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Abstract

In this paper we study the existence and regularity of stable manifolds associated to fixed points of 
parabolic type in the differentiable and analytic cases, using the parametrization method.

The parametrization method relies on a suitable approximate solution of a functional equation. In the case 
of parabolic points, if the manifolds have dimension two or higher, in general this approximation cannot be 
obtained in the ring of polynomials but as a sum of homogeneous functions and it is given in [4]. Assuming 
a sufficiently good approximation is found, here we provide an “a posteriori” result which gives a true 
invariant manifold close to the approximate one. In the differentiable case, in some cases, there is a loss of 
regularity.

We also consider the case of parabolic periodic orbits of periodic vector fields and the dependence of the 
manifolds on parameters. Examples are provided.

We apply our method to prove that in several situations, namely, related to the parabolic infinity in the 
elliptic spatial three body problem, these invariant manifolds exist and do have polynomial approximations.
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1. Introduction

Parabolic fixed points of maps (or parabolic periodic orbits, in the case of flows) appear in 
general as bifurcation points but they are also present for all values of the parameters in important 
problems. For instance, the “parabolic infinity” in several instances of the three body problem. 
See [29,27,30–32,20,11].

The purpose of this work is, given a map with a parabolic fixed point, that is, a point where the 
map is tangent to the identity, to provide conditions under which the parabolic point possesses a 
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stable invariant set (which in general will not contain a neighborhood of the fixed point) which 
can be parametrized as a regular invariant manifold. This is the first part of a two papers work, 
being [4] the second. In the second one, we study the existence of approximate solutions of the 
invariance equation that the parabolic invariant manifold should satisfy. Here we are concerned 
with the existence of the actual manifold.

The existence of invariant manifolds of parabolic fixed points and their regularity has been 
considered in [28,13,30], when the dynamical system is analytic and the stable manifold set is 
one dimensional. Invariant manifolds of parabolic fixed points with nilpotent linear part were 
studied in [9,10,18]. In [26] the authors use the manifolds of a parabolic point as pieces of the 
boundary of regions with regular and ergodic behavior respectively for a specially chosen family 
of two dimensional symplectic maps. The case of stable manifolds of higher dimension, but 
still in the analytic category, was considered in [2]. All these works share the use of the graph 
transform method to obtain the parabolic invariant manifold.

The problem of parabolic fixed points in the context of holomorphic maps has also been 
studied in a completely different approach by [22,14]. See also the survey [1].

When the map is not analytic, but Ck , 1-dimensional stable manifolds of parabolic points have 
been studied in [3]. In this work, unlike the previously cited ones, the parametrization method is 
used [6–8,24,25]. See also [23].

The procedure here is as follows. Let F : U ⊂ Rn × Rm → Rn × Rm be a map and assume 
(0, 0) ∈ U is a parabolic point, i.e., F(0, 0) = (0, 0) and DF(0, 0) = Id. Assume furthermore 
certain conditions on the first non-vanishing nonlinear terms which imply some “weak contrac-
tion” in the (x, 0)-directions and some “weak expansion” in the (0, y)-directions, to be specified 
later. Even if our conditions are more general and in fact do not always imply “weak expansion” 
in the (0, y)-directions, for the sake of simplicity of this introduction, let us assume that there is 
this expansion. Then one looks for an invariant stable manifold Ws of the origin as an immersion 
K : V ⊂ Rn → Rn × Rm, which we call parametrization of the manifold, with K(0) = (0, 0), 
DK(0) = (Id , 0)�, range(K) = Ws and satisfying the invariance equation

F ◦ K = K ◦ R, (1.1)

where R : V → V is a reparametrization of the dynamics of F on Ws . In general, V is a domain 
which contains 0 on its boundary. The procedure to find such K and R has two steps. First, find 
functions K≤ and R solving approximately the invariance equation, that is, satisfying

F ◦ K≤(x) − K≤ ◦ R(x) =O(‖x‖�), (1.2)

for some � large enough, depending on the degree of the first non-vanishing nonlinear terms of F

at (0, 0). Once these functions are obtained, the invariance equation can be rewritten as a fixed 
point equation for a perturbation of K≤ and solved in appropriate Banach spaces.

Of course, if the invariance equation does have solutions K and R, they will not be unique, 
since for any diffeomorphism T : V → V , the functions K ◦ T and T −1 ◦ R ◦ T also satisfy the 
same equation. The same claim holds for the approximate invariant equation (1.2) if, for instance, 
T (x) = x + o(‖x‖). The parametrization method aims to obtain the “simplest” parametrization 
(or the parametrization that provides the “simplest” R).

There are two important reasons to use the parametrization method to obtain the invariant 
manifolds of a parabolic fixed point. The first one, from the theoretical point of view, is that 
is better suited to deal with cases of finite differentiability than the graph transform method 
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since the operators involved are more regular. The second one is related to the computation 
of the approximate solutions of the invariance equation. From a computational point of view, 
it provides a way to explicitly obtain such approximations. And reciprocally, if one is able to 
produce functions K≤ and R that are approximate solutions of the invariance equation, then there 
exists a true solution close to the given approximation. This is a type of a posteriori argument 
(see [12,24,25,19,15–17]).

The parametrization method is used in [6,7] to find nonresonant manifolds of fixed points of 
maps in Banach spaces. In such setting, the approximations K≤ and R can be taken as polynomi-
als. The degrees of K≤ and R depend on the spectrum of DF(0, 0). The homogeneous terms of 
these polynomials are found recursively. The homogeneous term of degree j must satisfy a linear 
equation which depends on the terms of degree i, for 1 ≤ i ≤ j − 1. In solving these equations, 
K≤ and R play different roles and are not unique, even in the class of polynomials. A possible 
criterium to determine them is to look for the “simplest” polynomial R, in the sense that the 
majority of its coefficients vanish. This fact only depends on the spectrum of DF(0, 0).

In the case when the origin is parabolic and n = 1, in [3] it is shown that it is also possible to 
find polynomials K≤ and R which are approximate solutions of the invariance equation. Again, 
these polynomials are not determined uniquely, but there is a choice in which R is the “simplest”. 
Its degree only depends on the degree of the first non-vanishing term of the contracting part. A 
related result was obtained in [5] where the Gevrey character of the manifolds is established for 
analytic maps.

The situation changes drastically when one considers invariant manifolds of parabolic points 
of dimension two or more. Although these cases were successfully dealt in the analytical con-
text [2] by means of the graph transform method, a simple computation shows that generically 
there are no polynomial approximate solutions of the invariance equation. In the spirit of the 
parametrization method, if it is not possible to find approximate solutions, the fixed point part of 
the argument cannot be carried on. We remark that this fact implies that, generically, the invari-
ant manifolds obtained in [2], which are analytic outside the origin, do not have a polynomial 
approximation.

In the present paper, we deal with the actual existence of the invariant manifold and we study 
its regularity and dependence on parameters, assuming that a suitable approximate solution of 
the invariance equation is known. In the companion paper [4], we derive a method to find such 
approximations and their regularity. However, since, in general, these approximations are not 
polynomials but sums of homogeneous functions of increasing degree, we reproduce in Sec-
tion 3 the algorithm derived in [4] to obtain them. It should be remarked that, in general, these 
homogeneous functions need not be rational functions. We also remark that the conditions under 
which these approximations can be found allow several characteristic directions in the domain 
under consideration (see [22,1]).

When considering parabolic points, one has to look at the first non-vanishing homogeneous
terms of the Taylor expansion of the map at the parabolic point. One looks for “contracting” and 
“expanding” directions (in certain subsets) in the dynamics generated by the polynomial map 
obtained by truncating the Taylor expansion of the map at the parabolic point at the lowest non 
vanishing order in each component. We will assume that the degree of all the “contracting” di-
rections is N , the degree of all the “expanding” directions is M , without assuming that N = M . 
The fact that N 
= M has consequences both at a formal level, when solving the approximate 
invariance equations, and at the analytical level, when considering the fixed point equation that 
provides the manifold. In particular, the behavior and regularity at the origin of the formal ap-
proximation and the invariant manifold depend on the relation between N and M .
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We remark that, as it is often the case, the hypotheses to carry out the fixed point procedure 
are milder than the ones required for solving the approximate invariance equation. The reason is 
that to solve the fixed point equation it is enough to start with an approximate solution having an 
error of prescribed high enough order depending of the first non-vanishing nonlinear terms. Of 
course, some care is required to deal with the regularity of the involved objects.

We include in our study the dependence on parameters of the invariant manifolds, which is 
rather cumbersome but useful for the applications. In particular, it allows to derive the analogous 
statement for flows from the one for maps. This is performed separately for the actual manifold, in 
the present paper, and for the approximate solutions of the invariance equation, in the companion 
paper. The dependence on parameters of the invariant manifolds in the case that they are one 
dimensional and the map is analytic is already done in [21], where it was used to find regular 
foliations of the invariant manifolds of some parabolic cylinders.

As a side application of our method, we prove that, in several instances of the three body prob-
lem, namely in perturbations of the restricted spatial elliptic three body problem, the “parabolic 
infinity” is foliated with parabolic fixed points with stable manifolds of dimension two that have 
polynomial approximation at the origin. This fact is rather surprising, since to be able to solve 
the approximate invariance equations in the ring of polynomials, one obtains a larger number of 
obstructions than coefficients at each order. Then, the fixed point machinery works at any order 
and as a result one obtains the invariant manifolds of the “parabolic infinity” and their expansion 
at the origin.

The structure of the paper is as follows. In Section 2.1 we present the setting and hypotheses 
as well as two theorems of existence of invariant manifolds for maps. In Section 2.2, we present 
the result concerning the regularity with respect to parameters and in Section 2.3 we deal with 
the results for flows. In Section 3 we describe the algorithm from [4] developed to compute the 
approximate solutions of the invariance equation. In Section 4 we apply the algorithm to the 
elliptic spatial restricted three body problem to obtain the invariant manifolds of the “parabolic 
infinity”. In Section 5 we provide two examples that show that our hypotheses are indeed nec-
essary and that the loss of differentiability can take place. We remark the differences between 
one-dimensional and multidimensional parabolic manifolds. The rest of the paper is devoted to 
the actual proofs of the results.

2. Main results

This section is devoted to present all the results of this work related to the existence and 
regularity of parametrizations of invariant sets. There are three settings we consider: the map 
case in Section 2.1, the dependence on parameters in the map case in Section 2.2 and the periodic 
flow case in Section 2.3.

2.1. The map case

The first result is a posteriori type theorem which assures the existence of an invariant mani-
fold close to a sufficiently good approximate solution of the invariance equation (1.1). Then we 
provide sufficient conditions to ensure the existence of an invariant manifold by means of the 
results in [4] about approximate solutions of the invariance equation, that is, solutions of (1.2).
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2.1.1. Set up
Let U ⊂ Rn ×Rm be an open set such that 0 ∈ U . We consider Cr maps F : U → Rn+m, with 

r to be specified later, of the form

F(x, y) =
(

x + p(x, y) + f (x, y)

y + q(x, y) + g(x, y)

)
, x ∈ Rn, y ∈Rm, (2.1)

where p and q are homogeneous polynomials of degrees N ≥ 2 and M ≥ 2 respectively, 
f (x, y) = O(‖(x, y)‖N+1) and g(x, y) = O(‖(x, y)‖M+1). With these conditions, the origin 
is a parabolic fixed point of F .

We introduce the constants

L = min{N,M}, η = 1 + N − L. (2.2)

We denote the projection onto a variable as a subscript, i.e. Xx , and by B� the open ball 
centered at the origin of radius � > 0.

Given V ⊂ Rn such that 0 ∈ ∂V and � > 0, we introduce the set

V� = V ∩ B�.

We will consider sets V star-shaped with respect to 0, i.e., 0 ∈ ∂V and, for all x ∈ V and λ ∈
(0, 1), λx ∈ V .

We define the stable set of F over V associated to the origin 0 as:

W s
V = {(x, y) ∈ U : Fk

x (x, y) ∈ V, k ≥ 0, F k(x, y) → 0 as k → ∞}
and its local version, when we restrict V to the set V�:

W s
V,� = {(x, y) ∈ U : Fk

x (x, y) ∈ V�, k ≥ 0, F k(x, y) → 0 as k → ∞}. (2.3)

Let V ⊂ Rn be an open star-shaped with respect to 0 set. Take � > 0, some norms in Rn and 
Rm and consider the following constants:

ap = − sup
x∈V�

‖x + p(x,0)‖ − ‖x‖
‖x‖N

, bp = sup
x∈V�

‖p(x,0)‖
‖x‖N

,

Ap = − sup
x∈V�

‖Id + Dxp(x,0)‖ − 1

‖x‖N−1 , Bp = sup
x∈V�

‖Id − Dxp(x,0)‖ − 1

‖x‖N−1 ,

Bq = − sup
x∈V�

‖Id − Dyq(x,0)‖ − 1

‖x‖M−1 ,

cp =
{

ap, if Bq ≤ 0,

bp, otherwise,
dp =

{
ap, if Ap ≤ 0,

bp, otherwise,

(2.4)

where the norms of linear maps are the corresponding operator norms. We emphasize that all the 
previous constants depend on �. Nevertheless there are some straightforward relations among 
them.
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Lemma 2.1. The constants Ap, Bq, Bp, ap and bp are finite. They satisfy |ap| ≤ bp , Bp ≥ Ap , 
ap ≥ Ap/N and Bp ≥ Nap > 0.

In addition, if 0 < � ≤ � and denoting by Ap, Bp, Bq, ap, bp the corresponding constants for 
�, we have that

Ap ≥ Ap, Bp ≤ Bp, Bq ≥ Bq, ap ≥ ap, bp = bp.

This lemma is proven in Section 3.1 of [4] (in a slightly different set up).
As usual for parabolic points, their invariant manifolds are defined over a subset V such that 

0 /∈ intV . For this reason, in order to study the regularity of the invariant manifold at the origin, 
we define the following natural concept:

Definition 2.2. Let V ⊂Rl be an open set with x0 ∈ V and f : V ∪{x0} ⊂ Rl → Rk . We say that 
f is C1 at x0 if f is C1 in V ∩ (Bε(x0) \ {x0}), for some ε > 0 and limx→x0, x∈V Df (x) exists.

We finally introduce a quantity related with the minimum differentiability degree we require 
to F :

�0 := N − 1 + Bp

ap

+ max

{
η − Ap

dp

,0

}
. (2.5)

Note that �0 ≥ 2N − 1 ≥ N + 1.

2.1.2. A posteriori result
Let V ⊂Rn be open, star-shaped with respect to 0. Assume that there exist appropriate norms 

in Rn and Rm and � > 0 small enough such that

H1 The homogeneous polynomial p satisfies that ap > 0,
H2 q(x, 0) = 0, for x ∈ V� and

Bq > 0, if M < N,

Bq > −Nap, if M = N,

H3 There exists a constant aV > 0 such that, for all x ∈ V� ,

dist(x + p(x,0), (V�)c) ≥ aV ‖x‖N.

Remark 2.3. It is easily checked that if hypotheses H1, H2 and H3 hold true for � > 0, they also 
hold for any 0 < � ≤ �, so that we will take � as small as we need.

Theorem 2.4. Let F : U ⊂ Rn+m → Rn+m be a Cr map (the case r = ∞ is also included), of 
the form (2.1) with U an open set such that 0 ∈ U .

Assume that, there exists an open set V and �0 > 0 such that:

(a) Hypotheses H1, H2 and H3 hold for �0 > 0.
(b) The degree of differentiability satisfies r > �0 with �0 defined in (2.5).
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(c) There exist K≤ : V�0 → U and R : V�0 → V�0 , Cr≤
functions, for some r≤ ≥ 1, of the form

�K≤(x) := K≤(x) − (x,0) =O(‖x‖2), Dj�K≤(x) =O(‖x‖2−j ),

�R(x) := R(x) − x − p(x,0) =O(‖x‖N+1), Dj�R(x) =O(‖x‖N+1−j ),

for 0 ≤ j ≤ r≤, satisfying the invariance equation up to order � for �0 < � ≤ r , i.e.:

F ◦ K≤ − K≤ ◦ R =O(‖x‖�).

Then, there exists � > 0 small enough and a unique function K> : V� → U such that K>(x) =
O(‖x‖�−N+1) and K = K≤ + K> satisfies the invariance equation

F ◦ K = K ◦ R. (2.6)

Moreover, Rk(x) → 0 as k → ∞, Kx is invertible and, as a consequence,

{K(x)}x∈(Kx)−1(V�) ⊂ W s
V,�. (2.7)

Concerning regularity, the parametrization K and the reparametrization R on W s
V,� are C1

functions at the origin in the sense of Definition 2.2. Moreover, they are Cr>
functions on V�

according to the cases

(1) If Ap ≥ ηdp , r> = min{r, r≤}.
(2) If Ap < ηdp , r> = min{r, r0, r≤} with r0 defined by

r0 = max

{
k ∈N :

(
η − Ap

dp

)
k < r − Bp

ap

− N + 1

}
. (2.8)

(3) If F ∈ C∞, then r> = r≤, where the case r≤ = ∞ is also included.

In addition, if F, K≤ and R are real analytic, Ap > bp and item (c) is true for j = 0, then K is 
also real analytic.

2.1.3. Existence results of invariant manifolds
As a corollary of Theorem 2.4 and the work [4] we can prove an existence result. We first 

formulate the new set of hypotheses which are (as usual) slightly stronger than the previous 
ones. They coincide with the ones assumed in [4] for the existence of approximate solutions 
of the invariance equation (1.1). We include them here for completeness. We summarize the 
algorithm to find these approximate solutions in Section 3.

Let V ⊂ Rn be an open set which is star-shaped with respect to 0. Assume that, with the 
appropriate norms in Rn and Rm, there exists � small enough such that Hypothesis H3 is satisfied 
and

H1’ The homogeneous polynomial p satisfies that

ap > 0.
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If M > N , we further ask Ap/dp > −1.
H2’ The homogeneous polynomial q satisfies q(x, 0) = 0, for x ∈ V� and

Bq > 0, if M < N,

2 + Bq

cp

> max

{
1 − Ap

dp

,0

}
, if M = N.

Unlike the hyperbolic case, as we claimed in Theorem 2.4, here we can lose differentiability 
in the case Ap < ηdp even at points x ∈ V� with x 
= 0. In fact, the formal approximation is only 
Cr∗ when Ap < dp and M ≥ N , r∗ being:

r∗ =

⎧⎪⎪⎨⎪⎪⎩
max

{
k ∈N :

(
1 − Ap

dp

)
k < 2 + Bq

cp

}
, if M = N,

max

{
k ∈N :

(
1 − Ap

dp

)
k < 2

}
, if M > N.

See [4].
The existence result is as follows:

Corollary 2.5. Let F : U ⊂Rn+m → Rn+m be a Cr map, of the form (2.1). Assume that, for some 
�0 > 0, r > �0, hypotheses H1’, H2’ and H3 are satisfied in an open star-shaped with respect 
to 0 set V .

Then, there exist � > 0 small enough and maps K : V� → U and R : V� → V� solutions of 
the invariance equation (2.6) satisfying (2.7).

In addition, K = K≤ + K> with K≤ and R provided by Theorem 2.2 in [4].
The parametrization K and the reparametrization R on W s

V,� are only C1 functions at the 

origin restricting them to the set V� and they are Cr>
functions on V� and r> takes the values:

(1) If Ap ≥ ηdp , r> = r .
(2) If either dp ≤ Ap < ηdp or M < N , r> = min{r, r0} with r0 defined in (2.8).
(3) If Ap < dp and M ≥ N , r> = min{r, r0, r∗}.
(4) If F ∈ C∞ and Ap ≥ dp , then K> ∈ C∞.

Moreover, if F is real analytic and Ap > bp , K is also real analytic.
Finally, substituting H1’ and H2’ by the new conditions Ap > 0 and Bq > 0, we have that 

W s
V,� = {K(x)}x∈(Kx)−1(V�).

Proof. Obviously H1’ implies H1. It remains to check that when M = N , the condition in H2’ 
implies that Bq > −Nap . This is immediate if Bq ≥ 0. When Bq < 0, H2’ implies 2ap +Bq > 0
and hence Bq > −2ap ≥ −Nap .

Now we set a good enough initial approximation of the invariant manifold K by means of 
Theorem 2.2 in [4].

We take � ∈ N such that �0 < � ≤ r with �0 introduced in (2.5) and we decompose our map 
F into

F(x, y) = P(x, y) + G�(x, y), (2.9)
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where P is the Taylor expansion of F up to degree � − 1 and G�(x) = o(‖x‖�−1). In fact, since 
� ≤ r , we actually have G�(x) = O(‖x‖�). We apply Theorem 2.2 in [4] to P to obtain K≤ and 
R such that

P ◦ K≤ − K≤ ◦ R = T �, T �(x) = o(‖x‖�−1). (2.10)

Moreover, both K≤ and R are sums of homogeneous functions satisfying that �K≤ := K≤(x) −
(x, 0) = O(‖x‖)2) and �R(x) : R(x) − x − p(x, 0) = O(‖x‖N+1). By Theorem 2.2 in [4], K≤
and R are analytic functions if Ap > bp , C∞ functions if Ap = bp and Cr∗ if Ap < bp , therefore, 
F, K≤ and R are Cr functions if Ap ≥ bp and Cmin{r,r∗} functions otherwise. We use the symbol 
r≤ to denote the degree of differentiability in each case.

Since P is a polynomial, the remainder T �(x) = O(‖x‖�) is also a finite sum of homogeneous 
functions. Therefore, using that the derivative of a homogeneous function of degree j is also a 
homogeneous function of degree j − 1, we have that, for any 0 ≤ j ≤ r≤,

Dj�K≤(x) =O(‖x‖2−j ), Dj�R(x) =O(‖x‖N+1−j ), DjT �(x) =O(‖x‖�−j ).

Therefore, we are under the conditions of Theorem 2.4 which implies the stated existence and 
the regularity in the present results.

The last statement follows from Theorem 3.1 in [2] which states that the stable set W s
V,�

defined in (2.3) is the graph of a Lipschitz function. Since Kx(x) = x + O(‖x‖2) is invertible, 
the result follows immediately since the new conditions Ap, Bq > 0 imply the hypotheses of the 
results in [2]. �

Now we state a corollary from Theorem 2.4 and Theorem 2.7 in [4].

Corollary 2.6. Assume the conditions in Corollary 2.5 and take � such that �0 < � ≤ r . For 
j = 2, · · · , � − N , let Kj

x : V� → Rn be Cr>
homogeneous functions of degree j . Denote

K∗
x (x) = x +

�−N∑
j=2

K
j
x (x).

Then there exists R∗ : V� → Rn, a finite sum of Cr>
homogeneous functions of order less than 

� − 1, of the form R∗(x) − x −p(x, 0) = O(‖x‖N+1) such that for any Cr>
function �R : V� →

Rn with �R(x) = O(‖x‖�) there exists a Cr>
function K satisfying the invariance equation (2.6)

with R = R∗ + �R and Kx(x) − K∗
x (x) = O(‖x‖�−N+1).

Proof. We proceed as in the proof of Corollary 2.5 decomposing F as in (2.9) and applying 
Theorem 2.7 in [4] instead of Theorem 2.2 in [4] which assures the existence of K≤ and R∗ satis-
fying the invariance equation (2.10) up to order �. Moreover, K≤

x (x) − K∗
x (x) = O(‖x‖�−N+1). 

Since �R(x) = O(‖x‖�), we have that K≤(R∗(x) + �R(x)) = K≤ ◦ R∗(x) + O(‖x‖�) and, 
consequently, writing R = R∗ + �R,

F ◦ K≤(x) − K≤ ◦ R(x) =O(‖x‖�).

Applying Theorem 2.4, we get the result. �
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2.2. Dependence on parameters

In this section we deal with the dependence on parameters of the parametrization K and the 
reparametrization R provided by Theorem 2.4 and Corollary 2.5.

2.2.1. Set up
Let 	 ⊂ Rn′

be an open set of parameters and U ⊂ Rn be an open set. We consider Cr maps 
F : U × 	 → Rn+m having the form (2.1) for any λ ∈ 	, namely:

F(x, y,λ) =
(

x + p(x, y,λ) + f (x, y,λ)

y + q(x, y,λ) + g(x, y,λ)

)
, (x, y,λ) ∈ Rn ×Rm ×Rn′

, (2.11)

where p, q are homogeneous polynomials for any fixed λ of degree N, M ≥ 2 respectively and 
f (x, y, λ) = O(‖(x, y)‖N+1), g(x, y, λ) = O(‖(x, y)‖M+1) uniformly in λ.

In this context, the constants introduced in (2.4), (2.5) and Hypothesis H3, depend on λ. 
We denote this dependence by a superindex, for instance Aλ

p, �λ
0 , etc. We redefine the constants 

(independent of λ) Ap, Bp, ap, bp, Bq, aV , cp, dp, �0 by

Ap = inf
λ∈	

Aλ
p, ap = inf

λ∈	
aλ
p, Bq = inf

λ∈	
Bλ

q ,

Bp = sup
λ∈	

Bλ
p, bp = inf

λ∈	
aλ
p, aV = inf

λ∈	
aλ
V ,

cp =
{

ap, if Bq ≤ 0,

bp, otherwise,
dp =

{
ap, if Ap ≤ 0,

bp, otherwise,

�0 = N − 1 + Bp

ap

+ max

{
η − Ap

dp

,0

}
.

(2.12)

Lemma 2.7. If the conditions in H1, H2, H1’, H2’ and H3 hold true for the constants 
Ap, Bp, ap, bp, Bq, cp, dp, aV , they are also true for Aλ

p, Bλ
p, aλ

p, bλ
p, Bλ

q , cλ
p, dλ

p, aλ
V for any 

λ ∈ 	.
In addition �λ

0 ≤ �0.

The proof of this lemma is straightforward from the definitions.
The differentiability class we work in was used in [7] and is the one considered in [4] for the 

approximate solutions. For any s, r ∈ (Z+)2, we define the set


s,r = {
(i, j) ∈ (Z+)2 : i + j ≤ r + s, i ≤ s

}
and for an open set U ⊂Rl ×Rn′

, the function space

C
s,r = {
f : U →Rk : ∀(i, j) ∈ 
s,r , Di

μD
j
z f exists, is continuous and bounded

}
. (2.13)

Here Dμ and Dz means the derivative with respect to μ and z respectively. We also denote by

C
s,ω = {
f : U → Rk : for all μ, f (·,μ) is analytic and f ∈ Cs}.

We note that Cr ⊂ C
r,r .
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2.2.2. Dependence on parameters results
Note that assuming that the conditions in both Theorem 2.4 and Corollary 2.5 are satisfied for 

any λ ∈ 	, we obtain the existence of K, R solutions of the invariance equation

F(K(x,λ), λ) = K(R(x,λ),λ). (2.14)

To have regularity with respect to λ we need to impose some uniformity conditions.
Let V be an open set as in Section 2.1.2 and � > 0. We rewrite H1, H2 and H3 to become 

uniform with respect to λ ∈ 	 and we add an extra condition:

Hλ The constants ap, aV > 0. Moreover q(x, 0, λ) = 0 for (x, λ) ∈ V� × 	 and either Bq > 0 if 
M > N or Bq > −Nap if M = N .

HP D
j
z f (x, y, λ) = O(‖(x, y)‖N+1−j ) and Dj

z g(x, y, λ) = O(‖(x, y)‖M+1−j ) uniformly in 	
with z = (x, y) and j = 0, 1.

We introduce

�1 := N − 1 + Bp

ap

+ (η − 1). (2.15)

Theorem 2.8. Let F ∈ C
s,r be a map of the form (2.11). Let �0 > 0 be such that Hypotheses 
Hλ, HP hold true and r > max{�0, �1}, s ≥ 0.

Assume that there exist K≤ : V�0 × 	 → U and R : V�0 × 	 → V�0 such that

(a) K≤, R ∈ C
s≤,r≤ .
(b) For (i, j) ∈ 
s≤,r≤ , uniformly over 	,

�K≤(x,λ) := K≤(x,λ) − (x,0) =O(‖x‖2), Di
λD

j
x�K≤(x,λ) =O(‖x‖2−j ),

�R(x,λ) := R(x,λ) − x − p(x,0, λ) =O(‖x‖N+1), Di
λD

j
x�R(x,λ) =O(‖x‖N+1−j ).

(c) The invariance equation (2.14) is satisfied up to order �0 < � ≤ r:

F(K≤(x,λ), λ) − K≤(R(x,λ),λ) =O(‖x‖�), uniformly for λ ∈ 	.

Then the unique function K> : V� × 	 → Rn+m found in Theorem 2.4 belongs to C
s>,r>

where s> and r> have the following values according to the cases

(1) If Ap ≥ dpη, r> = min{r, r≤} and s> ≤ min{s, s≤} satisfies

s>(η − 1) < r − Bp

ap

− N + 1. (2.16)

(2) If dp < Ap ≤ dpη, then r> ≤ min{r, r≤}, s> ≤ min{s, s≤} and

r − Bp

ap

− N + 1 − r>

(
η − Ap

dp

)
> s>(η − 1). (2.17)
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(3) If Ap < dp , then r> ≤ min{r, r≤}, s> ≤ min{s, s≤} and

r − Bp

ap

− N + 1 − r>

(
η − Ap

dp

)
> s>

(
η − Ap

dp

)
. (2.18)

(4) If F ∈ C
s,∞ , then r> = r≤ and s> = s≤.

Finally, if either F, K≤ and R are real analytic or they belong to C
s,ω and Ap > bp , then 
K> is either real analytic if item (b) holds true for i = j = 0 or K> ∈ C
s,ω if item (b) holds true 
for j = 0 respectively.

To finish this section, we formulate an existence result as a corollary of Theorem 2.8 and 
Theorem 2.7 in [4] which includes the regularity with respect to parameters of the approximate 
solutions. The following new condition is necessary to ensure the existence of solutions of the 
invariance equation (2.14) for any value of λ ∈ 	:

Hλ’ ap, aV > 0, q(x, 0, λ) ≡ 0 and the conditions in hypotheses H1’, H2’ are satisfied for the 
constants Ap, dp, Bq, cp redefined in (2.12).

As we claimed in Lemma 2.7, we have that H1’, H2’ and H3 are satisfied if Hλ’ holds true. There-
fore, by the existence Corollary 2.5 there exist K and R satisfying the invariance equation (2.14). 
Moreover, by construction, K = K≤ + K> with K≤ provided by Theorem 2.7 in [4].

Corollary 2.9. Let F ∈ C
s,r be a map of the form (2.11). Assume that there exists �0 > 0 such 
that Hλ’ holds true.

• Parametric version of Corollary 2.5: The solutions K : V� × 	 →Rn+m, R : V� × 	 → V�

of the invariance equation provided by Corollary 2.5 belong to C
s>,r> with s> and r>

satisfying
(1) If Ap ≥ dpη, r> = r and s> ≤ s satisfying (2.16).
(2) If dp ≤ Ap < ηdp or M < N , r> ≤ r , s> ≤ s satisfying (2.17).
(3) If Ap < dp and M ≥ N , r> ≤ r , s> ≤ s, r> + s> ≤ r∗ satisfying (2.18).
(4) If F ∈ C
s,∞ and Ap ≥ dp , then r> = ∞ and s> = s.
Moreover, if either F is real analytic or it belongs to C
s,ω and Ap > bp , then K is either 
real analytic or K ∈ C
s,ω respectively.

• Parametric version of Corollary 2.6: Let Kj
x : V� × 	 →Rn be C
s>,r> homogeneous func-

tions of degree j with respect to x. We introduce K∗
x (x, λ) = x + ∑�−N

j=2 K
j
x (x, λ) as in 

Corollary 2.6.
Then, the function R∗ : V� × 	 → Rn provided by Corollary 2.6 belongs to C
s>,r> . More-
over, if �R : V� × 	 → Rn with �R(x, λ) = O(‖x‖�) uniformly in λ ∈ 	, belongs to 
C
s>,r> , then the function K satisfying the invariance equation (2.14) for R = R∗ + �R

given in Corollary 2.6 also belongs to C
s>,r> .

Proof. For any fixed λ0 ∈ 	, the existence and uniqueness of K(x, λ0) = O(‖x‖�−N+1) satis-
fying the invariance equation (2.14) is guaranteed by Corollary 2.5. To obtain the regularity with 
respect to the parameter we have to apply Theorem 2.8. To do so we need to discuss Hypothesis 
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HP. Since for any λ ∈ 	, F has the form in (2.1), we have that Df (x, y, λ) = O(‖(x, y)‖N)

and Dg(x, y, λ) = O(‖(x, y)‖M) but the bounds are not necessarily uniform in λ. Nevertheless, 
by continuity, for any λ0 ∈ 	 there exists an open ball centered at λ0, Bρ0(λ0) ⊂ Rn′

, in such a 
way that HP is satisfied when we restrict the domain of λ to 	λ0 = 	 ∩ Bρ0(λ0). In addition, 
restricting ρ0 if necessary, we can get the approximate solutions K≤, R satisfying items (a), (b) 
and (c) in Theorem 2.8, that is, with uniform bounds in λ ∈ 	λ0 .

In conclusion, K ∈ C
s>,r> with (x, λ) ∈ V� × 	λ0 . Since K(·, λ) is the unique solution 
of (2.14) of order O(‖x‖�−N+1), K ∈ C
s>,r> in the full domain (x, λ) ∈ V� × 	. �
2.3. Existence results for invariant manifolds. The flow case

We deduce the analogous result to Corollary 2.5 in the case of time periodic flows, that is, in 
the case of a flow with a parabolic periodic orbit. To study invariant objects associated to periodic 
orbits of vector fields (in our case invariant manifolds), one possibility is to consider a Poincaré 
map in a section transversal to the orbit and then apply the results for fixed points of maps. In 
this way, one gets the invariant manifolds W s,u of the Poincaré map and, from them, the invariant 
manifolds of the periodic orbit by considering all the solutions starting in W s,u. Nevertheless this 
approach has a drawback: in applications, it is not easy to compute the Poincaré map. Hence, if 
one wants to compute effectively the invariant manifolds, it is better to have a statement already 
adapted to the vector field itself.

To shorten the exposition we deal directly with the parametric case. Let U ⊂ Rn+m be an 
open neighborhood of the origin, 	 ⊂ Rn′

a set of parameters and X : U × R × 	 → Rn+m a 
T -periodic vector field:

ż = X(z, t, λ), X(z, t + T ,λ) = X(z, t, λ) (2.19)

with z = (x, y) ∈ U having the form

X(z, t, λ) = X(x,y, t, λ) =
(

p(x, y,λ) + f (x, y, t, λ)

q(x, y,λ) + g(x, y, t, λ)

)
, (2.20)

where p, q , f and g are as in Section 2.2.1. We have this form after having translated the 
parabolic orbit to the origin.

Let ϕ(t; t0, x, y, λ) be the flow of (2.19). Given a subset V ⊂ Rn, we define the stable set of 
the origin over V :

W s
V = {(x, y) ∈ U : ϕx(t; t0, x, y,λ) ∈ V, t ≥ 0, ϕ(t; t0, x, y,λ) → 0 as t → ∞}

and its local version, when we restrict W s
V to the open ball B�:

W s
V,� = {(x, y) ∈ U : ϕx(t; t0, x, y,λ) ∈ V�, t ≥ 0, ϕ(t; t0, x, λ) → 0 as t → ∞}.

In the case of flows, a parametrization K(x, t, λ) is invariant by the flow if there exists a vector 
field Y(x, t, λ) such that

X(K(x, t, λ), t, λ) = DxK(x, t, λ)Y (x, t, λ) + ∂tK(x, t, λ) (2.21)
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or, equivalently

ϕ(u; t,K(x, t, λ), λ) = K(ψ(u; t, x, λ),u,λ), ∀u ≥ t, ∀(x,λ) ∈ V� × 	, (2.22)

where ϕ and ψ are the flows of the vector fields X and Y , respectively.
In this section, we will write that a function f belongs to C
s,r if it satisfies definition (2.13)

with z = (x, y) and μ = (λ, t).

Theorem 2.10. Let X ∈ C
s,r be a vector field of the form (2.20). Assume that Hypotheses Hλ

and HP hold true for some �0 > 0 and r > max{�0, �1}. Assume also that there exist K≤ :
V�0 ×R/(TZ) × 	 → U and Y : V�0 × 	 → V�0 such that

(a) K≤, Y ∈ C
s≤,r≤ , for some s≤, r≤ ≥ 1.
(b) For (i, j) ∈ 
s≤,r≤ , uniformly over 	,

�K≤(x, t, λ) := K≤(x,λ) − (x,0) =O(‖x‖2), Di
λD

j
x�K≤(x, t, λ) =O(‖x‖2−j ),

�Y(x,λ) := Y(x,λ) − x − p(x,0, λ) =O(‖x‖N+1), Di
λD

j
x�Y(x,λ) =O(‖x‖N+1−j ).

(c) The invariance equation (2.21) is satisfied up to order �, �0 < � ≤ r:

X(K≤(x, t, λ), t, λ) − DxK
≤(x, t, λ)Y (x,λ) − ∂tK

≤(x, t, λ) = O(‖x‖�), (2.23)

uniformly in λ ∈ 	.

Then, there exists � > 0 small enough and a unique function K> : V� × R/(TZ) × 	 → U

such that K>(x, t, λ) = O(‖x‖�−N+1) uniformly in (t, λ) and K = K≤ +K> satisfies the invari-
ance equation (2.21) with the prescribed vector field Y (or, equivalently, (2.22) with ψ(u; t, x, λ)

the flow of ẋ = Y(x, λ)).
Moreover, ψ(u; t, x, λ) → 0 as u → ∞ and Kx is invertible for any fixed (t, λ). Then we have

{K(x, t, λ)}x∈V�×R×	 ⊂ W s
V,�. (2.24)

Concerning the regularity of K , we have the same results as the ones stated in Theorem 2.8.

To finish this section we formulate the existence result for the flow case based on the approx-
imate solutions provided in [4]. The proof follows the same lines as the proof of Corollary 2.5

Corollary 2.11. Let X ∈ C
s,r be a vector field of the form (2.20). Assume that there exists �0 > 0
such that Hypotheses Hλ’ and HP hold true and r > max{�0, �1}.

Then, there exist � > 0 small enough, a map K : V� ×R/(TZ) × 	 → U and a vector field 
Y : V� ×R → V� solutions of the invariance equation (2.21) satisfying (2.24).

In addition, K = K≤ + K> with K≤ and Y provided by Theorem 2.8 in [4].
The parametrization K and the vector field Y are C1 functions at the origin in the sense of 

Definition 2.2. The regularity on V� ×R × 	 is the same as the one stated in Corollary 2.9.
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3. An algorithm to compute approximations of the invariant manifolds

In this section we present the algorithm developed in [4] to compute approximate solutions of 
the invariance equations (1.1) and (2.21).

3.1. Cohomological equations in the case of maps

Let F be the map given by (2.1), which we assume to be of class Cr , with r large enough. 
Taking advantage of the fact that F can be written as a Taylor polynomial plus some higher order 
remainder, we look for approximate solutions which are finite sum of homogeneous functions of 
increasing degree. Then, for any j ≤ r − N + 1, we look for K≤j and R≤j+N−1 of the form

K≤j (x) =
j∑

l=1

Kl(x), R≤j+N−1(x) = x +
j+N−1∑

l=N

Rl(x), (3.1)

with K1(x) = (x, 0)�, RN(x) = p(x, 0) and Kl, Rl ∈Hl , satisfying

E>j (x) := F ◦ K≤j (x) − K≤j ◦ R≤j+N−1(x)

= (E
>j
x ,E

>j
y )(x) =

(
o
(‖x‖j+N−1), o

(‖x‖j+L−1)) ,
(3.2)

where the constant L = min{N, M} was introduced in (2.2). We stress that the superscripts in 
the above formula have two different meanings. While in K≤j and R≤j+N−1 the superscript 
indicates that they are sums of homogeneous functions of degree less or equal than j and j +
N − 1, respectively, in E>j denotes that it is the j -th error term. Of course, the order of E>j

depends on j but also on N and M and, as it is indicated in formula (3.2), the x and y-components 
of E>j may have different orders.

If, by induction, we assume that E>j−1 = (E
j+N−1
x , Ej+L−1

y ) + Ê>j , where E�∗, ∗ = x, y, is 
a homogeneous function of degree � and

Ê>j (x) =
(

o
(‖x‖j+N−1), o

(‖x‖j+L−1)) , (3.3)

then the functions Kj =: (Kj
x , Kj

y ) and Rj+N−1 must satisfy

DK
j
x (x)p(x,0) − Dxp(x,0)K

j
x (x) − Dyp(x,0)K

j
y (x) + Rj+N−1(x) = E

j+N−1
x (x) (3.4)

and, depending on the values of N and M ,

if N < M , DK
j
y (x)p(x,0) = E

j+L−1
y (x), (3.5)

if N = M , DK
j
y (x)p(x,0) − Dyq(x,0)K

j
y (x) = E

j+L−1
y (x), (3.6)

if N > M , −Dyq(x,0)K
j
y (x) = E

j+L−1
y (x). (3.7)

At this point it is worth to remark that one could try to find solutions of the above equations in 
the space of homogeneous polynomials of degree j and j + N − 1, respectively. In the case that 
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K≤j−1 and R≤j+N−2 are sums of homogeneous polynomials, the error term is also a homoge-
neous polynomial. But when N > M it is clear that Kj

y (x) = −Dyq(x, 0)−1E
j+L−1
y (x) cannot 

be, in general, a polynomial, but a rational function. When N ≤ M , equations (3.5) and (3.6) are 
m
(
j+L+n−2

n−1

)
conditions while Kj

y , if assumed to be a polynomial, would have only m
(
j+n−1
n−1

)
free coefficients. Hence, since L ≥ 2, generically these equations only admit polynomial solu-
tions in the case that n = 1 (which is the case studied in [3]). It is easy to construct examples 
where these obstructions do appear. See Section 6 in [4].

Now we summarize how we solve equations (3.4), (3.5), (3.6) and (3.7).
In the case N > M , since, as a consequence of hypothesis H2, Dyq(x, 0) is invertible, equa-

tion (3.7) is trivially solvable in the space of homogeneous functions of degree j .
In the case N ≤ M , let ϕ(t, x) be the flow of

ẋ = p(x,0).

As a consequence of H3, ϕ(t, x) ∈ V , for all x ∈ V and t > 0. We consider the homogeneous 
linear equations

dψ

dt
(t, x) = Dxp(ϕ(t, x),0)ψ(t, x),

dψ

dt
(t, x) = Dyq(ϕ(t, x),0)ψ(t, x)

and we denote by Mp(t, x) and Mq(t, x) their fundamental matrices such that Mp(0, x) = Id, 
Mq(0, x) = Id, respectively. From Theorem 3.2 in [4], the unique homogeneous solution of equa-

tions (3.5) and (3.6) for Kj
y is given by

K
j
y (x)=

0∫
∞

E
j+L−1
y (ϕ(t, x)) dt, if N < M,

K
j
y (x)=

0∫
∞

M−1
q (t, x)E

j+L−1
y (ϕ(t, x)) dt, if N = M.

(3.8)

Theorem 3.2 in [4] ensures that the above formulas define homogeneous functions of degree j .
The homogeneous solution of (3.7), clearly unique, is

K
j
y (x) = (

Dyq(x,0)
)−1

E
j+L−1
y (x), if N > M.

As for (3.4), notice that it is always possible to solve it by choosing Kj
x an arbitrary homoge-

neous function of degree j and taking

Rj+N−1(x) = E
j+L−1
x (x) − Dyp(x,0)K

j
y (x) + Dxp(x,0)K

j
x (x) − DK

j
x (x)p(x,0). (3.9)
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However, we prove in [4] that, provided that r is large enough, there exists �∗ (which depends 
explicitly on the constants defined in (2.4)) such that if �∗ − N + 2 ≤ j , Rj+N−1 can be chosen 
as an arbitrary homogeneous function of degree j + N − 1 and

K
j
x (x) =

0∫
∞

M−1
p (t, x)

[
E

j+L−1
x (ϕ(t, x)) − Rj+N−1(ϕ(t, x))

− Dyp(ϕ(t, x),0)K
j
y (ϕ(t, x))

]
dt. (3.10)

For instance, one can choose Rj+N−1 to be 0, if j ≥ �∗ − N + 2, which implies that the func-
tion R≤j+N−1 in (3.1) can be taken as a finite sum of homogeneous functions.

3.2. Cohomological equations in the case of flows

Let U ⊂ Rn+m a neighborhood of the origin and X : U ×R → Rn+m be a T -periodic vector 
field of the form (2.20). We look for K and Y of the form

K≤j (x, t) =
j∑

l=1

K(l)(x, t), Y≤j+N−1(x) =
j+N−1∑

l=N

Y l(x)

with K1(x, t) = (x, 0)�, YN(x) = p(x, 0) and K(l) a sum of two homogeneous functions: one of 
degree l independent of t and the other one of order 

(
o
(‖x‖j+N−1

)
, o
(‖x‖j+L−1

))
. The homo-

geneous terms Kl are obtained by rearranging the sum above. They have to satisfy the invariance 
equation (2.21) up to some order j in the sense that the error term

E>j (x, t) := X(K≤j (x, t), t) − DK≤j (x, t)Y≤j+N−1(x) − ∂tK
≤j (x, t)

satisfies

E>j (x) = (E
>j
x ,E

>j
y )(x) =

(
o
(‖x‖j+N−1), o

(‖x‖j+L−1)) . (3.11)

If, by induction, we assume that (3.3) is satisfied (taking into account the time dependence) 
the functions K(j) = (K

(j)
x , K(j)

y ) and Y j+N−1 must satisfy

DK
(j)
x (x, t)p(x,0) − Dxp(x,0)K

(j)
x (x, t) − Dyp(x,0)K

(j)
y (x, t)

+ Y j+N−1(x) + ∂tK
(j)
x (x, t) − E

j+N−1
x (x, t) = o

(‖x‖j+N−1), (3.12)

and

DK
(j)
y (x, t)p(x,0) − Dyq(x,0)K

(j)
y (x, t) + ∂tK

(j)
y (x, t) − E

j+L−1
y (x, t)

= o
(‖x‖j+L−1). (3.13)

Equation (3.13), depending on the values of N and M , reads
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if N < M , DK
(j)
y (x, t)p(x,0) + ∂tK

(j)
x (x, t) − E

j+L−1
y (x, t)

= o
(‖x‖j+L−1),

if N = M , DK
(j)
y (x, t)p(x,0) −Dyq(x,0)K

(j)
y (x, t) + ∂tK

(j)
x (x, t) − E

j+L−1
y (x, t)

= o
(‖x‖j+L−1),

if N > M , −Dyq(x,0)K
(j)
y (x, t) + ∂tK

(j)
x (x, t) − E

j+L−1
y (x, t)

= o
(‖x‖j+L−1).

We remark that, unlike the case of equations (3.4) to (3.7), the functions K(j) and Y j+N−1

we obtain cancel out the error term in (3.12) and (3.13) but introduce new terms of higher order.
For a T -periodic function h, we denote by h its mean, that is,

h(x) = 1

T

T∫
0

h(x, t) dt,

and h̃ = h − h its oscillatory part. If equations (3.12) and (3.13) are satisfied for some K(j)

periodic, then it is clear that the mean K(j) has to satisfy the equations

DK
(j)
x (x)p(x,0) − Dxp(x,0)K

(j)
x (x) − Dyp(x,0)K

(j)
y (x)

+Y j+N−1(x) − E
j+N−1
x (x) = o

(‖x‖j+N−1),
DK

(j)
y (x)p(x,0) − Dyq(x,0)K

(j)
y (x) − E

j+L−1
y (x) = o

(‖x‖j+L−1).
(3.14)

These equations can be solved in the same way as (3.4), (3.5), (3.6) and (3.7), in the previous 
section. We conclude that K(j) and Y j+N−1 exist and they both have the appropriate orders, i.e.,
degree j and j + N − 1 respectively.

Now we impose that

∂t K̃(j)(x, t) = (
˜

E
j+N−1
x (x, t),

˜

E
j+L−1
y (x, t)) (3.15)

and that K̃(j) has zero mean. Consequently, K̃(j)(x) = (
o
(‖x‖j+N−1

)
, o
(‖x‖j+L−1

))
.

We conclude that K(j) = K(j) + K̃(j) and Y j+N−1 satisfy equations (3.12) and (3.13) and 
then (3.11) is satisfied.

Remark 3.1. The K(j) found are not homogeneous functions, but sums of homogeneous func-
tions. Concretely, K(j)

x has a term of order j and another of order j + N − 1. Analogously, K(j)
y

has a term of order j and another of order j + L − 1.
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4. Example. The elliptic spatial restricted three body problem

We have pointed out in the previous section that, in general, the invariant manifolds of a 
parabolic fixed point do not have polynomial expansions if their dimension is greater than one, 
regardless of the regularity of the map. However, it may be possible that the system of equations 
defined by (3.4) and (3.5)–(3.7) admits polynomial homogeneous solutions. Here we take advan-
tage of the expressions (3.8), (3.9) and (3.10) to show that this is the case of the parabolic infinity
in the elliptic spatial restricted three body problem.

The spatial elliptic restricted three body problem is a simplified version of the spatial three 
body problem where one of the bodies is assumed to have zero mass while the other two, named 
the primaries, evolve describing Keplerian ellipses around their center of mass.

We introduce q̂(f ) = (ρ(f ) cosf, ρ(f ) sinf, 0), where, for a given eccentricity 0 ≤ e < 1,

ρ(f ) = 1 − e2

1 + e cosf
.

Rescaling time and mass units, we can assume that the masses of the primaries are μ and 1 − μ, 
respectively, and their positions are given by q1 = μq̂ and q2 = −(1 − μ)q̂ , where f denotes the 
so-called true anomaly which satisfies

df

dt
= (1 + e cosf )2

(1 − e2)3/2 .

Then, denoting by q ∈R3 the position of the third body, the equations for q are

q̈ = −(1 − μ)
q − q1

r3
1

− μ
q − q2

r3
2

,

where ri = ‖q − qi‖, i = 1, 2. Introducing the momenta p = q̇ , this system is Hamiltonian with 
respect to

H(q,p, t) = ‖p‖2

2
− U(q, t), U(q, t) = 1 − μ

r1
+ μ

r2
.

Our aim is to study the parabolic invariant manifolds of infinity. To this end, we con-
sider spherical coordinates (r, α, θ) in R3, namely q = (r cosα cos θ, r sinα cos θ, r sin θ). Let 
(R, A, �) be their conjugated momenta, which can be obtained through a Mathieu transforma-
tion. They satisfy

p = m(r,α, θ)

⎛⎝R

A

�

⎞⎠ , m(r,α, θ) =
⎛⎝cosα cos θ − sin α

r cos θ
− cos α sin θ

r

sinα cos θ cos α
r cos θ

− sin α sin θ
r

sin θ 0 cos θ
r

⎞⎠ .

The new Hamiltonian is

Ĥ (r,α, θ,R,A,�, t) = 1
(

A2

2 2 + �2

2 + R2
)

− Û (r,α, θ, t),

2 r cos θ r
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with

Û (r, α, θ, t) = 1 − μ√
r2 − 2μρ(f )r cos(α − f ) cos θ + μ2ρ2(f )

+ μ√
r2 + 2(1 − μ)ρ(f )r cos(α − f ) cos θ + (1 − μ)2ρ2(f )

=1

r
− μ(1 − μ)

2
(1 − 3 cos(α − f ))

ρ2(f ) cos2 f cos2 θ

r3 +O
(

1

r4

)
.

(4.1)

To study the behavior of the system at r = ∞, we perform the non-canonical change of variables 
due to McGehee r = 2/z2. Since ṙ = R and the change does not involve the remaining variables, 
the equations of motion in the new variables are

ż = −1

4
z3R

α̇ = ∂AĤ|r=2/z2 = Az4

4 cos2 θ

θ̇ = ∂�Ĥ|r=2/z2 = 1

4
�z4

Ṙ = −∂rĤ|r=2/z2 = A2z6

8 cos2 θ
+ �2z6

8
+ ∂r Û(2/z2, α, θ, t) = −1

4
z4 +O(z6)

Ȧ = −∂αĤ|r=2/z2 = ∂αÛ(2/z2, α, θ, t) = O(z6)

�̇ = −∂θ Ĥ|r=2/z2 = −A2z4 sin θ

4 cos3 θ
+ ∂θ Û(2/z2, α, θ, t) = −A2z4 sin θ

4 cos3 θ
+O(z6).

Notice that the set {z = 0, R = 0} is invariant and foliated by fixed points. We focus on those 
with θ = � = 0, α = α0, A = A0. To apply our theory, we perform the following local change of 
variables

θ̂ = θ

z
, �̂ = z�

θ
, α̂ = α − α0 + AR

z
, Â = A − A0

z
,

which transforms the system into

ż = −1

4
z3R Ṙ = −1

4
z4 + z6O0

˙̂α = 1

4
z2Rα̂ + z5O0

˙̂
A = 1

4
Âz2R + z5O0

˙̂
θ = 1

4
z2Rθ̂ + 1

4
z3θ̂ �̂

˙̂
� = −1

4
z2R�̂ − 1

2
z3�̂2 + z5O0,

where all the terms up to degree 6 in the local variables are shown (we write Ok meaning 
O(‖(z, R, α̂, Â, θ̂ , �̂)‖k)). Notice that the leading terms are of degree 4. Finally, it will be con-
venient to introduce
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u = 1

2
(z + R), v = 1

2
(z − R)

so that the system, reordering equations, becomes

u̇ = −1

4
(u + v)3u + (u + v)6O0

˙̂
� = −1

4
(u + v)2(u − v)�̂ − 1

2
(u + v)3�̂2 + (u + v)5O0

v̇ = 1

4
(u + v)3v + (u + v)6O0

˙̂α = 1

4
(u + v)2(u − v)α̂ + (u + v)5O0

˙̂
A = 1

4
(u + v)2(u − v)Â + (u + v)5O0

˙̂
θ = 1

4
(u + v)2(u − v)θ̂ + 1

2
(u + v)3θ̂ �̂.

(4.2)

We emphasize that the leading terms do not depend on t , but the remainders do depend 
2π -periodically on t .

Let X denote the vector field defined by (4.2). We can write the vector field in the form (2.20)
taking x = (u, �̂), y = (v, α̂, Â, θ̂ ) and

p(x, y) =
( − 1

4 (u + v)3u

− 1
4 (u + v)2(u − v)�̂

)
, q(x, y) =

⎛⎜⎜⎝
1
4 (u + v)3v

1
4 (u + v)2(u − v)α̂
1
4 (u + v)2(u − v)Â
1
4 (u + v)2(u − v)θ̂

⎞⎟⎟⎠ . (4.3)

Theorem 4.1. Let W be a perturbation of Û in (4.1) of the form W = Û + V , where

V (r,α, θ, t) = 1

r3 V̂ (r, α, θ, t)

(in spherical variables) is such that the equations of motion leave the plane θ = � = 0 invariant 
(that is, ∂θV|θ=0 = 0) and V̂ is analytic in 1/r and the rest of its arguments.

Then, after the changes of variables described above, the equations of motion are given 
by (4.2). The origin is a parabolic fixed point. It has an analytic stable invariant two dimen-
sional manifold which admits a parametrization of the form K(x, t) = (x, 0) + K̃(x, t), where

K̃(x, t) =O(‖x‖2), u > 0, �̃ > 0

such that

X(K(x, t), t) = DK(x, t)Y (x) + ∂tK(x, t),

with Y(x) = p(x, 0) +O(‖x‖5) is a polynomial of degree 7.
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The function K̃(x, t) is 2π -periodic in t and, for all � ≥ 7,

K̃(x, t) =
�∑

j=2

K̆j (x, t) +O(‖x‖�+1),

where K̆j are homogeneous polynomials, with respect to x, of degree j . That is, the stable 
invariant manifold admits polynomial approximation up to any order.

Proof. System (4.2) satisfies hypotheses (a) and (b) of Theorem 2.10. Hence, in order to obtain 
the claim, we only need to check hypothesis (c). It is enough to find approximate solutions of the 
invariance equation

X(K(x, t), t) − DK(x, t)Y (x) − ∂tK(x, t) = 0. (4.4)

We show that there are indeed approximate solutions of this equation up to any order and that 
these solutions are sums of homogeneous polynomials.

We use the construction described in Section 3.2 to find approximate solutions of the above 
equation. The procedure applies in the region {u > 0, �̂ > 0}.

The explicit expression of the flow of the vector field p(x, 0), with p on (4.3), is

ϕ(t, x) = 1

(1 + 3
4 tu3)1/3

(
u

�̂

)
.

Let Mp(t, x) and Mq(t, x) be the fundamental matrices of the linear equations

dψ

dt
(t, x) = Dxp(ϕ(t, x),0)ψ(t, x)

dψ

dt
(t, x) = Dyq(ϕ(t, x),0)ψ(t, x)

such that Mp(0, x) = Id and Mq(0, x) = Id, respectively. We have that

M−1
p (t, x) =

( (
1 + 3

4 tu3
)4/3

0
3
4 tu2�̂

(
1 + 3

4 tu3
)1/3 (

1 + 3
4 tu3

)1/3

)

and

Mq(t, x) =
(

1 + 3

4
tu3
)1/3

Id 4×4.

Along this proof we will deal with several objects that will be homogeneous polynomi-
als. Their superscripts will denote their degree. A slightly different notation is used for E>j . 
See (3.2)-(3.3).

We write the vector field in (4.2) as X =∑
l≥4 Xl , where Xl depends 2π -periodically on t . 

Following the algorithm described in Section 3.2 with N = M = 4, we look for solutions of the 
equation (4.4) of the form
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K(x, t) =
∑
l≥1

K(l)(x, t), Y (x) =
∑
l≥4

Y l(x),

where K(l) depends 2π -periodically in t and it is of the form

K(l)(x, t) = Kl(x) + K̃l+3(x, t), with K̃l+3 = K̃(l),

and K1(x) = (x, 0), K̃4(x, t) = 0, Y 4(x) = p(x, 0). The homogeneous functions K̆l in the state-
ment of the theorem are obtained by rearranging the sum above.

We recall that x = (u, �̂) and y = (v, α̂, Â, θ̂ ). It is clear from (4.2) that the homogeneous 
polynomials Xl satisfy that

X5
ξ (x,0, t) = u5X̂0

ξ (x, t), ξ = α̂, Â, θ̂ ,

X5
u(x,0, t) = X5

v(x,0, t) = 0,

X5
�̂
(x,0, t) = −1

2
u3�̂2 + u5X̂0

�̂
(x, t),

(4.5)

and, for l ≥ 6,

Xl(x,0, t) = u5X̂l−5(x, t)

Xl
ξ (x,0, t) = u6X̂l−6

ξ (x, t), ξ = u,v.

The statement is a consequence of the following claim. We make the convention that Oj = 0
if j < 0.

Claim 4.2.

(i) Kj(x) = u2Oj−2, Kj
u,v(x) = u3Oj−3, j ≥ 2. Kj

x = 0 if 2 ≤ j ≤ 7.

K̃j+3(x, t) = u5Oj−2, K̃j+3
u,v (x, t) = u6Oj−2, j ≥ 3.

(ii) Y 5(x) =
(

a1u
5

u3(a2�̂
2 + a3u

2)

)
, with a1, a2, a3 ∈ R, Y j (x) = (u6Oj−6, u5Oj−5)

�, 6 ≤ j ≤
7 and Y j = 0 for j ≥ 8.

(iii) Denoting K≤j =∑j
l=1(K

l + K̃l+3), Y≤j =∑j
l=4 Y l ,

E>j (x, t) = X(K≤j (x, t), t) − DK≤j (x, t)Y≤j+3(x) − ∂tK
≤j (x, t),

and E>j = Ej+4 + Ê>j+1 with Ej+4(x, t) = O(‖x‖j+4), Ê>j+1(x, t) = o(‖x‖j+4), then,

Ej+4(x, t) = u5Oj−1, E
j+4
u,v (x, t) = u6Oj−2, j ≥ 2.

In (i) and (ii) the terms Oj are homogeneous polynomials in x of degree j while in (iii) Oj are 
analytic functions in x of order j .
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The following fact will be used repeatedly without mention. Given any monomial Z(x) =
uj1�̂j2 and denoting {e1, e2} the canonical basis of R2, there exist ci ∈R, depending only on j1
and j2, such that

0∫
∞

M−1
p (t, x)Z(ϕ(t, x))e1 dt = c1

Z(x)

u3 e1 + c2
Z(x)

u4 �̂e2,

0∫
∞

M−1
p (t, x)Z(ϕ(t, x))e2 dt = c3

Z(x)

u3 e2

and, denoting {e′
j }j=1,...,4 the canonical basis of R4, there exists c ∈ R, depending only on j1

and j2, such that

0∫
∞

M−1
q (t, x)Z(ϕ(t, x))e′

j dt = c
Z(x)

u3 e′
j , j = 1, . . . ,4.

Indeed, it suffices to make the change s = tu3 in the integrals. Obviously, the previous integrals 
are only convergent when j1 + j2 ≥ 8, for the first one, when j1 + j2 ≥ 5, for the second one and 
j1 + j2 ≥ 3 for the last one.

We prove the claim by induction. We start with the case j = 2.
According to the algorithm, using that X4 = (p, q)� and Y 4(x) = p(x, 0) in equations (3.14)

for j = 2, the functions K2 and Y 5 must satisfy

DK2Y 4 − (DX4 ◦ K1)K2 +
(

Id
0

)
Y 5 = E5,

where E5 = X5 ◦ K1 denotes the terms of degree 5 of E>1 and we recall that Z denotes the 
mean of a periodic function Z. Using (3.8), the equation for K2

y has the homogeneous solution

K2
y (x) =

0∫
∞

M−1
q (t, x)E5

y(ϕ(t, x)) dt. (4.6)

Since, in view of (4.5), X5
y ◦ K1(x) = X5

y(x, 0) = a0u
5, we have that K2

y (x) = b0u
2, where 

a0, b0 ∈ R4. Furthermore, since X5
v = 0 and Mq is a diagonal matrix, we deduce that K2

v = 0.
Once K2

y is found, we take K2
x = 0 and choose appropriately Y 5, that is,

Y 5(x) = DyX
4
x(x,0)K2

y (x) + X5
x ◦ K1(x) =

(
a1u

5

a2u
3�̂2 + a3u

5

)
,

with a1, a2, a3 ∈R, where we have used that, since K2
v = 0, and
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DyX
4
x(x,0) = Dyp(x,0) =

( − 3
4u3 0 0 0

− 1
4u2�̂ 0 0 0

)
, (4.7)

we have that Dyp(x, 0)K2
y (x) = 0. This accounts for the first part of (ii).

To cancel the oscillatory part of E5 we use (3.15) and we choose K̃5 with zero mean such 
that

∂t K̃
5(x, t) = Ẽ5(x, t).

From (4.5) we get that K̃5(x, t) = u5O0 and K̃5
u(x, t) = K̃5

v (x, t) = 0.
With this choice of K≤2 and Y≤5 the algorithm ensures that the remainder E>2(x, t) = O6. 

We have that

E>2(x, t) =X(K≤2(x, t), t) − DK≤2(x, t)Y≤5(x) − ∂tK
≤2(x, t)

=X6(x,0, t) + DX5(x,0, t)K2(x) + 1

2
D2X4(x,0)K2(x)⊗2

− DK2(x)Y 5(x) + u5O1

=u5O1.

The last equality uses that K2
x = 0, K2

v = 0, K2
y (x) = u2O0, the particular form of Y 5, X5, 

X6 and the fact that ∂2X4

∂y2 (x, 0) = uO1. Moreover, using that K2
x = 0, K2

v = 0, X5
u,v = 0 and 

X6
v(x, 0, t) = u6O0 one obtains that

E>2
u,v(x, t) = u6O0. (4.8)

This proves the claim for j = 2.
Now we assume that we have obtained K≤j−1, Y≤j+2 and E>j−1, with j ≥ 3, satisfying the 

induction hypotheses. The equation for Kj and Y j+3 is

DKjY 4 − (DX4 ◦ K1)Kj +
(

Id
0

)
Y j+3 = Ej+3.

The function Kj
y is obtained as we did for K2

y in (4.6).

Since Ej+3(x, t) = u5Oj−2, we obtain that Kj
y (x) = u2Oj−2. By the same argument, us-

ing (4.8) and that Mq is a diagonal matrix, one has Kj
v (x) = u3Oj−3.

To find Kj
x and Y j+3 we proceed in two different ways according to whether j ≤ 4 or j ≥ 5. 

The point is that for j ≥ 5 we can take Y j+3 = 0 choosing appropriately Kj
x . However, for j ≤ 4, 

the integrals involved in the computation of Kj
x do not converge.

If j ≤ 4, we choose Kj
x = 0 and

Y j+3(x) = DyX
4
x ◦ K1(x)K

j
y (x) + E

j+3
x (x).

Formula (4.7) and the induction hypothesis gives that Y j+3(x) = (u6Oj−3, u5Oj−2)
�.
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Instead, if j ≥ 5, we choose Y j+3 = 0 and

K
j
x (x) =

0∫
∞

M−1
p (t, x)E

j+3
x (ϕ(t, x)) dt.

The induction hypothesis on Ej+3 gives Kj
x (x) = (u3Oj−3, u2Oj−2)

�.
We choose K̃j+3 with zero mean such that ∂t K̃

j+3(x, t) = Ẽj+3(x, t). Again from the in-
duction hypothesis we get that K̃j+3(x, t) = u5Oj−2 and K̃j+3

u,v (x, t) = u6Oj−3.
Finally, we need to check the properties of Ej+4. From the definition of E>j ,

E>j (x, t) =E>j−1(x, t) + X(K≤j (x, t), t) − X(K≤j−1(x, t), t)

− (DK≤j (x, t)Y≤j+3(x) − DK≤j−1(x, t)Y≤j+2(x))

− (∂tK
≤j (x, t) − ∂tK

≤j−1(x, t))

=E>j−1(x, t) + T1(x, t) − T2(x, t) − T3(x, t),

where Ti are defined in the obvious way.
We have

T1 =
1∫

0

DX(K≤j−1 + s(Kj + K̃j+3), t)(Kj + K̃j+3) ds.

Taking into account the structure of X in (4.2) a long but straightforward computation gives

T1(x, t) = u5Oj−2, (T1)u,v(x, t) = u6Oj−3.

For T2 we have

T2 = DK≤j−1Y j+3 + (DKj + DK̃j+3)Y≤j+3.

A simple calculation gives that for j ≥ 3,

DK≤j−1(x, t) =
(

1O0 uO0 u2O0 uO0 uO0 uO0

u3O0 1O0 u3O0 u2O0 u2O0 u2O0

)�
,

Y j+3(x) =
(

u6O0

u5O0

)
,

(DK≤j + DK̃j+3)(x, t) =
(

u2O0 uO0 u2O0 uO0 uO0 uO0

u3O0 u2O0 u3O0 u2O0 u2O0 u2O0

)�

and

Y≤j+3(x) =
(

u5O0

u3O2

)
,
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where here Oj denotes a polynomial in x of order j . This implies

T2(x, t) = u5Oj−2, (T2)u,v(x, t) = u6Oj−3.

Finally, T3 = ∂t K̃
j+3 and the induction hypotheses gives (iii) for j .

Note however that some terms of T1, T2 and T3 do not contribute because their order is less 
or equal than j + 3 and are compensated by the choice of the K’s and Y ’s. �
5. Examples

In this section we provide examples showing that hypotheses H1, H2 and H3 are necessary 
for the existence of the invariant manifolds. We also show that the manifolds may be much less 
regular than the map.

5.1. A toy model

The first example corresponds to a map without stable invariant manifold but satisfying both 
H1 and H2.

Let ϕ be the flow of the equations in R2 ×R

ẋ1 = −x2
1 , ẋ2 = −ax1x2, ẏ = bx1y + x3

2 ,

being a, b > 0, and F(x, y) = ϕ(1; x, y), with x = (x1, x2), its time 1 map.

Claim 5.1. There exists V ⊂ R2, star-shaped with respect to the origin, such that F satisfies 
hypotheses H1 and H2 in V .

If b + 3a ≤ 1, F has no invariant stable manifold over V of the origin.

The map F has the form (2.1) with p(x, y) = (−x2
1 , −ax1x2) and q(x, y) = bx1y. We intro-

duce

W =
{
x = (x1, x2) ∈ R2 : |x2| < (1 − a)x1 <

2

a + 1

}
.

First we note that the map F satisfies hypotheses H1 and H2 with the supremum norm in any 
open set V contained in W . Of course the constants Ap, Bq will depend on V . However we claim 
that there is no invariant set for Fx contained in W . As a consequence, hypothesis H3 can not be 
satisfied. Indeed, assume that x0 = (x1, x2) ∈ W , and consider

xn = Fx(x
n−1) = Fn

x (x0) =
(

x1

1 + nx1
,

x2(
1 + nx1

)a
)

.

The sequence xn ∈ W if and only if x1 ≥ |x2|
(
1 +nx1

)1−a , ∀n ≥ 0, which is not true since x1 > 0
and a < 1.

Now we check that the map F has no stable invariant manifold. Indeed, if such a manifold 
exists, then, for any (x, y) belonging to it, Fn

y (x, y) → 0 as n → ∞. Since
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ϕy(t, x, y) = (
1 + tx1

)b⎡⎣y + x3
2

t∫
0

1(
1 + sx1

)b+3a
ds

⎤⎦ ,

we deduce that

Fn
y (x, y) = (

1 + nx1
)b⎡⎣y + x3

2

n∫
0

1(
1 + sx1

)b+3a
ds

⎤⎦ .

Therefore, since (1 +nx1)
b → ∞ as n → ∞ a necessary condition for Fn

y (x, y) → 0 as n → ∞, 
is that

y = x3
2

0∫
∞

1(
1 + sx1

)b+3a
ds,

and the claim follows because the above integral is not convergent when b + 3a ≤ 1.

5.2. The loss of differentiability

The following example shows that the invariant manifolds of a parabolic fixed point may be 
of finite order of differentiability. This maximum order of differentiability is attained when the 
manifold is written (locally) as a graph, since if the invariant manifold possesses a parametriza-
tion of the form given by Theorem 2.4 with some regularity, by performing a close to the identity 
change of variables, its representation as a graph will be also of the same regularity.

Let a, b > 0. Let F be the time 1 map of

ẋ = p(x), ẏ = q1(x)y + g(x),

where x = (x1, x2) ∈ R2, y ∈ R, p is such that the equation ẋ = p(x) in polar coordinates 
(x1, x2) = (r cos θ, r sin θ) becomes

ṙ = −ar5, θ̇ = r4 sin 4θ (5.1)

(p is a homogeneous polynomial of degree 5) and

q1(x) = b(x2
1 + x2

2)2, g(x) = 8(x2
1 + x2

2)x1x2(x
2
1 − x2

2).

Claim 5.2. Let ν ∈ (0, 1). There exists a0 > 0 such that, for any a > a0, the map F satisfies 
hypotheses H1, H2 and H3 in V�, for some � > 0, where

V = {x ∈R2 : ν|x1| ≤ x2}.

Furthermore, for any m, n ∈N satisfying n > a0 and 2m > n + 1, the stable manifold over V

of the origin with a = 2n and b = 4(2m − n − 1) is only 2m − 2 ≥ 1 times differentiable.
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Proof. Let ϕ(t, x) be the flow of ẋ = p(x) and M(t, x) the solution of Ṁ = q1(ϕ(t, x))M such 
that M(0, x) = 1. The stable manifold (if it exists) has to be the graph of y = h(x) with

h(x) =
0∫

∞
M−1(t, x)g(ϕ(t, x)) dt. (5.2)

We note that, for any value of a > 0, the map x �→ p(x) has exactly five invariant lines in the 
set {x2 ≥ 0} corresponding to the values of θ = 0, π/4, π/2, 3π/4, π .

It is straightforward to check that, taking a > 0 big enough, there exists � > 0 small enough 
and a norm in R2 such that p satisfies H1, H3 in V� with the usual Euclidean norm ‖v‖ =√

v2
1 + v2

2 .
Moreover, a simple computation shows that 0 < Ap < bp = a. We recall that these constants 

were defined in (2.4).
Using polar coordinates (r, θ) in the (x1, x2)-plane, q1 and g have the simpler expressions

q1(r) = br4, g(r, θ) = 2r6 sin 4θ.

In what follows we will write with the same letter a function f (x) and its expression in polar 
coordinates f (r, θ) = f (r cos θ, r sin θ).

The stable manifold over V of the origin (which exists and it is C1) is the graph of y = h(x)

with h given in (5.2). Let ϕ(t; r, θ) be the flow associated to (5.1) in polar coordinates. We denote 
ϕr and ϕθ the first and second component respectively of ϕ when written in polar coordinates. 
Then

h(x) = 2

0∫
∞

[My(t, x)]−1[ϕr(t; r, θ)
]6 sin(4ϕθ (t; r, θ)) dt

with My the solution of the linear system Ṁy = b(ϕr(t; r, θ))4My such that My(0, r, θ) = 1.
We first note that, if θ = π/4, π/2, 3π/4 (that is, x belongs to an invariant line), then 

ϕθ (t; r, θ) = θ and consequently sin(4ϕθ (t; r, θ)) ≡ 0. This implies that the stable manifold 
evaluated at points with argument θ = π/4, π/2, 3π/4 is h(x) ≡ 0. If the argument of x, 
θ 
= π/4, π/2, 3π/4,

h(x) = 4cθ r
6

0∫
∞

1(
1 + 4atr4)

b
4a

+ 6
4 − 1

a · [c2
θ + (

1 + 4atr4)
2
a

] dt,

where

cθ = 1 + cos(4θ)

sin(4θ)
= x2

1 − x2
2

2x1x2
= cx

and (r, θ) are the polar coordinates of x = (x1, x2). In particular, if θ = π/4, 3π/4, then cx ≡ 0
and hence the above expression for h is also valid in these invariant lines.
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We perform the change of variables (1 + 4atr4)2/a = c2
x/w and we obtain that

h(x) = −cx

x2
1 + x2

2

4|cx |a
( b

4a
+ 6

4 + 1
a
−1

)
c2
x∫

0

w
a
2
( b

4a
+ 6

4 + 1
a
−1

)
w(w + 1)

dw.

Now we take m, n as in the claim and choose a, b accordingly. Then

h(x) = −x2
1 + x2

2

4c2m−1
x

c2
x∫

0

wm−1

w + 1
dw.

Using the elementary identity

wm−1

w + 1
=

m∑
j=2

(−1)jwm−j + (−1)m+1

w + 1
,

we obtain

h(x) = −x2
1 + x2

2

4c2m−1
x

⎛⎝ m∑
j=2

(−1)j
c

2(m−j+1)
x

m − j + 1
+ (−1)m+1 log(c2

x + 1)

⎞⎠ .

Now we are going to look for the differentiability of h at points of the form (0, x2), x2 
= 0. To 
determine the regularity with respect to x1, we only need to study the auxiliary function

h̃(x) = x2m−1
1

⎛⎝ m∑
j=2

(−1)j
x

−2(m−j+1)
1

m − j + 1
+ (−1)m+1 log

(
1

x2
1

+ 1

)⎞⎠ .

This function is only 2m − 2 ≥ 1 times differentiable. �
6. Decomposition of V�

In this section we describe a decomposition of the set V� associated to a map of the form 
R(x) = x + p(x, 0) + O(‖x‖N+1). Moreover we will obtain a quantitative estimate of the rate 
of convergence of ‖Rk(x)‖ to 0 as k → ∞.

We introduce the constant

α = 1

N − 1
.

For a given � > 0, let u > 0 and a0 > 0 be such that a0u
−α = �. Consider two sequences ak ∈R, 

k ≥ 0 and bk ∈R, k ≥ 1, such that

bk+1
α

<
ak

α
, k ≥ 0. (6.1)
(u + k + 1) (u + k)
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We introduce the sets

Vk =
{
x ∈ V� : ‖x‖ ∈ Ik :=

[
bk+1

(u + k + 1)α
,

ak

(u + k)α

]}
. (6.2)

Lemma 6.1. Let p be the homogeneous polynomial defined in (2.1). Let R : V� → Rn be a 
continuous map such that R(x) − x − p(x, 0) =O(‖x‖N+1).

Assume that p satisfies H1 and H3 and let ap ≤ bp be the constants defined in (2.4).
Then for any a < ap and b > bp , there exists � small enough such that

(1) if x ∈ V� ,

‖R(x) − x‖ ≤ b‖x‖N, ‖R(x)‖ ≤ ‖x‖(1 − a‖x‖N−1).
(2) Let a0, b0, u > 0 be such that aN−1

0 = αa−1, bN−1
0 = αb−1 and a0u

−α = �. There exist two 
sequences ak, bk ∈ R, satisfying (6.1), such that ak = a0

(
1 +O(k−β)

)
, bk = b0

(
1 +O(k−β)

)
for some β > 0. Moreover

V�\{0} =
∞⋃

k=0

Vk and R(Vk) ⊂ Vk+1. (6.3)

Consequently, if x ∈ Vk , then one has that

α

b(u + k + 1 + j)

(
1 +O(k−β)

)≤ ‖Rj (x)‖N−1 ≤ α

a(u + k + j)

(
1 +O(k−β)

)
.

Proof. The proof of item (1) is straightforward from the definitions of ap and bp .
Now we check (2). We define the auxiliary functions of real variable, Ra(v) = v − avN and 

Rb(v) = v − bvN . We first observe that, if � is small enough,

Rb(‖x‖) ≤ ‖R(x)‖ ≤ Ra(‖x‖).
Indeed, the right hand side inequality follows from the definition of a and the left hand side 
inequality is a straightforward consequence of the definition of b and the triangular inequality 
‖R(x)‖ ≥ ‖x‖ − ‖R(x) − x‖.

For k ≥ 0 we define the sequences ak, bk by the recurrences

ak+1

(u + k + 1)α
=Ra

(
ak

(u + k)α

)
,

bk+1

(u + k + 1)α
=Rb

(
bk

(u + k)α

)
, k ≥ 0,

and also āk, b̄k by

āk = ak

(u + k)α
, b̄k = bk

(u + k)α
, k ≥ 0.

We have that a < b. We choose � small enough such that both Ra and Rb are monotonically 
increasing functions in [0, �] and 0 < Rb(v) < Ra(v) < v, for v ∈ (0, �]. From the choice of 
a0, b0 we have b̄0 < ā0 and ā0 = �. We easily check by induction
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0 < b̄k < āk, āk+1 < āk, b̄k+1 < b̄k and lim
k→∞(ā2

k + b̄2
k) = 0.

As an immediate consequence, the sets Vk in (6.2) are well defined for this choice of sequences 
bk and ak and, in addition, equality (6.3) holds. Moreover, we note that if u ∈ Il = [b̄l+1, āl], 
then, by the definition of the sequences āk, b̄k , since Ra and Rb are increasing functions in 
[0, �] and Rb(v) ≤ Ra(v),

Ra(v) ∈ [Ra(b̄l+1),Ra(āl)] ⊂ [Rb(b̄l+1),Ra(āl)] = [b̄l+2, āl+1] = Il+1,

Rb(v) ∈ [Rb(b̄l+1),Rb(āl)] ⊂ [Rb(b̄l+1),Ra(āl)] = [b̄l+2, āl+1] = Il+1.

Therefore, if x ∈ Vl (which is equivalent to ‖x‖ ∈ Il), then R(x) ∈ Il+1 since Rb(‖x‖) ≤
‖R(x)‖ ≤ Ra(‖x‖).

In [3] it was proven that there exist two analytic function ϕa, ϕb of the form

ϕa(w) = a0

wα
+O

(
1

wα+β

)
, ϕb(w) = b0

wα
+O

(
1

wα+β

)
(6.4)

with β > 0 which conjugate both Ra and Rb to w �→ w + 1, namely

Ra(ϕa(w)) = ϕa(w + 1), Rb(ϕb(w)) = ϕb(w + 1). (6.5)

Let wa
k , wb

k be such that ϕa(w
a
k )(u + k)α = ak and ϕb(w

b
k )(u + k)α = bk . We observe that, by 

definition of ak, bk and (6.5)

ϕa(w
a
k ) = ak

(u + k)α
=Ra

(
ak−1

(u + k − 1)α

)
=Ra(ϕa(w

a
k−1)) = ϕa(w

a
k−1 + 1)

which implies (by the injective property of ϕa) that wa
k = wa

k−1 + 1 = wa
0 + k. Analogously one 

can see that wb
k = wb

0 + k. Now we notice that, by the form (6.4) of ϕa, ϕb , one has that

wa
0 = u +O(u1−β), wb

0 = u +O(u1−β).

Therefore,

ak = (u + k)αϕa(w
a
k ) = (u + k)αϕa(w

a
0 + k)

= a0(u + k)α[
u + k +O(u1−β)

]α +O
(

(u + k)α[
u + k +O(u1−β)

]α+β

)

= a0[
1 +O

(
u1−β(u + k)−1

)]α +O
(

1

(u + k)β
[
1 +O

(
u1−β(u + k)−1

)]α+β

)

= a0 +O
(

1

(u + k)β

)
.

Analogously, one checks that bk = b0 + O((u + k)−β) and the proof of the lemma is con-
cluded. �
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Remark 6.2. Note that as a simple consequence of this technical lemma, we have that for x ∈ V� , 
Rk(x) → 0 as k → ∞. Hence, if we are able to prove the existence of a parametrization K
satisfying the invariance equation F ◦ K − K ◦R = 0, since Fk(K(x)) = K(Rk(x)), the image 
of K will represent a subset of the stable invariant manifold.

7. The invariant manifold. The differentiable case

In this section we prove Theorem 2.4 in the differentiable case. This is accomplished by 
stating and solving a fixed point equation in some appropriate Banach spaces. The proof follows 
along the same lines of the equivalent result in [3], but there are technical differences that prevent 
to apply directly that proof. However, these differences are not important enough to justify the 
inclusion of the whole proof. For this reason, in this section we include a series of technical 
lemmas, equivalent to those in [3], with the suitable hypothesis in our current case. We sketch 
their proofs when they are different enough from their counterpart in [3]. The existence of the 
manifold follows directly from this set of lemmas.

Along this section we will assume that all the hypotheses of Theorem 2.4 hold. We will denote 
by C a positive constant which may take different values at different places.

7.1. Preliminary facts

We take � ∈ N such that �0 < � ≤ r with �0 introduced in (2.5) and we decompose our map 
F into

F(x, y) = P(x, y) + G�(x, y),

where P is the Taylor expansion of F up to degree � − 1 and G�(x) = o(‖x‖�−1). In fact, 
since � ≤ r , we actually have that G�(x) = O(‖x‖�). By hypothesis, there exist K≤ and R, Cr≤

functions such that

P ◦ K≤ − K≤ ◦ R = T �, T �(x) =O(‖x‖�). (7.1)

Since P is a polynomial and K≤, R satisfy item (c) in Theorem 2.4, the remainder T � satisfies

DjT �(x) =O(‖x‖�−j ), j = 0, · · · , r≤.

Finally, using that DjG� is the Taylor’s remainder of DjF ,

DjG�(x, y) =O(‖(x, y)‖�−j ), j = 0, · · · , r.

We will use these simple facts without special mention.
As a consequence of (7.1), the purpose of this section is to prove that there is only one solution 

K> of

F ◦ (K≤ + K>) − (K≤ + K>) ◦ R = 0. (7.2)

We will see that equation (7.2) can be rewritten as a fixed point equation. Then, a solution of this 
fixed point equation will be found.
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7.2. The Banach spaces and the main statement

Given E a Banach space, we will denote

X ν
k (E) = {h : V� ⊂ Rn → E : h ∈ Cν, max

0≤j≤ν
sup
x∈V�

‖Djh(x)‖
‖x‖k−jη

< ∞}

with η = 1 − L + N defined in (2.2). This quantity was already introduced in [3], jointly with 
a motivating example showing that, if K>(x) = O(‖x‖k), then DK>(x) is not necessarily 
O(‖x‖k−1).

With this definition, if h ∈ X ν
k (E), then Dh ∈ X ν−1

k−η (L(Rn; E)). Thus we understand by 

‖Djh(x)‖ the norm of the j -linear map induced by the norm in E.
We endow X ν

k with the norm

‖h‖ν,k = max
0≤j≤ν

sup
x∈V�

‖Djh(x)‖
‖x‖k−jη

and it becomes a Banach space. We denote by Bν
k (ς) ⊂ X ν

k the open ball of radius ς .

Proposition 7.1. Assume all the conditions in Theorem 2.4. Let � ∈ N be such that �0 < � ≤ r

(the case r = ∞ is included). Then there exists ς∗ > 0 such that for any ς ≥ ς∗ there exists 
� small enough such that equation (7.2) has a unique solution K> : V� → Rn+m belonging to 

Br>
�

�−N+1(ς) with r>
� ≤ min{r, r≤} and satisfying

r>
� max

{
η − Ap

dp

,0

}
< � − N + 1 − Bp

ap

.

Note that when ηdp ≤ Ap , the maximum differentiability degree is r>
� = min{r, r≤}. In addi-

tion r> = r>
� for � = r is the value stated in Theorem 2.4.

In the next sections we prove this proposition by using the same scheme as in [3].
Next proposition proves the uniqueness statement of Theorem 2.4. This proposition ends the 

proof of Theorem 2.4 in the differentiable case.

Proposition 7.2. Assume the hypotheses of Proposition 7.1. We denote by �∗ > 0 the correspond-
ing quantity provided in Proposition 7.1 for the radius ς∗. Then equation (7.2) has a unique 

solution K> : V�∗ → Rn in X r>
�

�−N+1.

Proof. Let K1 = K≤ + K>
1 and K2 = K≤ + K>

2 be two solutions of the invariance equation 

F ◦ K = K ◦ R with K>
1 , K>

2 ∈ X r>
�

�−N+1. We denote by V�0 their common domain (all the 
suprema will be taken in this domain) and we consider

ς = ς∗ + max{‖K>
1 ‖r>

� ,�−N+1,‖K>
2 ‖r>

� ,�−N+1} > ς∗.

By Proposition 7.1, there exists � ≤ �0 small enough and a unique function K> : V� → Rn+m, 

belonging to X r>
� with norm ‖K>‖r>,�−N+1 ≤ ς . Since, for i = 1, 2, ‖K>‖r>,�−N+1 < ς
�−N+1 � i �
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they have to coincide in V�. In addition, we can extend K> to V�∗ by using the invariance 
equation. Indeed, let K = K≤ + K>. First, we notice that by (2) of Lemma 6.1, there exists k

such that Rk(V�∗\V�) ⊂ V� . Second, the relation K = F−k ◦ K ◦ Rk extends K to V�∗ and the 
result is proven. �

In Rn+m we will use the norm

‖(x, y)‖ = max{‖x‖,‖y‖}, (x, y) ∈Rn+m, (7.3)

where the chosen norms in Rn and Rm are such that hypotheses H1, H2, and H3 hold.

7.3. A compilation of technical lemmas

The lemmas in this section are the translation to our current setting of the lemmas in [3].
We first present the following elementary properties of the Banach spaces X ν

k .

Lemma 7.3. The Banach spaces X ν
k satisfy:

(1) Let f (x) ∈ L(X1, X2) with f ∈ X ν
k and g(x) ∈ X1 with g ∈ X ν

l , then f · g ∈ X ν
k+l and 

‖f · g‖ν,k+l ≤ 2ν‖f ‖ν,k‖g‖ν,l .
(2) Let f : U ⊂ Rn+m → E be a Cν map, with E a Banach space, such that ‖Dlf (x)‖ =

O(‖x‖j−l ) for all 0 ≤ l ≤ ν. Then, for any map g : V� → U such that g ∈ X i
1 for some 

0 ≤ i ≤ ν we have that f ◦ g ∈ X i
j .

For any a < ap, b > bp , we define the auxiliary constant

d =
{

a, if Ap ≤ 0,

b, otherwise.

From now on we fix values a < ap , b > bp and B > Bp such that if either a) Ap > ηdp , or b) 
dp < Ap < ηdp or c) Ap < dp then a) Ap > ηd , b) d < Ap < ηd or c) Ap < d respectively. We 
also choose the constants a, b such that the cases Ap = ηd or Ap = d can be skipped even when 
either Ap = ηdp = ηbp or Ap = dp respectively. Below we introduce k0 and we further impose 
that

�0 < k0 := N − 1 + B

a
+ max

{
η − Ap

d
,0

}
< � ≤ r,

� − N + 1 − B

a
− r>

� max

{
η − Ap

d
,0

}
> 0.

(7.4)

The first property holds because �0 < � ≤ r . The second one holds by the definition of r>
� in 

Proposition 7.1. The constant k0 depends on the values a, b, B but it can be chosen arbitrarily 
close to �0 (see (2.5) for the definition of �0).
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7.3.1. Scaling
We perform a scaling in the y-variables by the change Sδ(x, y) = (x, δy). Then, equa-

tions (7.1) and (7.2) become

P̃ ◦ K̃≤ − K̃≤ ◦ R = T̃� (7.5)

and

F̃ ◦ (K̃≤ + K̃>) − (K̃≤ + K̃>) ◦ R = 0, (7.6)

where P̃ = S−1
δ ◦ P ◦ Sδ , F̃ = S−1

δ ◦ F ◦ Sδ , K̃≤ = S−1
δ ◦ K≤ and K̃> = S−1

δ ◦ K>.
We observe that

P̃x(x, y) = x + p(x,0) + p(x, δy) − p(x,0) + f̂ (x, δy),

where, by hypothesis, p̃(x, y) = p(x, δy) − p(x, 0) is a homogeneous polynomial of degree N

and f̂ (x, δy) = O(‖(x, δy)‖N+1). We have that p̃(x, y) = p̂N−1(x, y)y, where

p̂N−1(x, y) = δ

1∫
0

Dyp(x, τδy) dτ

is a matrix whose coefficients are homogeneous polynomials of degree N − 1. It satisfies 
p̂N−1(x, 0) = δDyp(x, 0).

Lemma 7.4. With B given in (7.4), there exist �, δ > 0 small enough such that

‖(DP̃ )−1(K̃≤(x))‖ ≤ 1 + B‖x‖N−1, for all x ∈ V�.

Proof. The proof of this lemma is analogous to Lemma 4.5 in [3]. However, we sketch it. Let 
� > 0 be such that �1/2δ−1 < 1. Taking into account the above considerations about the scaling, 
the norm of the matrix (DP̃ )−1(K̃≤(x)) is

‖(DP̃ )−1(K̃≤(x))‖ ≤ max{1 + (Bp +O(�) +O(δ))‖x‖N−1,1 − (Bq +O(δ−1�))‖x‖M−1}.
Recall that we are using in Rn the norm given in (7.3). Since �1/2δ−1 < 1, taking �, δ small 
enough, the constant B in (7.4) satisfies

‖(DP̃ )−1(K̃≤(x))‖ ≤ max{1 + B‖x‖N−1,1 − (Bq +O(�1/2))‖x‖M−1}.
To obtain the result, we need to check that B‖x‖N−1 ≥ −(Bq +O(�1/2))‖x‖M−1. If N 
= M , the 
result follows from H2 and the smallness of �. The case N = M , follows from −Bq +O(�1/2) <
Nap + O(�1/2) ≤ Bp +O(�1/2), by H2 and Lemma 2.1. Again taking � small enough, we are 
done. �

From now on, we suppress the “tilde” from the scaled functions.
We fix δ, � > 0 small enough and a, b, B in (7.4) such that the conclusions of Lemma 6.1

applied to R and Lemma 7.4 hold true.
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7.3.2. Weak contraction of the nonlinear terms
Since the fixed point is parabolic there is no contraction from the linear part of the map at the 

point. In the following lemma we measure the contraction provided by the nonlinear terms.

Lemma 7.5. Let Vk ⊂ V� be the sets defined in (6.2). There exists a constant C > 0, depending 
only on δ, � and � (which are fixed a priori), such that for any k ≥ 0, x ∈ Vk and i ≥ 0

i∏
m=0

‖(DP )−1(K≤(Rm(x)))‖ ≤ C

(
u + k + i

u + k

)αBa−1

, (7.7)

‖D[(DP )−1 ◦ K≤](x)‖ ≤ C(u + k)−α(L−2), (7.8)

‖DRi(x)‖ ≤
i−1∏
m=0

‖DR ◦ Rm(x)‖ ≤ C

(
u + k

u + k + i

)αApd−1

. (7.9)

Finally, if Ap < d

‖D2Ri(x)‖ ≤ C(u + k + i)α
(

u + k

u + k + i

)2αApd−1

(7.10)

and in the case Ap > d = b

‖D2Ri(x)‖ ≤ C(u + k)α
(

u + k

u + k + i

)αApd−1

. (7.11)

Remark 7.6. The proof of this lemma is analogous to the one of Lemma 4.6 in [3] using the esti-
mates for ‖Ri(x)‖ given in Lemma 6.1. However, the exponents in inequalities (7.7), (7.9)–(7.11)
are different from their counterpart in [3] due to the fact that here the invariant manifold is not 
one dimensional. In particular, the constant analogous to Apd−1 was exactly N in [3]. We also 
are forced to separate the cases Ap < d and Ap > d in the bound of ‖D2Rj (x)‖.

Proof. We begin with (7.7). By Lemma 6.1, if x ∈ Vk , then Rm(x) ∈ Vk+m. Therefore, using 
Lemma 7.4 and item (2) of Lemma 6.1 we have that

‖(DP )−1(K≤(Rm(x)))‖ ≤ 1 + αB

a(u + k + m)

(
1 +O((k + m)−β)

)
,

for x ∈ Vk . Then, since

i∑
m=0

log
(
‖(DP )−1(K≤(Rm(x)))‖

)
≤

i∑
m=0

log

(
1 + αB

a(u + k + m)

(
1 +O((k + m)−β)

))

= αB

a

i∑ 1

u + k + m

(
1 +O((k + m)−β)

)

m=0
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= αB

a

[
log

(
u + k + i

u + k

)
+O(k−β)

]
,

and (7.7) is proven.
Bound (7.8) is a straightforward computation. To prove estimate (7.9) we first notice that since 

R(x) = x + p(x, 0) +O(‖x‖N+1), by Lemma 6.1, if x ∈ Vk ,

‖DR(x)‖ ≤ 1 − αAp

d(u + k)
+ C

(u + k)1+β
.

Then, using again Lemma 6.1,

‖DRi(x)‖ ≤
i−1∏
m=0

‖DR ◦ Rm(x)‖ ≤
i−1∏
m=0

(
1 − αAp

d(u + k + m)
+ C

(u + k + m)1+β

)
.

Finally, estimate (7.9) follows from the fact that

i−1∑
m=0

log

(
1 − αAp

d(u + k + m)
+ C

(u + k + m)1+β

)
≤ αAp

d
log

(
u + k

u + k + i

)
+ C

(u + k)1+β
.

To bound ‖D2Ri(x)‖ we first note that

‖D2Ri(x)‖ = ‖D(

i−1∏
m=0

DR ◦ Rm)‖ ≤
i−1∑
m=0

‖D2R ◦ Rm‖‖DRm‖
i−1∏
l=0

‖DR ◦ Rl‖‖DR ◦ Rm‖−1.

Then, taking into account that ‖DR ◦ Rm(x)‖ ≥ 1/2 and that,

‖D2R(Rm(x))‖ ≤ C‖Rm(x)‖N−2,

using again 6.1 of Lemma 6.1, we have that

‖D2Ri(x)‖ ≤C

i−1∏
l=0

‖DR ◦ Rl‖
i−1∑
m=0

‖Rm(x)‖N−2‖DRm‖

≤C

i−1∏
l=0

‖DR ◦ Rl‖
i−1∑
m=0

(u + k)αApd−1

(u + k + m)αApd−1+α(N−2)
.

Now we distinguish two cases. First, when Ap > d = b, we have αApd−1 + α(N − 2) > 1 and 
then

i−1∑
m=0

(u + k)αApd−1

(u + k + m)αApd−1+α(N−2)
≤ C(u + k)α.

This bound together with (7.9), implies (7.11) in this case. On the other hand, when Ap < d ,
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i−1∑
m=0

(u + k)αApd−1

(u + k + m)αApd−1+α(N−2)
≤ C(u + k)α(u + k + i)α(1−Apd−1)

and, using again (7.9), we get (7.10). �
7.3.3. Operators for higher order derivatives and their inverses

Now we proceed to rewrite equation (7.6), which we recall here

F ◦ (K≤ + K>) − (K≤ + K>) ◦ R = 0, (7.12)

as a fixed point equation. We emphasize that we have skipped the symbol ˜ of our notation, 
although we work with the rescaled map. That is, since K≤ satisfies (7.5): P ◦ K≤ − K≤ ◦ R =
T �, K> has to satisfy

(
DP ◦ K≤)K> − K> ◦ R =

− T � − G� ◦ (K≤ + K>
)− P ◦ (K≤ + K>

)+ P ◦ K≤ + (
DP ◦ K≤)K>.

To shorten the notation, we introduce the operators

L0(S) = (
DP ◦ K≤)S − S ◦ R (7.13)

and

F(K) = −T � − G� ◦ (K≤ + K
)− P ◦ (K≤ + K

)+ P ◦ K≤ + (
DP ◦ K≤)K. (7.14)

Then equation (7.12) for K> can be rewritten as

L0(K>) =F(K>). (7.15)

The formal inverse of L0 is

S0(T ) =
∞∑
i=0

[
i∏

m=0

(
DP)−1 ◦ K≤ ◦ Rm

]
T ◦ Ri (7.16)

and consequently, we can formally write equation (7.15) as the fixed point equation

K> = S0 ◦F(K>). (7.17)

Following the same arguments as the ones in the proof of Lemma 4.9 in [3], one can check that 
the operator S0 : X 0

� → X 0
�−N+1 is continuous. Therefore, the operator L0, introduced in (7.13), 

is suitable to prove the existence of a continuous invariant manifold. In order to obtain the higher 
order derivatives, we introduce the operators

Lj (S) = (
DP ◦ K≤)S − S ◦ R(DR)j , j ≥ 1.
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The key property is that if S is a Cν solution of L0(S) = T , with T a Cν function, then DjS is a 
solution of

Lj (H) = T j , 0 ≤ j ≤ ν,

where T j is defined by the recurrence relation

T 0 = T ,

T j+1 = DT j − D(DP ◦ K≤)DjS + jDjS ◦ R(DR)j−1D2R.

Recall the parameters L = min{N, M} and η = 1 + N − L defined in (2.2). The following 
lemma is analogous to Lemma 4.7 in [3], with an appropriate change in the hypothesis.

Lemma 7.7. Let � > N − 1 + Ba−1 and j ≥ 0 be such that

� − N + 1 − B

a
− j

(
η − Ap

d

)
> 0.

Then, the operators Lj : X 0
�−N+1−jη → C0, j ≥ 0, are well defined, continuous and one to one.

Proof. Since R(x) = x +p(x, 0) +O(‖x‖N+1), N ≥ 2, and ap > 0, ‖R(x)‖ ≤ ‖x‖ and then Lj

is well defined and continuous.
Let j ≥ 0 and S ∈X 0

�−N+1−jη be such that Lj (S) = 0, that is, S = (
DP ◦K≤)−1

S ◦R(DR)j , 
or, using this condition iteratively,

S =
(

i∏
m=0

(
DP

)−1 ◦ K≤ ◦ Rm

)
S ◦ Ri+1(DRi+1)j , i ≥ 0.

Now, using that ‖S ◦ Ri+1(x)‖ ≤ C‖S‖0,�−N+1−jη‖Ri+1(x)‖�−N+1−jη and Lemmas 6.1
and 7.5, we obtain that, for x ∈ Vk ,

‖S(x)‖ ≤ C‖S‖0,�−N+1−jη

(u + k)α(jApd−1−Ba−1)

(u + k + i)α(�−N+1−Ba−1−j (η−Apd−1))
.

By hypothesis, the right hand side of the above expression tends to 0 when i tends to ∞, which 
implies that S = 0 and, consequently, that Lj is one to one. �

A formal inverse of the operator Lj obtained recursively from Lj (S) = T is given by the 
formula

Sj (T ) =
∑
i≥0

(
i∏

m=0

(DP )−1 ◦ K≤ ◦ Rm

)
T ◦ Ri · (DRi)j . (7.18)

Notice that Sj acts on j -linear maps. If this formula is absolutely convergent, it is a simple 
computation to check that Lj (Sj (T )) = T .
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In the next lemma, equivalent to Lemma 4.9 in [3] with adjusted hypotheses, we check that 
Sj is indeed well defined and bounded between appropriate spaces.

Lemma 7.8. Assume that � > N − 1 + Ba−1 and that j ≥ 0 satisfies

� − N + 1 − B

a
− j

(
η − Ap

d

)
> 0.

Then the operator Sj : X 0
�−jη → X 0

�−jη−N+1 is well defined and bounded. Also we have Lj ◦
Sj = Id on X 0

�−jη.
Moreover, if � > k0, with k0 defined in (7.4) and j ≥ 0 is such that

� − k0 − j

(
η − Ap

d

)
> 0,

the operator Sj : X 1
�−jη → X 1

�−jη−N+1 is well defined and

D
(
Sj (T )

)
= Sj+1(T̃ ), if T ∈X 1

�−jη,

where

T̃ = DT − D(DP ◦ K≤)Sj (T ) + jSj (T ) ◦ R(DR)j−1D2R.

Proof. Let T ∈ X 0
�−jη and S = Sj (T ). Following the same lines as the ones in the proof of 

Lemma 4.9 in [3], a direct computation shows that, for x ∈ Vk ,

‖S(x)‖ ≤ C‖T ‖0,�−jη

∑
i≥0

(u + k)α(jApd−1−Ba−1)

(u + k + i)α(�−j (η−Apd−1)−Ba−1)
.

Therefore, since by hypothesis α(� − j (η − Apd−1) − Ba−1) > 1, if x ∈ Vk ,

‖S(x)‖ ≤ C‖T ‖0,�−jη(u + k)−α(�−jη−N+1) ≤ C‖x‖�−jη−N+1‖T ‖0,�−jη.

Hence ‖S‖0,�−jη−N+1 ≤ ‖T ‖0,�−jη , that is, Sj : X 0
�−jη → X 0

�−jη−N+1 is well defined and 

bounded. It also proves that Lj ◦ Sj = Id on X 0
�−jη.

Following the proof of Lemma 4.9 in [3], we argue that, if Sj (T ) is differentiable and its 
derivative belongs to X 0

�−(j+1)η−N+1, then DSj (T ) = Sj+1(T̃ ). The trick is to check that both 

are solutions of the same equation Lj+1(H) = T̃ belonging to X 0
�−(j+1)η−N+1. Indeed, first we 

note that if T ∈ X 1
�−jη , then T̃ ∈ X 0

�−(j+1)η provided DT ∈ X 0
�−(j+1)η , D(DP ◦ K≤) ∈ X 0

L−2, 

D2R ∈ X 0
N−2 and the definition of η. This implies that Sj+1(T̃ ) ∈ X 0

�−(j+1)η−N+1. It only 

remains to check that D(Sj (T )) is a solution of Lj+1(H) = T̃ which can be proven by 
taking derivatives in Lj (Sj (T )) = T . Hence the uniqueness result, Lemma 7.7, proves that 
D(Sj (T )) = Sj+1(T̃ ).
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Now we prove that Sj (T ) is differentiable and belongs to X 0
�−(j+1)η−N+1. In order to do so, 

we take derivatives formally in (7.18). We have D(Sj (T )) = S1 + S2 + S3, where

S1 =
∑
i≥0

(
i∏

m=0

(DP )−1 ◦ K≤ ◦ Rm

)
DT ◦ Ri(DRi)j+1,

S2 =
∑
i≥0

(
i∏

m=0

(DP )−1 ◦ K≤ ◦ Rm

)
T ◦ Rij (DRi)j−1D2Ri,

S3 =
∑
i≥0

i∑
m=0

(
m−1∏
l=0

(DP )−1 ◦ K≤ ◦ Rl

)
D
(
(DP )−1 ◦ K≤ ◦ Rm

)

×
(

i∏
l=m+1

(DP )−1 ◦ K≤ ◦ Rl

)
T ◦ Ri(DRi)j ,

and check that the above expressions are absolutely convergent, belong to X 0
�−(j+1)η−N+1 and 

are bounded.
Since DT ∈ X 0

�−(j+1)η, then, by the first part of the lemma, S1 = Sj+1(DT ) belongs to 

X 0
�−(j+1)η−N+1 and we are done with S1.
Next we deal with S2. Let x ∈ Vk . Assume that Ap > d = b. Then, by Lemma 7.5, we have 

that:

‖S2(x)‖ ≤ C‖T ‖1,�−jη

∑
i≥0

(u + k)α(jApd−1+1−Ba−1)

(u + k + i)α(�−j (η−Apd−1)−Ba−1)
.

Since � − j (η − Apd−1) − Ba−1 > N − 1, the sum is convergent and we obtain

‖S2(x)‖ ≤ C
‖T ‖1,�−jη

(u + k)α(�−jη−N)
= C‖x‖�−jη−N‖T ‖1,�−jη ≤ C‖x‖�−(j+1)η−N+1�η−1‖T ‖1,�−jη

which implies that S2 ∈X 0
�−N+1−(j+1)η . Here we have used that η ≥ 1. If Ap < b, then again by 

Lemma 7.5,

‖S2(x)‖ ≤ C‖T ‖1,�−jη

∑
i≥0

(u + k)α((j+1)Apd−1−Ba−1)

(u + k + i)α(�−(j+1)(η−Apd−1)−Ba−1+η−1)
.

Proceeding as in the previous case, one gets that ‖S2(x)‖ ≤ K‖x‖�−(j+1)η−N+1�η−1‖T ‖1,�−jη

and the study for S2 is finished.
Finally we consider S3. Using again Lemma 7.5, if x ∈ Vk we have that

‖S3(x)‖ ≤ C‖T ‖1,�−jη

∑ (u + k)α((j+1)Apd−1−Ba−1)

(u + k + i)α(�−j (η−Apd−1)−Ba−1)

i∑ 1

(u + k + m)1−α(η−Apd−1)
.

i≥0 m=0
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We have different estimates for the sum with respect to m if either Apd−1 ≤ η or Apd−1 > η. 
Nevertheless, the sum with respect to i is convergent provided � satisfies the current hypothesis. 
Performing straightforward computations, we obtain that

‖S3(x)‖ ≤ C
‖T ‖1,�−jη

(u + k)α(�−(j+1)η−N+1)
≤ C‖T ‖1,�−jη‖x‖�−(j+1)η−N+1

and the lemma is proven. �
The last result of this section is the following.

Proposition 7.9. Let r≤ be the differentiability degree of K≤ and R assumed in Theorem 2.4. 
Take � > N − 1 + Ba−1 and ν such that 0 ≤ ν ≤ r≤ and

� − N + 1 − B

a
− ν max

{
η − Ap

d
,0

}
> 0. (7.19)

Then,

S0 : X ν
� → X ν

�−N+1 and S1 :X ν
�−η → X ν

�−η−N+1

are bounded linear operators.

Proof. The proof of this proposition is analogous to the corresponding one Proposition 4.10 
in [3]. Let T ∈ X ν

� ⊂X 0
� . The key point of the proof is to deduce that

D[Sj−1(T j−1)] = Sj (T j ), 1 ≤ j ≤ ν, (7.20)

being {T j }0≤j≤ν the sequence defined inductively by

T 0 =T ,

T j+1 =DT j − D(DP ◦ K≤)Sj (T j ) + jSj (T j ) ◦ R(DR)j−1D2R,

for 0 ≤ j ≤ ν − 1. Indeed, one checks by induction that T j belongs to X 1
�−jη if j ≤ ν − 1. 

For j = ν we have that T ν ∈ X 0
�−νη and therefore, by Lemma 7.8, Sj (T j ) ∈ X 1

�−jη−N+1 and 

Sν(T ν) ∈ X 0
�−νη. Note that, if j ≤ ν − 1 with ν satisfying (7.19), then

� − k0 − j

(
η − Ap

d

)
≥ � − N + 1 − B

a
− (j + 1)max

{
η − Ap

d
,0

}
> 0.

Then, for j ≤ ν − 1, the results of Lemma 7.8 on the operators Sj : X 1
�−jη →X 1

�−jη−N+1 apply.

Applying iteratively (7.20) we have that Dj [S0(T )] = Sj (T j ) ∈ X 0
�−jη−N+1, for j ≤ ν and, 

hence, S0(T ) ∈ X ν
�−N+1.

Finally, to prove that the operator S0 : X ν
� → X ν

�−N+1 is bounded, we refer the reader to [3], 
Proposition 4.10. The proof that S1 : X ν

�−η → X ν
�−η−N+1 is also bounded is very similar to the 

one for S0. �
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7.4. End of the proof of Proposition 7.1. Fixed point equation

Using Proposition 7.9 we are able to prove that the fixed point equation (7.17),

K> = S0 ◦F(K>), (7.21)

is well defined in the appropriate Banach spaces and it is a contraction. Concretely, we prove 
Proposition 7.1. That is, that there exists a unique solution K> of equation (7.21) belonging to 

X r>
�

�−N+1 for any �0 < � ≤ r . To do so, we follow the same steps as the ones in Section 4.10 
of [3]. We sketch them without proofs, only given the essential information. The main tool is 
Lemma 7.3.

Let � > 0 be such that all the results in Sections 7.3.3 and 7.3.2 are valid. Recall that we 
settled this quantity at the end of Section 7.3.1 satisfying the results in Section 6 and (7.4) for 
a, b and B .

Since F(0) = −T � − G� ◦ K≤, using that T � and G� are Cr functions, that K≤ is a Cr≤

function and the definition of r>
� , we have that F(0) ∈ Cmin{r,r≤} ⊂ Cr>

� . Then F(0) ∈ X r>
�

� and, 

since ν = r>
� satisfies the condition stated in Proposition 7.9, see (7.4), S0 ◦F(0) ∈ X r>

�

�−N+1. We 
also have that

‖S0 ◦F(0)‖r>
� ,�−N+1‖ ≤ ‖S0‖(‖T �‖r>

� ,� + ‖G� ◦ K≤‖r>
� ,�

)=: ς∗
2

.

Since the domain of K≤ is V� ⊂ V�0 we will work with this domain in the spaces X ν
k .

We will find the solution K> of equation (7.21) in Br>
� −1,ς

�−N+1 ⊂ X r>
� −1

�−N+1, the ball of radius 

ς ≥ ς∗. First we note that for any ς ≥ ς∗ there exists �′ small enough such that if K> ∈ Br>
� −1,ς

�−N+1
and x ∈ V�′ , then (K≤ +K>)(x) ∈ U , the domain of F . Indeed, we deduce this property because 
U is an open set, dist(V�′ , ∂U) > 0 and ‖(K≤ + K>)(x) − x‖ ≤ C(�′)2 with C > 0 a constant. 
Note that �′ depends on ς , � and K≤.

As usual in the differentiable case, we first prove the existence of a solution belonging to 

Cr>
� −1 defined on V�′ . To do so, it only remains to check that the operator F : Br>

� −1,ς

�−N+1 →X r>
� −1

�−N+1
is a contraction. The proof of this result follows from the analogous result in [3] and in fact we 
obtain the same bound for the Lipschitz constant

lip(F) ≤ C(�′)�−2N−L,

with C independent of �′, but depending on ς and �.
As a consequence, equation (7.21) has a solution K> : V�′ → Rn+m. Applying the linear 

operator L0 we obtain that equation (7.15) has a unique differentiable solution K>. This implies 
that K = K≤ + K> and R are Cr>

� −1 solutions of the invariance equation (7.2).
Following the same arguments as the ones given in [3] we deduce that, if r = ∞ the 

parametrization K = K≤+K> is also a C∞ as well as R is. Moreover, the arguments to prove the 
sharp regularity can be also applied in this new context. Hence we obtain Cr>

� parametrizations.
Until now the function K = K≤ + K> is defined on V�′ with �′ ≤ �. However, since � is 

small enough to assure that R satisfies the conclusions of Lemma 6.1, we can use the invariance 
equation to extend the domain of K to V� as we did in the proof of Corollary 7.2. Indeed, let 
k ∈N be such that Rk(V�\V�′) ⊂ V�′ . Then K = F−k ◦ K ◦ Rk extends K to V� .
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Remark 7.10. We have proven that the domain V� of K and R depends on �, K≤ and on the 
constants a, b, B as well as ap, bp, Ap, Bp .

8. Dependence on parameters

In this section we prove Theorem 2.8 about the dependence of the invariant manifold on 
parameters. Along this section we will assume all the conditions stated in this theorem. We will 
proceed in a similar way as in the proof of Theorem 2.4.

8.1. Preliminary facts. Consequences of the previous results

As a consequence of Lemma 2.7, if Hypothesis Hλ holds true, then H1, H2 and H3 are sat-
isfied for any λ ∈ 	. Then, using Proposition 7.1 with � = r , we have that for any λ ∈ 	, there 
exists �λ such that the invariance equation

F(K≤(x,λ) + K>(x,λ),λ) − K≤(R(x,λ),λ) + K>(R(x,λ),λ) = 0

has a solution K>(·, λ) ∈ X r>
�

�−N+1 defined on V�λ . However we emphasize that

• the degree of differentiability r>
� does not depend on λ and

• �λ can be taken independent on λ provided the constants ap, bp, Ap, Bp, Bq are independent 
on the parameter (see Remark 7.10). Then K> is defined over V� × 	.

In addition, we already know that for any λ, K>(·, λ) is the unique solution belonging to X r>
�

�−N+1
of the fixed point equation (7.21):

K> = S0 ◦F(K>) (8.1)

being S0 and F defined by (7.16) and (7.14), respectively.
It is important to remark that all the functions involved, P, T �, G�, K≤, K, R, and T , de-

pend on both, x, λ, but, abusing notation, we only indicate the composition with respect to the 
x variable. For instance R2 means R(R(x, λ), λ) and G� ◦ (K≤ + K

)
means G�(K

≤(x, λ) +
K(x, λ), λ).

We restate Theorem 2.8 in a functional setting using the space C
σ,ν introduced in (2.13). We 
also introduce the Banach space

Yσ,ν
k = {

f : U × 	 → Rl : f ∈ C
σ,ν−σ max
i,j∈
σ,ν−σ

sup
(x,λ)∈U×	

‖Di
λD

j
xf (x,λ)‖

‖x‖k+i−(i+j)η
< ∞}

for ν ≥ σ , endowed with the norm

‖f ‖σ
ν,k = max

i,j∈
σ,ν−σ

sup
(x,λ)∈U×	

‖Di
λD

j
xf (x,λ)‖

‖x‖k+i−(i+j)η
.

Note that Yσ,ν+σ
k ⊂ C
σ,ν . The differentiability conclusions of Theorem 2.8 are a direct conse-

quence of the following proposition.
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Proposition 8.1. Assume all the conditions in Theorem 2.8. Let � ∈N be such that max{�0, �1} <
� ≤ r with �0 and �1 defined in (2.5) and (2.15) respectively. Then the solution K> : V� × 	 →
Rn+m of the fixed point equation (8.1) belongs to Ys>

� ,ν>
�

�−N+1 with ν>
� = r>

� + s>
� , r>

� ≤ min{r, r≤}, 
s>
� ≤ min{s, s≤} and

� − N + 1 − Bp

ap

− (ν>
� − i)max

{
η − Ap

dp

,0

}
− i(η − 1) > 0, 0 ≤ i ≤ s>

� .

The remaining part of this section is devoted to prove this result. The procedure is similar to 
the one we have followed in Section 7. First we study the product and composition of functions 
belonging to the functional spaces Yσ,ν

k . Then, we study the linear operator S0 defined on Yσ,ν
�

and, finally, we apply the fixed point theorem to obtain a solution K> of the fixed point equa-
tion (8.1) belonging to Yσ,ν

�−N+1 with appropriate values of σ and ν. With standard arguments we 
check the sharp regularity of the solutions.

8.2. Technical lemmas

Next lemma, whose proof we skip, is analogous to Lemma 7.3 for Yσ,ν
k .

Lemma 8.2. The Banach spaces Yσ,ν
k satisfy:

(1) Let f (x, λ) ∈ L(X1, X2) with f ∈ Yσ,ν
k and g(x, λ) ∈ X1 with g ∈ Yσ,ν

l , then f · g ∈ Yσ,ν
k+l

and ‖f · g‖σ
ν,k+l ≤ 2ν‖f ‖σ

ν,k‖g‖σ
ν,l .

(2) Let f : U × 	 ⊂ Rn+m+n′ → E be a C
σ,ν−σ map and E a Banach space such that 
‖Dl′

λDl
xf (x, λ)‖ = O(‖x‖j−l) for all (l′, l) ∈ 
σ,ν−σ . Then, for any map g : V� × 	 → U

such that g ∈ Y i′,i
1 for some (i′, i) ∈ 
σ,ν we have that f ◦ (g, Id ) ∈ Y i′,i

j .

We need to establish the dependence on λ of S0(K).

8.2.1. Differentiability with respect to λ of the linear operator S0

We first note that all the results stated in the previous sections are valid uniformly in λ ∈ 	

for functions belonging to Y0,ν
� . This is due to Hypothesis HP and to the fact that the constants 

ap, bp , etcetera, defined in (2.12) are independent of λ ∈ 	 and therefore, all the bounds in the 
previous sections are uniform with respect to λ ∈ 	. The uniformity with respect to λ ∈ 	 of 
Lemmas 7.5 and 7.7 and Proposition 7.9 is summarized in the following lemma.

Lemma 8.3. We have that:

(i) All the bounds in Lemma 7.5 hold true with constants C independent of λ ∈ 	.
(ii) Under the hypotheses of Lemma 7.7, the formula

L0(S) = (
DP ◦ K≤)S − S ◦ R

defines an operator L0 : Y0,0 → C0, continuous and one to one.
�−N+1
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(iii) If the conditions for ν, � of Proposition 7.9 are satisfied, then

S0 : Y0,ν
� → Y0,ν

�−N+1 and S1 : Y0,ν
�−η → Y0,ν

�−η−N+1

are bounded linear operators.

Now we state and prove the differentiability results with respect to the parameter λ.

Lemma 8.4. Let �, ν, σ be such that �0 < � ≤ r , σ ≤ s≤, 1 ≤ σ ≤ ν ≤ r≤ + s≤ and

� − N + 1 − B

a
− (ν − i)max

{
η − Ap

d
,0

}
− i(η − 1) > 0, 0 ≤ i ≤ σ. (8.2)

We have that:

(1) (Low order regularity) The linear operator S0 : Y1,ν
� → Y1,ν

�−N+1 is bounded if �, ν satisfy 
condition (8.2) with σ = 1. In addition,

DλS0(T ) = S0(T̃ ) (8.3)

with

T̃ = −Dλ(DP ◦ K≤)S0(T ) + Dx[S0(T )] ◦ R · DλR + DλT .

(2) (Higher order regularity) The linear operator S0 : Yσ,ν
� → Yσ,ν

�−N+1 is bounded.

Proof. We have to check first that for any T ∈ Y1,ν
�−N+1,

S0(T ) ∈ Y0,ν
�−N+1, DλS0(T ) ∈ Y0,ν−1

�−N+1−(η−1)
.

The first relation, which corresponds to σ = 0, follows from Lemma 8.3. To deal with the 
second one, we proceed as in the proof of Lemma 7.8. We take derivatives with respect to λ
formally and we check that the different factors we obtain, which will be infinite sums, are ab-
solutely convergent, belong to Y0,ν−1

�−N+1−(η−1)
and are bounded. Indeed, we formally decompose 

DλS0(T ) = S1 + S2 with

S1 =
∞∑
i=0

⎡⎣ i∏
j=0

(
DP)−1 ◦ K≤ ◦ Rj

⎤⎦[DλT ◦ Ri + (DxT ◦ Ri)DλR
i
]
,

S2 =
∞∑
i=0

i∑
m=0

(
m−1∏
l=0

(DP )−1 ◦ K≤ ◦ Rl

)
Dλ

(
(DP )−1 ◦ K≤ ◦ Rm

)

×
(

i∏
l=m+1

(DP )−1 ◦ K≤ ◦ Rl

)
T ◦ Ri.



5564 I. Baldomá et al. / J. Differential Equations 268 (2020) 5516–5573
It can be checked by induction that, if i ≥ 2,

DλR
i = DλR ◦ Ri−1 +

i−1∑
j=1

(DxR
j ◦ Ri−j )DλR ◦ Ri−j−1.

Therefore, from item (i) of Lemma 8.3, if (x, λ) ∈ Vk × 	,

‖DλR
i(x,λ)‖ ≤ C

(u + k + i)αN
+ C

(u + k + i)αApd−1

i−1∑
j=1

1

(u + k + j)α(N−Apd−1)

≤ C

(u + k + i)αApd−1
(u + k)α(N−Apd−1)−1

+ C

(u + k + i)αN−1

with C independent of λ. Then, if x ∈ Vk and λ ∈ 	, using the definition of S0,

‖S1(x,λ)‖ ≤ C‖S0(DλT )(x)‖ + C‖T ‖1
ν,�

1

(u + k)αBa−1

×
∞∑
i=0

(
(u + k)−α(1−Apd−1)

(u + k + i)α(�−η−Ba−1+Apd−1)
+ 1

(u + k + i)α(�−η−1)

)
≤ C‖T ‖1

ν,�(u + k)−α(�−N+1−(η−1)),

where we have used (iii) of Lemma 8.3 to bound ‖S0(DλT )(x)‖. Then,

‖S1(x,λ)‖ ≤ C‖T ‖1
ν,�‖x‖�−N+1−(η−1), x ∈ V� (8.4)

uniformly in λ ∈ 	.
To deal with S2, we first note that if x ∈ Vk and m ∈N , then

‖Dλ

(
(DxP )−1 ◦ K≤ ◦ Rm

)
(x,λ)‖ ≤ C

(u + k + m)α(L−1)
.

Then, using Lemma 7.5,

‖S2(x,λ)‖ ≤ C‖T ‖1
ν,�

∞∑
i=0

(u + k)−αBa−1

(u + k + i)α(�−Ba−1)

i∑
m=0

1

(u + k + m)α(L−1)
.

If α(L − 1) < 1, then, since η = 1 + N − L,

‖S2(x,λ)‖ ≤ C‖T ‖1
ν,�

∞∑
i=0

(u + k)−αBa−1

(u + k + i)α(�−Ba−1+L−1−N+1)
≤ C‖T ‖1

ν,�(u + k)−α(�−η+1−N+1)

and we are done in this case. When α(L − 1) = 1, in other words η = 1, we take a positive 
quantity ε > 0, such that α(L − 1 + ε) > 1 and � − Ba−1 − ε > N − 1 (this last condition can 
be fulfilled by hypothesis). Then
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‖S2(x,λ)‖ ≤ C‖T ‖1
ν,�

∞∑
i=0

(u + k)−αBa−1

(u + k + i)α(�−Ba−1−ε)

i∑
m=0

1

(u + k + m)1+αε

≤ C‖T ‖1
ν,�

∞∑
i=0

(u + k)−α(Ba−1+ε)

(u + k + i)α(�−Ba−1−ε)
≤ C‖T ‖1

ν,�(u + k)−α(�−N+1).

In any case, ‖S2(x, λ)‖ ≤ C‖T ‖1
ν,�‖x‖�−N+1−(η−1). This bound together with the corresponding 

one for S1 in (8.4), leads us to conclude that DλS0(T ) ∈ Y0,0
�−N+1−(η−1).

On the one hand, DλS0(T ) and S0(T̃ ) belong to Y0,0
�−N+1−(η−1) and both are solutions of the 

same linear equation L0H = T̃ . Since, by (ii) of Lemma 8.3, L0 is injective,

DλS0(T ) = S0(T̃ ).

On the other hand, it is clear that T̃ ∈ Y0,ν−1
�−η+1 because T ∈ Y1,ν

� . Therefore, using (iii) of 

Lemma 8.3, S0(T̃ ) ∈ Y0,ν−1
�−η+1−N+1 and consequently, DλS0(T ) belongs to Y0,ν−1

�−η+1−N+1. This 
ends the proof of the first item of the lemma.

To deal with the second item, we perform an induction procedure. Let T ∈ Yσ,ν
� and S =

S0(T ). We have to prove that S ∈ Yσ,ν
�−N+1. The cases σ = 0, 1 are already proven. Assume that 

S ∈ Yσ−1,ν
�−N+1 for σ ≤ s≤. We define recursively for 0 ≤ i ≤ σ − 1:

Si = Di
λS,

T i = −Dλ(DP ◦ K≤)Si−1 + DxS
i−1 ◦ R · DλR + DλT

i−1.

Note that, using (8.3), Si = Di
λS = S0(T i). Moreover, since S ∈ Yσ−1,ν

�−N+1,

Si ∈ Yσ−1−i,ν−i
�−N+1−i(η−1), DxS

i−1 ∈ Yσ−i,ν−i
�−N+1−η−i(η−1).

Using that η = N − L + 1 and the above properties,

Dλ(DP ◦ K≤)Si−1 ∈ Yσ−i,ν−i+1
�−i(η−1) , DxS

i−1 ◦ R · DλR ∈ Yσ−i,ν−i
�−i(η−1)

so that, by recurrence one gets T i ∈ Yσ−i,ν−i
�−i(η−1), if 0 ≤ i ≤ σ − 1. We take now i = σ − 1 and we 

obtain that

T σ−1 ∈ Y1,ν−(σ−1)
�−(σ−1)(η−1).

Using item 1) we deduce that Dσ−1
λ S = Sσ−1 = S0(T σ−1) ∈ Y1,ν−(σ−1)

�−(σ−1)(η−1)−N+1 and therefore,

Dσ
λ S = DλS0(T σ−1) ∈ Y0,ν−σ

�−σ(η−1)−N+1

which implies that S ∈ Yσ,ν
�−N+1. �
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8.3. End of the proof of Proposition 8.1

We point out that, since K≤ and R satisfy b) of Theorem 2.8, if (x, λ) ∈ V� × 	,

Di
λD

j
xT �(x,λ) =O(‖x‖�−j ), (i, j) ∈ 
s≤,r≤,

and, since G� is the Taylor’s remainder (with respect to the (x, y) variable) of F ∈ C
s,r ,

Di
λD

j
xG�(x, y,λ) =O(‖(x, y)‖�−j ), (i, j) ∈ 
s,r .

Moreover, these bounds are uniform on λ ∈ 	.
Standard arguments allow us to apply the fixed point theorem to obtain the existence of a 

solution K> of the fixed point equation (8.1) belonging to Ys>
� ,ν�−1

�−N+1 . Finally we recover the last 
derivative as in the analogous result in [3].

9. The analytic case

In this section we deal with the conclusions of Theorems 2.4 and 2.8 in the analytic case. We 
assume that F , of the form (2.11), is a real analytic map, that Ap > dp = bp and that K≤, R are 
real analytic functions in the complex extension �(�, γ ) × 	(γ ) of V� × 	 given by

�(�,γ ) := {x ∈ Cn : Rex ∈ V�, ‖Imx‖ ≤ γ ‖Rex‖},
	(γ ) := {λ ∈Cn′ : Reλ ∈ 	, ‖Imλ‖ ≤ γ 2}

with the norm ‖ · ‖ in Cn as

‖x‖ = max{‖Rex‖,‖Imx‖}.

We note that, if x ∈ �(�, γ ) with γ ≤ 1, then ‖x‖ = max{‖Rex‖, ‖Imx‖} = ‖Rex‖. We will 
use this fact along this section without special mention.

It is clear that the facts in Section 7.1 also hold in this new setting, as well as the reformulation 
of the problem as a fixed point equation, K> = S0 ◦F(K>) (see (8.1)), with S0 and F defined 
in (7.16) and (7.14). Therefore, it is enough to prove that the fixed point equation has an analytic 
solution.

The first thing we need to control is the weak contraction of the nonlinear terms in the analytic 
case. We first need to prove an analogous result to Lemma 6.1 to decompose �(�, γ ) properly. 
For that, for a given � > 0, we consider u > 0 and a0 > 0 such that a0u

−α = � and sequences ak ∈
R, k ≥ 0, and bk ∈R, k ≥ 1, satisfying condition (6.1). Moreover, for any γ ≤ 1, we introduce

�k =
{
x ∈ �(�,γ ) : ‖x‖ ∈ Ik :=

[
bk+1

(u + k + 1)α
,

ak

(u + k)α

]}
= {x ∈ �(�,γ ) : Rex ∈ Vk},

(9.1)

where the sets Vk where introduced in (6.2).
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Lemma 9.1. Let p be the homogeneous polynomial with respect to (x, y) defined by (2.11). 
Let R : �(�, γ ) → Cn be an analytic map such that R(x, λ) − x − p(x, 0, λ) = O(‖x‖N+1)

uniformly in 	.
Assume that there exists �0 > 0 such that p satisfies the corresponding conditions in Hλ and, 

moreover, Ap > bp .
Then for any a < ap and b > bp , there exist �1, γ1 > 0 such that for any γ ≤ γ1 and � ≤ �1

the following claims hold.

(1) If (x, λ) ∈ �(�, γ ) × 	(γ ),

‖R(x,λ) − x‖ ≤ b‖x‖N, ‖R(x,λ)‖ ≤ ‖x‖(1 − a‖x‖N−1).
(2) The set �(�, γ ) is invariant by R, that is, R(�(�, γ )) ⊂ �(�, γ ).
(3) Let {ak}, {bk} be the two sequences defined in Lemma 6.1 and �k defined in (9.1). We have 

that

�(�,γ )\{0} = ∪∞
k=0�k and R(�k) ⊂ �k+1.

Consequently, if x ∈ �k , then one has that

α

b(u + k + 1 + j)

(
1 +O(k−β)

)≤ ‖Rj (x)‖N−1 ≤ α

a(u + k + j)

(
1 +O(k−β)

)
.

Proof. We first note that, if χ(x, λ) is a real analytic function,

χ(x,λ) =χ(Rex,Reλ) + iDχ(Rex,Reλ)[Imx, Imλ]

−
1∫

0

(1 − μ)D2χ(x(μ),λ(μ))[Imx, Imλ]2 dμ,

with x(μ) = Rex + iμImx and λ(μ) = Reλ + iμImλ.
In addition, if χ, Dλχ, D2

λχ =O(‖x‖k), we have that, if λ ∈ 	(γ ):

χ(x,λ) = χ(Rex,Reλ) + iDxχ(Rex,Reλ)Imx + γ 2O(‖x‖k). (9.2)

The first item is a direct consequence of the above expression, for χ(x, λ) = R(x, λ) − x, the 
definition (2.12) of ap, bp and that χ(x, λ) = p(x, 0, λ) + O(‖x‖N+1). The second one is also 
a consequence of (9.2). Indeed, on the one hand, if γ ≤ γ1 and � ≤ �1, writing R(x, λ) = x +
χ(x, λ),

dist(ReR(x,λ), (V�)c) = dist(Rex + p(Rex,0,Reλ), (V�)c) − Cγ 2‖x‖N − C‖x‖N+1

≥ ‖x‖N(aV −O(γ 2
1 , �1)) ≥ aV

2
‖x‖N,

taking γ1, �1 small enough. On the other hand,
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‖ReR(x,λ)‖ ≥‖Rex‖(1 − (bp +O(γ 2
1 + �2

1))‖x‖N−1),

‖ImR(x,λ)‖ ≤‖(Id + Dxp(Rex,0,Reλ))Imx‖ + Cγ 2‖x‖N

≤γ (1 − (Ap +O(γ1, �1))‖x‖N−1)‖Rex‖

and then if Ap > bp , taking �1, γ1 small enough, ‖ImR(x, λ)‖ ≤ γ ‖ReR(x, λ)‖ for any γ ≤ γ1.
Finally, the third item is a consequence of Lemma 6.1, item (2) and the fact that x ∈ �k if and 

only if Rex ∈ Vk and ‖Imx‖ ≤ γ ‖Rex‖ = ‖x‖. �
Let U(�, γ ) = �(�, γ ) × 	(γ ). We define the Banach space of analytic functions

Zk = {h : U(�,γ ) → Cn+m, real analytic, such that ‖h‖k < ∞},

where

‖h‖k = sup
(x,λ)∈U(�,γ )

‖h(x,λ)‖
‖x‖k

.

From formula (9.2) applied to (DP )−1(K≤)(x) one can easily prove that Lemma 7.4 holds 
true for x ∈ �(�, γ ). As a consequence, if the scaling parameter is small, bound (7.7) in 
Lemma 7.5 is also true for x ∈ �k .

A proof analogous to the ones of Lemmas 7.7 and 7.8 for the continuous case proves that a) the 
operator L0 :Z� → Cω, where Cω is the space of analytic functions on U(�, γ ), is continuous and 
one to one, and b) the linear operator S0 : Z� → Z�−N+1 is well defined and bounded provided 
� − N + 1 − Ba−1 > 0. In addition, in the same way as in Lemma 8.3, we obtain that there are 
bounds of the norms of S0 uniform in λ ∈ 	.

Finally, one easily checks that the operator S0 ◦ F is contractive on a suitable open ball of 
Z�−N+1. We skip the details which are very similar to the ones in [3]. This ends the proof in the 
analytic case.

It only remains to deal with the C
s,ω case. We first note that, for any λ ∈ 	 fixed, K(·, λ)

is analytic in �(�, γ ) for �, γ small enough independent of λ. Moreover, since C
s,ω ⊂ C
s,∞ , 
given F ∈ C
s,ω we also have that K ∈ C
s,∞ . Therefore, K ∈ C
s,ω .

10. The flow case

In this section we prove Theorem 2.10, the analogous result of Theorem 2.8 for flows.
The proof is performed in two steps in Sections 10.1 and 10.2 below. The first step is to 

see that the Poincaré map F associated to the periodic vector field X in (2.20) has an invariant 
parametrization K and a reparametrization R satisfying the invariance equation F ◦ K = K ◦ R. 
To do so we apply Theorem 2.8. The second step is to check that the invariance condition (2.22)
for flows:

ϕ(u; t,K(x, t, λ), λ) − K(ψ(u; t, x, λ),u,λ) = 0 (10.1)

is satisfied for K , where ϕ is the flow of X and ψ is the flow of a vector field Y on Rn to be 
determined.
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We assume that the vector field X ∈ C
s,r where in the definition (2.13) of C
s,r we take 
z = (x, y) and μ = (t, λ). We will denote by Dz and Dμ the derivatives with respect to these 
variables.

10.1. From flows to maps

Assume that X ∈ C
s,r is a T -periodic vector field of the form (2.20)

X(x,y, t, λ) =
(

p(x, y,λ) + f (x, y, t, λ)

q(x, y,λ) + g(x, y, t, λ)

)
, (10.2)

that p satisfies Hλ and let K≤, Y ∈ C
s≤,r≤ satisfying items (a), (b) and (c) in Theorem 2.10. In 
particular we have that condition (2.23) is satisfied, namely,

X(K≤(x, t, λ), t, λ) − DK≤(x, t, λ)Y (x,λ) − ∂tK
≤(x, t, λ) =O(‖x‖�)

for a given � such that �0 < � ≤ r .
We denote by ϕ(u; t, x, y, λ) and ψ(u; t, x, λ) the associated flows of ż = X(z, t, λ), z =

(x, y), and ẋ = Y(x, λ) respectively. For t ∈ R and u ∈ [t, t + T ],

ϕ(u; t,K≤(x, t, λ), λ) − K≤(ψ(u; t, x, λ),u,λ) =O(‖x‖�), (10.3)

uniformly in u, λ. The proof is a consequence of Gronwall’s lemma, (2.22) and the C0 depen-
dence of K≤ with respect to t .

We introduce the Poincaré maps F(x, y, t, λ) = ϕ(t + T ; t, x, y, λ) and R(x, λ) = ψ(T ;
0, x, λ) = ψ(t + T ; t, x, λ). Applying (10.3) to u = t + T , we obtain that

F(K≤(x, t, λ), t, λ) − K≤(R(x,λ), t, λ) =O(‖x‖�). (10.4)

We want to apply Theorem 2.8, so we have to check the setting and hypotheses of that theorem 
for F .

By Hypothesis HP and, since X is of the form (10.2), for any (x, y) ∈ Bρ , we have 
‖X(x, y, t, λ)‖ ≤ CρN . Then, on the one hand, the flow ϕ(u; t, x, y, λ) is well defined for 
u ∈ [t, t + T ] if (x, y) ∈ B� and � is small enough. On the other hand, by Gronwall’s lemma,

‖ϕ(u; t, x, y,λ)‖ ≤ C‖(x, y)‖, (u, x, y,λ) ∈ [t, t + T ] × B� × 	. (10.5)

Now we check that F has the form (2.11). Applying Taylor’s theorem to ϕ(u; t, x, y, λ), with 
respect to u:
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F(x, y,λ, t) =ϕ(t + T ; t, x, y,λ) =
(

x

y

)
+ T

(
p(x, y,λ) + f (x, y, t, λ)

q(x, y,λ) + g(x, y, t, λ)

)

+
t+T∫
t

(t + T − u)DzX(ϕ(u; t, x, y,λ),u,λ)X(ϕ(u; t, x, y,λ),u,λ)du

+
t+T∫
t

(t + T − u)DtX(ϕ(u; t, x, y,λ),u,λ)du.

Using bound (10.5) in the above formula for the Poincaré map F , we see that F has the form 
(2.11) and satisfies Hλ for any fixed t ∈ R since p does not depend on t . Moreover, using that 
f and g are periodic with respect to t , D2

(x,y)f, D2
(x,y)g are bounded and they satisfy Hypothesis 

HP. We also have that the remainder (f̃ , g̃) = F − Id − (Tp, T q) satisfies Hypothesis HP.
Concerning the items of Theorem 2.8, (a) follows from the hypotheses and general regularity 

results for flows, (b) for K≤ also follows from hypothesis and (c) have already been obtained 
in (10.4).

It remains to check that R(x, λ) = ψ(T ; 0, x, λ) satisfies (b) in Theorem 2.8. Namely, defining 
�R(x, λ) := R(x, λ) − x − Tp(x, 0, λ) we have to check that, uniformly in λ ∈ 	,

D
j
λDi

x�R(x,λ) =O(‖x‖N+1−i ), (i, j) ∈ C
s≤,r≤ .

These bounds are consequence of the following elementary result, whose proof we omit.

Lemma 10.1. Let Z : V�0 ×	 →Rn be a vector field of the form Z(x, λ) = Z0(x, λ) +Z1(x, λ). 
Let χ(t; x, λ) be its flow.

Let σ ≥ 0 and ν ≥ 2. Assume that Z0, Z1 ∈ C
σ,ν and that there exist l > k ≥ 2 such that, for 
all (i, j) ∈ C
σ,ν :

Di
λD

j
xZ0(x,λ) =O(‖x‖k−j ), Di

λD
j
xZ1(x,λ) =O(‖x‖l−j )

uniformly in λ ∈ 	.
Then for any u0 > 0 there exists � small enough such that, if x ∈ V�/2 and u ∈ [0, u0], the 

flow χ satisfies χ(u; x, λ) = x + uZ0(x, λ) + Z̃1(u, x, λ) ∈ V� with

Di
λD

j
x Z̃1(u, x,λ) =O(‖x‖k+1−j ), (i, j) ∈ 
σ,ν

uniformly in (u, λ) ∈ [0, u0] × 	.

Summarizing, let max{�0, �1} < � ≤ r , K≤ and Y be such that (10.3) holds true. Ap-
plying Theorem 2.8 to the Poincaré map F(x, y, t, λ) = ϕ(t + T ; t, x, y, λ) with R(x, λ) =
ψ(t + T ; t, x, λ), we obtain a solution K = K≤ + K> ∈ C
s>,r> of the invariance condition

F(K(x, t, λ), t, λ) = K(ψ(t + T ; t, x, λ), t, λ) (10.6)

with K>(x, t, λ) = O(‖x‖�−N+1) uniformly in λ. Moreover, by the uniqueness of the solution, 
K> (and consequently K) is periodic with respect to t .
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10.2. From maps to periodic flows

In this section we prove that the parametrization K found in the previous Section 10.1 satisfies 
the invariance condition (10.1) for flows. To avoid cumbersome notations, in this section we will 
skip the dependence on λ.

Using the properties of general solutions of vector fields, the definitions of F and R and (10.6)
we obtain

K(x, s) = ϕ(s; s + T ,K(R(x), s)), R(ψ(s; t, x)) = ψ(s; t,R(x)).

We define

Ks(x, t) = ϕ(t; s,K(ψ(s; t, x), s)).

We have Kt (x, t) = K(x, t) and

F(Ks(x, t), t) = ϕ(t + T ; s,K(ψ(s; t, x), s)) = ϕ(t + T ; s + T ,K(ψ(s; t,R(x)), s))

= ϕ(t; s,K(ψ(s; t − T ,x, s))),

Ks(R(x), t)) = ϕ(t; s,K(ψ(s; t,R(x), s))) = ϕ(t; s,K(ψ(s; t − T ,x), s)).

Consequently, Ks(x, t) satisfies the invariant condition (10.1) for any s.
Applying again Taylor’s theorem,

Ks(x, t) =ϕ(t; s,K(ψ(s, t, x), s)) = ϕ(t; s,K≤(ψ(s; t, x), s))

+
1∫

0

Dϕ(t; s,K≤(ψ(s; t, x), s) + wK>(ψ(s; t, x), s))K>(ψ(s; t, x), s) dw

and, applying equality (10.3) to ψ(s; t, x),

Ks(x, t)−K≤(x, t) =O(‖x‖�) +
1∫

0

DK≤(x + w(ψ(s; t, x) − x), t)[ψ(s; t, x) − x]dw

+
1∫

0

Dϕ(t; s,K≤(ψ(s; t, x), s) + wK>(ψ(s; t, x), s))K>(ψ(s; t, x), s) dw.

Therefore, since ψ(s; t, 0) = 0 and ψ(s; t, x) = x + O(‖x‖N), we have that Ks(x, t) −
K≤(x, t) = O(‖x‖�−N+1) and this implies, by the uniqueness statement in Theorem 2.8 that 
Ks(x, t) = K(x, t). Then

K(ψ(s; t, x), s) = ϕ(s; t,Ks(x, t)) = ϕ(s; t,K(x, t))

and the proof is complete.
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