the linear part in (1), the one that comes from the Laplacian
in (3), while as r → ∞, the dominating part stops being an ordinary differential equation and it
is the algebraic equation F(f )−n2/r2 = 0 that seems to govern the behaviour of f . However,
we have succeeded in developing a scheme in terms of a fixed point equation which enables
us to prove the existence and uniqueness of the solution to (1)–(2). Moreover, we provide an
upper bound for the leading coefficient of this solution f around r ∼ 0 (αn = limr→0 f (r)/rn)
which is exponentially small in degree n. In the second part, we focus on some properties of
the solutions in the generic case,

f ′′(r) +
f ′(r)

r
− f (r)

n2

r2
+ F(f (r)) = 0,

∂F

∂x
(1) < 0 (5)

f (0) = 0, lim
r→∞ f (r) = 1, (6)

where we perform a rigorous study of the behaviour of these solutions at infinity. We note that
the Ginzburg–Landau equation, which corresponds to F(x) = x(1 − x2), is also included. In
particular, we derive a unique formal expansion of 1-Gevrey type and show that the solution to
(5)–(6) is real analytic at infinity (that is, for r � r0 > 0 with r0 large enough) and it is Gevrey
asymptotic to the formal expansion. This type of result has not been found before and it is very
interesting from the point of view of the physics being modelled by this family of equations
since it provides a framework to use the formal asymptotic expansion as a representation of
the solution at infinity. A similar regularity result was stated by Duan et al [18] regarding
the so-called generalized Ginzburg–Landau equation in one dimension. We remark that the
requirement on the derivative of F at x = 1, although it restricts the family of possible nonlinear
terms under consideration, is also necessary in order to provide stability of the vortex pattern
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when such a solution is regarded as an equilibrium solution of the evolution partial differential
equation ut − �u = F(u), so this requirement is often satisfied.

We also derive a numerical scheme to compute αn = limr→0 f (r)/rn for some values of
n. As we shall show, these numerical computations are in general non-trivial due to the fact
that the shooting parameter becomes exponentially small in n.

The outline of this paper is as follows. In section 2, we first deal with the general
problem given by (1)–(2) and introduce theorem 2.1, which provides sufficient conditions
on the nonlinearities F for which there exists a unique solution of (1)–(2). This is achieved
by, first, posing the problem in terms of a fixed point equation (10) which serves to construct a
monotone solution satisfying the required boundary conditions, and second, by using a sliding
method, which was first introduced in [5] and has also been used in [12], to prove uniqueness.
In section 3 we focus on the behaviour of the solution as r → 0. In particular, it is found
that, although there exist infinitely many solutions departing from r = 0 like f (r) ∼ αrn with
a continuous set of initial parameters α, the precise value for the parameter that ensures that
f (r) → 1 as r → +∞ is exponentially small in n. This explains the difficulties encountered in
obtaining numerical computations for f (r) already for moderate values of n. In the rest of this
paper we study the generic case where F is analytic and F(x) ∼ b(1 − x) + O((1 − x)2), with
b > 0, around x ∼ 1, whose solution is readily found to be C∞ by means of theorem 2.1. We
start, in sections 4 and 5, by describing some asymptotic properties of the solution at infinity. In
particular, in section 4 we prove that there is a unique formal expansion at infinity of the Gevrey
type, i.e., the coefficients of the expansion grow as a power of a factorial. We then analyse
the actual solution of problem (5)–(6) and show, in section 5, that it is indeed asymptotic
1-Gevrey to the previously found formal expansion. Some numerical computations, obtained
with a multiple shooting technique, are presented in the last section 6 for the Ginzburg–Landau
equation: F(x) = x(1 − x2). These show that the profile of f (r) flattens proportionally as
n increases, enlarging the area where f (r) is close to the initial value zero. This, as we shall
also explain in section 6, can be regarded as an expansion of the vortex core as n increases.

2. Existence and uniqueness: a fixed point equation

In what follows we will be denoting ∂F (x) = ∂
∂x

F (x). In this section we will prove the
following result:

Theorem 2.1. Assume that F : [0, 1] → [0, +∞) belongs to Cm([0, 1]), m � 1 (the case
m = +∞ is also included) and it satisfies

(i) F(x) � 0 if x ∈ [0, 1] and F(0) = F(1) = 0.
(ii) F is injective in a neighbourhood of x = 1. In particular, we have that ∂F (x) � 0 if

x ∼ 1.

Then, for any given real n > 0, problem (1)–(2) admits a unique monotone solution
f ∈ [0, 1) with f ∈ Cm+2([0, +∞)).

In addition, when ∂F (1) = −b < 0, f (r) = 1 − n2

br2 + o(r−2) as r → +∞.

Remark 2.2. The functions F(x) = xp(1 − x2)q , p, q � 1, satisfy the hypotheses of our
result. In fact, our result is also true for the more general nonlinearities:

F(x) = F0(x)M(x)(1 − x2)q, F (x) = F0(x)M(x)exp

(
− 1

(1 − x)ν

)
, ν > 0

with q � 1, F0(x) = xp, e−1/xβ

, p � 1, β > 0 and M(x) > 0 if x ∈ [0, 1].
We would also like to stress that F could vanish at some points different from x = 0, 1.
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Concerning the uniqueness of the solution to problem (1)–(2), we note that theorem 2.1
states that if there is a solution satisfying the boundary conditions in (2) such that it always
remains bounded with values between zero and one, then such a solution is unique. However,
the possibility of obtaining a solution satisfying the boundary conditions in (2) reaching
some values outside the region [0, 1] remains. In particular, it looks plausible to have more
than one solution to (1)–(2) for some nonlinearities. Indeed, if we consider for instance
F(x) = x(1 − x2)q , q being an even number, it is not difficult to guess that there seems
to be two different asymptotic expansions approaching one as r → +∞. Nevertheless, the
following corollary provides a condition on the nonlinearity which ensures that there will only
be one solution to (1)–(2).

Corollary 2.3. Let F : [0, a] → R be such that F ∈ Cm([0, a]), m � 1, for some a > 1 (the
case a = +∞ is also included), satisfying the hypothesis in theorem 2.1. If there exists some
x0 ∈ (0, 1) such that ∂F (x) � 0 for x ∈ (x0, a), then problem (1)–(2) has a unique monotone
solution.

Proof. If the nonlinear term F is such that it is defined in [0, a], with a > 1, and also
∂F (x) � 0 if x ∈ [x0, a) for some 0 < x0 < 1, it is not difficult to see that the solutions to
problem (1)–(2) are actually smaller than one, and hence the solution is unique. Indeed, let
us assume that there exists a solution reaching values greater than one. In such a case, the
smoothness of f along with the fact that the solution goes to one at infinity implies that f

should achieve a maximum at some point r∗ where f (r∗) > 1, f ′(r∗) = 0 and f ′′(r∗) � 0.
On the other hand, F(f (r∗)) � 0 and thus,

f ′′(r∗) +
f ′(r∗)

r∗
− f (r∗)

n2

r2∗
+ F(f (r∗)) < 0,

which yields a contradiction. �

Proof of theorem 2.1. The proof is separated into six steps.

Step 1. Derivation of an integral expression equivalent to (1). First of all we note that, since
F ∈ C1([0, 1]), F(x) � 0 and F(1) = 0, by the mean value theorem,

0 � F(1 − x) � sup
z∈[0,1]

|∂F (z)|x := d · x. (7)

We start by performing the change of function f = 1 − g and the change of variable
s = √

d r so the equation for g turns out to be

g′′(s) +
g′(s)

s
− g(s)

(
n2

s2
+ 1

)
= −n2

s2
− g(s) +

1

d
F(1 − g(s)). (8)

To obtain a fixed point equation we note that the homogeneous equation corresponding to
keeping just the left-hand side in (8) corresponds to a modified Bessel equation which has two
well-known linearly independent solutions, namely In and Kn known as the modified Bessel
functions of the first and second kind, respectively. Hence, a fundamental matrix of solutions
reads

M =
(

Kn(s) In(s)

K ′
n(s) I ′

n(s)

)
,

whose Wronskian is known to be W(Kn(s), In(s)) = 1/s (see [1]). We denote the nonlinear
term by

R[g](s) = n2

s2
+ g(s) − 1

d
F(1 − g(s)). (9)
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The variation of the parameters’ formula, along with the condition on g(0) = 1 − f (0) = 1
and imposing g to be bounded at infinity, yields

g(s) = Kn(s)

∫ s

0
ξIn(ξ)R[g](ξ) dξ + In(s)

∫ +∞

s

ξKn(ξ)R[g](ξ) dξ, (10)

g′(s) = K ′
n(s)

∫ s

0
ξIn(ξ)R[g](ξ) dξ + I ′

n(s)

∫ +∞

s

ξKn(ξ)R[g](ξ) dξ. (11)

These equations are actually decoupled, so one can focus only on the first one to use it as a
fixed point equation of the form g(s) = F[g](s) to prove the existence of solutions.

Lemma 2.4. Let F[g] be the nonlinear operator defined by

F[g](s) = Kn(s)

∫ s

0
ξIn(ξ)R[g](ξ) dξ + In(s)

∫ +∞

s

ξKn(ξ)R[g](ξ) dξ, (12)

with R[g] given by (9), and let X be the Banach space defined by

X = {g : J = [0, +∞) → R
+, g ∈ C0(J ), lim

s→+∞ g(s) = 0},
with the usual supremum norm.

Let B1 ∈ X be the convex set given by

B1 = {g ∈ X , such that 0 � g(s) � 1 ∀s ∈ J }.
Then,

(i) If g ∈ X , F[g] ∈ C2(J ).
(ii) The operator F sends B1 to itself: F[B1] ⊂ B1.

(iii) If g ∈ B1, then F[g](0) = 1.

Proof. It is clear that F[g] ∈ C2(J ) if g ∈ C0(J ). We now need to check that F(g)(s) → 0 as
s → +∞. This is seen upon using Hôpital’s rule and the fact that the modified Bessel functions
at infinity behave like Kn(s) ∼ e−s

√
π/2s, In(s) ∼ es/

√
2πs and thus K ′

n(s) ∼ −e−s
√

π/2s

and I ′
n(s) ∼ es/

√
2πs:

lim
s→+∞ F[g](s) = − lim

s→+∞

(
sIn(s)R[g](s)

K ′
n(s)/K

2
n(s)

− sKn(s)R[g](s)

I ′
n(s)/I

2
n (s)

)
= 2 lim

s→+∞ sR[g](s)Kn(s)In(s) = lim
s→+∞ R[g](s)

= lim
s→+∞

(
g(s) − 1

d
F(1 − g(s))

)
= 0,

provided g(s) → 0 as s → +∞.
Now we consider g ∈ C0(J ) such that 0 � g � 1. Then, in view of the hypothesis of

theorem 2.1, 0 � F(1−x) � d ·x, so the functional R[g](s) = n2/s2 +g(s)−d−1F(1−g(s))

satisfies

0 <
n2

s2
� R[g](s) � 1 +

n2

s2
,

provided 0 � g � 1. Therefore,

0 < F[g](s) = Kn(s)

∫ s

0
ξIn(ξ)R[g](ξ) dξ + In(s)

∫ +∞

s

ξKn(ξ)R[g](ξ) dξ

� Kn(s)

∫ s

0
ξIn(ξ)

(
1 +

n2

ξ 2

)
dξ + In(s)

∫ +∞

s

ξKn(ξ)

(
1 +

n2

ξ 2

)
dξ

= sW(Kn(s), In(s)) = 1,



Structure and Gevrey asymptotic of solutions 2819

where we have seen that the modified Bessel functions Kn and In are positive ∀s ∈ J and
satisfy

sI ′
n =

∫ s

0
ξIn(ξ)

(
n2

ξ 2
+ 1

)
dξ,

sK ′
n = −

∫ +∞

s

ξKn(ξ)

(
n2

ξ 2
+ 1

)
dξ.

(13)

This proves that F[B1] ⊂ B1.
We now show that the limit as s → 0+ of F[g](s) is indeed 1, provided only that g is contin-

uous at s = 0+. In effect, if we use that Kn(s) ∼ 1/2 �(n)(s/2)−n, In(s) ∼ (s/2)n 1/�(n + 1)

and hence K ′
n(s) ∼ −(n/2s) �(n)(s/2)−n and I ′

n(s) ∼ (n/s)(s/2)n 1/�(n + 1), along with
Hôpital’s rule, this gives

lim
s→0

F[g](s) = − lim
s→0

(
sIn(s)R[g](s)

K ′
n(s)/K

2
n(s)

− sKn(s)R[g](s)

I ′
n(s)/I

2
n (s)

)
= lim

s→0

(
s2R[g](s)

�(n)

n�(n + 1)

)
= 1.

Therefore, F maps functions g ∈ C0(J ) satisfying the boundary conditions g(0) = 1 and
g(s) → 0 as s → +∞ into continuous functions in J satisfying precisely the same boundary
conditions. �

The following lemma states that the types of nonlinearities that are being considered in
theorem 2.1 may be bounded by a C2 function with a set of properties that will be useful to
prove the existence of a solution to problem (1)–(2).

Lemma 2.5. Let F be such that it satisfies the hypotheses of theorem 2.1. Then there exist
x0 > 0 and a function G with the following properties:

(i) G(0) = 0 and F(1 − x) � G(x) if x ∈ [0, x0].
(ii) G ∈ C2([0, x0]), ∂G(x0) = 0 and ∂G(x) > 0 if x ∈ (0, x0).

(iii) For any x̂0 ∈ (0, x0) there exists a constant B > 0 such that if x ∈ [0, x̂0],

G(x) � Bx∂G(x), −x∂2G(x) � B∂G(x).

In addition, if F(1 − x) � cxq for x ∼ 0, the function G satisfying the above conditions may
be chosen to be of the form

G(x) = xq
( c

2
− x

)
.

Proof. We notice that if F satisfies the hypotheses of theorem 2.1, then there exists x1 ∈ (0, 1)

such that F(1 − x) > 0 and ∂F (1 − x) � 0 if x ∈ (0, x1]. We define now

G(x) = (1 − bx)

∫ x

0
F(1 − ξ) dξ,

with b = 1/x1 > 1. We note that G(0) = 0 and G(x) > 0 if x ∈ (0, b−1). G ∈ C2([0, 1])
provided F ∈ C1([0, 1]). Moreover, as we have already pointed out, F(1 − x) is an increasing
function if x ∈ [0, b−1], and thus

G(x) � (1 − bx)xF (1 − x) � F(1 − x),

provided x ∈ [0, b−1], which proves item (i).
Now we deal with (ii). Note that

∂G(x) = (1 − bx)F (1 − x) − b

∫ x

0
F(1 − ξ) dξ � (1 − 2bx)F (1 − x) > 0,
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if x ∈ (0, 1/(2b)). Moreover ∂G(b−1) < 0 which implies that there exists x0 ∈ (1/(2b), 1/b)

satisfying item (ii).
Finally we check (iii). As we have seen ∂G(x) � (1 − 2bx)F (1 − x), therefore,

G(x) � (1 − bx)xF (1 − x) � 2x(1 − 2bx)F (1 − x) � 2x∂G(x),

if x ∈ [0, 1/(3b)]. Moreover, since ∂F (1 − x) � 0,

−x∂2G(x) = (1 − bx)x∂F (1 − x) + 2bxF(1 − x) � 2bxF(1 − x)

� (1 − 2bx)F (1 − x) � ∂G(x),

provided x ∈ [0, 1/(4b)]. Item (iii) follows from the fact that both G(x)(x∂G(x))−1 and
−x∂2G(x)(∂G(x))−1 are continuous at [1/(4b), x̂0] provided x̂0 ∈ [1/(4b), x0). �

Step 2. Construction of a suitable sequence {gk} ⊂ C0(J ) satisfying gk+1 = F[gk]. We will
prove the following proposition:

Proposition 2.6. There exists gk+1 = F[gk] satisfying the following conditions:

(i) g0 ∈ C0(J ), it is decreasing monotone and g0 tends to 0 as s → +∞.
(ii) gk ∈ B1 and 0 < gk+1 < gk � 1 for all k.

(iii) The family given by the sequence S = {gk : k ∈ N} ⊂ C0(J ) is equicontinuous at
J = [0, +∞) ∪ {+∞}. That is to say, it is equicontinuous for any s ∈ [0, +∞) and
furthermore, it is equicontinuous at +∞ which means that for any ε > 0, there exists
s0 > 0 such that 0 < gk(s) < ε for all s � s0 and for all k � 0.

We start by constructing a suitable function g0. By hypothesis (i) and (ii) of lemma 2.5,
there exists x0 > 0 such that F(1 − x) � G(x) for x ∈ [0, x0] and the function G satisfies that
G ∈ C2([0, x0]), G(0) = 0, ∂G(x0) = 0 and ∂G(x) > 0 if 0 < x < x0. We note that hence
G : [0, x0] → [0, +∞) is an injective function. Let x̂0 ∈ (0, x0) be such that it satisfies the
following two conditions:

G(x̂0) >
G(x0)

2
, ∂G(x̂0) <

G(x0)

n2
. (14)

Note that such a number, x̂0, exists because of the continuity of both G, ∂G and from the fact
that ∂G(x0) = 0.

Next we state a technical lemma which is a consequence of the hypotheses on G stated in
lemma 2.5.

Lemma 2.7. Let a = G(x̂0). For any C > 0, there exists a decreasing function ĝ0 :
[
√

C/a, +∞) → [0, x̂0] satisfying that

C

s2
= G(ĝ0(s)). (15)

Moreover,

(i) ĝ0 ∈ C2((
√

C/a, +∞)) and if s �
√

C/a, then ĝ′′
0 (s) � As−2ĝ0(s) for some constant

A > 0;
(ii) n2(1 − ĝ0(

√
C/a)) <

√
C/a |ĝ′

0(
√

C/a)| .

Furthermore, in the special case that G(x) = O(xq) as x ∼ 0, ĝ0 = O(s−2/q).
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Proof. Let C > 0. Since G : [0, x̂0] → [0, a] is a bijective function, the existence of ĝ0 is
guaranteed. Moreover differentiating the functions involved in expression (15),

−2C

s3
= ∂G(ĝ0(s))ĝ

′
0(s),

6C

s4
= ∂2G(ĝ0(s))(ĝ

′
0(s))

2 + ∂G(ĝ0(s))ĝ
′′
0 (s),

(16)

which implies that ĝ′
0(s) < 0 if s �

√
C/a due to the fact that ∂G(x) > 0 if x ∈ (0, x̂0]. Also,

using that C = s2G(ĝ0(s)), one has

ĝ′′
0 (s) = 1

∂G(ĝ0(s))

(
6G(ĝ0(s))

s2
− ∂2G(ĝ0(s))(ĝ

′
0(s))

2

)
. (17)

We next define s+ = √
C/a and observe that ĝ0(s+) = x̂0 with x̂0 defined by

conditions (14). Now we are going to check that s2ĝ′′
0 (s) � Aĝ0 if s � s+. We recall

that, according to item (iii) in lemma 2.5, if x ∈ [0, x̂0] then there exists some constant B such
that Bx∂G(x) � G(x) and we observe that, from (16),

|ĝ′
0(s)s| = 2G(ĝ0(s))

∂G(ĝ0(s))
� 2Bĝ0(s). (18)

Indeed, again by item (iii) of lemma 2.5 one has that there exists a constant B > 0 such
that −x∂2G(x) � B∂G(x) if x ∈ [0, x̂0]. Hence, using expression (17) for ĝ′′

0 , along with
Bx∂G(x) � G(x) and (18), yields

ĝ′′
0 (s) � 6B

s2
ĝ0(s) +

B

ĝ0(s)
(ĝ′

0(s))
2 � 6B

s2
ĝ0(s) +

4B3

s2
ĝ0(s) = A

ĝ0(s)

s2
,

which concludes the proof.
We now prove item (ii) in the lemma. Since x̂0 = ĝ0(s+), with x̂0 satisfying conditions (14),

|s+ĝ
′
0(s+)| = 2G(ĝ0(s+))

∂G(ĝ0(s+))
= 2G(x̂0)

∂G(x̂0)
� n2 � n2(1 − ĝ0(s+)).

Finally, it is now straightforward that if G(x) = O(xq) as x → 0, then ĝ0(s) = O(s−2/q)

as s → +∞. �

Lemma 2.8. There exists a decreasing function g0 ∈ B1 such that g1 = F[g0] < g0 and
g0(s) → 0 as s → +∞.

Moreover, if G(x) = O(xq) as x ∼ 0, then g0(s) = O(s−2/q).

Proof. In order to shorten the notation we introduce the operator

H[h](s) = h′(s)
s

− h(s)

(
n2

s2
+ 1

)
+

n2

s2
+ h(s) − 1

d
F(1 − h(s)). (19)

We take C > 0 large enough and ĝ0 as in lemma 2.7, satisfying Cs−2 = G(ĝ0(s)). First
we are going to check that if s �

√
C/a then

ĝ′′
0 (s) + H[ĝ0](s) � 0. (20)

Indeed, we recall that by hypothesis (i) of lemma 2.5, F(1 − x) � G(x) if x ∈ [0, x0]. By
using lemma 2.7, we find that

ĝ′′
0 (s) + H[ĝ0](s) � A

ĝ0(s)

s2
+

n2

s2
s(1 − ĝ0(s)) − 1

d
G(ĝ0(s))

= s−2d−1[(A + n2)d − C] � 0, (21)

upon taking C � (A + n2)d .
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We now define the straight line

g+(s) = ĝ0(s+) + (s − s+)ĝ
′
0(s+), (22)

where s+ = √
C/a. It is clear that g+(s+) = ĝ0(s+) and g′

+(s+) = ĝ′
0(s+) and that

g+(s−) = 1 with

s− = s+ − 1 − ĝ0(s+)

|ĝ′
0(s+)| , (23)

and it is straightforward to check that s− ∈ (0, s+) simply using item (ii) of lemma 2.7. Finally,
if s ∈ [s−, s+], using again item (ii) of lemma 2.7 along with the fact that 1 = g+(s−) � g+(s) �
g+(s+) = ĝ0(s+), we have that

g′′
+(s) +

g′
+(s)

s
− g+(s)

(
n2

s2
+ 1

)
+

n2

s2
+ g+(s) − 1

d
F(1 − g+(s))

� ĝ′
0(s+)

s
+

n2

s2
(1 − g+(s)) � 0. (24)

Here we have also used that, by means of hypothesis (i) of theorem 2.1, F(1 − x) � 0.
Finally we define g0 ∈ C1(0, +∞) as

g0(s) =


1 s � s−,

g+(s) s− � s � s+,

ĝ0(s) s � s+.

(25)

We note that g0 is decreasing and actually, by construction, g0 ∈ C1((s−, +∞)), g0(s−) = 1,
lims→+∞ g0(s) = 0 and by (20) and (24), if s > s− and s �= s+,

g′′
0 (s) +

g′
0(s)

s
− g0(s)

(
n2

s2
+ 1

)
+

n2

s2
+ g0(s) − 1

d
F(1 − g0(s)) � 0. (26)

We claim that g1 = F[g0] � g0. Indeed, it is clear that if s � s−, then g1 � 1 = g0(s).
Therefore, we can restrict ourselves to prove the inequality when s > s−. We introduce the
linear differential operator

L[h](t) = h′′(t) +
h′(t)

t
− h(t)

(
n2

t2
+ 1

)
.

First we observe that upon integrating by parts,

−
∫ b

a

ξBn(ξ)L[h](ξ) dξ = −ξh′(ξ)Bn(ξ)|ba + ξh(ξ)B ′
n(ξ)|ba,

with either Bn = Kn or Bn = In. Thence, using definition (25) of g0 and the fact that, by
property (26), R[g0](s) � −L[g0](s) if s �= s−, s+ one obtains for s− < s < s+,

g1(s) = F[g0](s) � Kn(s)

∫ s−

0
ξIn(ξ)R[1](ξ) dξ − Kn(s)

∫ s

s−
ξIn(ξ)L[g+](ξ) dξ

− In(s)

∫ s+

s

ξKn(ξ)L[g+](ξ) dξ − In(s)

∫ +∞

s+

ξKn(ξ)L[ĝ0](ξ) dξ

� g+(s) + Kn(s)In(s−)s−g′
+(s−)

< g0(s).

Analogously one can deal with the case s � s+. �
Thus far the first result in proposition 2.6 is proved. The following lemma proves the

second item in proposition 2.6.
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Lemma 2.9. Let g0 be the function obtained in lemma 2.8. Then, the sequence gk+1 = F[gk] ⊂
B1 and it is decreasing, i.e. gk+1(s) < gk(s) for all s ∈ J .

Proof. We observe that since g0 ∈ B1, then by lemma 2.4, gk ∈ B1. We define the smooth
function H(x) = x − d−1F(1 − x). For d large enough, H ′(x) > 0 and hence, since
0 < g1 < g0 < 1, R[g1](s) � R[g2](s). Therefore,

g2(s) = F[g1](s) � F[g0](s) = g1(s),

and the result follows for all k by induction. �
Finally, we prove the equicontinuity of the family S = {gk} for s ∈ J = [0, +∞) and also

the equicontinuity at +∞. If s0 ∈ (0, +∞), the equicontinuity of the family S at s0 follows
straightforwardly from the fact that Kn and In are continuous along with the definition of the
operator F .

The equicontinuity at +∞ is also a straightforward consequence of the fact that
0 < gk < g0 and that g0 → 0 as s → +∞.

It only remains to ensure the equicontinuity at s0 = 0. Let ε > 0, since F[gk](0) = 1,
one just needs to check that 0 < 1 − F[gk](s) < ε, if 0 < s < δ. Indeed, using (13) and the
fact that 0 � gk(s) � 1,

1 − F[gk](s) = Kn(s)

∫ s

0
ξIn(ξ)

(
1 − gk(ξ) +

1

d
F(1 − gk(ξ))

)
dξ

+ In(s)

∫ +∞

s

ξKn(ξ)

(
1 − gk(ξ) +

1

d
F(1 − gk(ξ))

)
dξ

� Kn(s)

∫ s

0
ξIn(ξ) dξ + In(s)

∫ +∞

s

ξKn(ξ) dξ

provided that, by definition (7) of d , d · x � F(1 − x). Equicontinuity of the family S = {gk}
at s = 0 follows now immediately upon the fact that

lim
s→0

(
Kn(s)

∫ s

0
ξIn(ξ) dξ + In(s)

∫ +∞

s

ξKn(ξ) dξ

)
= 0.

Step 3. Existence of a Cm+2(J ) solution of the fixed point equation g = F(g). We
will use the Ascoli–Arzelà theorem. However, in our case, the family of functions is not
defined on a compact set since the domain is J = [0, +∞). We can get around this by
performing the bijective change of variables s = ϕ(t) = 1/(1 − t) which maps [0, +∞)

into [0, 1] and considering instead the sequence hk(t) = gk(
1

1−t
). Since the family {gk}

satisfies the equicontinuity condition given in item (iii) of proposition 2.6, the sequence {hk}
is equicontinuous at [0, 1] (and uniformly bounded) and hence we can apply the Ascoli–
Arzelà Theorem to {hk} and get a partial subsequence which is uniformly convergent at [0, 1].
Therefore, the sequence {gk} has a partial subsequence uniformly convergent at J = [0, +∞).
Let g− = limk→+∞ gnk

, it is thus clear that g− = F(g−) and therefore this is the solution to
the fixed point problem that we were searching.

So far we have only proved the existence of at least one continuous solution to problem
(1)–(2). However, by writing this solution in terms of the fixed point equation (10), we have
also proved that it is actually Cm+2(J ). Therefore, if m � n, f may be expressed as a Taylor
series around r = 0 which is readily found to be of the form

f (r) = αnr
n + o(rn), (27)

where αn is a priori unknown, and, as we shall show, depends on degree n.
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Step 4. Monotonicity of the solution g− = F[g−] = limk→+∞ gk . We recall that, by
construction, g0 is a decreasing function. Hence, in order to prove that our solution is also
decreasing, we just have to check that the operator F conserves the monotonicity. To this end
we introduce the functions

ϕ1(s) = Kn(s)

∫ s

0
In(ξ)

n2

ξ
dξ + In(s)

∫ +∞

s

Kn(ξ)
n2

ξ
dξ,

ϕ2(s) = 1 − ϕ1(s) = Kn(s)

∫ s

0
ξIn(ξ) dξ + In(s)

∫ +∞

s

ξKn(ξ) dξ.

Lemma 2.10. The function ϕ1 is decreasing, and hence ϕ2 is increasing and both of them
satisfy 0 � ϕ1(s), ϕ2(s) � 1.

Proof. We deal first with the statement for ϕ1. It is clear that 0 � ϕ1(s) � 1. We now consider
the second-order differential equation:

ϕ′′(s) +
ϕ′(s)

s
− ϕ(s)

(
n2

s2
+ 1

)
+

n2

s2
= 0.

We observe that ϕ1 is the unique solution to the above equation, bounded in [0, +∞). We
further note that ϕ′

1(s) satisfies the second-order equation:

ϕ(s)′′ +
ϕ′(s)

s
− ϕ(s)

(
n2 + 1

s2
+ 1

)
− 2n2

s3
(1 − ϕ1(s)) = 0,

which, upon writing ν =
√

n2 + 1, may be expressed as

ϕ′(s) = −Kν(s)

∫ s

0
ξIν(ξ)

2n2

ξ 3
(1 − ϕ1(ξ)) dξ − Iν(s)

∫ +∞

s

ξKν(ξ)
2n2

ξ 3
(1 − ϕ1(ξ)) dξ,

from where it becomes clear that it is negative provided ϕ1(s) ∈ [0, 1]. This proves the
statement for ϕ1, so the fact that ϕ2 = 1 − ϕ1 completes the proof. �

Now we will check that if h ∈ B1 is a decreasing function, F[h] is also decreasing.
Indeed, it is clear that if h ∈ B1 is a decreasing function, then the function T [h](s) :=
h(s) − d−1F(1 − h(s)) is also decreasing. Moreover, 0 � T [h] � 1 provided 0 � h � 1 and
according to hypothesis (i) of theorem 2.1. Hence, since K ′

n � 0 and I ′
n � 0, we have that

F ′[h] = K ′
n(s)

∫ s

0
ξIn(ξ)

(
n2

ξ 2
+ T [h](ξ)

)
dξ

+ I ′
n(s)

∫ +∞

s

ξKn(ξ)

(
n2

ξ 2
+ T [h](ξ)

)
dξ

� ϕ′
1(s) + T (h)(s)

(
K ′

n(s)

∫ s

0
ξIn(ξ) dξ + I ′

n(s)

∫ +∞

s

ξKn(ξ) dξ

)
= ϕ′

1(s) + T (h)(s)ϕ′
2(s) � ϕ′

1(s) + ϕ′
2(s) = 0.

This shows that the operator F conserves the monotonicity. Thence, since g0 is a decreasing
function, the rest of the functions in the sequence, gk , which are obtained by gk+1 = F[gk],
are also decreasing and consequently their limit function g = F[g] is indeed a decreasing
function.

So far it has only been used that F ∈ C0([0, 1]) and that it is a Lipschitz function. However,
in what follows we will use that at least F ∈ C1([0, 1]) to prove uniqueness.

Step 5. Uniqueness of the solution. To prove the uniqueness of the solution we will use the
following comparison lemma for ODEs several times, which can be found in [34]:
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Lemma 2.11 ( [34]). Let (a, b) be an interval in R, let � = R
2 ×(a, b) and let H ∈ C1(�, R).

Suppose h ∈ C2((a, b)) satisfies h′′(r) + H(h(r), h′(r), r) = 0. If ∂hH � 0 on � and
if there exist functions M, m ∈ C2((a, b)) satisfying M ′′(r) + H(M(r), M ′(r), r) � 0 and
m′′(r) + H(m(r), m′(r), r) � 0, as well as the boundary conditions m(a) � h(a) � M(a)

and m(b) � h(b) � M(b), then for all r ∈ (a, b) we have m(r) � h(r) � M(r).

Lemma 2.12. Let f be a solution to

f ′′(r) +
f ′(r)

r
− f (r)

n2

r2
+ F(f (r)) = 0, (28)

satisfying that f (r) ∈ [0, 1) for r � 0 and the boundary conditions f (0) = 0,
lims→+∞ f (r) = 1.

Then:

(i) There exists r0 > 0 such that f is strictly increasing at [r0, +∞), in particular f ′(r) � 0
if r � r0. Consequently limr→+∞ rf ′(r) = 0.

(ii) For any r > 0, rf ′(r) − n2f (r) < 0.

Proof. We start by proving (i). We note that f ′ is a solution of the linear equation

ϕ′′(r) +
ϕ′(r)

r
− ϕ(r)

n2 + 1

r2
+

2n2

r3
f (r) + ∂F (f (r))ϕ(r) = 0,

satisfying the boundary conditions lims→+∞ ϕ(s) = 0, ϕ(0) = 0 if n � 2 and bounded at the
origin if n = 1. Since f (0) = 0, lims→+∞ f (r) = 1 and 0 � f (r) < 1, it is clear that, for
all R > 0, there exist rR � R such that f ′(rR) � 0. Let R be such that ∂F (f (r)) � 0 if
r � R (such R > 0 exists because f (r) → 1 as r → +∞ and thanks to hypothesis (ii) of
theorem 2.1). We may apply lemma 2.11 with (a, b) = (rR, +∞),

H(ϕ(r), ϕ′(r), r) = ϕ′(r)
r

− ϕ(r)
n2 + 1

r2
+

2n2

r3
f (r) + ∂F (f (r))ϕ(r),

and m(r) = 0 to obtain that f ′(r) � 0 if r � rR . Now we are going to prove that f is strictly
increasing. Indeed, assume that there exists rR � r1 < r2 such that f (r1) = f (r2) then, since
f ′(r) � 0 if r � rR , we have that f ′(r) ≡ 0 if r ∈ [r1, r2] which implies that f is constant in
[r1, r2]. In such a case, since f is a solution of (28), f ≡ 0 which gives a contradiction.

Now we check that the second property holds. We define h(r) = rf ′(r) − n2f (r). On
the one hand, it is clear that h(0) = 0, and hence if there exists r1 > 0 such that h(r1) > 0, we
can assume that h′(r1) > 0 . On the other hand, since f is a solution of (28) we have that

h′(r) = rf ′′(r) + f ′(r) − n2f ′(r) = f (r)
n2

r
− n2f ′(r) − rF (f (r))

= −h(r)

r
− (n2 − 1)f ′(r) − rF (f (r)).

Finally, evaluating at r = r1 one obtains h′(r1) < 0 which gives a contradiction.
If h(r) � 0 for r > 0 and there exists r1 > 0 such that h(r1) = 0, it is easy to check that

h′(r1) = 0. In this case, we have that f (r1) = f ′(r1) = 0 which implies f ≡ 0 provided f

is a solution of (28) and also because of the uniqueness of solutions of the Cauchy problem
for r1 > 0. �

Lemma 2.13. Let f be a solution of (28) satisfying f (0) = 0 and limr→+∞ f (r) = 1. Then
the translated function for a > 0 defined by fa(r) = f (a + r) satisfies

f ′′
a (r) +

f ′
a(r)

r
− fa(r)

n2

r2
+ F(fa(r)) < 0, r ∈ [0, +∞).
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Proof. We note that fa is a solution of the second-order differential equation

f ′′
a (r) +

f ′
a(r)

r + a
− fa(r)

n2

(r + a)2
+ F(fa(r)) = 0.

Then,

f ′′
a (r) +

f ′
a(r)

r
− fa(r)

n2

r2
+ F(fa(r)) = f ′

a(r)

(
1

r
− 1

r + a

)
− fa(r)

(
n2

r2
− n2

(r + a)2

)
= 1

r2(r + a)2
[af ′

a(r)r(r + a) − an2fa(r)(2r + a)]

= a

r2(r + a)2
[r[(r + a)f ′

a(r) − 2n2fa(r)] − an2fa(r)],

and the lemma is proved using item (ii) in lemma 2.12. �
Let now f +, f − be two solutions of (28) satisfying the boundary conditions f +(0) =

f −(0) = 0, limr→+∞ f +(r) = limr→+∞ f −(r) = 1.
To prove uniqueness of the solution we will explode a very useful technique, namely the

sliding method, which was introduced in [5] and it is also used in [12]. We start then by
considering the translated function

fa(r) = f (a + r), a > 0, (29)

and we consider the sets

U− = {a > 0 : f −
a (r) � f +(r), r � 0} ⊂ (0, +∞),

U+ = {a > 0 : f +
a (r) � f −(r), r � 0} ⊂ (0, +∞).

We will see that the sets U± are (a) non-empty, (b) open and closed and therefore U± =
(0, +∞). We note that this implies the uniqueness of the solution.

We begin by proving that U is non-empty. Concretely we will prove the following:

∃a > 0 such that a ∈ U ⇐⇒
∃a > 0 such that f −

a (r) > f +(r), r � 0. (30)

Since limr→+∞ f +(r) = 1 and ∂F (x) � 0 if x ∼ 1 (hypothesis (ii) of theorem 2.1), there
exists r1 > 0 such that ∂F (f +(r)) � 0 if r � r1. Moreover, since lima→+∞ f −

a (r) = 1
and by item (i) of lemma 2.12 we can choose a > 0 such that f −

a is a strictly increasing
function, ∂F (f −

a (r)) � 0 and f −
a (r) > f +(r) if r ∈ [0, r1]. Now we are going to prove

that f −
a (r) � f +(r) if r � r1. In effect, we define �f = f −

a − f + and we note that, by
lemma 2.13,

�f ′′(r) +
�f ′(r)

r
− �f (r)

n2

r2
− F(f +(r)) − F(f −

a (r))

f −
a (r) − f +(r)

�f (r) < 0. (31)

We next introduce

D(r) = F(f +(r)) − F(f −
a (r))

f −
a (r) − f +(r)

= −
∫ 1

0
∂F (f −

a (r) + λ(f +(r) − f −
a (r))) dλ,

and we note that, with the choice of a and r1, D(r) � 0 if r � r1. We consider then the linear
differential equation

ϕ′′(r) +
ϕ′(r)

r
− ϕ(r)

n2

r2
− D(r)ϕ(r) = 0,

and we observe that �f (r1) = f −
a (r1)−f +(r1) > 0 and limr→+∞ �f (r) = 0. Hence, by (31),

we can apply lemma 2.11 to the solution ϕ ≡ 0 and we obtain �f � 0 if r � r1. Now we have
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already proved that f −
a � f +, but we note that if there exists r0 � 0 such that f −

a (r0) = f +(r0),
then for any ε > 0, we have that f −

a+ε(r0) = f −(a + ε + r0) > f −(a + r0) = f +(r0) provided
that f − is strictly increasing in [a, +∞), which proves (30).

The following step is to prove that, for a > 0,

f −
a (r) � f +(r), r � 0 �⇒ f −

a (r) > f +(r), r � 0. (32)

We note that f −
a and f + cannot be identically equal simply because f −

a (0) > 0 = f +(0). Let
us then assume that there exists r0 such that f −

a (r0) = f +(r0). Then, (f −
a )′(r0) = (f +)′(r0)

provided f −
a � f +. Therefore, we have that, on the one hand, by Taylor’s theorem, for r ∼ r0,

f −
a (r) − f +(r) = ((f −

a )′′(r0) − (f +)′′(r0))
(r − r0)

2

2
+ O((r − r0)

3 � 0,

which implies that (f −
a )′′(r0) − (f +)′′(r0) � 0. And on the other hand, assuming f −

a (r0) =
f +(r0) and (f −

a )′(r0) = (f +)′(r0) and taking into account lemma 2.13 one obtains

0 > (f −
a )′′(r0) +

(f −
a )′(r0)

r0
− f −

a (r0)
n2

r2
0

+ F(f −
a (r0)) = (f −

a )′′(r0) − (f +)′′(r0),

which gives a contradiction.
We now prove the last step. That is we will check that U is open (U closed is immediate):

f −
a � f + �⇒ f −

a+ε � f +, if |ε| is small enough. (33)

Assume that f −
a � f for some a > 0. By (32) we have in fact that f −

a > f +. Let r1 > 0
be such that ∂F (f +(r)) � 0 if r � r1 (as usual we have used that F is decreasing in a
neighbourhood of x = 1). It is clear that, since f −

a � f +, we also have that ∂F (f −
a (r)) � 0

if r � r1. We introduce the positive quantity

b = min
r∈[0,r1]

f −
a (r) − f +(r) > 0,

and let |ε| < a/2 small enough such that

max
r∈[0,r1]

|f −
a+ε(r) − f −

a (r)| � b

2
.

Then we have that, if r ∈ [0, r1],

f −
a+ε(r) − f +(r) = f −

a+ε(r) − f −
a (r) + f −

a (r) − f +(r) � b

2
> 0.

We have already proved that f −
a+ε(r) > f +(r) if r ∈ [0, r1]. It only remains to check that

f −
a+ε(r) � f +(r) if r � r1, but the proof of this fact is completely analogous to the one used

to prove (30).

Step 6. Behaviour at infinity of f for generic nonlinearities F ∈ C1([0, 1]).

Lemma 2.14. In the generic case ∂F (1) = −b < 0, the solution f (r) = 1 − n2

br2 + o(r−2) as
r → +∞.

Proof. We write f̃ (t) = 1 − f (t/
√

b) and we just have to check that f̃ (t) satisfies

lim
t→+∞ t2f̃ (t) = n2.

We first point out that, when ∂F (1) < 0, then by lemma 2.5, one can take G of the form
G(x) = b

4 x − x2. Therefore, since g(s) = 1 − f (s/
√

d), by lemma 2.8 and step 3,

f̃ (t) = g(t
√

d/b) = lim
k→+∞

gk(t
√

d/b) < g0(t
√

d/b) = O(t−2).
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We also have that f̃ (t) satisfies the differential equation

f̃ ′′(t) +
f̃ ′(t)

t
− f̃ (t)

(
1 +

n2

t2

)
+

n2

t2
− 1

b
[F(1 − f̃ (t)) − bf̃ (t)] = 0,

and (following step 1) may be written in terms of the fixed point equation

f̃ (t) = ϕ1(t) + Kn(t)

∫ t

0
ξIn(ξ)R[f̃ ](ξ) dξ + In(t)

∫ +∞

t

ξKn(ξ)R[f̃ ][ξ ] dξ,

where ϕ1(t) was introduced in lemma 2.10 and

R[f̃ ](t) = −1

b
[F(1 − f̃ (t)) − bf̃ (t)] = o(f̃ (t)) = o(t−2).

It is easy to check, using Hôpital’s rule along with the behaviour of the modified Bessel
functions In and Kn at infinity, that

lim
t→+∞ t2ϕ1(t) = n2.

As for the remaining part, since R[f̃ ](t) = o(t−2), it is also straightforward that

lim
t→+∞

(
t2Kn(t)

∫ t

0
ξIn(ξ)R[f̃ ](ξ) dξ + t2In(t)

∫ +∞

t

ξKn(ξ)R[f̃ ](ξ) ds

)
= 0.

Again one must use here a combination of Hôpital’s rule and that the modified Bessel functions
at infinity behave like Kn(s) ∼ e−s

√
π/2s, In(s) ∼ es/

√
2πs. After having proved this, it

becomes clear that f (r) = 1 − n2/(br2) + o(r−2).

Remark 2.15. Assuming the hypotheses of the previous lemma hold, we note that if F ∈
C2([0, 1]) and one applies Taylor’s theorem, then

f (r)
n2

r2
− F(f (r)) = n2

r2
+ b(f (r) − 1) + O((1 − f (r))2) + O(r−2(1 − f (r))).

Therefore, by the previous lemma, f (r)n2r−1 − rF (f (r)) = O(r−3). Moreover, since
(rf ′(r))′ = n2r−1f (r) − rF (f (r)) and item (i) of lemma 2.12 provides that rf ′(r) → 0
as r → +∞, one obtains

rf ′(r) =
∫ +∞

r

f (ξ)
n2

ξ
− ξF (f (ξ)) dξ = O(r−4).

This concludes the proof of theorem 2.1 �

Some remarks on the hypothesis. To complete this section we give some comments regarding
the optimality of the hypothesis:

(i) Lemma 2.5 also holds provided F ∈ C0([0, 1]) and F(1 − x) > 0 for x ∼ 0. Indeed, this
is clear by choosing∫ x

0
(1 − bu)

∫ u

0
F(1 − ξ) dξ du,

where b = 1/x1 with x1 such that F(1 − x) > 0 when 0 < x < x1.
(ii) To prove the existence, monotonicity and regularity of the solution f it is just required

that F ∈ C0([0, 1]), F(1 − x) > 0 if x ∼ 0 and that F is Lipschitz.
(iii) The full set of hypotheses is only necessary in order to obtain the uniqueness of f .
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(iv) F ∈ C0([0, 1]) seems not to be a sufficient condition to guarantee even the existence of a
solution. For example, let us consider F(x) = x1/�(1 − x2) and equation

f ′′(r) +
f ′(r)

r
− n2

r2
f (r) + F(f (r)) = 0,

for n > 2 and � � n/(n − 2). Formally, if f is a solution to this equation satisfying
f (0) = 0, then f (r) ∼ αrm + o(rm), since f ∈ C2([0, +∞)), for some α and m. If one
now substitutes this expression into the equation, one gets

α(m2 − n2)rm−2 + α1/�rm/� = o(rm−2) + o(rm/�).

It is now clear that either m − 2 < m/�, in which case m = n yielding a contradiction, or
m− 2 = m/� and m2 −n2 < 0 (recall that α > 0), in which case one finds � < n/(n− 2)

giving again a contradiction.

3. Exponential smallness of αn

In this section we focus on the behaviour at the origin of the solution f to

f ′′(r) +
f ′(r)

r
− n2

r2
f (r) + F(f (r)) = 0,

with boundary conditions (2). We are actually going to prove that limr→0 r−nf (r) = αn exists
and we will show that indeed αn happens to be exponentially small in parameter n.

Lemma 3.1. Under the hypotheses of theorem 2.1, αn = limr→0 f (r)r−n satisfies that

0 � αn � n1/3dn/2

2nn!

32/3�(2/3)

(d + 1)21/3

(
1 + 0

(
1

n4/3

))
,

where d := supz∈[0,1] |∂F (z)| as defined in (7).

Proof. First we note that, since F(0) = 0, by the mean value theorem,

0 � F(x) � sup
z∈[0,1]

|∂F (z)| · x = d · x.

We perform the change f (s/
√

d) = h(s) and we recall that h satisfies the equation

h′′(s) +
h′(s)

s
− n2

s2
h(s) + d−1F(h(s)) = 0.

We shall apply lemma 2.11 in order to bind our solution h. Thus, we define

H(h′(s), h(s), s) = h′(s)
s

− n2

s2
h(s) + d−1F(h(s)).

Let (a, b) = (0, n) and M(s) = CJn(s) with C = h(n)/Jn(n) and Jn the Bessel function.
We have that ∂hH(h′(s), h(s), s) � 0 if s � n and M satisfies h(0) = M(0) = 0 and
h(n) = M(n). Moreover

M ′′(s) + H(M ′(s), M(s), s) = −CJn(s) + d−1F(CJn(s)) � 0,

provided 0 � CJn(s) � h(n) � 1 if s � n (see [1] and definition of d). Hence by lemma 2.11,
h(s) � CJn(s) if s � n. Therefore,

αn = lim
r→0

f (r)

rn
= lim

r→0

h(
√

d r)

rn
� C lim

r→0

Jn(
√

d r)

rn
= C

dn/2

2nn!
.
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It only remains to estimate C = h(n)/Jn(n). It is clear that h(n) � 1 and, moreover, it is also
known [1] that

Jn(n) = 21/3

32/3�(2/3)n1/3

(
1 + 0

(
1

n4/3

))
.

Using these estimates we obtain

C � n1/332/3�(2/3)

21/3

(
1 + 0

(
1

n4/3

))
,

and therefore,

αn � n1/3dn/2

2nn!

32/3�(2/3)

21/3

(
1 + 0

(
1

n4/3

))
. �

4. Formal solution at infinity and Gevrey estimates

In the rest of this work we focus on the generic case ∂F (1) < 0 and F an analytic function in
a neighbourhood of x = 1. As a particular case, the well-known Ginzburg–Landau equation,
which corresponds to F = f (1 − f 2), is included. This equation first arose as a model for
phase transition problems in superconductivity, and later on was also proved to be a good
model in many other systems such as in superfluidity or nematic liquid crystals among others
(see [21, 22, 28]).

There are a number of works in the literature dealing with this equation that prove the
existence, uniqueness and monotonicity of solutions. However, the structure of such solutions
at infinity has not been carefully studied before, despite the fact that on many occasions it was
necessary to use some estimates on, for instance, the rate of growth of f at infinity. The goal
in this section is hence to derive a formal expansion of the solutions of equation (1) at infinity
and in particular to show that there exists a unique formal solution that tends to one at infinity.
Furthermore, we shall show that this formal solution is 1-Gevrey (see the appendix).

Proposition 4.1. Let F : U ⊂ C → C be an analytic function satisfying the hypotheses of
theorem 2.1. Assume that there exists δ > 0 such that Bδ = {z ∈ C : |1 − z| � δ} ⊂ U . If
∂F (1) = −b < 0, given equation

f ′′(r) +
f ′(r)

r
− n2

r2
f (r) + F(f (r)) = 0, (34)

there is a unique formal solution of the form

f̂ (r) = 1 +
∑
k�1

ak

r2k
,

such that f̂ is an asymptotic expansion of 1-Gevrey type, that is

|ak| � C2k(2k)!,

with C > 0 and adequate constant.

Proof. To prove this proposition we first construct recursively the asymptotic expansion,
afterwards we show that all the odd terms in the expansion vanish and finally we show that the
series is of 1-Gevrey type.

To clarify the exposition, we will deal with h(t) = 1 − f (t−1). If f is a solution of (34)
then h satisfies

t4h′′(t) + t3h′(t) − n2t2h(t) + n2t2 − F(1 − h(t)) = 0. (35)
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We emphasize that the formal series f̂ (r) = ∑
k�0

ak

rk is a formal solution of (34) if and only

if ĥ(t) = 1 − ∑
k�0 akt

k is a formal solution of (35). Moreover, f̂ is 1-Gevrey at infinity if

and only if ĥ is 1-Gevrey at the origin (see the appendix).

Construction of the formal asymptotic expansion. We first start by posing the expansion at
the origin given by

ĥ(t) =
∑
k�0

akt
k,

and we define the truncated series

hN(t) =
N∑

k=0

akt
k.

We have kept the same notation for the coefficients ak . We also introduce Fk =
(−1)k(k!)−1∂kF (1) and we note that F0 = 0 and

F(1 − z) =
+∞∑
k=1

Fkz
k.

Finally we consider the truncated error

EN(t) = t4h′′
N(t) + t3h′

N(t) − n2t2hN(t) + n2t2 − F(1 − hN(t)). (36)

In the case N = 2 we obtain E2(t) = O(t4) simply by taking

a0 = a1 = 0, a2 = n2

F1
.

Let eN = ∂N
t EN−1(0)/N !. We claim that if aN = eN/F1 for N � 3, then EN(t) = O(tN+1).

Indeed, we proceed by induction. Assume that by taking a0 = a1 = 0, a2 = n2/F1,
a3, . . . , aN−1 as ak = ek/F1, the truncated error of order N − 1 satisfies EN−1(t) =
eN tN + O(tN+1). Then, writing hN(t) = hN−1(t) + aN tN ,

EN(t) = EN−1(t) + tN+2aN(N2 − n2) + F(1 − hN−1(t)) − F(1 − hN(t)),

and using

F(1 − hN(t)) − F(1 − hN−1(t)) =
∑
k�1

Fk[hk
N−1(t) − (hN−1(t) + aN tN)k]

= −F1aN tN + O(tN+2),

we obtain that

EN(t) = (eN − F1aN)tN + O(tN+1),

which implies that taking aN = eN/F1, the truncated error, which has been defined in (36),
satisfies EN(t) = O(tN+1).

It only remains to obtain an iterative formula for eN = ∂N
t EN−1(0). Such formula is a

straightforward application of the Faa di Bruno formula which we recall here: let f and g be
two C+∞ composable functions, then

Dk(f ◦ g)(z)

k!
=

k∑
l=1

∑
k1+···+kl=k

1�ki

Dlf (g(z))

l!

[Dk1g(z), . . . , Dkl g(z)]

k1! · · · kl!
. (37)
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Applying Faa di Bruno to obtain ∂N
t (F ◦ (1 − hN−1)), taking into account that hN−1(t) =

a2t
2 + · · · + aN−1t

N−1 and the definition of Fk , we obtain

eN = aN−2((N − 2)2 − n2) −
N∑

k=2

∑
l1+···+lk=N

2�li�N−1

Fk · (al1 · · · · · alk ). (38)

Now we are going to show that the asymptotic expansion has only non-vanishing even
terms which is equivalent to seeing that e2N+1 = 0. Recalling that a1 = e1 = 0, we shall again
proceed by induction and start by assuming that e2�+1 = 0 for � � N . Therefore, (38) yields

e2N+1 = −
2N+1∑
k=2

∑
l1+···+lk=2N+1

2�li�2N

Fk · (al1 · · · ··alk ).

If l1 + · · · + lk = 2N + 1, then some li must be necessarily odd, therefore, by induction, ali = 0
which implies e2k+1 = a2k+1 = 0.

The formal series is 1-Gevrey. First we introduce some notation. We denote A =
supz∈Bδ

|F(z)|. Since F is analytic in Bδ , we have

|∂NF(1)| = |FN |N ! � A · δ−NN !. (39)

We now fix N0 � n large enough such that

Ae2/δ

N0
� |F1|

2
. (40)

To show that this expansion is 1-Gevrey, we must now prove that |a2N | � B ·D2N · (2N)!
for some constants B, D > 0. Recall that a2N+1 = 0. It is clear that ai , for i = 1, . . . , N0,
satisfy this growing condition upon taking appropriate constants. Moreover, it is also clear
that this growing condition is equivalent to

|a2N | � C2N(2N)!, ∀N � 1, (41)

with C � max{BD, B−1D,
√

2/|F1|} (this definition of C will be used later on). As for
N � N0, we proceed by induction, we assume that the terms a2, . . . , a2(N−1) satisfy property
(41) and we show that so does the term a2N = e2N/F1. We will follow the strategy in
lemma 3.6 in [3]. We use the simple fact that if b � c, then (a + b)!c! � (a + c)!b!, henceforth
if m1 + · · · + mk = 2N and li � 2, then we deduce

m1! · · · mk! � 2k−1(2N − 2(k − 1))!.

Moreover, it is also known that

�{l1 + · · · + lk = N : li � 1} =
(

N − 1
k − 1

)
.

Therefore, using bound (39) of Fk , formula (38) for e2N and taking into account that a2k+1 = 0,

|F1a2N | � C2N−2(2N − 2)![(2N − 2)2 − n2] + AC2N

N∑
k=2

1

δk

∑
l1+···+lk=N

1�li�N−1

(2l1)! · · · (2lk)!

� C2N−2(2N − 2)!(2N − 2)2 +
A C2N

2

N∑
k=2

(2δ−1)k(2N − 2(k − 1))!

(
N − 1
k − 1

)
� C2N−2(2N − 2)!(2N − 2)2 + A C2N(2N !)

1

N
e2/δ,



Structure and Gevrey asymptotic of solutions 2833

where in the last inequality we have used that

(2N − 2(k − 1))!

(
N − 1
k − 1

)
� 4

(2N − 1)!

k!
.

Then, by definition of C and N0 and taking into account that N � N0,

|a2N | � C2N(2N)!

(
(2N − 2)2

C2|F1|2N(2N − 1)
+

Ae2/δ

|F1|N
)

� C2N(2N)!.

and thus (41) holds. �

5. Solution at infinity, Gevrey asymptotic

In this section we analyse the solution of equation (34) with boundary conditions f (0) = 0,
limr→+∞ f (r) = 1, for large values of the radius. We shall also show, in what follows, that
the solution f is 1-Gevrey asymptotic to the formal solution f̂ (r) = ∑

k�0 akr
−2k obtained

in the previous section in some sectors of the complex plane. That is, if r → +∞ belongs to
some appropriate sectors in the complex plane, then∣∣∣∣∣r2N

(
f (r) −

N−1∑
k=0

ak

r2k

)∣∣∣∣∣ � BA2N(2N)!,

for some constants A, B independent of N . We refer the reader to the appendix where the
Gevrey-asymptotic concepts are explained. As a consequence, we now show that this solution
is not only real analytic for large enough values of r , but can further be analytically extended
to some sectors of the complex plane.

There are some related results regarding the regularity of the solutions of partial differential
equations in a more general setting in open (even not bounded) sets [17, 20]. Such results,
applied to our problem, prove the real analyticity of the solution f in (r0, +∞) for some r0 > 0.
However, to our knowledge, the Gevrey asymptotic at infinity for the problem considered in
this work, has not been studied before in the sense described above.

We want to mention here that there are many works tackling the global Gevrey regularity
and decay at infinity of solitary waves of semilinear equations of the form �u = F(u), see for
instance [7, 8, 13, 14]. In addition, the results in [36, 37] deal with the Gevrey asymptotic (with
respect to the perturbation parameter) for singularly perturbed analytic ordinary equations.

We first start by giving a previous definition and then state the main result in this section.

Definition 5.1. Given β, ρ > 0, the sector of radius ρ and opening β ∈ [0, π ] is given by

S(β, ρ) = {z ∈ C : |z| > ρ, |arg(z − ρ)| < β}.
Theorem 5.2. Let F : U ⊂ C → C be a function satisfying the hypotheses of theorem 2.1.
Assume that there exists δ > 0 such that Bδ := {z ∈ C : |1 − z| � δ} ⊂ U , that F is analytic
in Bδ and that

∂F (1) = −b < 0.

Then, for all β < π/2 there exists r0 > 0 large enough such that the unique solution f of
equation

f ′′(r) +
f ′(r)

r
− n2

r2
f (r) + F(f (r)) = 0 (42)
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with boundary conditions f (0) = 0 y limr→+∞ f (r) = 1

(i) is real analytic in [r0, +∞) and can be analytically extended to the sector S(β, r0) and it
satisfies

sup
r∈S(β,r0)

|r2(1 − f (r))| � A

for some positive constant A.
(ii) Moreover, f is asymptotic 1-Gevrey to the formal solution f̂ obtained in proposition 4.1

in the sector S(β, r0).

In what follows we will assume, without explicitly mentioning it, that the hypotheses of
theorem 5.2 hold.

In order to prove this theorem, we need some previous results. As we did in step 6, let
g(s) = 1 − f (s/

√
b) be the solution of

g′′(s) +
g′(s)

s
− g(s) = g(s)

n2

s2
− n2

s2
+

1

b
[F(1 − g(s)) − bg(s)], (43)

such that g(0) = 1 and lims→+∞ g(s) = 0. According to proposition 4.1, there exists a unique
formal solution ĝ = ∑

k�2 bks
−2k of (43) that is of 1-Gevrey type. This formal solution, as

we show in what follows, is the asymptotic expansion of a set of functions defined not only
on the real line, but also on a sector in the complex plane, that satisfy equation (43) up to an
exponentially small quantity.

Lemma 5.3. For all β < π/2, there exists ρ > 0 large enough and a function g̃ : S(β, ρ) → C

such that

• g̃ is asymptotic 1-Gevrey to the formal expansion ĝ(s) = ∑
k�2 bks

−2k .
• g̃ satisfies

E(s) = g̃′′(s) +
g̃′(s)

s
− g̃(s) − g̃(s)

n2

s2
+

n2

s2
− 1

b
[F(1 − g̃(s)) − bg̃(s)], (44)

where E : S(β, ρ) → C is such that

sup
s∈S(β,ρ)

|E(s)exp(c|s|)| < κ,

for some constants c, κ > 0.

Proof. Let 0 < β < β ′ < π/2 and ρ > ρ ′ > 0. It is clear that S(β, ρ) ⊂ S∞(β ′, ρ ′)
(see the appendix for the definition of S∞ sectors). The first part of the lemma follows from
the Borel–Ritt–Gevrey theorem (see item (i) of proposition A.5), which states that, given a
1-Gevrey asymptotic expansion ĝ and a sector S∞(β ′, ρ ′), there exists a function, g̃, analytic
in S∞(β ′, ρ ′) that is 1-Gevrey to this formal expansion ĝ.

As for the residue, E(s), we will prove that E ∼=1 0̂ (see the appendix for the definition).
In that case, by item (ii) of proposition A.5, there exist c, κ > 0 such that,

sup
s∈S(β,ρ)

|E(s)exp(c|s|)| < κ.

We observe that, there exists a closed sector S1∞ of S∞(β ′, ρ ′) such that S(β, ρ) ⊂ S1∞.
Now we are going to check that E ∼=1 0̂. First, we introduce h(t) = g(t−1) and we notice

that h satisfies the differential equation

t4h′′(t) + t3h′(t) − h(t) = n2t2h(t) − n2t2 +
1

b
[F(1 − h(t)) − bh(t)]. (45)
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As we pointed out in the proof of proposition 4.1, the formal power series ĥ(t) = ∑
k�1 bkt

2k is

a formal solution of equation (45). Recall that ĝ(s) = ∑
k�1 bks

−2k . Moreover, h̃(t) = g̃(t−1)

satisfies the equation

t4h̃′′(t) + t3h̃′(t) − h̃(t) = n2t2h̃(t) − n2t2 +
1

b
[F(1 − h(t)) − bh(t)] + E(t−1),

where E is the residue, and by proposition A.1, h̃ ∼=1 ĥ. We also have that by item (ii) of
proposition A.2,

lim
t → 0

t ∈ S0(β
′, 1/ρ ′)

∂2k
t h̃(t) = (2k!)bk, lim

t → 0
t ∈ S0(β

′, 1/ρ ′)

∂2k+1
t h̃(t) = 0, (46)

for all k ∈ N. Let us write E(t) = E(t−1). On the one hand, we have that the function
E belongs to G1(S0(β

′, 1/ρ ′)) (see the appendix) and on the other hand, by the formal
construction and (46)

lim
t → 0

t ∈ S0(β
′, 1/ρ ′)

∂k
t E(t) = 0,

and again by proposition A.2, E ∼=1 0̂. Finally applying proposition A.1, one obtains
that E ∼=1 0̂. �

Now we define �g = g − g̃ and

D(s) = n2

s2
− 1

b

∫ 1

0
[b + ∂F (1 − λ(g(s) − g̃(s)))] dλ. (47)

Since g satisfies equation (43) and g̃ satisfies equation (44) �g satisfies the linear equation

�g′′(s) +
�g′(s)

s
− �g(s) = D(s)�g(s) − E(s). (48)

Here we have used that both g and g̃ can be seen either as known or unknown functions.

Lemma 5.4. For any s0 > 0, and for any solution h1 and h2 of (43) and (48) respectively,
satisfying lims→+∞ h1(s) = lims→+∞ h2(s) = 0 there exist two unique constants Ch1(s0) and
Ch2(s0) such that h1, h2 are solutions of the following fixed point equations:

h1(s) = K0(s)Ch1(s0) + K0(s)

∫ s

s0

ξI0(ξ)T [h1](ξ) dξ + I0(s)

∫ +∞

s

ξK0(ξ)T [h1](ξ) dξ,

with T [h](s) = −g(s) n2

s2 + n2

s2 − 1
b
[F(1 − g(s)) − bg(s)] and

h2(s) = K0(s)Ch2(s0) + K0(s)

∫ s

s0

ξI0(ξ)R[h2](ξ) dξ + I0(s)

∫ +∞

s

ξK0(ξ)R[h2](ξ) dξ,

where R[h](s) = −D(s)h(s) + E(s).

Proof. We choose s0 > 0. If h is a solution to (48), then, for all s1 > 0,

h(s) = K0(s)

(
C1 +

∫ s

s0

ξI0(ξ)R[h](ξ)

)
dξ + I0(s)

(
C2 −

∫ s

s1

ξK0(ξ)R[h](ξ) dξ

)
.

Upon imposing the condition at infinity lims→+∞ h(s) = 0, it turns out that
C2 = ∫ +∞

s1
ξK0(ξ)R[h](ξ) dξ and C1 is also determined. The other case is completely

analogous. �
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Let c1 = Cg(s0) and c2 = Cg−g̃(s0) be the constants in previous lemma corresponding to
g and g − g̃, respectively. We note that

(g − g̃)(s) = K0(s)c2 + K0(s)

∫ s

s0

ξI0(ξ)R[g − g̃](ξ) dξ

+I0(s)

∫ +∞

s

ξK0(ξ)R[g − g̃](ξ) dξ,

(g′ − g̃′)(s) = K ′
0(s)c2 + K ′

0(s)

∫ s

s0

ξI0(ξ)R[g − g̃](ξ) dξ

+I ′
0(s)

∫ +∞

s

ξK0(ξ)R[g − g̃](ξ) dξ.

Therefore,

c2 = s0((g − g̃)(s0)I
′
0(s0) − (g′ − g̃′)(s0)I0(s0)). (49)

Analogously one can see that

c1 = s0(g(s0)I
′
0(s0) − g′(s0)I0(s0)). (50)

Lemma 5.5. There exists a constant A such that for any s0 > 0 sufficiently large,

|c1|, |c2| � A
es0

s
3/2
0

.

Proof. We only check the above bound for c2, the other case being analogous. Along this
proof we will denote by C any arbitrary constant. We note that, if ρ is sufficiently large,

|g(s)s2|, |g̃(s)s2|, |g′(s)s3|, |g̃′(s)s3| � C, for all s � ρ. (51)

As we proved in theorem 2.1 |g(s)| < C/s2. This result is well known, see for instance [15].
Moreover, we also have that, as we pointed out in remark 2.15, |g′(s)s3| < C. On the
other hand, since g̃ is 1-Gevrey asymptotic to the formal expansion ĝ, it follows that, if |s| is
sufficiently large,∣∣∣∣g̃(s) − b1

1

s2

∣∣∣∣ � C
1

|s|4 ,

and hence the inequality for g̃ does also hold. In the same way, g̃′ is 1-Gevrey asymptotic to
ĝ′ and therefore |g̃′(s)s3| � C.

Furthermore, as is well known, there exists a constant C such that 0 < I0(s), I
′
0(s) �

Cess−1/2 for all s � ρ, provided ρ is large enough. Therefore, upon using condition (49),

|c2| � Cs
1/2
0 es0(s−2

0 + s−3
0 ) � Ces0s

−3/2
0 ,

which proves the inequality. �

We define the linear operators

L[h](s) = K0(s)

∫ s

s0

ξI0(ξ)h(ξ) dξ + I0(s)

∫ +∞

s

ξK0(ξ)h(ξ) dξ, (52)

G[h] = L[D · h], (53)

with D defined in (47). We observe that, by lemma 5.4, we can express the fixed point equation
for the difference �g as

(Id − G)[�g](s) = K0(s)c2 − L[E](s). (54)
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As a consequence, in order to check item (ii) of theorem 5.2 it will be enough to study the
linear operator Id − G in some suitable Banach space. In addition, the fixed point equation for
g can be written as

g = K0(s)c1 + L[T [g]]. (55)

In order to prove item (i) of theorem 5.2 we will prove that the above fixed point has a unique
solution which can be extended to an analytic solution in an appropriate sector. Thence, since
our solution g satisfies the fixed point equation, we will get the result.

For each β < π , s0 > 0 and γ > 0, we define the complex Banach spaces

X = {h : S(β, s0) → C; h real analytic, ‖h‖X := sup
s∈S(β,s0)

|h(s)exp(γ |s − s0|)| < +∞},

and

Y = {h : S(β, s0) → C; h real analytic, ‖h‖Y := sup
s∈S(β,s0)

|h(s)s2| < +∞},

and define BX (R) ⊂ X like the open ball of radius R centred at the origin. Analogously we
introduce BY(R) ⊂ Y . We also define the real Banach space

YR = {h : [s0, +∞) → R;h ∈ Y,h ∈ C0,‖h‖YR
= sup

s∈[s0,+∞)

|s2h(s)| < +∞}.

Lemma 5.6. Let β < π/2 and let ρ1 be such that g̃ and consequently E are defined on sector
S(β, ρ1). If s0 > ρ1 is sufficiently large and γ = min{(cos β)/2, c cos β} with c, the constant
defined in lemma 5.3, then the linear operator L defined in (52) satisfies that there exists a
positive constant A independent of s0 such that

(i) L : X → X is well defined and

‖L[h]‖X � A‖h‖X .

(ii) The operators L : Y → Y and L : YR → YR are well defined and moreover,

‖L[h]‖Y � A‖h‖Y , ‖L[h]‖YR
� A‖h‖YR

.

Proof. In what follows we denote by C any arbitrary constant, so the value of C may change
throughout the rest of the proof without explicit notice.

We recall that, s0 being sufficiently large, for all s ∈ S(s0, β),

|K0(s)| � C
|e−s |
|s|1/2

, |I0(s)| � C
|es |

|s|1/2
. (56)

First we shall show item (i). Indeed, given h ∈ X , using that |h(r)| � ‖h‖e−γ |r−s0| and the
inequalities provided in (56) one easily gets

|eγ |s−s0|L[h(s)]| � C‖h‖e−Re(s)+γ |s−s0|

|s|1/2

∣∣∣∣∫ s

s0

|ξ |1/2eRe(ξ)−γ |ξ−s0| dξ

∣∣∣∣
+ C‖h‖eRe(s)+γ |s−s0|

|s|1/2

∣∣∣∣∫ +∞

s

|ξ |1/2e−Re(ξ)−γ |ξ−s0| dξ

∣∣∣∣
:= (I1 + I2)‖h‖. (57)

We note that, given that |s − s0| � (Re(s) − Re(s0))/ cos β and γ � cos β/2,

I1 � Ce−Re(s)+γ |s−s0|eRe(s0)|s − s0|
∫ 1

0
eξ(Re(s)−Re(s0))e−ξγ |s−s0| dξ

� Ce−Re(s)+γ |s−s0|eRe(s0)|s − s0| eRe(s)−Re(s0)−γ |s−s0|

Re(s) − Re(s0) + γ |s − s0| � C.
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We now search for a bound to I2. By using the Cauchy theorem, we change the integration
path in the integral involving the definition of I2, and get

I2 � C
eRe(s)

|s|1/2

∫ +∞

0
|s + ξ |1/2e−Re(s)−ξ dξ = C|s|−1/2

∫ +∞

0
|s + ξ |1/2e−ξ dξ

= C|s|−1/2

(
|s|1/2 +

∫ +∞

0
e−ξ Re(s) + ξ

|s + ξ |3/2
dξ

)
� C + C|s|−1/2

∫ +∞

0
e−ξ |s + ξ |−1/2 dξ � C.

Then, using the above obtained bounds for I1, I2 in (57), we find thatL(h) ∈ X and furthermore,
‖L[h]‖ � A‖h‖ as we wished.

Now we prove (ii). Considering the inequalities (56), if h ∈ YR and s � s0,

|s2L[h](s)] � C‖h‖YR

(
e−ss3/2

∫ s

s0

eξ

ξ 3/2
dξ + ess3/2

∫ +∞

s

e−ξ

ξ 3/2
dξ

)
. (58)

Upon integrating by parts it is readily found that

e−ss3/2
∫ s

s0

eξ

ξ 3/2
dξ � 1 + e−ss3/2 3

2s0

∫ s

s0

eξ

ξ 3/2
dξ,

ess3/2
∫ +∞

s

e−ξ

ξ 3/2
dξ � 1,

and hence, if s0 > 2

|s2L[h](s)] � C‖h‖YR
((1 − s−1

0 ) + 1) � A‖h‖YR
.

Let h ∈ Y . Again by inequalities (56), if s ∈ S(β, s0),

|s2L[h](s)| � C|s|3/2e−Re(s)‖h‖Y

∣∣∣∣∫ s

s0

eRe(ξ)

|ξ |3/2
dξ

∣∣∣∣ + eRe(s)|s|3/2

∣∣∣∣∫ +∞

s

e−Re(ξ)

|ξ |3/2
dξ

∣∣∣∣ .
Now we use that if s ∈ S(β, s0), then |s − s0| � (Re(s) − Re(s0))/ cos β and |s| � CRe(s)
with C a constant depending only on β. The previous bound along with this fact allows us to
obtain

|s2L[h](s)| � C(Re(s))3/2e−Re(s)‖h‖Y

(∫ Re(s)

s0

eξ

ξ 3/2
dξ + eRe(s)(Re(s))3/2

∫ +∞

Res

e−ξ

ξ 3/2
dξ

)
which only depends on Re(s) and can be bounded in the same way as bound (58). This ends
the proof of this lemma. �

Finally we prove theorem 5.2.

Proof of theorem 5.2. Along this proof we will denote by C an arbitrary constant independent
of s0. First we recall that, by the results in [20], we already know that f is real analytic in
(s0, +∞). Moreover, we observe that, in the case that the interval [0, 1] is contained in the
analyticity domain of the nonlinearity F , then again according to [20], f is real analytic in
(0, +∞).

We will deal with g(s) = 1 − f (s/
√

b). We begin by proving (i). We recall that our
solution g was a solution of the fixed point equation (55):

h = H[h](s) := K0(s)c1 + L [T [h]] (59)

where T [h] was defined in lemma 5.4. The strategy to prove item (i) is the following: on the
one hand we will prove that there is only one solution gY of the fixed point equation belonging
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to Y , and on the other hand, we will check that there is a unique solution of the fixed point
equation gYR

∈ YR. Assuming these facts, since obviously gY ∈ YR, we have that gY extends
gYR

to a complex sector. Finally, by theorem 2.1, g ∈ YR and it is a solution of (59) and
therefore g = gYR

.
Let s1 > 3 be sufficiently large. We note that K0(s) ∈ Y and moreover, if s ∈ S(β, s1),

|s2K0(s)c1| � C
|s|3/2es0−Re(s)

s
3/2
0

� C
(Re(s))3/2es0−Re(s)

s
3/2
0

� B

for some adequate constant B. Moreover we also have that, for all s ∈ C,

|s2T [0](s)| = n2.

Hence we have proved that H[0] ∈ Y . Let now R = 8‖H[0]‖Y (where here the definition
domain is S(β, s1) independent of s0). From now on we will take s0 big enough such that
R|s0|−2 < δ in such a way that if h ∈ BY then F(1 − h(s)) is analytic in S(β, s0). We point
out then that, if h ∈ BY(R), the function H[h] is real analytic and it is well defined on the
sector S(β, s0).

We take h1, h2 ∈ BY(R). By the mean’s value theorem and definition of T in lemma 5.4
it is easy to deduce that, if s ∈ S(β, s0),∣∣s2(T [h1](s) − T [h2](s))

∣∣ � C
1 + R

s2
0

‖h1 − h2‖Y ,

C being a constant depending only on n, supx∈Bδ
|∂2F(1 − x)| and b. Henceforth, by taking

s0 large enough,

‖H[h1] − H[h2]‖Y � s−1
0 ‖h1 − h2‖Y ,

which implies that H is a Lipschitz operator. We emphasize that, if h ∈ BY(R),

‖H[h]‖Y � ‖H[0]‖Y + ‖H[h] − H[0]‖Y � R

8
+

R

s0
< R,

and consequently, applying the fixed point theorem, we conclude that there is only one solution
of the fixed point equation (59) belonging to BY(R) ⊂ Y . The uniqueness of the solution in
the full Banach space Y is straightforward from the fact that we can reduce the norm of a
function belonging to Y by enlarging s0.

Analogously (in fact, easily) one can prove that there is only one solution of the fixed
point equation (59) belonging to YR. This concludes the proof of item (i).

Now we are going to prove item (ii). First we set ε > 0. By definition (47) we have
that D : S(β, s0) → C is real analytic and D(s) → 0 as |s| → +∞ provided g, g̃ ∈ Y and
g(s), g̃(s) → 0 as |s| → +∞. Thus, there exists s0 ∈ R large enough such that

sup
s∈S(β,s0)

|D(s)| � ε.

Finally, since G[h] = L[D · h], by item (i) of lemma 5.6, we have that

‖G[h]‖ � A‖D · h‖ � sup
s∈S(β,s0)

|D(s)|‖h‖ � ε‖h‖,

if s0 is large enough. This implies that the operator Id − G : X → X is invertible. Secondly,
we point out that one can write the fixed point equation (54) as

�g = (Id − G)−1[c2 · K0 − L[E]].
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We already have that K0 ∈ X . Moreover, given that |s − s0| � (Re(s) − s0)/ cos β and
2γ � cos β, for all s ∈ S(β, s0),

|eγ |s−s0|K0(s)c2| � C
es0

s
3/2
0

e−Re(s)

|s|1/2
eγ |s−s0| � C

es0

s
3/2
0

e−Re(s)

|s|1/2
eγ (Re(s−s0))/ cos β

� Ce−(Re(s−s0))/2|s0|−3/2|s|−1/2 � C|s0|−2,

C being a suitable constant that is independent of s0.
It is also clear that E ∈ X and, for any s ∈ S(β, s0),

|eγ |s−s0|E(s)| = eγ |s−s0|−c|s||ec|s|E(s)| � eγ (Re(s−s0))/ cos β−cRe(s)|ec|s|E(s)| � |ec|s|E(s)|e−as0 ,

taking into account that γ � c cos β and a = min{1/2, c}.
Therefore, taking ε = 1/2, by lemma 5.6, we conclude that �g ∈ X and moreover

‖�g‖ � 2
(‖c2 · K0‖ + ‖L[E]‖) � C(|s0|−2 + Ce−as0) < 1,

if s0 is small enough. Here we have used that ‖(Id − G)−1‖ � (1 − ‖G‖)−1 � 2.

6. Numerical results

In this section we present some numerical computations based on the Ginzburg–Landau
nonlinearity. In particular, we have computed the parameter α for degrees up to n = 11 and
also the corresponding solutions f (r). We then will deal only with the case F(f ) = f (1−f 2),
but the method can be applied to other nonlinearities.

6.1. Numerical results for αn

As we have already shown in the previous sections, all the solutions of

f ′′(r) +
f ′(r)

r
− n2f (r)

r2
+ f (r)(1 − f (r)2) = 0, (60)

where f (0) = 0, depart from r = 0 like f (r) = αrn + O(rn+2). However, there is a unique
critical value of αn, which depends on n, such that the corresponding solution tends to 1 as
r → +∞. As is shown in [15], the idea is that one must catch the right value of αn such that
the cubic term f 3 balances with the linear one f . Otherwise, either f dominates, in which
case it is easy to see that the solution behaves essentially like the Bessel function of the first
kind, Jn(r), and hence it oscillates and tends to zero at infinity, or f 3 dominates, in which case
the solutions tend to infinity for some finite radius. This criticality, along with the fact that
αn becomes exponentially small in n, makes it difficult to compute αn numerically already for
moderate values of n.

In this section we present some numerical results for the shooting parameter αn, when
n = 1, 2, . . . , 11 and describe the method that has been used to compute them, as well as the
corresponding solution f (r).

The values of αn have been computed using two different approaches:
The first approach is the most standard. Let us denote by ψn(αn, r) the solution of (60)

such that it looks like ψn(αn, r) = αnr
n(1 + O(r2)) as r ∼ 0. We take αn as a result of

numerically computing α(R) as the value that satisfies the equation

ψn(α(R), R) = 1,

taking R sufficiently large. In particular, we have chosen R = 150 since previous
numerical tests showed that, for all values of n = 1, 2, . . . , 11, it satisfies that the difference
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Figure 1. Solutions to (60) for increasing values of n up to n = 11.

between the corresponding values of αn evaluated at radius slightly larger is small enough,
|α(R) − α(R + �R)| � 10−14. To compute the value of α(150) we have used the method of
multiple shooting in [11] due to the above-mentioned strong dependence of the solution with
respect to the initial condition.

Along with the value of αn, we have also obtained the solutions of (60) up to R = 150 for
these same values of n. The results are presented in the plots in figure 1.

The second approach is based on the fact that one can obtain a formula for αn in terms of
the values of the whole orbit using the previously derived fixed point equation. Indeed, let us
recall that g(s) = 1 − f (s/

√
2) satisfies the fixed point equation

g(s) = F(g)(s) = Kn(s)

∫ s

0
ξIn(ξ)

(
n2

ξ 2
+

3

2
g2(ξ) − 1

2
g3(ξ)

)
dξ

+ In(s)

∫ +∞

s

ξKn(ξ)

(
n2

ξ 2
+

3

2
g2(ξ) − 1

2
g3(ξ)

)
dξ,

then, using the equality

Kn(s)

∫ s

0
ξIn(ξ)

(
n2

ξ 2
+ 1

)
dξ + In(s)

∫ +∞

s

ξKn(ξ)

(
n2

ξ 2
+ 1

)
dξ = 1

(which was used before), one obtains that the solution f equivalently satisfies the fixed point
equation given by

f (r) = Kn(
√

2r)

∫ r

0
ξIn(

√
2ξ)f (ξ)(3 − f 2(ξ)) dξ

+In(
√

2r)

∫ +∞

r

ξKn(
√

2ξ)f (ξ)(3 − f 2(ξ)) dξ.

Finally, one only has to compute limr→0 f (r)r−n to obtain the following formula for αn:

αn = 1

2nn!

∫ +∞

0
ξKn(

√
2ξ)f (ξ)(3 − f 2(ξ)) dξ. (61)

We have thus used a trapezoidal rule followed by four steps of the method of extrapolation at
the interval [0, 128]. Hence we have assumed that the remainder

1

2nn!

∫ +∞

128
sKn(

√
2s)f (s)(3 − f 2(s)) ds (62)

is small.
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Table 1. Values of the initial parameter αn computed with a multiple shooting approach and
using (61).

n αnum αformula |αnum − αformula|/|αnum

1 5.831 894 958 603e − 001 5.831 894 967 818e − 001 1.580 096 358 805e − 009
2 1.530 991 028 595e − 001 1.530 991 028 595e − 001 3.719 975 397 348e − 013
3 2.618 342 071 679e − 002 2.618 342 071 679e − 002 6.722 324 341 929e − 016
4 3.327 173 400 679e − 003 3.327 173 400 679e − 003 1.178 299 661 891e − 014
5 3.365 939 408 587e − 004 3.365 939 408 587e − 004 6.919 541 989 412e − 016
6 2.829 450 940 371e − 005 2.829 450 940 371e − 005 1.013 887 550 218e − 014
7 2.034 869 339 621e − 006 2.034 869 339 621e − 006 1.944 741 125 116e − 014
8 1.278 837 761 468e − 007 1.278 837 761 468e − 007 6.446 795 689 138e − 015
9 7.137 294 928 957e − 009 7.137 294 928 956e − 009 2.122 727 448 703e − 014

10 3.582 513 464 123e − 010 3.582 513 464 123e − 010 1.006 588 457 156e − 014
11 1.633 851 226 714e − 011 1.633 851 226 714e − 011 1.417 568 246 031e − 016

The results are shown in table 1, αnum being the value of αn computed following the first
alternative and αformula the value using the closed formula (61).

We want to emphasize that the relative error between the two quantities is very small.
Indeed, for some values of n we note that the comparison error is actually of the order of the
double precision computation, so it might be even smaller. We also note that when obtaining this
comparison error we have always neglected (62), and this quantity might be larger for smaller
values of n, which would explain why one obtains less significant differences for n = 1.

To compute αn for n � 12 we believe that multiprecision techniques are required, since,
as was shown in the previous section, αn � K2−nn1/3/n!, becoming too small to be caught
by just using methods implemented in double precision.

6.2. The vortex core

As we have already mentioned, in the case F(x) = x(1−x2), and when n is an integer number,
f (r) represents the modulus of single-vortex solutions of the two-dimensional complex-valued
Ginzburg–Landau equation

ut − �u = u(1 − |u|2), (63)

which are stationary solutions of the form f (r)einφ , with r = r(x) and φ = φ(x) the polar
coordinates of x ∈ C. However, in general this equation is known to possess solutions with a
non-zero degree, composed by a number of different separated vortices which locally have the
form of a single-vortex solution. In that case, it is well known that the centres of these vortices,
that is to say, the discrete points where the solution, u, vanishes, organize the dynamics of
the whole solution. This way the dynamics of these patterns may be described in terms of a
quite simple law of motion for the centres of the vortices (see [6, 24, 31, 32, 38] among others),
which is only valid provided the vortices remain far enough. It is also known [40] that the most
stable vortices are those with unitary degree. However, vortices with degrees greater than one
do exist until they either split or annihilate, and the region of validity of these laws of motion
strongly depends on the form of the solution locally close to each vortex (cf [16, 39]), which
in turn, and as we have shown in this work, is determined by its degree n.

This law of motion for the centres of vortices was initially obtained using heuristic methods
based on asymptotic analysis techniques (see [31]). These methods strongly rely on the fact
that the modulus of vortex solutions are very close to 1 everywhere in space except in small
areas around the vortex’ centres where |u| rapidly grows from 0 to 1, which were denoted as
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Table 2. Core radius in terms of the degree n.

n 0.90 0.95 0.98

1 2.765 133e + 000 3.684 603e + 000 5.343 683e + 000
2 4.957 614e + 000 6.650 362e + 000 1.016 816e + 001
3 7.144 353e + 000 9.747 130e + 000 1.514 987e + 001
4 9.363 609e + 000 1.290 943e + 001 2.015 565e + 001
5 1.161 147e + 001 1.608 995e + 001 2.516 952e + 001
6 1.387 695e + 001 1.927 817e + 001 3.0187 24e + 001
7 1.615 225e + 001 2.247 141e + 001 3.520 708e + 001
8 1.843 306e + 001 2.566 754e + 001 4.022 824e + 001
9 2.071 714e + 001 2.886 485e + 001 4.525 028e + 001

10 2.300 340e + 001 3.206 297e + 001 5.027 325e + 001
11 2.529 215e + 001 3.526 170e + 001 5.529 661e + 001

the core of the vortex. The size of this core is very important in these approaches since it
defines the range of validity of the law of motion, that is to say, the law of motion remains
valid as long as the centres of the vortices do not reach any other vortex’s core. Although
the results in this heuristic approach were later on rigorously proved in [25, 26] for the case
of finite domains, and [27, 38, 39] for the case of the entire plane where finer bounds for the
velocities of the vortices were obtained, it is still of use in some physic’s contexts such as, for
instance, in the evolution of singularities in nematic liquid crystals (see [35]) or even in the
derivation of a law of motion in a generalized version of (63) (see [2]).

We have thus computed the size of the vortex core for vortices of degrees from 1 to 11 by
determining the radius at which the solution is 0.90, 0.95 and 0.98. The results are presented
in table 2.

We note that the size of the core seems to grow linearly in n, at least for these values of
the degree.
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Appendix A. Gevrey asymptotic

The aim of this section is to summarize basic definitions and results about Gevrey asymptotic
and Gevrey regularity. Most of the features we state can be found in the literature (see for
instance [4] and appendix A of [3]).

In this work we deal with Gevrey asymptotic at infinity (that is, for large values of z), but
for technical reasons we need to relate the Gevrey asymptotic at infinity with the (classical)
Gevrey asymptotic at the origin.

We define an open sector at the origin of radius ρ and opening γ ∈ [0, π) as

S0(γ, ρ) = {z ∈ C : 0 < |z| < ρ, | arg(z)| < γ },
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and also we define a sector at infinity as

S∞(γ, ρ) = {z ∈ C : |z| > ρ, | arg(z)| < γ }.
We claim that if z−1 ∈ S∞(γ, ρ−1), then z ∈ S0(γ, ρ). Analogously we define the closed
sectors

S1
0(γ, ρ) = {z ∈ C : 0 < |z| � ρ, | arg(z)| � γ },

S1∞(γ, ρ) = {z ∈ C : |z| � ρ, | arg(z)| � γ }.
Note that both S1

0 , S
1
∞ are non-compact sets.

In what follows α > 0. Let f̂0(z) = ∑+∞
n=0 fkz

k and f̂∞(z) = ∑+∞
n=0 fkz

−k be two formal
power series belonging to C[[z]] and C[[z−1]], respectively. We will say that both are α-Gevrey
if for any k ∈ N,

|fk| � BAk(k!)α

for some constants A, B > 0 independent of k.
An analytic function f0 defined in a sector at the origin S0 is α-Gevrey if and only if for

every closed sector at the origin S1
0 ⊂ S1

0 there exist constants A, B > 0 (depending only

on S1
0 ) such that, for any k ∈ N,

sup
z∈S1

0

|∂k
z f0(z)| � BAk(k!)1+α.

Analogously, we will say that an analytic function f∞ in a sector at infinity S∞ is α-Gevrey if
and only if it satisfies that, k ∈ N,

sup
z∈S1∞

|zk∂k
z f∞(z)| � BAk(k!)1+α,

with S1∞ ⊂ S∞ a closed sector at infinity and A, B > 0 two positive constants independent of
k. We will write f0 ∈ Gα(S0) and f∞ ∈ Gα(S∞), respectively. This definition tells us about
Gevrey regularity.

Let f0 be an analytic function in a sector S0. We will say that f0 is asymptotic α-Gevrey
to a formal power series f̂0 ∈ C[[z]], or equivalently that f̂0 is the α-Gevrey asymptotic
expansion of f0, if for any S1

0 ⊂ S0 closed sector at the origin and k ∈ N

sup
z∈S1

0

∣∣∣∣∣z−k

(
f0(z) −

k−1∑
l=0

flz
l

)∣∣∣∣∣ � BAk(k!)α,

for some positive constants A, B depending only on S1
0 . We will write f0

∼=α f̂0.
Similarly, if f∞ is an analytic function in a sector at infinity S∞, f∞ is asymptotic α-

Gevrey to the formal series f̂∞ ∈ C[[z−1]] if and only if, for any S1∞ ⊂ S∞ closed sector at
infinity and k ∈ N,

sup
z∈S1∞

∣∣∣∣∣zk

(
f∞(z) −

k−1∑
l=0

flz
−l

)∣∣∣∣∣ � BAk(k!)α,

for some constants A, B > 0 depending only on S1∞. We will write f∞ ∼=α f̂∞.

Proposition A.1. Let γ ∈ [0, π), ρ > 0 and f0 be an analytic function defined at S0(γ, ρ).
We define f∞(z) = f0(z

−1). We have that

(i) f0 is asymptotic α-Gevrey to the formal power series f̂0(z) = ∑+∞
k=0 fkz

k if and only if
f∞ is asymptotic α-Gevrey to f̂∞(z) = ∑+∞

k=0 fkz
−k .

(ii) The function f0 belongs to Gα(S0(γ, ρ)) if and only if f∞ ∈ Gα(S∞(γ, ρ−1)).
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Proof. Item (i) is straightforward from definition. Moreover item (ii) is a consequence from
the Faa di Bruno formula (37). Indeed, applying the Faa di Bruno formula to f∞,

∂k
z f∞(z) = (−1)k

zk

k∑
l=1

∑
k1+···+kl=k

1�ki

∂l
zf0(z

−1)

l!
= (−1)k

zk

k∑
l=1

∂l
zf0(z

−1)

l!

(
k − 1
l − 1

)
,

for z ∈ S∞(γ, ρ−1)). We fix a closed sector S1∞ ⊂ S∞(γ, ρ−1). Since f0 ∈ Gα(S0(γ, ρ)) we
have that |∂k

z f0(z
−1)| � BAk(k!)1+α for any z ∈ S1∞. Then,

|∂k
z f∞(z)| � B

1

zk

k∑
l=1

Al(l!)α
(

k − 1
l − 1

)
� B

1

zk
(k!)α(1 + A)k−1,

which implies that f∞ ∈ Gα(S∞(γ, ρ−)). Finally, since f0(z) = f∞(z−1) we can proceed
analogously to check the reciprocal. �

Now we are going to state (without proof) some useful properties about Gevrey asymptotic
at the origin (see [3, 4]). Using proposition A.1 one can use such features also for Gevrey
asymptotic at infinity.

Proposition A.2. Let γ ∈ [0, π), ρ > 0 and f0 be an analytic function in S0(γ, ρ) and
f̂0(z) = ∑+∞

k=0 fkz
k be a formal power series.

(i) If f0 is asymptotic α-Gevrey to the formal series f̂0, then f̂0 is α-Gevrey.
(ii) f0 is asymptotic α-Gevrey to the formal series f̂0 if and only if f0 ∈ Gα(S0(γ, ρ)) and for

all k ∈ N,

lim
z → 0

z ∈ S0(γ, ρ)

∂k
z f0(z) = k!fk.

If f0
∼=α f̂0, then for any k ∈ N, ∂k

z f0
∼=α ∂k

z f̂0, where here ∂k
z f̂0 is the termwise

k-derivative formal of f̂0.

We remark that, as a consequence of item (ii) from proposition A.2, the asymptotic
expansion of a α-Gevrey function is unique. Conversely, if we restrict the angle γ , we have
the following result which is a generalization of the well-known Borel–Ritt theorem (see [4]).

Theorem A.3. Let f̂0 ∈ C[[z]] be a α-Gevrey formal power series. We take γ < απ/2 and
ρ > 0. Then, there exists an analytic function in S0(γ, ρ), f0, such that f0

∼=α f̂0.

Moreover, even when this analytic function f0 is not unique, the difference between two
functions asymptotic α-Gevrey to the same formal series is exponentially small.

Proposition A.4. Let γ < απ/2 and ρ > 0. Assume that f0 is an analytic function in
S0(γ, ρ) satisfying that f0

∼=α 0̂, 0̂ being the zero power series. Then, for every closed sector

S1
0 ⊂ S0(γ, ρ), there exist c, κ > 0 such that

sup
z∈S1

0

|f0(z) exp(c|z|−1/α)| � κ.

Theorem A.3 and proposition A.4 can be adapted to the case of Gevrey asymptotic at
infinity simply using proposition A.1. Particularly we have:
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Proposition A.5. For any γ < απ/2 and ρ > 0,

(i) If f̂∞ ∈ C[[z−1]] is a α-Gevrey formal power series, there exists f∞ an analytic function
in S∞(γ, ρ), such that f∞ ∼=α f̂∞.

(ii) If f∞ is an analytic function in S∞(γ, ρ) such that f∞ ∼=α 0̂, then

sup
z∈S1∞

|f∞(z) exp(c|z|1/α)| � κ,

where S1∞ is any closed sector contained in S∞(γ, ρ) and c, κ are two positive constants
depending only on S1∞.
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