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Abstract

We study the computation of local approximations of invariant manifolds of parabolic fixed points and 
parabolic periodic orbits of periodic vector fields. If the dimension of these manifolds is two or greater, in 
general, it is not possible to obtain polynomial approximations. Here we develop an algorithm to obtain them 
as sums of homogeneous functions by solving suitable cohomological equations. We deal with both the 
differentiable and analytic cases. We also study the dependence on parameters. In the companion paper [4]
these approximations are used to obtain the existence of true invariant manifolds close by. Examples are 
provided.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is the second part of our study on the invariant manifolds of parabolic points for 
Cr and analytic maps started in [4]. We refer to that paper for the motivation and references 
concerning such setting.

In this set of two papers we provide conditions that guarantee the existence of stable invariant 
manifolds associated of such points. We use the parametrization method [5–7,9–11]. The opera-
tors involved in this method are more regular than the graph transform, which is an advantage in 
the present situation, where only finite differentiability is assumed. Also, it often provides effi-
cient algorithms to compute explicitly approximations of the invariant manifolds. In fact, this is 
the main purpose of the present paper. To apply this method we need a minimum regularity to be 
able to have a polynomial approximation of the map.

We consider maps F : U ⊂ Rn ×Rm → Rn ×Rm, with (0, 0) ∈ U such that F(0, 0) = (0, 0), 
DF(0, 0) = Id. We assume some hypotheses, to be specified later, on the first non-vanishing 
nonlinear terms which imply the existence of some “weak contraction” in the (x, 0)-directions, 
as well as some hypotheses concerning the (0, y)-directions that may imply “weak expansion” 
in these directions (but not always). The parametrization method consists of looking for the 
invariant stable manifold Ws of the origin as an immersion K : V ⊂ Rn → Rn × Rm, with 
K(0) = (0, 0), DK(0) = (Id , 0)�, and satisfying the invariance equation

F ◦ K = K ◦ R, (1.1)
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where R : V → V is a reparametrization of the dynamics of F on Ws .
The procedure to find such K and R has two steps. First, to find functions K≤ and R solving 

approximately the invariance equation, that is, satisfying

F ◦ K≤(x) − K≤ ◦ R(x) = o(‖x‖�), (1.2)

to a high enough order which depends on the first non-vanishing nonlinear terms of F .
Second, with the reparametrization R obtained so far to look for K as a perturbation of K≤. 

This second step is carried out in [4] where, assuming that R and a sufficiently good approxima-
tion K≤ are known, an “a posteriori” type result is obtained.

In this paper we obtain approximate solutions of (1.1). This is accomplished by solving a set 
of cohomological equations. In the case that the fixed point is hyperbolic instead of parabolic, it 
is possible to find solutions of the cohomological equations in the ring of polynomials, both for 
K and R (see [5–7]). The same happens when one looks for one dimensional invariant manifolds 
associated to parabolic fixed points [3].

However, when the parabolic invariant manifolds have dimension two or more, a simple com-
putation shows that generically there are no polynomial approximate solutions of the invariance 
equation. The reason is simple: when looking for polynomial solutions, since the terms of order 
k are determined in order to kill the terms of order k + j of some error expression, where j ≥ 1
is related to the degree of the first non-vanishing monomials in the expansion of F around the 
origin, the number of conditions on the coefficients corresponding to monomials of degree k

is larger than the number of coefficients if the dimension of the manifold is at least 2. In fact, 
the number of obstructions increases with the order k. Of course, it may happen that these ob-
structions vanish in some particular examples (like several instances of the three body problem, 
see [4]), but generically they are unavoidable.

The cohomological equations for the terms of the approximate solutions of (1.1) can be written 
as a linear PDE of the form

Dh(x)p(x) − Q(x)h(x) = w(x), x ∈ V ⊂Rn,

where p, Q are fixed homogeneous functions that depend on the first non-vanishing nonlinear 
terms of the Taylor expansion of F and w is an arbitrary homogeneous function. Of course, the 
problem lies in finding global solutions of this PDE. In this work we prove that, under suitable 
hypotheses (see H1, H2, H3 and (2.3) in Section 2.1), the cohomological equations have ho-
mogeneous solutions defined in the whole domain under consideration. Their order is related to 
the order of w. This result allows us to find the approximate solutions of (1.1) as a sum of ho-
mogenous functions of increasing order. In general, these functions are not polynomials, not even 
rational functions. We deal with both the differentiable and analytic cases. In the differentiable 
case there may be a loss of regularity. It is also worth mentioning that the regularity assumption 
needed for obtaining R and the approximation are sufficient to deal with the second stage of the 
procedure. We remark that our conditions allow several characteristic directions in the domain 
under consideration (see [1,8]).

The structure of the paper is as follows. In Section 2 we present the hypotheses and main 
results of the paper. In Section 6 we show that our hypotheses are indeed necessary, that the loss 
of differentiability can take place and remark the differences between the case of one-dimensional 
and multidimensional parabolic manifolds. In sections 3 and 4 we prove the main theorems. 
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Section 3 contains the study of the cohomological equations used in the actual proof of the main 
theorems in Section 4. Section 5 is devoted to the dependence with respect to parameters.

2. Main result

The main result of this work deals with the computation of approximations of stable manifolds 
of parabolic points, expressed as the range of a function K , in such a way that the invariance 
condition (1.1), F ◦ K − K ◦ R = 0, is satisfied up to a prefixed order (see equation (1.2)). We 
will look for K and R as a finite sum of homogeneous functions not necessarily polynomials. 
Each term of these sums is a homogeneous solution of a so called cohomological equation. 
We are forced to look for homogeneous solutions of the cohomological equations because, in 
this multidimensional case x ∈ Rn with n > 1, as we will see in Section 4, in general these 
equations do not admit polynomial solutions. We also refer to the reader to Section 6 where 
several examples are studied.

In addition, we also study the dependence on parameters of the solutions of the cohomological 
equations (see Section 2.3).

At the end of this section, we present the result about approximate solutions of the invariance 
equation in the vector field case.

2.1. Set up and general hypotheses

The context we present here is the same as the one in [4], which we reproduce for the conve-
nience of the reader.

Let U ⊂Rn ×Rm be an open set such that (0, 0) ∈ U and let F : U →Rn+m be a map of the 
form

F(x, y) =
(

x + p(x, y) + f (x, y)

y + q(x, y) + g(x, y)

)
, x ∈ Rn, y ∈Rm, (2.1)

where p and q are homogeneous polynomials of degrees N ≥ 2 and M ≥ 2 respectively, 
Dlf (x, y) = O(‖(x, y)‖N+1−l ) and Dlg(x, y) = O(‖(x, y)‖M+1−l ) for l = 0, 1. Clearly (0, 0)

is a fixed point of F and DF(0, 0) = Id.
Since the degrees of p and q , N and M , respectively, need not to be the same, we introduce

L = min{M,N}.
We denote by πx(x, y) = x and πy(x, y) = y the natural projections and by B� the open ball 

centered at the origin of radius � > 0. However, to simplify notation, we will often denote the 
projection onto a variable as a subscript, i.e., Xx := πxX.

Now we state the minimum hypotheses to guarantee that the cohomological equations we 
encounter can be solved and consequently, we are able to find approximate solutions up to the 
required order.

Given V ⊂Rn such that 0 ∈ ∂V and � > 0, we introduce

V� = V ∩ B�. (2.2)

In this paper we will say that V ⊂Rn is star-shaped with respect to 0 if 0 ∈ ∂V and for all x ∈ v

and λ ∈ (0, 1], λx ∈ V .
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Take � > 0, norms in Rn and Rm respectively and consider the following constants:

ap = − sup
x∈V�

‖x + p(x,0)‖ − ‖x‖
‖x‖N

, bp = sup
x∈V�

‖p(x,0)‖
‖x‖N

,

Ap = − sup
x∈V�

‖Id + Dxp(x,0)‖ − 1

‖x‖N−1 , Bp = sup
x∈V�

‖Id − Dxp(x,0)‖ − 1

‖x‖N−1 ,

Bq = − sup
x∈V�

‖Id − Dyq(x,0)‖ − 1

‖x‖M−1 ,

cp =
{

ap, if Bq ≤ 0,

bp, otherwise
, dp =

{
ap, if Ap ≤ 0,

bp, otherwise,

(2.3)

where the norms of linear maps are the corresponding operator norms. We emphasize that all 
these constants depend on �

We assume that there exist an open set V ⊂ Rn, V star-shaped with respect to 0, and appro-
priate norms in Rn and Rm satisfying, taking � small enough,

H1 The homogenous polynomial p satisfies that

ap > 0.

If M > N , we further ask Ap/dp > −1.
H2 The homogenous polynomial q satisfies q(x, 0) = 0 for x ∈ V� , and

Dyq(x,0) is invertible ∀x ∈ V�\{0}, if M < N,

2 + Bq

cp

> max

{
1 − Ap

dp

,0

}
, if M = N.

H3 There exists a constant aV > 0 such that, for all x ∈ V� ,

dist(x + p(x,0), (V�)c) ≥ aV ‖x‖N.

We emphasize that H1–H3 are asked to be satisfied not in a neighborhood of the origin but in 
V� . As usual in the parabolic case, a stable invariant manifold is defined over a subset V such that 
0 ∈ ∂V . It may happen that the manifold is not defined in a neighborhood of the origin. How-
ever, some regularity at the origin may be retained. For this reason we introduce the following 
definition.

Definition 2.1. Let V ⊂ Rl be an open set, x0 ∈ V and f : V ∪ {x0} ⊂ Rl → Rk . We say that f
is C1 at x0 if f is C1 in V ∩ (Bε(x0) \ {x0}), for some ε > 0 and limx→x0, x∈V Df (x) exists.

Finally we introduce some notation. Given l, k, � ∈ N and an open set U ⊂ Rl such that 
0 ∈ ∂U ∪ U , we define
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H≥� = {h ∈ C0(U ,Rk) : for u ∈ U , ‖h(u)‖ = O
(‖u‖�

)},
H>� = {h ∈ C0(U ,Rk) : for u ∈ U , ‖h(u)‖ = o

(‖u‖�
)},

H� = {h ∈ C0(U ,Rk) : ∀λ ∈ R, ∀u ∈ U , s.t. λu ∈ U , h(λu) = λ�h(u)}.
To simplify notation, we skip the reference to l, k and U , which will be fixed and clearly under-
stood from the context.

2.2. Approximate solutions of the invariance equation for maps

In this section we present two results. The first one is about the existence of approximate 
solutions having the “simplest” form. The other one (which can be useful in some applications) 
is about the freedom we have for solving the cohomological equations.

As we will prove in an algorithmic way, even when F is an analytic function, we cannot, 
in general, obtain C∞ approximations of the stable manifold, unlike the hyperbolic case. For 
instance, if Ap < dp and M ≥ N , we obtain Cr∗ -regularity of these approximations, where r∗ is 
given by

r∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

{
k ∈N :

(
1 − Ap

dp

)
k < 2 + Bq

cp

}
, if M = N,

max

{
k ∈N :

(
1 − Ap

dp

)
k < 2

}
, if M > N.

(2.4)

Theorem 2.2. Let F : U ⊂ Rn+m → Rn+m be defined in a neighborhood of the origin and hav-
ing the form (2.1). Assume that F ∈ Cr , with r ≥ N , and satisfies hypotheses H1, H2 and H3 for 
some �0 > 0. Then, for any N ≤ � ≤ r there exist 0 < � ≤ �0 and K : V� → U and R : V� → V�

such that

F ◦ K − K ◦ R ∈H>�. (2.5)

In addition, we can choose K and R as a finite sum of homogeneous functions Kj ∈ Hj and 
Rj ∈ Hj (not necessarily polynomials), of the form

Kx(x) = x +
�−N+1∑

l=2

Kl
x(x), Ky(x) =

�−L+1∑
l=2

Kl
y(x),

R(x) = x +
min{�,�∗}∑

l=N

Rl(x)

(2.6)

with RN(x) = p(x, 0), L = min{N, M} and �∗ defined by

�∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N − 1 +

[
Bp

ap
+ r∗

(
1 − Ap

dp

)]
, if Ap < bp and M ≥ N,

N − 1 +
[

Bp

ap

]
, if Ap ≥ bp and M ≥ N,

�, M < N.

(2.7)
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Moreover, K and R extend to V by homogeneity of their terms. The functions Kl
x(x), with 

l = 2, · · · , �∗ − N + 1, can be chosen arbitrarily, in particular, equal to 0.
Concerning the regularity of the approximation of the parametrization we have that K and R

are C1 at the origin in the sense of Definition 2.1. Finally,

(1) if either Ap > dp or M < N , K, R are analytic in a complex neighborhood of V ,
(2) if Ap = dp , K, R are C∞ functions on V ,
(3) if Ap < dp and M ≥ N , K, R are Cr∗ functions on V where r∗ is defined in (2.4).

Remark 2.3. We will see in Lemma 3.6 that Bp/ap ≥ N . Indeed, BDp in that lemma corresponds 
to −Bp in (2.3).

Remark 2.4. In [4] it is proven that under the hypotheses H1, H2 and H3, there exists an exact 
solution K̃, R of the invariance equation (1.1). In addition, if K≤ is the function provided by 
Theorem 2.2 for some � big enough, then K has the form K≤ +K> with K> ∈ H>�−N+1. Even 
more, assuming that Ap, Bq > 0 and the hypotheses of the theorem, the stable set is a manifold 
which is the graph of a differentiable function ϕ which can be approximated by πyK ◦ (πxK)−1

in the sense that ϕ − πyK ◦ (πxK)−1 ∈ H>�−L+1.

Remark 2.5. As we will see in the proof of Theorem 2.2 in Section 4.4, we can choose different 
strategies in order to get R as a sum of homogeneous functions of degree less than �∗. However, 
not for all strategies the obtained regularity will be optimal.

Remark 2.6. The results stated in Theorem 2.2 hold also true if, instead of assuming that F is a 
Cr function in an open neighborhood of the origin, we assume that F can be written as a sum of 
homogeneous functions which are Cr in V , that is F has the form:

Fx(x, y) = x + p(x, y) + FN+1
x (x, y) + · · · + Fr

x (x, y) + F>r
x (x, y),

Fy(x, y) = y + q(x, y) + FM+1
y (x, y) + · · · + Fr

y (x, y) + F>r
y (x, y),

where all the functions are Cr in V , p ∈ HN , q ∈HM , Fj
x , Fj

y ∈ Hj and F>r
x , F>r

y ∈ H>r .

An alternative point of view is the following result:

Theorem 2.7. Assume the same hypotheses of Theorem 2.2. Let N ≤ � ≤ r and Kl
x ∈ Hl for 

l = 2, · · · , � − N + 1. Then for any function Kx : V → Rn such that

Kx(x) − x −
�−N+1∑

l=2

Kl
x(x) ∈H>�−N+1

satisfying the regularity statements for K of Theorem 2.2, there exist 0 ≤ � ≤ �0 and R : V� →
V� and Ky : V� → Rm of the form

R(x) = x + p(x,0) +
�∑

Rl(x), Ky(x) =
�−L+1∑

Kl
y(x)
l=N+1 l=2
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with Rl ∈ Hl , Kl
y ∈ Hl , such that F ◦ K − K ◦ R ∈ H>� with K = (Kx, Ky). Moreover the 

regularity statements are the same as the ones in Theorem 2.2 and K and R can be extended 
to V .

2.3. Dependence on parameters

Let 
 ⊂Rn′
be an open set of parameters, U ⊂ Rn+m be an open set and V as in Section 2.1. 

Assume that F : U × 
 →Rn+m are maps having the form (2.1) for any λ ∈ 
, i.e.:

F(x, y,λ) =
(

x + p(x, y,λ) + f (x, y,λ)

y + q(x, y,λ) + g(x, y,λ)

)
. (2.8)

For any fixed λ ∈ 
 the constants in (2.3) are well defined and depend on λ. We denote this 
dependence with a superindex. As we did in [4], we redefine the constants Ap, ap , etc. by taking 
the supremum over V� × 
 instead of V� . For instance,

Ap = inf
λ∈


Aλ
p = − sup

(x,λ)∈V�×


‖Id + Dxp(x,0, λ)‖ − 1

‖x‖N−1 .

We note that, assuming H1, H2 and H3 for any λ ∈ 
 we already have the existence of ap-
proximate solutions Kλ. To obtain uniform bounds, and therefore continuity and differentiability, 
with respect to λ ∈ 
 we need to assume

Hλ Hypotheses H1, H2 and H3 hold true uniformly with respect to λ, namely, all the conditions 
involving the constants ap, bp, Ap, Bp, dp, cp, Bq, aV hold true with the new definition of 
these constants.

From now on we will abuse notation and we will write that a function h depending on a 
parameter μ, belongs to H≥� if h(z, μ) = O(‖z‖�) uniformly in μ. Analogously if h ∈ H>�. 
Moreover, h ∈H� will mean that h is homogeneous of degree � for any fixed μ.

The differentiability class we work with was introduced in [6] and is also used in [4]. For any 
s, r ∈Z+ =N ∪ {0}, we define the set

�s,r = {
(i, j) ∈ (Z+)2 : i + j ≤ r + s, i ≤ s

}
and for U ⊂Rl ×Rn′

, the function space

C�s,r = {
f : U → Rk : ∀(i, j) ∈ �s,r ,

Di
μD

j
z f exists, is continuous and bounded

}
.

(2.9)

Theorem 2.8. Let F ∈ C�s,r be of the form (2.8) with r ≥ N satisfying Hλ for �0 > 0. Let � ∈N
be � ≤ r as in Theorem 2.2.

Then the functions K : V × 
 → Rn+m and R : V × 
 → Rn given by Theorem 2.2 satisfy:

(1) If either Ap > dp or M < N , K, R are Cs with respect to λ ∈ 
 and real analytic with 
respect to x ∈ V . In addition, if F depends analytically on λ ∈ 
, the functions K, R are 
real analytic in V × 
.
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(2) If Ap = dp then K, R ∈ C�s,∞ in V × 
.
(3) If Ap < dp and M ≥ N , then K, R ∈ C�s∗,r∗−s∗ in V × 
 where r∗ is defined in (2.4) and 

s∗ = min{s, r∗}.

If Kx : V × 
 → Rn is of the form given in Theorem 2.7 and satisfies the above regularity 
statements, then the functions R : V ×
 →Rn and Ky : V ×
 →Rm provided by Theorem 2.7
satisfy the same statements.

2.4. Approximate solutions of the invariance equation for flows

We deduce the analogous results to Theorems 2.2 and 2.8 in the case of time periodic flows. It 
is worth to mention that we could deduce some results for flows from the previous ones using the 
Poincaré map. Nevertheless we prefer to give explicit results because, as we will see in Section 4, 
we can construct the approximate solutions without computing neither the Poincaré map nor the 
flow, which turns out to be very useful in applications.

In the case of flows, to shorten the exposition, we deal with the parametric case, being the free 
parameter case a straightforward consequence.

Let U ⊂ Rn+m be a neighborhood of the origin, 
 ⊂ Rn′
and X : U × R × Rn′ → Rn+m a 

T -periodic vector field

ż = X(z, t, λ), X(z, t + T ,λ) = X(z, t, λ) (2.10)

such that

X(z, t, λ) = X(x,y, t, λ) =
(

p(x, y,λ) + f (x, y, t, λ)

q(x, y,λ) + g(x, y, t, λ)

)
, (2.11)

where p and q are homogeneous polynomials of degrees N ≥ 2 and M ≥ 2 respectively with 
respect to (x, y), and f (x, y, t, λ) = O(‖(x, y)‖N+1) and g(x, y, t, λ) = O(‖(x, y)‖M+1) uni-
formly in (t, λ) ∈R × 
.

If we want to deal with the invariant manifolds of parabolic periodic orbits, we translate the 
orbit to the origin and we get a vector field of the form (2.11).

From now on, in the case of flows, the spaces H>�, H≥�, H� will be the analogous to the ones 
in Section 2.1, respectively Section 2.3, with a T -periodic dependence on t and with uniform 
bounds with respect to λ ∈ 
.

Let ϕ(s; t0, x, y, λ) be the flow of (2.10). The condition that the range of a function K , de-
pending on (x, t, λ), is invariant by the flow of the vector field (2.11), analogous to (1.1) for 
maps, is

ϕ(s; t,K(x, t, λ), λ) = K(ψ(s; t, x, λ), s, λ), (2.12)

for some function ψ . In the above equation the unknowns are K and ψ . However, if ψ(s; t, x, λ)

is the flow associated to some vector field Y(x, t, λ), the invariance equation (2.12) is equivalent 
to its infinitesimal version

X(K(x, t, λ), t, λ) = DxK(x, t, λ)Y (x, t, λ) + ∂tK(x, t, λ), (2.13)
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where Dx denotes the derivative with respect to x.
Next theorem asserts that equation (2.13) can be solved up to a certain order using functions 

belonging to C�s′,r′ for some s′ and r ′. For technical reasons we will consider separately the 
differentiability with respect to (x, y) and (t, λ). That is, in the definition (2.9) of C�s,r we take 
z = (x, y) and μ = (t, λ).

Theorem 2.9. Let X : U ×R × 
 → Rn+m be a vector field of the form (2.11) with U an open 
neighborhood of the origin. Assume that X ∈ C�s,r and it satisfies Hypothesis Hλ for some �0 > 0
and V as in Section 2.1.

Then, for any N ≤ � ≤ r there exist 0 < � ≤ �0, K : V� × R × 
 → U , T -periodic with 
respect to t , and Y : V� × 
 → Rn such that

X(K(x, t, λ), t, λ) − DxK(x, t, λ)Y (x,λ) − ∂tK(x, t, λ) ∈H>�. (2.14)

In addition, we can choose K and Y as a finite sum of homogeneous functions Kj ∈ Hj and 
Y j ∈Hj with respect to x (not necessarily polynomials), of the form

Kx(x, t, λ) = x +
�∑

l=2

Kl
x(x, t, λ), Ky(x, t, λ) =

�∑
l=2

Kl
y(x, t, λ),

Y (x,λ) =
min{�,�∗}∑

l=N

Y l(x,λ)

with YN(x, λ) = p(x, 0, λ), L = min{N, M} and �∗ defined in (2.7). The functions Kl
x(x, λ), 

with l = 2, · · · , �∗ −N + 1, can be chosen arbitrarily, in particular, equal to 0. Moreover K and 
Y can be extended to V by homogeneity.

Concerning regularity we have that K and Y are C1 at the origin in the sense of Definition 2.1. 
Finally,

(1) If either Ap > dp or M < N , K, Y are real analytic with respect to x and Cs with respect to 
(t, λ). In addition, if X depends analytically on (t, λ) ∈ R × 
, then K, Y are real analytic 
in V ×R × 
,

(2) If Ap = dp , K, Y are C∞ with respect to x and Cs with respect to (t, λ). Moreover, if X ∈ C∞, 
then also K, Y ∈ C∞.

(3) If Ap < dp and M ≥ N , K, Y belong to C�s∗,r∗−s∗ with s∗ = min{s, r∗} and r∗ defined in 
(2.4).

Remark 2.10. Notice that the vector field Y can be chosen as a finite sum of homogeneous 
functions independent of t .

The rest of this paper is devoted to prove all these results. We first deal with the map case in the 
non parametric setting. In Section 3 we study the existence and regularity of global homogeneous 
solutions of a partial differential equation which is a model for all the cohomological equation 
we need to solve. Then, we prove Theorems 2.2, 2.7 and 2.9 by following an induction procedure 
with respect to the degree of differentiability. After that we deal with the dependence with respect 
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to parameters. Finally we provide several examples to illustrate that our hypotheses are necessary 
to obtain approximate solutions and our results are (in some sense) optimal.

3. The cohomological equation

Let V ⊂ Rn be an open set, star-shaped with respect to 0 and p : Rn → Rk , Q : Rn →
L(Rk, Rk) and w : V → Rk be such that p ∈ HN , Q ∈ HN−1, w ∈ Hm+N with N ≥ 2 and 
m ≥ 1.

Note that p, Q are determined by their restriction to an arbitrary small neighborhood U of the 
origin. In particular if they have some degree of regularity in U they have the same regularity in 
the whole space.

The linear partial differential equation

Dh(x) · p(x) − Q(x) · h(x) = w(x) (3.1)

for h : V → Rk appears when we try to find approximations of K and R as sums of homogeneous 
functions. We are interested in solutions h ∈Hm+1.

Let V�0 be defined as in (2.2). Along this section we assume the following conditions for some 
�0 > 0:

HP1 p is C1 in V�0 and

ap = − sup
x∈V�0

‖x + p(x)‖ − ‖x‖
‖x‖N

> 0. (3.2)

HP2 There exists a constant ap
V > 0 such that

dist
(
x + p(x),

(
V�0

)c)≥ a
p
V ‖x‖N, ∀x ∈ V�0 .

In the applications in this paper, p and Q will be polynomial functions.

Remark 3.1. If hypotheses HP1 and HP2 are satisfied for some �0, then they also hold for 0 <
� < �0. As a consequence, we are always allowed to consider � small enough (see Lemma 3.7).

We define the constants bp, Ap, BQ, AQ, cp and dp by,

bp = sup
x∈V�0

‖p(x)‖
‖x‖N

, Ap = − sup
x∈V�0

‖Id + Dp(x)‖ − 1

‖x‖N−1 ,

BQ = − sup
x∈V�0

‖Id − Q(x)‖ − 1

‖x‖N−1 , AQ = sup
x∈V�0

‖Id + Q(x)‖ − 1

‖x‖N−1 ,

cp =
{

ap, if BQ ≤ 0,

bp, otherwise.
dp =

{
ap, if Ap < 0,

bp, otherwise.

(3.3)

Next we introduce two ordinary differential equations which will play a key role in the proof 
of the results of this section. The first one is



I. Baldomá et al. / J. Differential Equations 268 (2020) 5574–5627 5585
dx

dt
= p(x). (3.4)

We denote by ϕ(t, x) its flow. The second one is the homogeneous linear equation

dψ

dt
(t, x) = Q(ϕ(t, x))ψ(t, x) (3.5)

and we denote by M(t, x) its fundamental matrix such that M(0, x) = Id.
Using uniqueness of solutions of (3.4) and homogenity,

ϕ(t, λx) = λϕ(λN−1t, x), M(t, λx) = M(λN−1t, x) (3.6)

wherever they are defined.
In order to deal with the analytic case, we define the norm ‖ · ‖ in Cn as

‖x‖ = max{‖Rex‖,‖Imx‖}.

We define complex extensions of V and V�:

(γ ) := {x ∈ Cn : Rex ∈ V, ‖Imx‖ < γ ‖Rex‖},
(�, γ ) := {x ∈ Cn : Rex ∈ V�, ‖Imx‖ < γ ‖Rex‖}.

Our analyticity results will be over solutions defined on a complex set (γ ) with a suitable 
choice of γ . We note that, if x ∈ (γ ) with γ ≤ 1, then ‖x‖ = ‖Rex‖. We will use this fact 
along this work without explicit mention.

Theorem 3.2. Let p ∈ HN and Q ∈ HN−1 be defined in an open set U of Rn and w ∈ Hm+N

defined on an open set V star-shaped with respect to 0, with N ≥ 2 and m ≥ 1. Assume that p
satisfies hypotheses HP1 and HP2, for some �0 > 0, that p, Q are Cr , r ≥ 1, in U and w is a Cr

function in V .
Then, if

m+ 1 + BQ

cp
> max

{
1 − Ap

dp
,0

}
, (3.7)

there exists a unique solution h ∈Hm+1 of equation (3.1) which is given by:

h(x) =
0∫

∞
M−1(t, x)w(ϕ(t, x)) dt, x ∈ V. (3.8)

Moreover it is of class C1 on V .
Concerning its regularity we have the following cases:

(1) Ap ≥ dp. If 1 ≤ r ≤ ∞, then h is Cr in V .
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(2) Ap < dp. Let r0 be the maximum of 1 ≤ i ≤ r such that

m+ 1 + BQ

cp
− i

(
1 − Ap

dp

)
> 0. (3.9)

Then h is Cr0 in V .
(3) Ap > dp. If p, Q, w are real analytic functions in (γ0) for some γ0 then h is analytic in 

(γ ) for γ small enough. In particular it is real analytic in V .

Remark 3.3. As we will see in Lemma 3.9 below, by Hypothesis HP2, V�0 is positively invariant 
by the flow ϕ, but it may happen that V is not. However since V is star-shaped with respect to the 
origin, V ⊂ V e

�0
= {tx : t > 0, x ∈ V�0}, V e

�0
is positively invariant by ϕ and the formula (3.8)

makes sense with w understood as the unique extension of w to V e
�0

by homogeneity.

Remark 3.4. We notice that the condition m + 1 + BQ
cp

> max
{
1 − Ap

dp
, 0
}

is automatically satis-
fied if BQ, Ap ≥ 0.

Corollary 3.5. Assume the conditions of Theorem 3.2. Let ν ∈ N . If ν + BQ/cp ≥ 0, then equa-
tion (3.1) has a solution h : V → Rk belonging to Hν , if and only if the integral

0∫
∞

M−1(t, x)w(ϕ(t, x)) dt

is convergent for x ∈ V .

We postpone the proof of these results to Section 3.3. First we establish some preliminary 
estimates.

3.1. Preliminary facts

This section deals with some basic facts that will be used henceforth without mention.

Lemma 3.6. The constants Ap, BQ, ap, bp and AQ are finite. They satisfy |ap| ≤ bp, ap ≥ Ap/N , 
BQ ≤ AQ and −BDp ≥ Nap > 0.

Proof. The triangular inequality and the homogeneous character of p and Q imply that the con-
stants are finite. Relation |ap| ≤ bp is also a consequence of the triangular inequality.

From the definition of Ap, we have that

‖x + p(x)‖ ≤ ‖x‖
1∫

0

‖Id + Dp(λx)‖dλ ≤ ‖x‖
1∫

0

(
1 − ApλN−1‖x‖N−1

)
dλ

= ‖x‖
(

1 − Ap

N
‖x‖N−1

)
, (3.10)
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therefore ap ≥ Ap/N .
As for AQ and BQ, we notice that

‖Id − Q(x)2‖ ≤ ‖Id + Q(x)‖ · ‖Id − Q(x)‖ ≤ (
1 + AQ‖x‖N−1)(1 − BQ‖x‖N−1).

Since ‖Id − Q(x)2‖ ≥ 1 − ‖Q(x)‖2, there exists some constant K > 0 such that

1 − K‖x‖2(N−1) ≤ 1 − (BQ − AQ)‖x‖N−1 − AQBQ‖x‖2(N−1).

Then, BQ − AQ ≤ (K − AQBQ)‖x‖N−1 and we get BQ − AQ ≤ 0 taking x → 0.
For the last claim, we note that, as we prove in (3.10),

‖x − p(x)‖ ≤ ‖x‖
(

1 − BDp

N
‖x‖N−1

)
.

Since V�0 is invariant we apply the above inequality to x + p(x) and we obtain:

‖x + p(x) − p(x + p(x))‖ ≤ ‖x + p(x)‖
(

1 − BDp

N
‖x + p(x)‖N−1

)
. (3.11)

We note that ‖x + p(x)‖ ≤ ‖x‖(1 − ap‖x‖N−1
)
. Therefore, by (3.11)

‖x + p(x) − p(x + p(x))‖ ≤ ‖x‖
(

1 −
(

ap + BDp

N

)
‖x‖N−1 + K2‖x‖2N−2

)
.

In addition

‖x + p(x) − p(x + p(x))‖ =
∥∥∥∥∥∥x −

1∫
0

Dp(x + sp(x))p(x) ds

∥∥∥∥∥∥≥ ‖x‖(1 − K1‖x‖2N−2).
Then, again from (3.11), taking K = K1 + K2 we obtain

−K‖x‖N−1 ≤ −ap − BDp

N

which gives the result taking x → 0. �
The following lemma ensures that we can take � as small as we need.

Lemma 3.7. Let 0 < � < �. Denoting by Ap, ap, bp, AQ, BQ the values of the constants 
Ap, ap, bp, AQ, BQ corresponding to �, we have that

Ap ≥ Ap, ap ≥ ap, bp = bp, AQ ≤ AQ, BQ ≥ BQ.

Then, for x ∈ V� ,
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‖Id + Dp(x)‖ ≤ 1 − Ap‖x‖N−1, ‖x + p(x)‖ ≤ ‖x‖(1 − ap‖x‖N−1),

‖Id + Q(x)‖ ≤ 1 + AQ‖x‖N−1, ‖Id − Q(x)‖ ≤ 1 − BQ‖x‖N−1.

In addition, if HP1 and HP2 are satisfied for � > 0, they are also satisfied for all 0 < � < �.

Proof. Indeed, let � < �. The relations among the constants follow from the fact that V� ⊂ V�

and (only for bp) p is a homogeneous function. Since bp does not depend on �, HP1 is satisfied 
for �. Now we deal with HP2. Let x ∈ V� and let z ∈ ∂V� be such that

dist
(
x + p(x), (V�)c

)= ‖x + p(x) − z‖.

We have two possibilities: either z ∈ ∂V� or z ∈ V� and ‖z‖ = �. If z ∈ ∂V� , then since x ∈ V� , 
by HP2 we have ‖x + p(x) − z‖ ≥ a

p
V ‖x‖N . Finally, if ‖z‖ = � we have that z = λ(x + p(x))

with λ = �‖x + p(x)‖−1 and by HP1 and the definition of ap in (3.2),

‖x + p(x) − z‖ = � − ‖x + p(x)‖ ≥ ‖x‖ − ‖x + p(x)‖ ≥ ap‖x‖N. �
Next lemma will be used in the analytical case.

Lemma 3.8. Let �, γ > 0.

(1) If x ∈ (�, γ ) and χ : (�, γ ) → Cn is a real analytic function belonging to H� then

χ(x) = χ(Rex) + iDxχ(Rex)Imx + γ 2O(‖x‖�).

(2) If HP2 is satisfied and Ap > bp, then there exists γ0 ∈ (0, 1) such that for any 0 < γ ≤ γ0, 
the complex set (�0, γ ) is an invariant set for the map x �→ x + p(x).

Proof. Item (1) follows from Taylor’s theorem, Cauchy-Riemann equations and the fact that χ
is a real analytic function.

A property similar to (2) was proven in [2]. From (1), if x ∈ (�, γ ),

x + p(x) = x + p(Rex) + iDp(Rex)Imx + γ 2O(‖x‖N).

On the one hand we have that, by hypothesis HP2,

dist(Re
(
x + p(x)

)
,V c

�0
) ≥ a

p
V ‖x‖N − γ 2O(‖x‖N) > 0 (3.12)

which implies that Re
(
x + p(x)

) ∈ V�0 and on the other hand, using (3.12) and the definitions of 
Ap and bp, we have

‖Im
(
x + p(x)

)‖ − γ ‖Re
(
x + p(x)

)‖ ≤ γ (bp − Ap +O(γ ))‖Rex‖N < 0

provided γ is small enough. �
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3.2. Properties of ϕ(t, x) and M(t, x)

In this section we describe some properties of the solutions of equations (3.4) and (3.5). We 
will denote by K a generic positive constant, which may take different values at different places. 
Also let

α = 1

N − 1
.

Lemma 3.9. Assume hypotheses HP1 and HP2 for �0 > 0. Then:

(1) There exists �1 ≤ �0 such that for all 0 < � ≤ �1, V� is positively invariant by the flow ϕ.
(2) Assume that Ap > bp and that p has an analytic extension to (γ0) for some 0 < γ0 ≤ 1. 

Then there exist 0 < �1 ≤ �0 and 0 < γ1 ≤ γ0 such that for any 0 < � ≤ �1 and 0 ≤ γ ≤ γ1, 
the set (�, γ ) is invariant by the complexified flow, i.e. ϕ(t, x) ∈ (�, γ ), for t > 0 and 
x ∈ (�, γ ).

Proof. We first prove item (2). Since ϕ(t, 0) ≡ 0 for all t and ϕ is C1, we have that, for some 
γ ≥ 0 and � small enough

‖ϕ(t, x)‖ ≤ K‖x‖, t ∈ [0,1], x ∈ (�,γ ). (3.13)

By Taylor’s theorem,

ϕ(t, x) = x + tp(x) +
t∫

0

(t − s)Dp(ϕ(s, x))p(ϕ(s, x)) ds (3.14)

and using that p ∈HN , (3.13) and (1) of Lemma 3.8 for χ = p, we get for 0 ≤ t ≤ 1

‖Reϕ(t, x) − (
Rex + tp(Rex)

)‖ ≤ γ 2K‖x‖Nt + K‖x‖2N−1t2. (3.15)

Let x ∈ (�, γ ). The fact that Rex ∈ V� , (3.15) and HP2 imply that

dist
(
Reϕ(1, x), (V�)c

)≥dist
(
Rex + p(Rex), (V�)c

)
− ‖Rex + p(Rex) − Reϕ(1, x)‖

≥dist
(
Rex + p(Rex), (V�)c

)− γ 2K‖x‖N − K‖x‖2N−1

≥a
p
V ‖x‖N − γ 2K‖x‖N − K‖x‖2N−1 ≥ a

p
V

2
‖x‖N

if �, γ are small enough. We have proven that if x ∈ (�, γ ) then Reϕ(1, x) ∈ V� .
In equality (3.6), take the values t = 1, λ = tα with t ∈ (0, 1] and x ∈ (�, γ ). Then

ϕ(t, x) = t−αϕ(1, tαx).
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Since tαx ∈ (�, γ ) if x ∈ (�, γ ), we already know that Reϕ(t, x) ∈ V . Moreover, by (3.15), 
taking �, γ small enough and using that ‖Rex‖ = ‖x‖,

‖Reϕ(1, tαx)‖ ≤ ‖tαx‖(1 − tap‖x‖N−1 + Ktγ 2‖x‖N−1 + Kt2‖x‖2(N−1)
)≤ tα‖x‖,

and consequently ‖Reϕ(t, x)‖ ≤ ‖x‖ = ‖Rex‖ ≤ �. This implies that Reϕ(t, x) ∈ V� if t ∈
[0, 1]. Now, from identity (3.14), using (1) of Lemma 3.8 and the definitions of bp and Ap, we 
deduce that

‖Reϕ(t, x)‖ ≥ ‖(Rex + tp(Rex)
)‖ − γ 2K‖x‖Nt − K‖x‖2N−1t2

≥ ‖Rex‖(1 − tbp‖Rex‖N−1) − γ 2K‖x‖Nt − K‖x‖2N−1t2, (3.16)

‖Imϕ(t, x)‖ ≤ ‖(Id + tDxp(Rex)
)
Imx‖ + γ 2K‖x‖Nt + K‖x‖2N−1t2

≤ ‖Imx‖(1 − tAp‖Rex‖N−1) + γ 2K‖x‖Nt + K‖x‖2N−1t2.

Therefore, since Ap > bp, taking �, γ small enough,

γ ‖Reϕ(t, x)‖ − ‖Imϕ(t, x)‖ ≥ 0.

As a consequence ϕ(t, x) ∈ (�, γ ) for all t ∈ [0, 1]. Finally we extend this property to t > 1 by 
using inductively that ϕ(t, x) = ϕ(1, ϕ(t − 1, x)). Note that in this part we have not to reduce the 
values of �, γ .

A shorter but completely analogous argument proves (1) assuming neither that p is analytic 
nor Ap > bp. �
Lemma 3.10. Assume that HP1 and HP2 are satisfied for some �0 > 0. Let 0 < a ≤ ap and 
b ≥ bp. Then, for any t ≥ 0 and x ∈ V ,

‖x‖(
1 + (N − 1)bt‖x‖N−1

)α ≤ ‖ϕ(t, x)‖ ≤ ‖x‖(
1 + (N − 1)at‖x‖N−1

)α .

If Ap > bp and p has an analytic extension to (γ0) for some γ0 ≤ 1, for any 0 < a < ap and 
b > bp there exists γ ≤ γ0 such that for t ≥ 0, ϕ is analytic in (γ ) and the previous bounds are 
true for x ∈ (γ ).

Proof. The definitions of ap and bp in (3.2) and (3.3), respectively, imply that for any x ∈ V�

and t ∈ [0, 1],

‖x‖(1 − tbp‖x‖N−1)≤ ‖x + tp(x)‖ ≤ ‖x‖(1 − tap‖x‖N−1). (3.17)

Indeed, the inequality involving bp follows from the triangular inequality. For the right hand side 
inequality, let x ∈ V� . Since V� is a star-shaped set, for any t ∈ (0, 1], tαx ∈ V� and hence,

−ap ≥ ‖tαx + p(tαx)‖ − ‖tαx‖
α N

= ‖x + tα(N−1)p(x)‖ − ‖x‖
α(N−1) N

.
‖t x‖ t ‖x‖
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The result follows because α(N − 1) = 1.
Let now x ∈ (�, γ ), with ρ and γ given by Lemma 3.9. The real case, x ∈ V� , is obtained 

taking γ = 0. By Lemma 3.9, ϕ(t, x) ∈ (�, γ ) and hence ‖ϕ(t, x)‖ = ‖Reϕ(t, x)‖. Then from 
(3.16),

‖ϕ(t, x)‖ ≥ ‖x‖(1 − bpt‖x‖N−1 − tγ 2K‖x‖N−1 − t2K‖x‖2N−2)
and from (3.15) and (3.17)

‖ϕ(t, x)‖ ≤ ‖x‖(1 − apt‖x‖N−1 + tγ 2K‖x‖N−1 + t2K‖x‖2N−2).
To obtain the bound for ‖ϕ(t, x)‖, t ∈ [0, 1], we only have to take into account that, since ap > a

and bp < b, if �, γ are small enough,

‖x‖(1 − apt‖x‖N−1 + tγ 2K‖x‖N−1 + t2K‖x‖2N−2)≤ ‖x‖(
1 + a(N − 1)t‖x‖N−1

)α ,

‖x‖(1 − bpt‖x‖N−1 − tγ 2K‖x‖N−1 − t2K‖x‖2N−2)≥ ‖x‖(
1 + b(N − 1)t‖x‖N−1

)α .

Finally we are going to check that the results follow for any t ≥ 0 and x ∈ (�, γ ). In fact we 
will check the inequality involving a, being the other one analogous. We have already seen that if 
t ∈ [0, 1] the inequalities are true so we can proceed by induction assuming that the result is true 
for t ∈ [0, l] with l ∈N . We introduce the auxiliary differential equation χ̇ = −aχN , χ ∈R, and 
its flow χ(t, ξ), ξ ∈R. By induction hypothesis ‖ϕ(t, x)‖ ≤ χ(t, ‖x‖) if t ∈ [0, l]. Moreover, by 
Picard’s theorem, if ξ1 < ξ2 then for all t ≥ 0, χ(t, ξ1) < χ(t, ξ2). Consequently, by using that 
(�, γ ) is invariant by the flow ϕ, for any s ∈ [0, 1] and t ∈ [0, l], we have that

‖ϕ(t + s, x)‖ = ‖ϕ(t, ϕ(s, x))‖ ≤ χ
(
t,‖ϕ(s, x)‖)≤ χ

(
t, χ(s,‖x‖))= χ(t + s,‖x‖)

and the induction is completed.
Let x ∈ (γ ) and λ > 0 small enough such that λx ∈ (�, γ ). From (3.6),

ϕ(t, x) = 1

λ
ϕ

(
t

λN−1 , λx

)
and from this expression, the bounds for ‖ϕ(s, ·)‖ in (�, γ ) extend to (γ ).

In the real case since γ = 0, the result is valid for any 0 < a < ap and b > bp and we obtain 
the same bounds with a = ap and b = bp. �
Lemma 3.11. Assume that HP1 and HP2 are fulfilled for some �0 > 0. Let 0 < a ≤ ap, b ≥ bp, 
A ≥ AQ and B ≤ BQ. Then, for all x ∈ V and t ≥ 0, we have the following bounds

(
1 + c(N − 1)t‖x‖N−1)α B

c ≤ ‖M(t, x)‖ ≤ (
1 + δ(N − 1)t‖x‖N−1)α A

δ(
1 + δ(N − 1)t‖x‖N−1)−α A

δ ≤ ‖M−1(t, x)‖ ≤ (
1 + c(N − 1)t‖x‖N−1)−α B

c
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with

c =
{

a, if B ≤ 0,

b, otherwise.
δ =

{
a, if A ≥ 0,

b, otherwise.
(3.18)

If p and Q have an analytic extension to (γ0) for some γ0 ≤ 1, and Ap > bp, then for any 
0 < a < ap, b > bp, A > AQ and B < BQ there exists γ ≤ γ0 such that, for t ≥ 0, M(t, x) is 
analytic in (γ ) and the previous bounds are also true for x ∈ (γ ).

Proof. By Lemma 3.9, the condition Ap > bp implies that there exist � > 0 and γ > 0 such that 
the set (�, γ ) is invariant by ϕ if γ is small enough provided that p has an analytic extension 
to (�, γ0). This will be the only place where we use the condition Ap > bp. For that reason we 
will perform our computations in the analytic case, the real case being just a direct consequence 
by taking γ = 0.

Let x ∈ (�, γ ). First consider the auxiliary differential equation

ζ̇ = (
Id + Q(ϕ(t, x))

)
ζ

and denote by χ(t, x) its fundamental matrix satisfying χ(0, x) = Id. We notice that χ(t, x) =
etM(t, x). Moreover,

χ(t, x) = Id +
t∫

0

(
Id + Q(ϕ(s, x))

)
χ(s, x) ds.

Hence, by the definition of AQ and Lemma 3.8, we have that

‖χ(t, x)‖ ≤ 1 +
t∫

0

‖Id + Q(ϕ(s, x))‖‖χ(s, x)‖ds

≤ 1 +
t∫

0

(1 + (AQ + Kγ )‖ϕ(s, x)‖N−1)‖χ(s, x)‖ds.

Writing A = AQ + Kγ and using Gronwall’s Lemma,

‖χ(t, x)‖ ≤ exp

⎛⎝ t∫
0

(
1 + A‖ϕ(s, x)‖N−1)ds

⎞⎠= etexp

⎛⎝A

t∫
0

‖ϕ(s, x)‖N−1 ds

⎞⎠ .

By using that χ(t, x) = etM(t, x), we obtain that

‖M(t, x)‖ ≤ exp

⎛⎝A

t∫
‖ϕ(u, x)‖N−1 du

⎞⎠ . (3.19)
0
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In the real case, i.e. when x ∈ V� = (�, 0), we can take A = AQ.
Let us consider the differential equation

ζ̇ = (
Id − Q�(ϕ(t, x))

)
ζ.

We have that its fundamental matrix ψ(t, x) such that ψ(0, x) = Id is ψ(t, x) = etM−�(t, x), 
where here we have written M−� = [M−1]�. Indeed,

ψ̇(t, x) = etM−�(t, x) + et Ṁ−�(t, x) = ψ(t, x) − Q�(ϕ(t, x))ψ(t, x).

Now we have that

ψ(t, x) = Id +
t∫

0

(
Id − Q�(ϕ(s, x))

)
ψ(s, x) ds.

We transpose the above equality and take norms to obtain

‖ψ�(t, x)‖ ≤ 1 +
t∫

0

‖Id − Q(ϕ(s, x))‖‖ψ�(s, x)‖ds.

Finally using the definition of BQ, Lemma 3.8 and Gronwall’s Lemma we conclude that

‖ψ�(t, x)‖ ≤ exp

⎛⎝ t∫
0

1 − (BQ − Kγ )‖ϕ(s, x)‖N−1 ds

⎞⎠
= etexp

⎛⎝−(BQ − Kγ )

t∫
0

‖ϕ(s, x)‖N−1 ds

⎞⎠
and, as a consequence, since ψ�(t, x) = etM−1(t, x) we have that

‖M−1(t, x)‖ ≤ exp

⎛⎝−B

t∫
0

‖ϕ(u, x)‖N−1 du

⎞⎠ , (3.20)

where we have taken B = BQ − Kγ . In order to bound 
∫ t

0 ‖ϕ(u, x)‖N−1 du we use the bounds 
in Lemma 3.10 obtaining

t∫
0

‖ϕ(u, x)‖N−1 du ≤ ‖x‖N−1

t∫
0

1

1 + a(N − 1)u‖x‖N−1 du

= 1
log

(
1 + a(N − 1)t‖x‖N−1),
a(N − 1)
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t∫
0

‖ϕ(u, x)‖N−1 du ≥ ‖x‖N−1

t∫
0

1

1 + b(N − 1)u‖x‖N−1 du

= 1

b(N − 1)
log

(
1 + b(N − 1)t‖x‖N−1).

We recall that by Lemma 3.6, BQ ≤ AQ. To obtain the inequalities in the statement from (3.19)
and (3.20) we distinguish three cases according to the signs of AQ, BQ. The first case is BQ > 0. 
Let 0 < B < BQ and A > AQ. We take 0 < γ1 ≤ γ0 such that 0 < B ≤ BQ − Kγ1 and A ≥
AQ + Kγ1. Then, if 0 ≤ γ ≤ γ1,

‖M(t, x)‖ ≤ (
1 + a(N − 1)t‖x‖N−1) A

a(N−1) ,

‖M−1(t, x)‖ ≤ (
1 + b(N − 1)t‖x‖N−1) −B

b(N−1) .

The remaining inequalities follow from ‖M−1(t, x)‖ ≥ ‖M(t, x)‖−1. The other two cases, AQ <

0 and BQ ≤ 0 ≤ AQ, follow analogously.
Using the identity (3.6) M(t, x) = M

(
λ−N+1t, λx

)
, the inequalities extend to (γ ). Note 

that in the real case we can take A = AQ, B = BQ, a = ap and b = bp. �
3.3. Proof of Theorem 3.2

We begin by checking that if h : V → Rk is a differentiable solution of (3.1) in Hm+1, it has 
to be given by formula (3.8) given in Theorem 3.2, i.e.

h(x) =
0∫

∞
M−1(t, x)w(ϕ(t, x)) dt.

Indeed, let h ∈Hm+1 be such that

Dh(x)p(x) − Q(x)h(x) = w(x).

We define μ(t, x) = h(ϕ(t, x)) and we have that

μ̇(t, x) = Dh(ϕ(t, x))p(ϕ(t, x)) = Q(ϕ(t, x))μ(t, x) + w(ϕ(t, x))

and then, since μ(0, x) = h(x),

μ(t, x) = M(t, x)

⎛⎝h(x) +
t∫

0

M−1(s, x)w(ϕ(s, x)) ds

⎞⎠ .

Note that, with � given by Lemma 3.9, if x ∈ V� , ϕ(s, x) ∈ V� for all s ≥ 0. The hypothesis (3.7), 
Lemmas 3.10 and 3.11 and the fact that ‖h(x)‖ ≤ K‖x‖m+1, imply that M−1(t, x)μ(t, x) =
M−1(t, x)h(ϕ(t, x)) → 0 as t → ∞. Therefore we obtain the desired expression for h.
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This provides the uniqueness statement in V�. The fact that h belongs to Hm+1 will be proven 
in the next lemma in a slightly more general setting. The homogeneity of h determines uniquely 
the extension of h to V which satisfies (3.1) in V . Then it remains to prove that actually h
is well defined, it is a solution and its regularity. Our strategy to prove the regularity stated in 
Theorem 3.2 follows three steps. The first one deals with the continuity (resp. analyticity) of 
functions defined by integrals of the form

g(x) :=
0∫

∞
χ−1(t, x)ω(ϕ(t, x)) dt (3.21)

with χ and ω satisfying appropriate conditions. Note that definition (3.8) of h fits in this setting. 
This is done in Lemma 3.12 below.

Secondly, we deal with the C1 regularity, proving both: i) that g ∈ C1 and ii) that Dg can be 
expressed as

0∫
∞

(χ1)−1(t, x)ω1(ϕ(t, x)) dt

with χ1 and ω1 having the conditions required in the previous step for g to be a continuous 
function. This is proven in Lemma 3.14.

Finally, the third step consists of an inductive procedure with respect to the degree of differ-
entiability.

In what follows we will use the constants introduced at the beginning of Section 3 depending 
on the homogeneous functions indicated in their subscripts without further notice.

Lemma 3.12. Let p ∈ HN be defined on V and satisfying hypotheses HP1 and HP2 for �0, 
Q ∈ HN−1 and ω ∈Hν+N on V , with ν ≥ 1. We denote by χ the fundamental matrix of

d

dt
ψ(t, x) =Q(ϕ(t, x))ψ(t, x), such that χ(0, x) = Id .

If ν + 1 + BQ
cp

> 0, with cp defined in (3.3) taking Q =Q, then the function g : V → Rk defined 

by (3.21) belongs to Hν+1 being, in particular, a C0 function on V .
Moreover, if we also have Ap > bp, then, there exists γ > 0 small enough such that the func-

tion g is analytic in (γ ) provided p, Q and ω have analytic extensions to (γ0) for some 
γ0 > γ .

Proof. If p, Q and ω have analytic extensions to (γ0), let 0 < a < ap, b > bp and B < BQ be 
such that ν + 1 + B

c
> 0 where c is defined in (3.18). We fix � and γ satisfying the conditions of 

Lemmas 3.9, 3.10 and 3.11. In this case we have that (�, γ ) is invariant by ϕ provided Ap > bp. 
Since V� = (�, 0), we make the convention that in the real case, we take γ = 0. This allows 
us to deal with both cases (real and complex) at the same time. If ω is a C0 function on V we 
take U = V and if ω has an analytic extension to (�, γ ) for some γ > 0, we take U = (�, γ ). 
With this convention, we define
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‖ω‖ = sup
x∈U

‖ω(x)‖
‖x‖ν+N

.

We begin by proving that the function g is well defined and C0 in (�, γ ). Indeed, we only 
need to check that the integral in the definition of g is convergent. For that we use Lemmas 3.10
and 3.11 applied to Q. Let x ∈ (�, γ )

‖χ−1(t, x)ω(ϕ(t, x))‖ ≤ ‖ω‖‖ϕ(t, x)‖ν+N‖χ−1(t, x)‖

≤ ‖ω‖ ‖x‖ν+N(
1 + a(N − 1)t‖x‖N−1

)α(ν+N+ B
c

)

because c ≥ a and κ := α
(
ν +N + B

c

)= α(N −1) +α
(
ν +1 + B

c

)
> 1 by hypothesis. Therefore,

‖χ−1(t, x)ω(ϕ(t, x))‖ ≤ ‖ω‖‖x‖ν+N
(
1 + a(N − 1)t‖x‖N−1)−κ (3.22)

which implies that

‖g(x)‖ ≤ ‖ω‖‖x‖ν+N

∞∫
0

dt(
1 + a(N − 1)t‖x‖N−1

)κ ≤ K‖ω‖‖x‖ν+1.

Now we prove that g belongs to Hν+1. As we mentioned in (3.6), for any λ > 0, one has that 
ϕ(t, λx) = λϕ(λN−1t, x) and χ−1(t, λx) = χ−1(λN−1t, x). Then,

g(λx) =
0∫

∞
χ−1(t, λx)ω(ϕ(t, λx)) dt =

0∫
∞

χ−1(λN−1t, x)ω(λϕ(λN−1t, x)) dt

= λ1−N

0∫
∞

χ−1(t, x)ω(λϕ(t, x)) dt = λ1−Nλν+N

0∫
∞

χ−1(t, x)ω(ϕ(t, x)) dt

= λν+1g(x).

Finally we check the regularity. We first check that g is analytic if ω, Q and p have analytic 
extensions to (�, γ ). Let x0 ∈ (�, γ ) be a given point. Since (�, γ ) is an open set, there 
exists 0 < r < ‖x0‖ such that the open ball Br(x0) is contained in (�, γ ). Then, if x ∈ Br(x0), 
‖x‖ ≥ ‖x0‖ − r and consequently, using (3.22),

‖χ−1(t, x)ω(ϕ(t, x))‖ ≤ ‖ω‖ ‖x‖ν+N(
1 + a(N − 1)t‖x‖N−1

)κ
≤ ‖ω‖

(‖x0‖ + r0
)ν+N(

1 + a(N − 1)t (‖x0‖ − r)N−1
)κ

and the analyticity follows from the dominated convergence theorem because the right hand side 
of the above bound does not depend on x and it is integrable.
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Since g is homogeneous we can extend it uniquely to an analytic homogeneous function in 
(γ ). Considering ω extended by homogeneity as indicated in Remark 3.3 the extension of g
has the same expression (3.21).

In the real case, when p is C1 and ω, Q are continuous homogeneous functions, the same 
argument as the one given in the analytic case, leads to the proof that g is a continuous func-
tion. �

Now we are going to deal with the differentiable case. If g is a solution of

Dg(x)p(x) −Q(x)g(x) = ω(x), (3.23)

then Dg, if it is C1, should satisfy

D2g(x)p(x) − [Q(x)Dg(x) − Dg(x)Dp(x)] = Dω(x) + DQ(x)g(x)

which is an equation for Dg analogous to (3.23) except that the second term, due to the lack of 
commutativity is more involved. Continuing in this way would imply to consider linear equations 
of the form

χ̇ =Q(ϕ(t, λx))χ − χDp(ϕ(t, λx)).

However we have chosen to consider the equivalent equation for a vector which contains all 
elements Dijg ordered one column after the other. This forces the introduction of the following 
notation.

We denote by Dj the derivative with respect to the variable xj . We define the linear operator 
S : L(Rn, Rk) → Rn·k :

S(A) = (
(Ae1)

�, · · · , (Aen)
�)�, being {e1, · · · , en} the canonical basis, (3.24)

and the functions BQ, Ik
Dp, Q1 : V� → L(Rn·k, Rn·k):

BQ(x) = diag
(
Q(x), · · · ,Q(x)

)
, (3.25)

Ik
Dp(x) =

⎛⎜⎝D1p1(x)Id k · · · D1pn(x)Id k

...
...

...

Dnp1(x)Id k · · · Dnpn(x)Id k

⎞⎟⎠ , (3.26)

Q1(x) = BQ(x) − Ik
Dp(x),

with p = (p1, · · · , pn)
� and Id k the identity in L(Rk, Rk).

For any w ∈Rn·k , we also write

w = (w1, · · · ,wn), with wi ∈Rk.

Finally we define the norm in Rn·k
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‖w‖ = sup
u∈Rn\{0}

‖u1w1 + · · · + unwn‖
‖u‖ = sup

‖u‖=1
‖u1w1 + · · · + unwn‖,

where the norms in Rn and Rk are such that HP1 and HP2 hold.
Let χ1(t, x) be the fundamental solution of

dψ

dt
(t, x) =Q1(ϕ(t, x))ψ(t, x) such that χ1(0, x) = Id . (3.27)

Lemma 3.13. Let 0 < � ≤ �0.

(1) We have that

BQ1 := − sup
x∈V�

‖Id −Q1(x)‖ − 1

‖x‖N−1 ≥ BQ + Ap. (3.28)

(2) The fundamental matrix χ1 of (3.27) satisfies

(χ1)−1(t, x) = Ik
Dϕ(t, x) ·Bχ−1(t, x)

with

Bχ−1(t, x) = diag
(
χ−1(t, x), · · · , χ−1(t, x)

)
,

Ik
Dϕ(t, x) =

⎛⎜⎝D1ϕ1(t, x)Id k · · · D1ϕn(t, x)Id k

...
...

...

Dnϕ1(t, x)Id k · · · Dnϕn(t, x)Id k

⎞⎟⎠ .

Proof. Let w ∈ Rn·k , w = (w1, · · · , wn) with ‖w‖ = 1. We have that∥∥∥∥(1

2
Id −BQ(x)

)
w

∥∥∥∥= sup
‖u‖=1

∥∥∥∥(1

2
Id −Q(x)

)(
w1u1 + · · · + wnun

)∥∥∥∥
≤
∥∥∥∥1

2
Id −Q(x)

∥∥∥∥ sup
‖u‖=1

‖w1u1 + · · · + wnun‖

=
∥∥∥∥1

2
Id −Q(x)

∥∥∥∥≤ 1

2
− BQ‖x‖N−1, (3.29)

where we have used that∥∥∥∥1

2
Id −Q(x)

∥∥∥∥=
∥∥∥∥1

2

(
Id −Q(21/(N−1)x)

)∥∥∥∥≤ 1

2

(
1 − BQ

(
21/(N−1)‖x‖)N−1

)
.

In addition, we can decompose 
(1

2 Id + Ik
Dp(x)

)
w = (w̄1, · · · , w̄n)

�, with w̄i ∈Rk and

w̄i − 1

2
wi = Dip1(x)w1 + · · · + Dipn(x)wn.
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Given u = (u1, . . . , un) ∈ Rn, letting ū = ( 1
2 Id + Dp(x)

)
u we have

u1w̄1 + · · · + unw̄n = ū1w1 + · · · + ūnwn.

As a consequence,

sup
u∈Rn\{0}

‖u1w̄1 + · · · + unw̄n‖
‖u‖ ≤

∥∥∥∥(1

2
Id + Dp(x)

)∥∥∥∥ sup
ū∈Rn\{0}

‖ū1w1 + · · · + ūnwn‖
‖ū‖

=
∥∥∥∥(1

2
Id + Dp(x)

)∥∥∥∥≤ 1

2
− Ap‖x‖N−1.

The above bound jointly with (3.29) gives that

‖Id −Q1(x)‖ ≤
∥∥∥∥1

2
Id −BQ(x)

∥∥∥∥+
∥∥∥∥1

2
Id + Ik

Dp(x)

∥∥∥∥≤ 1 − (BQ + Ap)‖x‖N−1

and (3.28) is proven.
To obtain the expression for (χ1)−1(t, x) is a straightforward computation. �

Lemma 3.14. Assume that p, Q and ω are C1 functions on V . Let χ be the fundamental matrix 
of d

dt
ψ(t, x) = Q(ϕ(t, x))ψ(t, x) satisfying χ(0, x) = Id.

If hypotheses HP1 and HP2 are satisfied for �0 and

ν + 1 + BQ
cp

> max

{
1 − Ap

dp
,0

}
, (3.30)

with cp, dp defined in (3.3) taking Q =Q, then the function g : V → Rk defined in (3.21) belongs 
to Hν+1 and is a C1 function on V .

Moreover

S(Dg(x)) =
0∫

∞
(χ1)−1(t, x)ω1(ϕ(t, x)) dt, (3.31)

where χ1 is the fundamental matrix of (3.27) such that χ1(0, x) = Id and

ω1(x) = S(Dω(x)) +
(
(D1Q(x)g(x))�, · · · , (DnQ(x)g(x))�

)�
. (3.32)

Proof. Let � > 0 satisfying Lemma 3.9. We claim that for any τ ≥ 0 and x ∈ V� ,

0∫
τ

Dj

[
χ−1(t, x)ω(ϕ(t, x))

]
dt = − Djχ

−1(τ, x)g(ϕ(τ, x))

+
0∫

τ

[
(χ1)−1(t, x)ω1(ϕ(t, x))

]
j
dt. (3.33)
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We recall here that the subscript in a vector in Rn·k identifies a vector in Rk .
We will use the following properties related to χ :

d

dt

(
χ−1(t, x)Djχ(t, x)

)= χ−1(t, x)Dj

(
Q(ϕ(t, x))

)
χ(t, x), (3.34)

χ(u + v, x) = χ(u,ϕ(v, x))χ(v, x), (3.35)

χ−1(t, x)Djχ(t, x) = −Djχ
−1(t, x)χ(t, x). (3.36)

Expression (3.34) follows by using the variational equation for χ . The second one follows from 
the uniqueness of solutions of ψ̇(t, x) = Q(ϕ(t, x))ψ(t, x) and the last one taking derivatives in 
χ−1(t, x)χ(t, x) = Id.

From Lemma 3.13 and definition (3.32) of ω1 we obtain that[
(χ1)−1(t, x)ω1(ϕ(t, x))

]
j

= χ−1(t, x)
[
Dj

(
ω(ϕ(t, x))

)+ Dj

(
Q(ϕ(t, x))

)
g(ϕ(t, x))

]
.

(3.37)

Using properties (3.35) in the definition of g, we obtain that

g(ϕ(t, x)) =
0∫

∞
χ−1(s, ϕ(t, x))ω(ϕ(s,ϕ(t, x))) ds

= χ(t, x)

t∫
∞

χ−1(s, x)ω(ϕ(s, x)) ds, (3.38)

and by (3.37), (3.38) and (3.34) we get[
(χ1)−1(t, x)ω1(ϕ(t, x))

]
j

= χ−1(t, x)Dj

(
ω(ϕ(t, x))

)
+ d

dt

(
χ−1(t, x)Djχ(t, x)

) t∫
∞

χ−1(s, x)ω(ϕ(s, x)) ds.

Integrating by parts and using Djχ
−1(0, x) = 0:

0∫
τ

[
(χ1)−1(t, x)ω1(ϕ(t, x))

]
j
dt =

0∫
τ

χ−1(t, x)Dj

(
ω(ϕ(t, x))

)
dt

− χ−1(τ, x)Djχ(τ, x)

τ∫
∞

χ−1(t, x)ω(ϕ(t, x)) dt

−
0∫

τ

χ−1(t, x)Djχ(t, x)χ−1(t, x)ω(ϕ(t, x)) dt.
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Finally, using (3.36) and expression (3.38), we obtain

0∫
τ

[
(χ1)−1(t, x)ω1(ϕ(t, x))

]
j
dt = Djχ

−1(τ, x)g(ϕ(τ, x))

+
0∫

τ

[
χ−1(t, x)Dj

(
ω(ϕ(t, x))

)+ Djχ
−1(t, x)ω(ϕ(t, x))

]
dt

from which (3.33) follows immediately.
We notice that, from (3.38) we get that g(ϕ(τ, x)) is differentiable with respect to τ even if g

is not. Moreover, let G̃ be the first term in the right hand side of (3.33). Then

g̃(τ, x) := − d

dτ
G̃(τ, x) = d

dτ

[
Djχ

−1(τ, x)g(ϕ(τ, x))
]

= − χ−1(τ, x)Dj

(
Q(ϕ(τ, x))

)
g(ϕ(τ, x)) + Djχ

−1(τ, x)ω(ϕ(τ, x)). (3.39)

Therefore differentiating with respect to τ both sides of (3.33):

Dj

[
χ−1(τ, t)ω(ϕ(τ, x))

]= g̃(τ, x) + (χ1)−1(τ, x)ω1(ϕ(τ, x)). (3.40)

To prove the differentiability of g we need to check that Dj

[
χ−1(τ, t)ω(ϕ(τ, x))

]
is locally 

uniformly integrable with respect to x. In order to prove this fact and expression (3.31) for 
S(Dg(x)) in Lemma 3.14, we prove the locally uniformly boundedness (with respect to x) by 
an integrable function of the right hand side of (3.40). Indeed, we have that ω1 ∈ Hν−1+N and 
that by Lemma 3.13, BQ1 ≥ BQ + Ap. We apply Lemma 3.12 with ν − 1, χ1 and ω1 instead of 
ν, χ and ω respectively and we obtain that the function

G1(x) :=
0∫

∞
(χ1)−1(t, x)ω1(ϕ(t, x)) dt

belongs to Hν provided ν + BQ
cp

+ Ap
dp

> 0. In fact, in the proof of Lemma 3.12 we checked that 

(χ1)−1(t, x)ω1(ϕ(t, x)) is locally uniformly bounded with respect to x by an integrable function.
Now we deal with g̃. We first bound the first term in (3.39). Since Q ∈ HN−1, there exists a 

constant K > 0 such that

‖Dj

(
Q(ϕ(s, x))

)‖ ≤ K‖ϕ(s, x)‖N−2‖Djϕ(s, x)‖. (3.41)

We recall that Dϕ(τ, x) is the fundamental solution of the linear system ψ̇ = Dp(ϕ(τ, x))ψ such 
that Dϕ(0, x) = Id. Hence we apply Lemma 3.11 to Dϕ to obtain:

‖Dϕ(τ, x)‖ ≤ 1(
1 + d (N − 1)τ‖x‖N−1

)α Ap
dp

(3.42)
p
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(compare definition of Ap and definition of AQ in (3.3)). Using (3.42) and the bound of ‖ϕ(t, x)‖
given by Lemma 3.10 in (3.41), we get

‖Dj

(
Q(ϕ(s, x))

)‖ ≤ K
‖x‖N−2(

1 + ap(N − 1)s‖x‖N−1
)α((N−2)+ Ap

dp

) . (3.43)

By Lemma 3.12, ‖g(x)‖ ≤ K‖x‖ν+1 for some constant K > 0. Using the bounds of 
‖χ−1(t, x)‖ and ‖ϕ(t, x)‖ given by Lemmas 3.11 and 3.10 respectively, we obtain:

‖χ−1(τ, x)Dj

(
Q(ϕ(τ, x))

)
g(ϕ(τ, x))‖ ≤ K

‖x‖ν+N−1(
1 + ap(N − 1)τ‖x‖N−1

)κ0
(3.44)

with κ0 = α
(
ν + 1 + BQ

cp
+ N − 2 + Ap

dp

)
and κ0 > 1 by hypothesis.

We deal with ‖Djχ
−1(τ, x)‖ for τ ≥ 0 and x ∈ V�0 . Djχ

−1(τ, x) is the solution of

d

dτ
Djχ

−1(τ, x) = −Djχ
−1(τ, x)Q(ϕ(τ, x)) − χ−1(τ, x)Dj

(
Q(ϕ(τ, x))

)
satisfying the initial condition Djχ

−1(0, x) = 0. We have then

Djχ
−1(τ, x) = −

⎛⎝ τ∫
0

χ−1(s, x)Dj

(
Q(ϕ(s, x))

)
χ(s, x) ds

⎞⎠χ−1(τ, x)

= −
τ∫

0

χ−1(s, x)Dj

(
Q(ϕ(s, x))

)
χ−1(τ − s, ϕ(s, x)) ds, (3.45)

where we have used (3.35) again.
For τ > s, by Lemmas 3.10 and 3.11, a calculation (distinguishing the cases BQ ≥ 0 and 

BQ < 0) gives

‖χ−1(τ − s, ϕ(s, x))‖‖χ−1(s, x)‖ ≤ ‖χ−1(s, x)‖(
1 + cp(N − 1)(τ − s)‖ϕ(s, x)‖N−1

)α BQ
cp

≤ 1(
1 + cp(N − 1)τ‖x‖N−1

)α BQ
cp

. (3.46)

Note that the bound is independent of s. If dp �= Ap, using bound (3.43) for ‖Dj

(
Q(ϕ(s, x))

)‖:

τ∫
0

Dj

(
Q(ϕ(s, x))

)
ds ≤ K‖x‖−1(1 + ap(N − 1)τ‖x‖N−1)α max

{
0,1− Ap

dp

}
.

Using previous computations for bounding the terms in formula (3.45), we obtain that
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‖Djχ
−1(τ, x)‖ ≤ K‖x‖−1(

1 + ap(N − 1)τ‖x‖N−1
)α(BQ

cp
−max

{
0,1− Ap

dp

}) .

In addition, using that ω ∈ Hν+N and the bound for ‖ϕ(t, x)‖ in Lemma 3.10:

‖Djχ
−1(τ, x)ω(ϕ(τ, x))‖ ≤ K‖x‖ν+N−1(1 + ap(N − 1)τ‖x‖N−1)−κ (3.47)

with κ = α
(
ν + N + BQ

cp
− max

{
0,1 − Ap

dp

})
. By hypothesis κ > 1. Also, κ0 ≥ κ .

Now, to bound g̃ defined in (3.39), we use (3.44) and (3.47) and we get:

‖g̃(τ, x)‖ ≤ K‖x‖ν+N−1(1 + ap(N − 1)τ‖x‖N−1)−κ

which can be locally uniformly bounded with respect to x by an absolutely integrable function.
If dp = Ap, an analogous argument leads to

‖g̃(τ, x)‖ ≤ K‖x‖ν+N−1(1 + ap(N − 1)τ‖x‖N−1)−κ log
(
1 + ap(N − 1)τ‖x‖N−1).

Then g is differentiable and

Djg(x) =
0∫

∞
Dj

(
χ−1(t, x)ω(ϕ(t, x))

)
dt.

Using (3.33), and the fact that limτ→∞ Djχ
−1(τ, x)g(ϕ(τ, x)) = 0 we get (3.31).

Using again the homogeneity of g we extend the regularity properties of g from the domain 
V� to V . �
End of the proof of Theorem 3.2. Once Lemma 3.14 is proven, we can apply it to h with ν =
m, Q = Q and ω = w to deduce that h is C1. Then we are ready to prove that indeed h is a 
solution of (3.1). From the expression of h and the fact that V� is positively invariant by ϕ we 
can write

h(ϕ(s, x)) = M(s, x)

s∫
∞

M−1(t, x)w(ϕ(t, x)) dt, x ∈ V�,

where we have used (3.35) with χ = M . Taking derivatives with respect to s we obtain

Dh(ϕ(s, x))p(ϕ(s, x)) = Q(ϕ(s, x))h(ϕ(s, x)) + w(ϕ(s, x)) (3.48)

and evaluating at s = 0 we get (3.1).
It remains to check the higher regularity of h. Note that the analytic case follows directly from 

Lemma 3.12. For the differentiable case, we proceed by induction. Assume then that p, Q and 
w are Cr . Let rp ≤ r be the degree of differentiability stated in Theorem 3.2 depending on the 
values of BQ, Ap, cp and dp.
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We first introduce some notation. Let Q0 = Q, w0 = w, H 0 = h and for l ≥ 1

Ql (x) = BQl−1(x) − Inl−1·k
Dp (x) = diag(Ql−1(x), . . . ,Ql−1(x)) − Inl−1·k

Dp (x),

where BQl−1 and Inl−1·k
Dp were defined in (3.25) and (3.26) respectively. We denote by Ml(t, x)

the fundamental matrix of

d

dt
ψ = Ql(ϕ(t, x))ψ, such that Ml(0, x) = Id .

In addition we set

wl(x) = S(Dwl−1(x)) +
(
(D1Ql−1(x)H l−1(x))�, . . . , (DnQl−1(x)H l−1(x))�

)�
,

H l(x) = S(DHl−1(x)),

provided the derivative exists, where the linear operator S is defined in (3.24). It is clear that

Ql(x) ∈ L(Rnl ·k,Rnl ·k), Ql ∈ HN−1 ∩ Cr−1, H l(x) ∈Rnl ·k, wl(x) ∈Rnl ·k.

We claim that for 0 ≤ i ≤ rp we have

(a)i BQi ≥ BQ + iAp.
(b)i wi ∈ Hm+N−i and wj ∈ Ci+1−j for 0 ≤ j ≤ i.
(c)i H i ∈Hm+1−i , Hj ∈ Ci−j for 0 ≤ j ≤ i and

Hi(x) =
0∫

∞
(Mi)−1(t, x)wi (ϕ(t, x)) dt. (3.49)

We prove the claim by induction on i. The case i = 0 follows directly from the definitions 
and Lemma 3.12. Assume the claim holds for i − 1, 1 ≤ i ≤ rp − 1. Item (a)i follows from 

Lemma 3.13 applied to Q = Qi = BQi−1(x) − Ini−1·k
Dp (x) which gives, together with the induc-

tion hypothesis BQi ≥ BQi−1 + Ap ≥ BQ + iAp.
Item (b)i . Since, by the induction hypothesis, wi−1 is at least C2, from the definition of wi

we have that wi ∈ Hm+N−i . From j = 0, w0 = w ∈ Cr ⊂ Ci+1. If 1 ≤ j ≤ i, using (b)i−1 and 
(c)i−1,

wj (x) = S(Dwj−1(x)) +
(
(D1Qj−1(x)Hj−1(x))�, . . . , (DnQj−1(x)Hj−1(x))�

)�

∈ Ci+1−j .

Item (c)i . We apply Lemma 3.14 with Q = Qi−1, ω = wi−1 and ν = m − i + 1 so that 
Q1 = Qi , χ1 = Mi and ω1 = wi . We have to check (3.30). For that we will use that i ≤ rp
and (3.9). Let ci−1

p be the constant cp corresponding to Qi−1 (see definition (3.3)).
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When Ap < dp,

ν + 1 + BQi−1

ci−1
p

≥m− i + 2 + BQ

cp
+ (i − 1)

Ap

dp
> 1 − Ap

dp
> 0.

When Ap ≥ dp,

ν + 1 + BQi−1

cp
≥m− i + 2 + BQ

cp
+ (i − 1)

Ap

dp
> (i − 1)

(
Ap

dp
− 1

)
≥ 0.

Then Hi−1 ∈ C1 and Hi = S
(
DHi−1(x)

)
can be written as (3.49). Therefore, by the definition 

of Hj , Hj ∈ Ci−j , 0 ≤ j ≤ i, and the claim is proven.
As a consequence of the claim, we have that h ∈ Crp in V� in all cases. By the homogeneity 

we extend the regularity from V� to V . When Ap ≥ bp, if r = ∞, we also obtain h ∈ C∞. �
Proof of Corollary 3.5. Assume that we have a homogeneous solution h ∈Hν of equation (3.1). 
Then, it has to satisfy the ordinary differential equation (3.48) so that

M−1(t, x)h(ϕ(t, x)) = h(x) +
t∫

0

M−1(s, x)w(ϕ(s, x)) ds.

Since h ∈Hν , by Lemmas 3.10 and 3.11,

‖M−1(t, x)h(ϕ(t, x))‖ ≤ (
1 + ap(N − 1)t‖x‖N−1)−α

(
BQ
cp

+ν
)

which is bounded as t → ∞ provided BQ/cp + ν ≥ 0. Thus, the result is proven. �
4. Proof of Theorems 2.2 and 2.9

As we will see in Section 4.5 below, Theorem 2.9 can be deduced following the same lines as 
Theorem 2.2. For that reason we first focus on the maps case.

We first notice that, for R such that R(x) − (x + p(x, 0)) ∈ H≥N+1 then, by Lemma 3.8, 
R(V�) ⊂ V� (taking � slightly smaller if necessary). Hence, if the domain of K is V� (as we will 
see), the composition K ◦ R is always well defined. Moreover, for K such that K(x) − (x, 0) ∈
H≥2, if x ∈ V� then K(x) ∈ U and consequently F ◦ K is well defined as well.

For h such that its projections have different orders, we will write h ∈ H≥l1 × H≥l2 if hx ∈
H≥l1 and hy ∈ H≥l2 . We will use the same notation for the spaces H>l and Hl .

4.1. Preliminaries of the induction procedure: the cohomological equations

Given N ≤ � ≤ r and j ∈ N such that 1 ≤ j ≤ � − N + 1 we proceed by induction over j to 
prove first that there exist K≤j and R≤j+N−1 of the form

K≤j (x) =
j∑

Kl(x), R≤j+N−1(x) = x +
j+N−1∑

Rl(x), (4.1)

l=1 l=N
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with K1(x) = (x, 0)� and RN(x) = p(x, 0), satisfying

E>j := F ◦ K≤j − K≤j ◦ R≤j+N−1 = (E
>j
x ,E

>j
y ) ∈H>j+N−1 ×H>j+L−1. (4.2)

Concerning property (2.5) in Theorem 2.2, if L = N , it is a consequence of (4.2) taking 
j = � − N + 1. If L = M < N , we have to perform an extra induction procedure for values of j
such that � − N + 2 ≤ j ≤ � − L + 1.

The case j = 1 follows immediately taking K≤1(x) = (x, 0)� and R≤N(x) = x + p(x, 0). 
Indeed:

E>1
x (x) = x + p(x,0) + f (x,0) − R≤N(x) = f (x,0) ∈ H≥N+1 ⊂H>N,

E>1
y (x) = g(x,0) ∈H≥M+1 ⊂H>L,

where we have used that, by hypothesis H2, q(x, 0) = 0.
Suppose that (4.2) holds true for j − 1 ≥ 1, K≤j−1 and R≤j+N−2. We will find the condition 

that Kj ∈ Hj and Rj+N−1 ∈ Hj+N−1 have to satisfy in order to ensure that (4.2) holds for j , 
K≤j = K≤j−1 + Kj and R≤j+N−1 = R≤j+N−2 + Rj+N−1.

We claim that, since j −1 +N ≤ � ≤ r , there exists E = (E
j+N−1
x , Ej+L−1

y ) with Ej+N−1
x ∈

Hj+N−1 and Ej+L−1
y ∈Hj+L−1 such that

E
>j−1
x − E

j+N−1
x ∈H>j+N−1, E

>j−1
y − E

j+L−1
y ∈H>j+L−1. (4.3)

Indeed, by Taylor’s theorem

Fx(x, y) = x + p(x, y) + FN+1
x (x, y) + · · · + F r

x (x, y) + F>r
x (x, y),

Fy(x, y) = y + q(x, y) + FM+1
y (x, y) + · · · + F r

y (x, y) + F>r
y (x, y),

(4.4)

with F l
x, F

l
y ∈ Hl and F>r

x , F>r
y ∈ H>r . Moreover, K≤j−1 and R≤j+N−2 are sums of homoge-

neous functions. By the induction hypothesis it is easily checked that

E
>j−1
x = Fx ◦ K≤j−1 − K

≤j−1
x ◦ R≤j+N−2 = E

j+N−1
x + Ê

>j
x ,

E
>j−1
y = Fy ◦ K≤j−1 − K

≤j−1
y ◦ R≤j+N−2 = E

j+L−1
y + Ê

>j
y

with El
x,y ∈ Hl and Ê>j

x ∈ H>j+N−1, Ê>j
y ∈H>j+L−1 and hence (4.3) is satisfied. We decom-

pose F ◦ K≤j − K≤j ◦ R≤j+N−1 as

F ◦ K≤j − K≤j ◦ R≤j+N−1 =E>j−1 + [
F ◦ K≤j − F ◦ K≤j−1 − DF(K≤j−1) · Kj

]
+ DF(K≤j−1) · Kj − Kj ◦ R≤j+N−2

− [
K≤j ◦ R≤j+N−1 − K≤j ◦ R≤j+N−2].

Next we study each term of the above decomposition. In doing that we introduce several new 
remainders ei . By Taylor’s theorem, and using that j − 1 ≥ 1,
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e1 := F ◦ K≤j − F ◦ K≤j−1 − DF(K≤j−1) · Kj ∈ H≥N−2+2j ×H≥M−2+2j

⊂ H>j+N−1 ×H>j+L−1.

We denote ι(x) = (x, 0). Taking into account that K≤j−1 − ι ∈ H≥2 we can write

DF(K≤j−1) · Kj = DF ◦ ι · Kj + e2 =
( [

Id + Dxp ◦ ι
] · Kj

x + Dyp ◦ ι · Kj
y[

Id + Dyq ◦ ι
] · Kj

y

)
+ e2,

with e2 ∈ H≥j+N × H≥j+M ⊂ H>j+N−1 × H>j+L−1. Since R≤j+N−2(x) − x − p(x, 0) ∈
H≥N+1 and N ≥ 2,

Kj ◦ R≤j+N−2(x) = Kj(x) + DKj(x) · p(x,0) + e3(x)

with e3 ∈ H≥j−2+2N ∪H≥j+N ⊂H>j+N−1. Finally

K≤j ◦ R≤j+N−1 − K≤j ◦ R≤j+N−2 = DK≤j (R≤j+N−2) · Rj+N−1 + e4

=
(

Rj+N−1

0

)
+ e5 + e4,

where e4 ∈ H≥2(j+N−1) ⊂H>j+N−1 and e5 ∈H≥j+N ⊂H>j+N−1.
In conclusion, el ∈ H>j+N−1 × H>j+L−1 for l = 1, · · · , 5. Using (4.3) and the previous 

computations, we have that

F ◦ K≤j − K≤j ◦ R≤j+N−1

=
(

E
j+N−1
x

E
j+L−1
y

)
+
(

Dxp ◦ ι · Kj
x + Dyp ◦ ι · Kj

y − Rj+N−1

Dyq ◦ ι · Kj
y

)
− DKj · p ◦ ι + Ẽ>j ,

where Ẽ>j = E>j−1 − (E
j+N−1
x , Ej+L−1

y )� + e1 + e2 − e3 − e4 − e5 ∈ H>j+N−1 ×H>j+L−1.
In order to get property (4.2) for j , we have to choose Kj ∈ Hj and Rj+N−1 ∈ Hj+N−1 such 

that

DK
j
x (x) ·p(x,0)−Dxp(x,0) ·Kj

x (x)−Dyp(x,0) ·Kj
y (x)+Rj+N−1(x) = E

j+N−1
x (x) (4.5)

and, taking into account that M and N may be different,

DK
j
y (x) · p(x,0) − Dyq(x,0) · Kj

y (x) − E
j+L−1
y (x) ∈H>j+L−1. (4.6)

As usual in the parametrization method we have a lot of freedom to choose solutions of the 
above equations. On the one hand, we expect that equation (4.6) for Kj

y has a unique homo-

geneous solution. On the other hand, it is clear that equation (4.5) for Kj
x and Rj+N−1 admits 

several homogenous solutions. Despite the fact that we could solve first (4.6) for Kj
y ∈ Hj and 

then, take Kj
x ≡ 0 and
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Rj+N−1(x) = E
j+N−1
x (x) + Dyp(x,0) · Kj

y (x)

to solve (4.5), we are also interested in looking for the simplest representation of the dynamics 
on the stable manifold, that is, we ask R≤j+N−1 to be as simple as possible, for instance taking 
Rj+N−1 = 0 if we can solve the following equation

DK
j
x (x) · p(x,0) − Dxp(x,0) · Kj

x (x) = E
j+N−1
x (x) + Dyp(x,0) · Kj

y (x). (4.7)

We distinguish three cases to obtain an equation for Kj
y so that condition (4.6) holds:

• If N < M , then condition (4.6) is satisfied if

DK
j
y (x) · p(x,0) = E

j+L−1
y (x). (4.8)

• If N = M ,

DK
j
y (x) · p(x,0) − Dyq(x,0) · Kj

y (x) = E
j+L−1
y (x). (4.9)

• If N > M , then we get an algebraic equation:

−Dyq(x,0) · Kj
y (x) = E

j+L−1
y (x) (4.10)

which can be solved by using that, by hypothesis H2, Dyq(x, 0) is invertible. We also have 
that [Dyq(x, 0)]−1 ∈ H−M+1. This equation clearly illustrates the fact that the solutions Kj

are not necessarily polynomials.

Assume that we are able to find appropriate solutions Kj
x of equation (4.7) and Kj

y of (4.8), 
(4.9) or (4.10). We recall that we were dealing with values of j = 2, · · · , � − N + 1. When 
L = N ≤ M , (2.5) and (2.6) follows from (4.2) by taking j = � − N + 1 so in this case we 
are done. However, in the case L = M < N we also have to deal with the equation for Kj

when j = � − N + 2, · · · , � − L + 1. That is, we need to add some extra homogeneous terms 
to Ky to obtain (2.5) and (2.6). Indeed, for any given �, assume that K≤�−N+1, R≤� are of the 
form (4.1) and they satisfy (4.2) for j = � − N + 1. We prove by induction on j that, for any 
� − N + 2 ≤ j ≤ � − L + 1, we can find

K≤j = K≤�−N+1 +
j∑

l=�−N+2

Kl, Kl ∈Hl , with Kl
x ≡ 0

in such a way that E>j = F ◦ K≤j − K≤j ◦ R≤� ∈H>� ×H>j+L−1.
Assume that the result holds for j − 1. Then, since j +L − 1 ≤ � ≤ r , decomposition (4.3) of 

E
>j−1
y is also true in this case. Taking Kj

x , Rj+N−1 ≡ 0 in the above computations we also have 
that

Fy ◦ K≤j − K
≤j
y ◦ R = −DK

j
y · p ◦ ι + Dyq ◦ ι · Kj

y + E
j+L−1
y + Ẽ

>j
y

with Ej+L−1
y ∈ Hj+L−1, Ẽ>j

y ∈ H>j+L−1 and
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E
>j
x = Fx ◦ K≤j − K

≤j
x ◦ R = Dyp ◦ ι · Kj

y + Ẽ
>j
x ,

with Ẽ>j
x ∈H>j+N−1 ⊂H>�.

Since M < N , if Kj
y ∈Hj and satisfies the equation

Dyq(x,0) · Kj
y (x) = −E

j+L−1
y (x),

then Dyp ◦ ι · Kj
y ∈ H≥j+N−1 ⊂H>� and E>j

x ∈ H>�. Therefore, we can follow this procedure 
N − L times until (4.3) holds true. After that, the order of the remainder E>�−L+1 will be � and 
Kx will have the form given in Theorem 2.2 and property (2.5) will be satisfied.

We remark that the equation for Kj
y , j = � − N + 2, · · · , � − L + 1, is the same algebraic 

equation (4.10) as the one corresponding to j = 2, · · · , � − N + 1.

4.2. Resolution of the linear equations (4.8)-(4.10) for Kj
y

We take 2 ≤ j ≤ � − L + 1. In the case M < N , Kj
y is a solution of the algebraic equa-

tion (4.10). Since Dyq(x, 0) is invertible, the unique solution of this equation is

K
j
y (x) = −(

Dyq(x,0)
)−1

E
j+L−1
y (x).

Clearly, Kj
y is a homogeneous function of order j which is analytic in V . Nevertheless, it is only 

j − 1 times differentiable at the origin according to Definition 2.1.
Let M ≥ N . In this case Kj

y has to satisfy either equation (4.8), if N < M , or (4.9), if N = M . 
We write them in a unified way as

DK
j
y (x) · p(x,0) − Q(x) · Kj

y (x) = E
j+L−1
y (x),

where Q(x) = 0 if N < M and Q(x) = Dyq(x, 0) if M = N . Hence this case follows from The-
orem 3.2 taking p(x) = p(x, 0) and Q as indicated. We claim that under the current hypotheses, 
p and Q satisfy the conditions of Theorem 3.2. Indeed, the constants Ap, ap, bp in Theorem 3.2
are

ap = ap > 0 (by H1), bp = bp > 0 (by definition) Ap = Ap.

As for BQ, by definition (2.3), if M > N , BQ = 0. If M = N , BQ = Bq and by hypotheses H1 

and H2 the condition j + BQ
cp

> max
{

1 − Ap
dp

,0
}

is satisfied in both cases. Then Theorem 3.2

provides a solution Kj
y ∈ Hj for 2 ≤ j ≤ � − L + 1.

4.3. Resolution of the linear equation (4.5) for Kj
x

Consider 2 ≤ j ≤ � − N + 1. We have to find Kj
x satisfying equation (4.5) which we recall 

here:

DK
j
x (x) · p(x,0) − Dxp(x,0) · Kj

x (x) + Rj+N−1(x) = E
j+N−1
x (x) + Dyp(x,0) · Kj

y (x)
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being Ej+N−1
x a homogenous function of order j + N − 1 and Kj

y ∈ Hj the solution of the 
linear equation considered in Section 4.2. Since Dyp ◦ ι · Kj

y ∈Hj+N−1 we can add this term to 

E
j+N−1
x and denote the resulting term again by Ej+N−1

x and hence we end up with equation

DK
j
x (x) · p(x,0) − Dxp(x,0) · Kj

x (x) + Rj+N−1(x) = E
j+N−1
x (x). (4.11)

As we mentioned in Section 4.1, to solve (4.11), one possibility is to take Kj
x as any function 

in Hj and Rj+N−1 as the solution of the resulting equation. If we proceed in this form, we are 
always able to solve the equation, but we do not have a normal form result for R in the sense 
that R is not simple at all. In the other extreme, we can try to choose Rj+N−1 = 0 and use 
Theorem 3.2 with p(x) = p(x, 0) and Q(x) = Dxp(x, 0) to solve

DK
j
x (x) · p(x,0) − Dxp(x,0) · Kj

x (x) = E
j+N−1
x (x), for K

j
x . (4.12)

However, this equation may not have solutions if j is not large enough. Indeed, in this case, 
since p(x) = p(x, 0) and Q(x) = Dxp(x, 0), by hypothesis H1 and Lemma 3.6 the constant 
BQ = −Bp ≤ −Nap < 0 and hence equation (4.12) cannot be solved unless j is large enough. 

Concretely, the sufficient condition to have solutions is j − Bp

ap
> max

{
1 − Ap

dp
,0
}

. Therefore, if 
j ∈N satisfies

j >
Bp

ap

+ max

{
1 − Ap

dp

,0

}
,

equation (4.12) has a unique homogeneous solution Kj
x ∈ Hj .

In conclusion, if j >
Bp

ap
+ max{1 − Ap

dp
, 0}, we take Rj+N−1 ≡ 0 and Kj

x a homogeneous 

solution of (4.12). Otherwise, Kj
x is free and we take as Rj+N−1 the solution of (4.11).

4.4. Regularity of Kj and Rj+N−1

When Ap > dp , since (EN+1
x , EM+1

y ) is analytic, from Theorem 3.2, K2 is an analytic func-
tion in V and consequently, by induction Kj is also analytic.

If M < N , we solve equation (4.11) for j = 2 by taking K2
x ≡ 0 and RN+1 = EN+1

x . Hence 
K2 is analytic, since (EN+1

x , EM+1
y ) is analytic. Then by induction Kj is also analytic provided 

we solve equation (4.11) in some appropriate way, for instance, by taking Kj
x ≡ 0 and Rj+N−1 =

E
j+N−1
x .
In the case Ap = dp and M ≥ N , even if (EN+1

x , EM+1
y ) is analytic, Theorem 3.2 only pro-

vides C∞ solutions in V . Consequently, K2 is only C∞ and inductively we obtain that Kj is 
C∞.

Finally we consider the case Ap < dp and M ≥ N , where we lose regularity. Concretely, 
K2

y ∈ Cr∗ , on V where r∗, given in (2.4), is the maximum integer k such that

(
1 − Ap

)
k < 2 + Bq

.

dp cp
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In order to deal with the cases M = N and M > N jointly, from now on we understand that 
Bq = 0 if M > N . Recall that Kj

x ≡ 0 for j = 2, . . . , �∗ − N + 1 so that the differentiability of 
K

j
y for these values of j only depends on the smoothness of Ki

y , for i = 2, · · · , j − 1, which is 
r∗ by induction.

When j = �∗ −N +2, from Theorem 3.2, we have that K�∗−N+2
x ∈ Crx , with rx the maximum 

integer k satisfying (
1 − Ap

dp

)
k < �∗ − N + 2 − Bp

cp

.

The maximum differentiability, r∗, is obtained by choosing �∗ to be the smallest integer satisfying

�∗ >

(
1 − Ap

dp

)
r∗ + N − 2 + Bp

cp

which justifies the definition (2.7) of �∗ in the present case.
By induction one checks that Kj = (K

j
x , Kj

y ) is also a Cr∗ function.
By construction, Rj+N−1 has the same regularity in all cases.

4.5. The flow case. Proof of Theorem 2.9 without parameters

In the case of flows we have to find K≤j (x, t) and Y≤j+N−1(x) of the form

K≤j (x, t) =
j∑

l=1

K(l)(x, t), Y≤j+N−1(x) =
j+N−1∑

l=N

Y l(x)

being K1(x, t) = (x, 0)�, YN(x) = p(x, 0). For technical reasons, we look for K(l) as a sum 
of two homogeneous functions: one of degree l independent of t and the other belonging to 
H>l+N−1 ×H>l+L−1. The homogeneous terms Kl in the statement of the theorem are obtained 
by rearranging the sum above. K≤j have to satisfy the invariance condition (2.13) up to some 
order j in the sense that the error term

E>j (x, t) := X(K≤j (x, t), t) − DK≤j (x, t)Y≤j+N−1(x) − ∂tK
≤j (x, t)

satisfies

E>j = (E
>j
x ,E

>j
y ) ∈ H>j+N−1 ×H>j+L−1. (4.13)

As we have noticed in Section 4.1, in the case L = N condition (4.13) implies (2.14).
Following the same induction arguments as in Section 4.1 we obtain that Y j and K(j) =

(K
(j)
x , K(j)

y ) have to satisfy the conditions:

DK
(j)
x (x, t)p(x,0) − Dxp(x,0)K

(j)
x (x, t) − Dyp(x,0)K

(j)
y (x, t)

+ Y j+N−1(x) + ∂tK
(j)
x (x, t) − E

j+N−1
x (x, t) ∈ H>j+N−1, (4.14)
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and

DK
(j)
y (x, t)p(x,0) − Dyq(x,0)K

(j)
y (x, t) + ∂tK

(j)
y (x, t) − E

j+L−1
y (x, t) ∈ H>j+L−1 (4.15)

which are the analogous in the case of flows for (4.5) and (4.6) respectively. We will skip the 
computations which are pretty similar as the ones in the previous section. However we will not 
ask K(j)

x , K(j)
y to satisfy their corresponding partial differential equation (vanishing the terms 

E
j+N−1
x and Ej+L−1

y ) but we allow them to include new terms of higher order.
With this strategy in mind, we are going to explain how to solve these equations. For a given 

T -periodic function h, we denote by h its average and by h̃ = h − h its oscillatory part (with 
zero average). Clearly, since we look for K(j) periodic, one choice is to ask that the average K(j)

satisfies the equations

DK
(j)
x (x)p(x,0) − Dxp(x,0)K

(j)
x (x) − Dyp(x,0)K

(j)
y (x)

+Y j+N−1(x) − E
j+N−1
x (x) = 0,

DK
(j)
y (x)p(x,0) − Dyq(x,0)K

(j)
y (x) − E

j+L−1
y (x) ∈ H>j+L−1.

(4.16)

We can solve equations (4.16) as in the map case, following the arguments in Sections 4.2 and 4.3
for solving equations (4.5) and (4.6). Concerning regularity, the arguments in Section 4.4 leads 
to the same regularity as in the map case for the average of K(j) and Y j . As a conclusion, we 
have solutions of equations (4.16) K(j) and Y j+N−1 belonging to Hj and Hj+N−1 respectively.

We take the oscillatory part K̃(j) with zero average and satisfying

∂t K̃(j)(x, t) = (
˜

E
j+N−1
x (x, t),

˜

E
j+L−1
y (x, t)). (4.17)

Consequently, K̃(j) ∈ Hj+N−1 ×Hj+L−1.
It only remains to see that K(j) = K(j) + K̃(j) and Y j+N−1 satisfy equations (4.14) and 

(4.15). Indeed, when we compute the left-hand side of, for instance, equation (4.14) we obtain

DK̃
(j)
x (x, t)p(x,0) − Dxp(x,0)K̃

(j)
x (x, t) − Dyp(x,0)K̃

(j)
y (x, t)

which belongs to Hj+L−1+N−1 ⊂ H>j+N−1 since L ≥ 2. Analogously for equation (4.15). 
Therefore, we conclude that K(j) = K(j) + K̃(j) and Y j+N−1 satisfy equations (4.14) and (4.15)
and then (4.13) is satisfied.

The regularity of the oscillatory part follows from the fact that it satisfies equation (4.17).
As in Section 4.1, if L = N , we are done. The case L = M needs an extra argument which is 

totally analogous to the one in Section 4.1.

Remark 4.1. The vector field Y can be chosen independent of t . This is due to the fact that we 
can perform the averaging procedure so that for any given � we can move the dependence on 
t of the vector field X up to order ‖z‖�. If we take � ≥ �∗ + 1, then the formal procedure is 
independent of t and we obtain (for the averaged vector field X) a parametrization K

≤
and a 
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vector field Y satisfying the invariance condition (2.13) up to order ‖x‖� which do not depend 
on t .

Nevertheless we can add t -depending terms to Y in order to have a more simple Kx .

5. Dependence on parameters. Proof of Theorems 2.8 and 2.9

In this section we prove Theorems 2.8 and 2.9 which give us the dependence on parameters 
of the functions K and R given in Theorem 2.2 as a sum of homogeneous functions.

We first emphasize that the methodology developed in Section 4 can also be applied in the 
parametric case so that the cohomological equations (4.5) and (4.6) for Kj are the same in this 
context but involving the dependence on λ. For a given value of the parameter λ, the discussion 
about how to solve the cohomological equations for Kj

y distinguishing the different cases (N >

M , N = M and N < M) and the different strategies to solve the cohomological equations for Kj
x

are also valid. Therefore, even in the parametric case, the existence of Kj(·, λ) is already proven. 
Next we study the regularity with respect to λ both for maps and flows.

5.1. The cohomological equation in the parametric case

The case N ≥ M , can be treated by using the auxiliary equation (3.1) studied in Section 3. 
See the strategy of how to proceed in Sections 4.2 and 4.3. As a consequence, we are lead to deal 
with the dependence on parameters of the homogeneous solution h

h(x,λ) =
0∫

∞
M−1(t, x, λ)w(ϕ(t, x, λ), λ) dt

of the auxiliary equation:

Dxh(x,λ)p(x,λ) − Q(x,λ)h(x,λ) = w(x,λ), (5.1)

given by Theorem 3.2 for any λ ∈ 
, where p, Q and w are homogeneous functions of degree 
N , N − 1, m + N respectively. We will write p ∈HN , Q ∈ HN−1 and w ∈Hm+N .

In this setting, the constants defined in (3.3), HP1 and HP2 depend on λ. We denote them by 
Aλ

p, Aλ
Q, Bλ

Q, ap,λ

V , aλ
p , bλ

p, cλ
p and dλ

p . In order to obtain uniform bounds with respect to λ we 
redefine

ap = inf
λ∈


aλ
p, bp = sup

λ∈


bλ
p, Ap = inf

λ∈

Aλ

p,

BQ = inf
λ∈


Bλ
Q, AQ = sup

λ∈


Aλ
Q, a

p
V = inf

λ∈

a

p,λ
V

(5.2)

and cp, dp as in (3.3). Notice that, with this definition of the constants, all the bounds in Section 3
will be also true uniformly for any λ ∈ 
.

To study equation (5.1), we will assume the following:

HPλ Hypotheses HP1 and HP2 hold true for ap, a
p defined in (5.2).
V



5614 I. Baldomá et al. / J. Differential Equations 268 (2020) 5574–5627
To deal with the analytic case, for γ > 0, we define the complex extension of 



(γ ) = {λ : Reλ ∈ 
, ‖Imλ‖ < γ }.

Lemma 5.1. Let p ∈ HN , Q ∈ HN−1 and w ∈ Hm+N . Assume that p, Q, w ∈ C�s,r and that p
satisfies hypothesis HPλ for �0 > 0.

Then, if

m+ 1 + BQ

cp
> max

{
1 − Ap

dp
,0

}
,

the solution h : V × 
 → Rk of (5.1) provided by Theorem 3.2 satisfies h ∈ Hm+1 and we have 
the regularity results according to the cases:

(1) Ap ≥ dp. If 1 ≤ r ≤ ∞, then h ∈ C�s,r in V × 
.
(2) Ap < dp. Let κ0 be the maximum of 1 ≤ i ≤ r + s such that

m+ 1 + BQ

cp
− i

(
1 − Ap

dp

)
> 0.

Then h ∈ C�s0,r0 in V × 
 with s0 = min{s, κ0} and r0 = κ0 − s0.
(3) Ap > dp. If p, Q, w are real analytic functions in (γ0) × 
(γ 2

0 ) for some γ0 then h is 
analytic in (γ ) × 
(γ 2) for γ small enough. In particular it is real analytic in V × 
.

To have an unified notation for all cases of the lemma, we introduce the differentiability 
degrees rp, sp as:

rp = r, sp = s, if Ap ≥ bp, rp = r0, sp = s0, otherwise, (5.3)

where r0, s0 are defined in Lemma 5.1. In this way, in all cases h ∈ C�rp,sp .
We proceed in a similar way as in Section 3.3. We introduce the function

g(x,λ) :=
0∫

∞
M−1(t, x, λ)ω(ϕ(t, x,λ), λ) dt, (5.4)

where ϕ(t, x, λ) is the solution of ẋ = p(x, λ) such that ϕ(0, x, λ) = x, M is the fundamental 
matrix of ψ̇ = Q(ϕ(t, x, λ), λ)ψ such that M(0, x, λ) = Id and ω satisfies appropriate conditions 
to be specified later on. We first deal with the continuity of g and then with the differentiability 
with respect to the parameter λ. For that we check that the formal derivative Dλg is of the 
same form as g with a suitable different ω which implies the differentiability with respect to λ. 
This is done jointly in Lemma 5.3. Then using an induction argument we deal with the general 
differentiable case. Finally we deal with the analytic case, which needs an extra argument in this 
parametric setting.

For a given set U ⊂Rn ×Rn′
, it will be useful to consider the functional spaces:

Bν = {h : U →Rk : h ∈ C�σ,κ−σ and h ∈Hν}
σ,κ
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if κ, σ ∈ Z+ and κ ≥ σ .

Remark 5.2. Note that Bν
s,r+s = C�s,r ∩Hν .

Lemma 5.3. Let κ ≥ σ with σ = 0, 1. Assume that p ∈ BN
σ,κ , Q ∈ BN−1

σ,κ and ω ∈ Bν+N
σ,κ . Let 

�0 > 0 be such that HPλ holds true.

Then, if ν + 1 + BQ
cp

> max
{

1 − Ap
dp

,0
}

, the function g defined by (5.4) belongs to Bν+1
σ,κp

, 
where κp = rp + sp and rp, sp are defined in (5.3).

In addition, when σ = 1, Dλg exists and

Dλg(x,λ) =
0∫

∞
M−1(t, x, λ)ω1(ϕ(t, x, λ), λ) dt (5.5)

with ω1 : V × 
 → L(Rn′
, Rk) (recall that 
 ⊂Rn′

), given by:

ω1(x,λ) = Dλω(x,λ) + DλQ(x,λ)g(x,λ) − Dxg(x,λ)Dλp(x,λ). (5.6)

Remark 5.4. We observe that κp, the degree of differentiability stated for the case σ = 0, is the 
same as the one given in Theorem 3.2.

Remark 5.5. Note that DλQ(x, λ)g(x, λ) ∈ L(Rn′
, Rk) having the i-th column

Dλi
Q(x,λ)g(x,λ).

The same happens for DxQ(x, λ)g(x, λ).

Proof. The case σ = 0 follows from Theorem 3.2, the dominated convergence theorem and the 
fact that the bounds are uniform in λ ∈ 
.

The case σ = 1 is more involved. Its proof is analogous to the proof of Lemma 3.14. To 
shorten the notation we introduce ϕx

λ(t) := ϕ(t, x, λ). First we check that

Gx
λ(τ) :=

0∫
τ

Dλ

[
M−1(t, x, λ)ω(ϕx

λ(t), λ)
]
dt

can be written as:

Gx
λ(τ) := − DλM

−1(τ, x,λ)g(ϕx
λ(τ ), λ) +

0∫
τ

M−1(t, x, λ)Dλ

[
ω(ϕx

λ(t), λ)]dt

+
0∫

τ

M−1(t, x, λ)Dλ

[
Q(ϕx

λ(t), λ)]g(ϕx
λ(t), λ) dt (5.7)
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Indeed, since M−1 is the fundamental matrix of ψ̇ = −ψQ(ϕx
λ(t), λ), we can use the variation 

of constants formula to the variational equation for Dλj
M−1 to obtain:

Dλj
M−1(t, x, λ)M(t, x,λ) =

0∫
t

M−1(s, x,λ)Dλj

[
Q(ϕx

λ(s), λ)
]
M(s, x,λ)ds

and, using expression (3.38) of g(ϕx
λ(t), λ),

M−1(t, x, λ)ω(ϕx
λ(t), λ) = d

dt

[
M−1(t, x, λ)g(ϕx

λ(t), λ)
]
.

Then the result follows by integrating by parts

0∫
τ

[
DλM

−1(t, x, λ)M(t, x,λ)
][

M−1(t, x, λ)ω(ϕx
λ(t), λ)

]
dt.

Next we prove that

G̃x
λ(τ ) :=

0∫
τ

M−1(t, x, λ)Dxg(ϕx
λ(t), λ)Dλp(ϕx

λ(t), λ) dt

can be written as

G̃x
λ(τ ) = − M−1(τ, x,λ)Dxg(ϕx

λ(τ ), λ)Dλϕ
x
λ(t)

−
0∫

τ

M−1(t, x, λ)DxQ(ϕx
λ(t), λ)g(ϕx

λ(τ ), λ)Dλϕ
x
λ(t) (5.8)

−
0∫

τ

M−1(t, x, λ)Dxω(ϕx
λ(t), λ)Dλϕ

x
λ(t).

In order to prove (5.8), we will also integrate by parts. By using that Dλϕ is the solution of

d

dt
ψ = Dxp(ϕx

λ(t), λ)ψ + Dλp(ϕx
λ(t), λ), ψ(0, x, λ) = 0

we deduce that:

Dλp(ϕx
λ(t), λ) = Dxϕ

x
λ(t)

d

dt

[
(Dxϕ

x
λ(t))−1Dλϕ

x
λ(t)

]
.

Therefore, since Dx

[
g(ϕx(t), λ)

]= Dxg(ϕx(t), λ)Dxϕ
x(t),
λ λ λ
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G̃x
λ(τ ) =

0∫
τ

M−1(t, x, λ)Dx

[
g(ϕx

λ(t), λ)
] d

dt

[
(Dxϕ

x
λ(t))−1Dλϕ

x
λ(t)

]
dt. (5.9)

Applying (3.48) with h = g we have

d

dt

[
g(ϕx

λ(t), λ)
]= Q(ϕx

λ(t), λ)g(ϕx
λ(t), λ) + ω(ϕx

λ(t), λ)

which implies

d

dt

(
M−1(t, x, λ)Dx

[
g(ϕx

λ(t), λ)
])= − M−1(t, x, λ)Q(ϕx

λ(t), λ)Dx

[
g(ϕx

λ(t), λ)
]

+ M−1(t, x, λ)Dx

[
Q(ϕx

λ(t), λ)g(ϕx
λ(t), λ)

]
+ M−1(t, x, λ)Dx

[
ω(ϕx

λ(t), λ)
]
.

Finally, expression (5.8) follows from integrating by parts in (5.9). To do so we use that if 
H(x, λ) := Q(x, λ)g(x, λ) we have that Dx

[
H(ϕx

λ(t), λ)
]= DxH(ϕx

λ(t), λ)Dxϕ
x
λ(t) with

DxH(ϕx
λ(t), λ) = DxQ(ϕx

λ(t), λ)g(ϕx
λ(t), λ) + Q(ϕx

λ(t), λ)Dxg(ϕx
λ(t), λ).

Now we are going to relate expression (5.7) with (5.8). It is an straightforward computation 
(see Remark 5.4) to check that

Dλ[Q(ϕx
λ(t), λ)]g(ϕx

λ(t), λ) =DxQ(ϕx
λ(t), λ)g(ϕx

λ(t), λ)Dλϕ
x
λ(t)

+ DλQ(ϕx
λ(t), λ)g(ϕx

λ(t), λ).

Substituting the above expression of Dλ[Q(ϕx
λ(t), λ)]g(ϕx

λ(t), λ) into (5.7), using (5.8) and the 
definition of G̃x

λ we have

Gx
λ(τ) = − DλM

−1(τ, x,λ)g(ϕx
λ(τ ), λ) − M−1(τ, x,λ)Dxg(ϕx

λ(τ ), λ)Dλϕ
x
λ(τ )

+
0∫

τ

M−1(τ, x,λ)ω1(ϕx
λ(t), λ) dt

with ω1 defined in (5.6).
To prove that limτ→∞ Gx

λ(τ) = ∫ 0
∞ M−1(τ, x, λ)ω1(ϕx

λ(t), λ) dt it remains to check that

h
x

λ(τ ) := DλM
−1(τ, x,λ)g(ϕx

λ(τ ), λ) + M−1(τ, x,λ)Dxg(ϕx
λ(τ ), λ)Dλϕ

x
λ(τ )

goes to 0 as τ → ∞ uniformly in (x, λ) ∈ V × 
. Indeed, the result follows from

‖Dλϕ
x
λ(τ )‖ ≤ K‖x‖(1 + dp(N − 1)τ‖x‖N−1)−α

(
1−max

{
0,1− Ap

dp

})
,

‖DλM
−1(τ, x,λ)‖ ≤ K

(
1 + cp(N − 1)τ‖x‖N−1)−α

(
BQ
cp

−max
{

0,1− Ap
dp

})
.
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These bounds are obtained in a similar way as the ones of the corresponding derivatives with 
respect to x in Lemma 3.14. First we write adequately Dλϕ

x
λ and DλM

−1 by taking into account 
the differential equations that they both satisfy and property (3.35):

Dλϕ
x
λ(τ ) =

τ∫
0

Dxϕ(τ − s, ϕx
λ(s), λ)Dλp(ϕx

λ(s), λ) ds,

DλM
−1(τ, x,λ) = −

τ∫
0

M−1(s, x,λ)Dλ

[
Q(ϕx

λ(s), λ)
]
M−1(τ − s, ϕx

λ(s), λ) ds.

Bound (3.42) of ‖Dxϕ
x
λ(s)‖, bound of ‖ϕx

λ(s)‖ in Lemma 3.10 and the fact that Dλp ∈ HN , lead 
to

‖Dλϕ
x
λ(τ )‖ ≤ K‖x‖N(

1 + (N − 1)dpτ‖x‖N−1
)α Ap

dp

τ∫
0

1(
1 + (N − 1)dps‖x‖N−1

)α(N− Ap
dp

) ds

which gives the bound for ‖Dλϕ
x
λ(τ )‖. Since

Dλ

[
Q(ϕx

λ(τ ), λ)
]= DxQ(ϕx

λ(τ ), λ)Dλϕ
x
λ(τ ) + DλQ(ϕx

λ(τ ), λ),

we have that

‖Dλ

[
Q(ϕx

λ(τ ), λ)
]‖ ≤ K

(
1 + (N − 1)dpτ‖x‖N−1)−α

(
N−1−max

{
0,1− Ap

dp

})
.

Then, using (3.46) with χ = M , we obtain the bound for ‖DλM
−1(τ, x, λ)‖.

Finally we easily check that the three terms in M−1(t, x, λ)ω1(ϕx
λ(t), λ) have a uniform be-

havior of the form t
−a(

BQ
cp

+N−1)
when t is big and α(

BQ
cp

+ N − 1) > 1. This proves that indeed, 
g is differentiable with respect to λ and formula (5.5) holds true.

Now assume that ω ∈ Bν+N
1,κ . Applying the result when σ = 0, we get that g ∈ Bν+1

0,κp
and in 

particular Dxg ∈ Bν
0,κp−1. Then we deduce that ω1 ∈ Bν+N

0,κp−1. Therefore, using again the present 

result for σ = 0, Dλg ∈ Bν+1
0,κp−1, that is: Dj

xDλg(x, λ) for j ≤ κp −1 are continuous and bounded 

and as a consequence g ∈ Bν+1
1,κp

. �
End of the proof of Lemma 5.1. We consider the differentiable and the analytic cases sepa-
rately.

Assume that p ∈ BN
s,κ , Q ∈ BN−1

s,κ and w ∈ Bm+N
s,κ with κ = r + s. We apply Lemma 5.3 with 

ω = w and ν = m and we obtain that the function h belongs to Bm+1
1,κp

with κp = rp + sp defined 

in (5.3). To finish the proof in the differentiable case we use induction. Assume that h ∈Bm+1
σ−1,κp

with σ ≤ sp. By definition of Bm+1
σ−1,κp

, we have that if i + j ≤ κp and i ≤ σ − 1, then Di
λD

j
xh are 

continuous and bounded functions. We have to prove that indeed, h ∈Bm+1
σ,κ .
p
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We define H 0 = h, w0 = w and recurrently, for 1 ≤ i ≤ σ − 1:

Hi(x,λ) = DλH
i−1(x,λ),

wi (x, λ) = Dλwi−1(x,λ) + DλQ(x,λ)H i−1(x,λ) − DxH
i−1(x,λ)Dλp(x,λ).

Note that by expression (5.5) in Lemma 5.3, we have that

Hσ−1(x,λ) =
0∫

∞
M−1(t, x, λ)wσ−1(ϕ(t, x, λ), λ) dt.

Since by induction hypothesis H 0 ∈ Bm+1
σ−1,κp

then Hi ∈ Bm+1
σ−1−i,κp−i and DxH

i−1 ∈ Bm
σ−i,κp−i . 

These facts imply that wi ∈ Bm+N
σ−i,κp−i . Applying the last formula for i = σ − 1, one has that 

wσ−1 ∈ Bm+N
1,κp−σ+1. Therefore, applying Lemma 5.3 with s = 1, one concludes that Hσ−1 ∈

Bm+1
1,κp−σ+1.

Now we are almost done because, on the one hand, if 1 ≤ i ≤ σ −1 and 1 ≤ i + j ≤ κp, all the 
derivatives Di

λD
j
xh are bounded and continuous by induction hypothesis and on the other hand, 

since Hσ−1 = Dσ−1
λ h ∈ Bm+1

1,κp−σ+1 the same happens for

DλD
j
xHσ−1 = DλD

j
x

(
Dσ−1

λ h
)

if 1 + j ≤ κp − σ + 1, hence Dσ
λ D

j
xh is continuous and bounded if σ + j ≤ κp.

It remains to deal with the analytic case. We denote by ϕ(t, x, λ) the flow of ẋ = p(x, λ). We 
claim that, if �, γ are small enough, the complex set (�, γ ) is invariant by ϕ(t, x, λ) for any 
λ ∈ 
(γ ). Indeed, first we note that

p(x,λ) =p(Rex,Reλ) + iDp(Rex,Reλ)[Imx, Imλ]

−
1∫

0

(1 − μ)D2p(x(μ),λ(μ))[Imx, Imλ]2 dμ,

with x(μ) = Rex + iμImx and λ(μ) = Reλ + iμImλ. We observe that, writing zμ =
(x(μ), λ(μ)):

Dp(Rex,Reλ)[Imx, Imλ] =Dxp(Rex,Reλ)Imx + Dλp(Rex,Reλ)Imλ,

D2p(zμ)[Imx, Imλ]2 =D2
xp(zμ)[Imx, Imx] + 2DxDλp(zμ)[Imx, Imλ]

+ D2
λp(zμ)[Imλ, Imλ].

Then, since p is homogeneous and analytic, we have that Dλp, D2
λp ∈ HN . Then, if λ ∈ 
(γ 2):

p(x,λ) = p(Rex,Reλ) + iDxp(Rex,Reλ)Imx + γ 2O(‖x‖N).
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From the above equality we can proceed as in the proof of Lemma 3.9 to prove that (�, γ ) is 
invariant if �, γ are small enough. Then, the proof of the analytic case is completely analogous to 
the one of Theorem 3.2, using the dominated convergence theorem and the fact that the bounds 
are uniform for λ ∈ 
. �
5.2. End of the proof of Theorems 2.8 and 2.9

First we discuss the case of maps. No matter what strategy we choose for solving the co-
homological equations for Kj we have to deal with the remainders Ej+N−1

x and Ej+L−1
y

(Sections 4.2 and 4.3). Therefore, the first thing we need to do is to check what regularity 
with respect to (x, λ) they have. We deal with Ej+N−1

x being the case for Ej+L−1
y analo-

gous. Recall that, as we prove in (4.3), Ej+N−1
x was the homogeneous part of the error term 

E
>j−1
x = Fx ◦ K≤j−1 − K

≤j−1
x ◦ R≤j+N−2. To prove this we used that by induction K≤j and 

R≤j+N−1 are sums of homogeneous functions and Taylor’s theorem by decomposing Fx as 
in (4.4):

Fx(x, y,λ) = x + p(x, y,λ) + FN+1
x (x, y,λ) + · · · + Fr

x (x, y,λ) + F>r
x (x, y,λ).

Since p and F l
x , l = N + 1, · · · , r , are homogeneous polynomials with respect to (x, y) and 

moreover F ∈ C�s,r , we have that p, F l
x ∈ C�s,∞ for l = N + 1, · · · , r . In fact they are analytic 

with respect to x and Cs with respect to λ. Analogously for Ej+L−1
y .

The cases M < N or Ap ≥ bp follows immediately from the strategy in Section 4.4 and 
Lemma 5.1.

When, M ≥ N and Ap < bp the first cohomological equation we solve is

DxK
2
y (x,λ)p(x,0, λ) − Q(x,λ)K2

y (x,λ) = EM+1
y ,

with Q ≡ 0 if M > N or Q(x, λ) = Dyq(x, 0, λ) if N = M . Using Lemma 5.1 with p(x, λ) =
p(x, 0, λ), m = 1 and w = EM+1

y , we have that K2
y ∈ C�s∗,r∗−s∗ where s∗, r∗ are the given in 

Theorem 2.8. Proceeding by induction as in Section 4.4, we prove Theorem 2.8.
The proof of Theorem 2.9 is straightforward. Indeed, following the strategy in Section 4.5, 

we decompose K(j) = K(j) + K̃(j) where K(j) is the time average of K(j) which satisfies equa-
tion (4.16). The same argument as in the case of maps leads to conclude that K(j) ∈ C�s∗,r∗−s∗ . 
Finally, K̃(j) satisfies the equation

∂t K̃(j) = (
˜

E
j+N−1
x ,

˜

E
j+L−1
y )

and therefore it is Cs with respect to (t, λ) and analytic with respect to x.

6. Examples

In this section we are going to see that our hypotheses are all of them necessary in order to be 
able to solve the cohomological equations for Kj

y .
In Section 6.1, we present an alternative (and easy) way for solving the cohomological equa-

tions in a particular setting. We also provide two examples of analytic maps (or even analytic 
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vector fields) satisfying all the hypotheses, where the solution of the corresponding cohomolog-
ical equations are only Cr in int(V ). One of these examples, satisfies that Ap = 0 and the other 
one is such that Ap > 0. We will also check that the condition Ap > dp is essential to obtain 
analyticity. Moreover, we will also check that, when Ap < dp , r∗ is the maximum degree of 
differentiability.

Recall that the cohomological equations for Kj
x can be always solved by choosing Rj prop-

erly. However, it is interesting to obtain the simplest normal form, to be able to solve the 
cohomological equations for Kj

x with Rj ≡ 0. We present an example where the cohomolog-
ical equation for Kj

x cannot be solved with Rj ≡ 0 if the degree j ≤ �∗ with �∗ the degrees of 
freedom to chose Kj

x defined in (2.7). In consequence, the normal form Rj stated in the main 
result, is the simplest one, generically.

6.1. Example 1. A particular form of p

Let F be a map of the form (2.1), satisfying hypotheses H1, H2 and H3.

Claim 6.1. Let p(x) = p(x, 0). Assume that p(x) = p0(x)x, with p0 : V → R and p and V satisfy 
hypotheses HP1, HP2. Then the approximate parametrization K≤ and the reparametrization R
are rational functions (which in general are not polynomials). Moreover R can be chosen to be 
of the form R(x) = x + p0(x)x + R2N−1(x), as in the one dimensional case.

Proof. HP1 implies −2 < p0(x) < 0, x ∈ V . Then, the auxiliary equation (3.1) reads

Dh(x)p0(x)x − Q(x)h(x) = w(x).

Since we look for homogeneous solutions of degree m + 1, using Euler’s identity, namely 
Dh(x)x = (m + 1)h(x), if h is homogeneous of degree m + 1, equation (3.1) can be written 
as:

[
(m+ 1)p0(x)Id − Q(x)

]
h(x) = w(x).

Consequently, we can solve this equation for any homogeneous function w ∈Hm+N if and only 
if the matrix (m +1)p0(x)Id −Q(x) is invertible for all x ∈ V . Assume the contrary, that is, there 
exists x ∈ V and a eigenvector v, with ‖v‖ = 1, of the eigenvalue 0. For the next computations 
we assume that m > 0 and V is small enough so that −1 < p0(x) < (m + 1)−1 if x ∈ V . Then 
Q(x)v = (m + 1)p0(x)v and

‖(Id − Q(x)
)
v‖ = 1 − (m+ 1)p0(x).

By definition (3.3) of BQ:

‖(Id − Q(x)
)
v‖ ≤ ‖Id − Q(x)‖ ≤ 1 − BQ‖x‖N−1

and by definition (3.2) of ap, p0(x) ≤ −ap‖x‖N−1, then, we deduce that, if the matrix (m +
1)p0(x)Id − Q(x) is not invertible,
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m+ 1 + BQ

ap
≤ 0.

Consequently, if m + 1 + BQ
ap

> 0, for any x ∈ V , the matrix (m + 1)p0(x)Id − Q(x) is invertible 
and moreover, the solution of the auxiliary equation is

h(x) = [
(m+ 1)p0(x)Id − Q(x)

]−1w(x).

Depending on the values of M, N , Kj
y has to satisfy the cohomological equations (4.8) if 

N < M , equation (4.9) if N = M and (4.10) when N > M . Then, taking in the auxiliary equation 
w(x) = E

j+L−1
y , and either Q(x) = 0 if N < M or Q(x) = Dyq(x, 0) if N ≥ M , we have that

K
j
y (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

jp0(x)
E

j+N−1
y (x), N < M,

[
jp0(x)Id − Dyq(x,0)

]−1
E

j+N−1
y (x), N = M,

−Dyq(x,0)−1E
j+M−1
y (x), N > M.

To obtain Kj
x and Rj+N−1 we have to deal with (4.5) which in abstract form reads

Dh(x)p0(x)x − D(p0(x)x)h(x) + η(x) = (
jp0(x)Id − D(p0(x)x)

)
h(x) + η(x)

= w(x),

where h = K
j
x , η = Rj+N−1 and w(x) = E

j+N−1
x (x) + Dyp(x, 0)K

j
y (x). Assume that the ma-

trix in the above equation is not invertible for some x ∈ V . Then there exists v ∈Rn with ‖v‖ = 1
such that

(j − 1)p0(x)v = (Dp0(x)v)x.

This implies that x and v are linearly dependent: v = λx for some λ ∈R\{0}. Then

(j − 1)p0(x)λx = λ(Dp0(x)x)x = λ(N − 1)p0(x)x

and hence j = N . As a consequence, for j ≥ 2, j �= N , the previous matrix is invertible, we can 
take Rj+N−1 ≡ 0 and

K
j
x (x) = [

jp0(x)Id − Dxp(x,0)
]−1

(E
j+N−1
x (x) + Dyp(x,0)K

j
y (x)).

When j = N , we can take KN
x as any function in HN and then

R2N−1(x) = E2N−1
x (x) − DKN

x (x)p0(x)x + Dxp(x,0)KN
x (x) + Dyp(x,0)KN

y (x). �
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6.2. Example 2. On the necessity of hypothesis H3

Consider the system of ordinary differential equation in R2 ×R

ẋ1 = −x2
1 , ẋ2 = −ax1x2, ẏ = bx1y + x3

2

with a, b > 0 and b + 3a ≤ 1. This system was also considered in Section 5.1 of [4]. There it 
was shown that the time 1 map F of the flow defined by the above system satisfies hypotheses 
H1 and H2 in a suitable domain V but that it has no invariant manifold over V .

Claim 6.2. There exist V ⊂R2, star-shaped with respect to the origin, where F satisfies hypothe-
ses H1 and H2 but in which the cohomological equations (4.9) have no homogeneous solution 
in V . That is, H3 is needed both at a formal and at an analytical level.

It is clear that F is a map of the form (2.1) with N = M = 2, p(x, y) = (−x2
1 , −ax1x2) and 

q(x, y) = bx1y.
We denote x = (x1, x2). Let ϕ be the flow of ẋ = p(x, 0), which can be explicitly computed:

ϕ(t, x) = (
ϕx1(t, x, y),ϕx2(t, x)

)=
(

x1

1 + tx1
,

x2

(1 + tx1)a

)
.

Proof. Hypotheses H1 and H2 are satisfied for F in the convex domain

W =
{
x = (x1, x2) ∈R2 : |x2| < (1 − a)x1 <

2

a + 1

}
with the supremum norm. Actually, Ap = a2, ap = 1 and Bq = b. However there is no open 
invariant set for Fx contained in W and, as a consequence, hypothesis H3 is not satisfied. Indeed, 
assume there is such open set and that x0 = (x0

1 , x0
2) ∈ W , x0

2 �= 0, and let

xn = Fx(x
n−1,0) = (F n)x(x

0,0) = (Fx)
n(x0,0) =

(
x0

1

1 + nx0
1

,
x0

2(
1 + nx0

1

)a
)

.

If the sequence xn ∈ W , ∀n ≥ 0, then (1 −a)x0
1 ≥ |x0

2 |(1 +nx0
1

)1−a , ∀n ≥ 0, which is false since 
a < 1.

Following the algorithm described in Section 4, we compute

E>1(x) = F ◦ K≤1(x) − K≤1 ◦ R≤N(x) = F(x,0) − (
x + p(x,0),0

)= (0,0, x3
2) +O(‖x‖4‖).

Therefore, the first cohomological equation that we need to solve is

DK2
y (x)p(x,0) − Dyq(x,0)K2

y (x) = x3
2 . (6.1)

Let Mq(t, x) = (1 + tx1)
b be the fundamental matrix of ż = Dyq(ϕ(t, x), 0)z = bϕx1(t, x)z. 

Formula (3.8) applied to p(x) = p(x, 0), Q(x) = Dyq(x, 0) and w(x) = x3 states that
2
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K2
y (x) =

0∫
∞

M−1
q (t, x)w(ϕ(t, x)) dt = x3

2

0∫
∞

1

(1 + tx1)b+3a
dt

which, obviously, is not convergent if b+3a ≤ 1. In conclusion, our algorithm cannot be applied 
if H3 does not hold. Finally, we remark that, by Corollary 3.5, equation (6.1) has no homogeneous 
solution. �
6.3. Example 3. The loss of differentiability

We consider the map (x, y) ∈R2 ×R �→ F(x, y) ∈ R3 given by

F(x, y) =
(

x + p(x)

y + q1(x)y + g(x)

)
, x = (x1, x2) ∈R2, y ∈ R,

where

p(x) =
( −x3

1−cx3
2

)
, q1(x) = d(x2

1 + x2
2), g(x) = xi

1x
j
2 ,

with i + j ≥ 4 and c, d > 0.

Claim 6.3. There exists V ⊂ R2, star-shaped with respect to the origin, where F satisfies hy-
potheses H1, H2 and H3.

Let K be any approximate solution of (2.5) provided by Theorem 2.2. If the choice of i, j, c, d
is such that i + d = j + d/c = 4, then K is only j + 1 times differentiable. This is the optimal 
regularity claimed by Theorem 2.2.

Possible choices are i = j = d = 2, c = 1 and i = 3, j = d = 1, c = 1/3.

Proof. We will compute the term K2
y explicitly and check that if has precisely the claimed reg-

ularity.
Let V = B�0 \ {0} ⊂R2 with �0 small. We claim that, hypotheses H1, H2, H3 are satisfied in 

V for the Euclidean norm ‖ · ‖2 (in fact, they are satisfied with any norm). Indeed, we have that 
V is invariant by x �→ x + p(x) if �0 is small and

ap = c

1 + c
+O(�2

0) > 0, Ap = 0, bp = max{1, c}, Bq = d > 0.

We have that E>1(x) = (E4
x, E

4
y)(x) = F(x, 0) − (x + p(x), 0) = (0, g(x)). Then, the first 

cohomological equation we have to solve is

DK2
y (x)p(x) − q1(x)K2

y (x) = g(x) = xi
1x

j

2 ,

which, according to (3.8), gives

K2
y (x) = xi

1x
j

2

0∫
1(

1 + 2tx2
) i+d

2
(
1 + 2tcx2

) j
2 + d

2c

dt.
∞ 1 2
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According to Theorem 2.2, the degree of differentiability of K , given in (2.4), is the maximum 
integer satisfying

r∗ < 2 + Bq

bp

= 2 + d

max{1, c} .

Now we take values of i, j, c, d such that i + d = j + d/c = 4. It is a calculation to check that

K2
y (x) = xi

1x
j

2

[
cx2

2 + x2
1

2(cx2
2 − x2

1)2
− c

x2
1x2

2

(cx2
2 − x2

1)3
log

(
cx2

2

x2
1

)]
.

We study K2
y in the subdomain W = {|√cx2| < |x1|} of V . On W , K2

y is

K2
y (x) =x

i−j−2
1

x
j
2

x
j

1

(
1 + cx2

2

x2
1

)(
1 − cx2

2

x2
1

)−2

+ 2x
i−j−6
1

x
j+2
2

x
j+2
1

(
1 − cx2

2

x2
1

)−3

log

(√
c|x2|
|x1|

)
.

To study the differentiability of K2
y on W is equivalent to study the derivability of χ(z) =

zj+2 log(|z|), which is only Cj+1 at z = 0 but it is not Cj+2. Consequently, K2
y is only Cj+1

at the points (x1, 0) ∈ W ⊂ V . Note that, with the two choices of the parameters i, j, d, c, we 
have that, d = j and c ≤ 1. Then, r∗ < 2 + j , that is, r∗ = 1 + j which coincides with regularity 
of K2

y at x2 = 0. �
6.4. The reparametrization R

We consider the map given by

F(x, y) =
(

x + p(x) + f (x)

y + q1(x)y + g(x)

)
, (x, y) ∈R2 ×R,

with p(x) = (−xN
1 , −cxN−1

1 x2), N ≥ 2, q1(x) = (x2
1 + x2

2)(M−1)/2, M odd and M ≥ 3, g ∈
H≥M+1 and f ∈H≥N+1.

Claim 6.4. Assume c > 1. F satisfies hypotheses H1, H2 and H3 with the supremum norm in the 
set

V = {x ∈R2 : |x2| < x1}. (6.2)

For any approximate solutions K and R given by Theorem 2.2, R has the form

R(x) = x + p(x) +
N∑

j=2

Rj+N−1(x), Rj+N−1 �= 0, j = 2, · · · ,N.
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In the case of one dimensional manifolds, it was proven in [3]) that one can always take 
Rj+N−1 = 0 if j = 2, . . . , N − 1.

Proof. It is easy to see that Hypotheses H1, H2 and H3 hold in V , as well as to compute the 
value of the constants Bp = Nc, ap = 1, Ap = −c(N − 2) and bp = c. Consequently we have 
that

�∗ > N − 1 + [Nc] ≥ 2N − 1.

What we are going to check is that, necessarily, for solving the cohomological equations (4.5)
for Kj

x in Section 4 for values of 2 ≤ j ≤ �∗ − N + 1, we have to take Rj+N−1 �≡ 0. Indeed, if 
not, the cohomological equations (4.5) for 2 ≤ j ≤ N are

DK
j
x (x)p(x)−Dp(x)K

j
x (x)

=DK
j
x (x)

( −xN
1

−cxN−1
1 x2

)
+
(

NxN−1
1 0

c(N − 1)xN−2
1 x2 cxN−1

1

)
K

j
x (x)

=E
j+N−1
x (x),

where Ej+N−1
x is a homogeneous function of degree j + N − 1.

We focus our attention to the equation for the first component of Kj
x ,

x1D1K
j
x1(x) + cx2D2K

j
x1(x) − NK

j
x1(x) = −x1−N

1 E
j+N−1
x1 (x). (6.3)

We introduce the auxiliary functions h(z) = K
j
x1(1, z) and T (z) = E

j+N−1
x1 (1, z). Notice that we 

can recover Kj
x1(x) from the identity:

K
j
x1(x1, x2) = x

j
1 h
(
x2/x1

)
. (6.4)

Using Euler’s identity jK
j
x (x) = DK

j
x (x)x and rearranging terms in (6.3), we obtain that h is a 

solution of the differential equation:

(c − 1)
d

dz
h(z) = N − j

z
h(z) − T (z)

z
. (6.5)

We study the solutions of (6.5). Assume the easiest case, that is Ej+N−1
x1 is a homogeneous poly-

nomial. Then T (z) is a polynomial of degree j +N −1 which we write as: T (z) =∑j+N−1
l=0 alz

l . 
From the form of (6.5) the solutions are defined for z ∈ (0, ∞) and for z ∈ (−∞, 0). When 
j = N , equation (6.5) yields:

(c − 1)h(z) = C − a0 log |z| −
2N−1∑
l=1

al

l
zl

for some constant C. Then, by (6.4)
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KN
x1

(x) = xN
1

c − 1

(
C − a0 log

∣∣∣∣x2

x1

∣∣∣∣− 2N−1∑
l=1

al

xl
2

lxl
1

)

which is not defined for x2 = 0 contained in the set V in (6.2). So that equation (6.3) cannot be 
solved in V for j = N . Even more, when j �= N , denoting β = (N − j)/(c − 1)

h(z) = |z|βC − |z|β
z∫

1

w−β−1T (w)dw = |z|βC − |z|β
j+N−1∑

l=0

z∫
1

alw
−β−1+l dw.

When β = l ∈ {0, · · · , j + N − 1}, h will have the term al log |z| and, as in the case j = N , Kj
x1

will have the term log(|x2|/|x1|) which, again, is not defined in the set V . We realize this case 
for j < N taking, for instance, c = 2 and l = N − j . On the contrary, Kj

x1 is well defined if 
j > N . �
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