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Abstract

We consider maps defined on an open set of R"™ having a fixed point whose linear part is
the identity. We provide sufficient conditions for the existence of a stable manifold in terms of
the nonlinear part of the map.

These maps arise naturally in some problems of Celestial Mechanics. We apply the results to
prove the existence of parabolic orbits of the spatial elliptic three-body problem.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that invariant manifolds associated to invariant objects (fixed
points, periodic orbits, etc.) of a dynamical system yield essential information for the
analysis of the dynamical structure of the system. When an invariant object satisfies
some kind of hyperbolicity there are many results concerning the existence,
regularity and uniqueness of their invariant manifolds, see for instance [6,8—-10].

The case of invariant objects without hyperbolic “directions’ is more complicated.
The full neighborhood of the object is a central manifold. If we consider dynamical
systems generated by maps, the fact that a neighborhood of the fixed point is a
central manifold means that all the eigenvalues of the linear part of the map at the
fixed point have modulus one.
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The case that all eigenvalues are exactly equal to one is the most degenerate one.
In this case the set of points whose positive iterates converge to the fixed point may
have nonempty interior. This set is invariant by the map. We can call it stable
invariant set or stable invariant manifold in some generalized sense. In the analogous
way we can define the unstable invariant set.

The problem of deciding whether a parabolic fixed point of a vector field or a map
has associated stable and unstable manifolds (inside the central manifold), has not
been solved in general, but there are already some existence and uniqueness results
for these manifolds. For two-dimensional maps with fixed points with identity linear
part we mention [13,16]. For two-dimensional maps with linear part equal to:

(0 1)

we refer to [2,7]. In this context, it may happen that both the stable and the unstable
invariant sets are open sets. See an example of such case in [7]. Some stable manifolds
theorems for a class of systems coming from problems in Celestial Mechanics can be
found in [4,15]. In all these problems the stable manifolds are one dimensional.

Maps having parabolic fixed points appear in applied problems. For example,
when studying parabolic and oscillatory orbits in some problems of Celestial
Mechanics. The most studied case has been the planar three-body problem. In the
planar three-body problem a parabolic orbit is a trajectory of a particle arriving to
infinity with zero speed, while the trajectories of the other two particles remain
bounded for all positive times. An orbit of the planar three-body problem is called
oscillatory if the upper limit (along time) of the distance between particles is infinite,
but the lower limit is finite. Thus it seems clear that the oscillatory orbits come and
go infinitely often going (somehow) to infinity. Hence a good way to look at this
problem is to look for solutions that are “homoclinic at infinity”’. Therefore it seems
natural to associate to the infinity some invariant object, through the introduction of
a special set of coordinates. This object is usually called the infinity manifold. In the
case of the planar three-body problem McGehee and Easton [5] prove that the
infinity set may be seen as a three-sphere foliated by periodic orbits. McGehee [13]
considers three problems: the restricted three-body problem, the Sitnikov problem
and the one-dimensional three-body problem, and proves, after certain changes of
variables, that infinity may be reduced to a periodic orbit. Later, Martinez and
Pinyol [12] prove, among other things, that in the elliptic restricted three-body
problem the infinity manifold is also foliated by periodic orbits. Using the existence
theorem of invariant manifolds given in [13], Delgado and Vidal [3], also prove the
existence of parabolic orbits in the tetrahedral four-body problem and, finally,
Alvarez and Llibre [1], consider the same question for the elliptic collision restricted
three-body problem, which consists in two bodies of equal masses in a collision
elliptic orbit, while their centre of mass is at rest and a third particle of zero mass
moving in a perpendicular line to the line of motion of the other two.

An approach to the search of oscillatory orbits is to prove that these periodic
orbits, which represent infinity in the original system, have transversely intersecting
stable and unstable manifolds. This is not a sufficient condition (see [5]), but it seems
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to be necessary to prove the existence of oscillatory orbits. In the problems treated by
McGehee in [13] and in the elliptic restricted problem in [12] the existence of these
homoclinic solutions implies the existence of oscillatory orbits.

In all these examples, the periodic orbits in the infinity manifold are degenerate in
the sense that the derivative of the Poincaré map associated to them has an
eigenvalue equal to one. Using the existence theorems proved in [4,13,15] it is
possible to prove that parabolic orbits form a smooth manifold. Robinson [15], Xia
[17], Martinez and Pinyol [12] and Moeckel [14] prove the existence of heteroclinic
orbits and consequently they can conclude that there exist oscillatory orbits in some
instances of the three-body problem.

Here we generalize results on existence and analyticity of invariant manifolds of
several papers starting with [13], from two-dimensional to (n -+ m)-dimensional
maps.

We consider maps in R” x R” with the origin fixed and its linear part equal to the
identity. Under suitable conditions on the nonlinear terms we establish the existence
of m-dimensional stable manifolds expressed as graphs of functions defined in
domains which have the fixed point on its boundary. In Section 3 we deal with the
Lipschitz case and in Section 4 we consider the analytic case.

The methods we use in this work are generalizations of the ones of McGehee [13]
but we need to introduce extra arguments based on degree theory that in one-
dimensional invariant manifolds reduce to elementary observations.

Section 5 contains the examples. The first one is just a simple application, and the
second one consists in looking for parabolic orbits in the spatial three-body problem.
In this problem, we prove that the parabolic orbits form an analytic manifold of
dimension two in the phase space. For this reason the known existence theorems do
not apply in this case.

2. Definitions and notation

We consider maps F : Uc R"™ - R" of the form

F(x,y) = (x+p(x,») +f(x,9),y + q(x,3) + 9(x,7)), (2.1)

where p(x,y),q(x,y) are homogeneous polynomials of degree N,, N, respectively
with N,, N,>2, f(x,y), g(x,y) are differentiable functions of orders o(I(x, )™

N=1y and

and o(]|(x,)||"*) and their derivatives Df(x,y), Dg(x,y) are o(||(x,)]|
o([|(x, »)||Y™ ") respectively.
We introduce the projectors: ' (x,y) = x, and n%(x, y) = y. Given a subset V' = R"

we define

WS ={(x,y)eU:n'FF(x,y)eV, k=0, FF(x,y)—-0, as k— 0} (2.2)
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and its local version
Wy, ={(x,y)eU:n'F*(x,y) e VnB(0,r), k=0, F¥(x,y)>0, as k> o0}. (2.3)

These definitions depend on the decomposition R"™ = R" x R™. Particular cases
are n = 1 or m = 1. In the two-dimensional case, if » = 1 and m = 1, V' can be taken
as the intervals (0,r) or (—r,0). When ¥ = (0,r) the corresponding invariant
manifold is denoted by W** in [7].

Let || - || be a norm in R*. Given ¥ =R", we introduce the following notation:

Vi) ={xeV:|ixll<r}, V'(p) = {px/lIxll: xeV(r)}.

Notice that if rj <ry then V(r)) =V (r2).
Also we introduce the following sets:

V(r,B) ={(x,y)eR™™: xe V(r), Iyl <Bllx[[},
VE(r,B) ={(x,n)eR"™ :xe V(r), |yl = BlIxll},
v (r, f) ={(x,») R : (x, )€ V' (r, B), |1yl = BlIx]I},

S(e) ={(&m) eR™™ - |Inl| = [<]1}-

In order to illustrate the previous definitions, we provide Figs. 1 and 2.

X2
v(r)

Fig. 1. Example of a set V(r) in R2.
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Fig. 2. A set V(r, ) in R®, with the supremum norm.

3. The Lipschitz case

This section is devoted to prove, under suitable hypotheses, the existence of a
Lipschitz stable invariant manifold in the sense of definitions (2.2) and (2.3) for maps
F of the form (2.1).

We will assume that there exists a set < U and r, p>0 such that:

H1 The polynomial p satisfies sup,.. 1, |[Id + Dyp(x,0)[| < 1.

H2 The polynomial ¢ satisfies D.g(x,0) =0 for xeV!(p) and SUP e p1(p)| [1d —
Dyg(x,0)]<1.

H3 There exists 4>0 such that for all xe V'(r), dist(x + p(x,0), V(1)) = A||x||"".

Note that H2 implies that ¢(x,0) = 0. The main theorem of this section is:

Theorem 3.1. Let F: UcR"™ S R"™™ be a map of class C', of the form
(x,p) = (x+p(x, ) +/(x,0), ¥+ q(x,y) + g(x,»)) (3.1)

where p(x,y),q(x,y) are homogeneous polynomials of degree N, and N, respectively

(Npy Ny=2), f(x,) is of order o(||(x,»)||""), Df (x,y) is of order o(||(x,»)[["™"),
g(x,) is of order o(||(x,»)||"*) and Dg(x,y) is of order o(||(x,»)||"™").

Then, if there exists a convex open set VcR"' 0edV and r,p>0 such that
hypotheses H1-H3 hold, W7, , is the graph of a Lipschitz function

o:V(r)->R"

Remark 3.2. Hypotheses H1 and H2 provide, through the nonlinear terms, a kind of
weak hyperbolicity for the fixed points in a suitable domain.
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Remark 3.3. An unstable manifold theorem can be obtained immediately by
considering the inverse map.

Remark 3.4. Since V'!(p) is compact, there exists a positive constant M such that
[[Id + Dyp(x,0)|| — 1< — M, |]Id—D)gq(x,0)[| - 1< - M
for all xe V!(p). This implies that if <1 and ¢€[0, 1]

11d + 1Dp(x, 0)|| = 1< — eM||x[[¥~",  ||1d = eDyq(x, 0)[] = 1< — eM x| ¥

for all xe V(r). Indeed, the inequality || Id 4+ Dp(x,0)|| — ||uId + Dp(x,0)|| < |4 —
u| implies that ||A1d + Dyp(x,0)|| — A is a decreasing function of 4. Then, if xe V' (r)
and 7€ (0, 1],

[Id 4 tDp(x,0)|| — 1 = Hld+ t||x||N”1Dxp(ﬁ, 0>H —1

1 X 1
TN | Idwxp(,o) S
||| V! [|2x]| t|x| [N

< —1|x|[M . (3.2)

The second inequality follows in the same way.

The rest of this section is devoted to prove Theorem 3.1. The main idea of the
proof consists in, given xo€ V(r), looking for the set of points of the form (xy,y)
whose all positive iterates remain in a neighborhood of the origin and converge to it.

We claim that this set reduces to a unique point (xo, o). Hence there exists a
function yy = ¢(xp) whose graph is the stable manifold.

To prove the claim, as well as the fact that ¢ is Lipschitz, we will consider a
sequence of nested sets defined as the sets of points whose first & iterates remain in a
neighborhood of the origin.

To control this sequence we need a series of preparatory lemmas which provide us
with some quantitative estimates of the weak hyperbolicity generated by the
nonlinear terms of the map outside the origin.

Lemma 3.6 provides bounds for the contraction and expansion of the linearized
map along the x- and y-axis, respectively. Lemmas 3.7 and 3.8 extend these estimates
from the linearization to the map itself. Lemmas 3.9 and 3.10 study how the
derivative acts on vectors of the tangent space, in particular Lemma 3.9 establishes
that there exists and invariant cone for DF. Lemma 3.13 will be applied as an
iterative lemma to control the differences of the iterates of two initial points. The
nested sets of the sequence are constructed iteratively. It is essential that they do not
become void at some level of the process. This is guaranteed by Lemma 3.15.

In all next lemmas we will assume implicitly the hypotheses of Theorem 3.1.
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Lemma 3.5. If r>0 and >0 are small enough, then we have that
n' F(x,y)eV(r), for (x,y)eV(r,p).
Proof. It is a consequence of hypothesis H3. Note that for all (x,y)e V(r, )

17 F(x,9) = x = p(x,0)[| < llp(x, ) = p(x, 0)]] + [|.f (x, )|

< Héﬁulﬁ H 1Dy (6, O Y|+ X[ < (CB -+ m) ]|
<|ly

with suitable C and arbitrarily small #, if r and § are small enough. Hence

dist(n' F(x,y), V(r)°) = dist(x + p(x,0), V(r)) — ||z' F(x,y) — x — p(x,0)]|

> A||x||™ — (CB+n)||x[|" >0,

if (CB + 1) <A which implies that ' F(x,y)e V(r). O

Lemma 3.6. There exist constants K, and K, such that for (x,y)eV(r,p) and for
tel0,1],

(1) |[1d 4 tDyp(x,y) + tDf (x,¥)]| <1 — Kyt |x||V 1,
() |I(Id + tDyq(x, ) + tDyg(x, ) "' <1 — Kot |x|[Y .

Proof. (1) Since p is homogeneous there exists K>0 such that
|ID%p(x,y)|| < K||x||*"~2. By the conditions over f, given >0 there exists >0 such
that ||Dyf (x, »)||<nl|x||"~" for (x,y)e V(r, p). Then, using Remark 3.4,

[[Id + Dyp(x,p) + tDyf (x, p)[|< [[Id + tDyp(x, 0)|| + ]| Dxp(x,y) — Dxp(x, 0)||
+ t||Dof (x, )|
< 1 —tM{[x|[Y ™"+ KBl [N+ o]

<1 — ek |||

with K; >0, if we take  and 5 small enough.
(2) In the same way as in (1) we can prove that

||Id — tDyq(x, ) — tDyg(x,y)|| <1 — tKol|x||N" (3.3)
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if we take f# and r small enough. The result follows because there exists K, such that

|(Id + tDyq(x,y) + tDyg(x,»)) " — (Id — tDyq(x, y) — tDyg(x,))|]

<PRIXPY O

Lemma 3.7. There exists a constant My such that for (x,y)eV(r,p) and for any
tel0,1],

1%+ 1p(x, ) + 1f (6, )< ¥](1 = e [l 7).
In particular, for t = 1 we have that ||n'F(x,y)||<||x]|.

Proof. By the mean value theorem and (3.2) we have that

1 1
|IX+lp(x70)H</ ||Id+thp(Sx,0)||IIXI|dS</ (1= eM|lsxe|| =) ds
0 0

1
_ (1 M ||x||Nv-1) ™

Let My = M/N,. Moreover, there exists K >0 such that \|Dyp(x,y)||<K||x||NF1 if

(x,y)eV(r,B) and, given 5>0, there exists >0 such that || f(x,)||<n|x||* for
(x,y)eV(r,p). Then

[[x + tp(x,y) + tf (e, < [|x + tp(x, 0)]] + ¢]|p(x, ¥) — p(x, 0)[] + #][ £ (x, )|
< (1= tMo||x[)™ ) 1x]| + tBK||x[|™ + |||

< (1= ey |x)™ )] 1|
with M| >0 if we take f and 5 small enough. [

Lemma 3.8. There exists M, >0 such that for any (x,y) v’ (r, ) and for any 0<1<1
we have

1y + 1g(x, y) + tg(x, )| = |yl (1 + e x| ™).
Proof. Since ¢(x,0) =0, if we call ¢(y) =y+1tq(x,y) then ¢(0) =0 and y =
¢~'p(v) = Jy D™ (s9(»)$(v) ds. This implies

| -1
||¢><y>||>(/o ||D¢>-‘<s¢<y>>||ds) bl
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and since D~ (s6(») = (D¢~ (s6(»))) " and ¢~ (sp()) € V(r, f) with f'>,
applying (2) of Lemma 3.6 with g = 0 we get ||p(»)||= (1 — 1K ||x|[™ ™) 7" Iy]]-

On the other hand, for all >0, there exists >0 such that ||g(x, y)|| < n||x||" if
(6)eV(r.f).  Asume that |yl = fllxl.  Then |lg(x,)l|< il =
] 1% Therefore [[6(y) + tg(x, 1)1 = (1=Kl = ]
>||y||(1 4 tMo]|x] M) with M, >0 if we take 7 and r small enough. [

Lemma 3.9. There exist r>0, >0 and oe(0,1] such that for all (x,y)eV(r,p),
DF(x,y):S(ax)—> S(a). In fact we have that, for {eS(a)

ol | DF (x, p)||<||I7*C| - and ||7*DF (x, y){|| > [|n*C]]. (3.4)

Proof. Let { = (&, n)eS(x) and let K>0 be such that ||Dyp(x,y)+ D,f(x,y)||
<K||x|["""" for (x,y)e V(r, ). Using (1) of Lemma 3.6 it is clear that

o||7' DF (x, y){|| = o||(1d + Dyp + Dof )&+ (Dyp + Dof |
< (1= KXY ] + K| x] ¥ )|
< |
if we take a<K;/K.

The second inequality in (3.4) is proved in the same way, using (2) of Lemma 3.6
and that, since Dyq(x,0) = 0 and D.g(x,y) = o(||(x,1)||*"), there exists K >0 such

that

|| Dxq(x,y) + Dyg(x, y)|| <KB||x|[Y! (3.5)

if 7 is small enough. [J

Lemma 3.10. If'r, >0 are small enough, (x,y)eV(r,p) and (e S(a) we have that
[17* DF ! (x, )¢ <[],

Proof. It is clear that F is locally invertible in a neighborhood of the origin and that
F~!is defined in a set of the form V' (r,3). Moreover F~! can be written as

F'(x,p) = (x = p(x,») +/(x, ),y — q(x, ) + §(x, )

o(l|Ge, ). gl v) = o(l|(x, )II™), DAx,y) = o([|(x,»)[|"") and
1(x, )M ). Let { = (€,5)eS(«). Then, using (3.3) and (3.5) there

with f{x,y) =
Dg(x,y) = o(
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exist f# and r small enough such that

17* DF ! (x, »)C|| < [|(1d = Dyg + Dyl + [I(—Dxg + Dxg)Ell

_ B -
< (1= Kol ™)l + K {1 Il

<fwll- O

Lemma 3.11. Given [eN, z eV (r,p) for all ke{l,...,1} and (€ S(x), we have that

(1/D)3 4y DF (z1)L € S(2).

Proof. Let { = (£,n7)eS(«). Applying estimate (3.4) of Lemma 3.9, we obtain that
all(1/Dh, 7 DF(2)C]| < (1/D Xk, ol DF (z)Z] | <ln]l- On the other hand, if we

denote @y =437, (Dyq(zc) + Dyg(zx)), by (3.3)

! /
I1d = Q)< (1/1) Y [[1d = (Dyg(zx) + Dyg )| <1 = (Ko/D) Y [l M.
=1

k=1

Therefore, ||(Id + Q) '] <1 — lﬁzk L lxl[Me~! which implies that

/
1(1d -+ Ol = (1+ Ko/ (20)) Y [1xel™)llnl]
k=1

if we take f and r small enough. Then, from (3.6) and (3.5), we obtain

1 1
7 Z m°DF (z;)¢ ’
k=1
!

1
>||(Id+Q1)’7|—H<YZ Dq(zk) + Dxg(zk) > H

k=1

K /
( +77 2 Il >|n|——52||xk|| [l
k=1

1[Ko . B < .
> (1 R 1>|In|l

k=1

=[]

if we take f small enough. [
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Lemma 3.12. Let r and B be small enough. Let z',z>e V (r, ) be two different points

such that z* — z' € S(«). Then, there exists a constant ¢=1 such that if «>cf

2 (- 2NeV(r,ep) for all te0,1].

Proof. Let ¢; and ¢, be such that ¢;||ul|,<||u||<ca||u|l,, for ueR¥, where || - ||,
denotes the euclidean norm. We take ¢ = ¢p/c¢; and we put 2/ = (x',)") for i = 1,2.

Since, by hypothesis, V" is convex, it remains to see that
'+ (02 = yOlI<eBllx! +1(x> = DI, Vrelo, 1],

We note that, if ac; = fcs,
1 1
IIy‘—y2||2>c—||y'—y2\|>fx—||x1—x2|\
2 6}
> i - 2L > 12
Zo—|lx = x|, =plx" — X7
(&)
By (3.7)
1 2 2 2
B{x Y = <ty =§[ﬁ2(\|x1||z+ 211 = []x! = *2]12)
2 2 2
= (' + 121 = ' = 22(1)]

2 2
>[Iy =22l = Bt = 2P

NS

=

e

Then, using (3.8), we have that for z!', Z2e V(r, ),

Blxt + t(x = XY = [y + 0 =y
2 2 2 2 2
= (B35 — [12113) + (1= ) (BIx13 = [1']]3)

+ 21(1 = ) (B Py — () =0.

Translating this condition to the original norm || - || we get the result.

(3.7)

Lemma 3.13. Let r and f be small enough. Let z',z> €V (r, B) be different points such

that 2> — z' € S(a) and F(z*), F(z")e V(r,B). Then

(1) F(22) - F(z')eS(w),
@) [Im*(F (=) = FE)|I=|lm*(2* = 2H)]l.
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Proof. By Lemma 3.12, z! +#(z> — z')e V(r, ¢B). Since DF is continuous we can
write

F(zz) —F(zl) = /o DF(Z1 + 1(22 —zl))(z2 —z])dt

k .
_ 1 1 1,2 1 2 1
fklgg /E:O kDF(Z +k(z z2))(z2—z2).

By Lemma 3.11, restricting f if necessary, Zjl-lo LDF (' + L (22— 2")(2 — 2 eS(a)
for all keN and hence the limit when k— oo has to belong to S(a) = S(«).

For (2), using (1) and Lemma 3.12 applied to F(z!), F(z?), we get that y(¢) =
(1 = )F(z") + tF(z?) e V(r,cp), for t€[0, 1]. Restricting B if necessary, by the mean
value theorem, Lemma 3.10 and the definition of y/, we have that

17°(22 = 2D)|| =[|n*eF oy (1) — m?oF Loy (0)|

= [ @ DF (y(0))y'(1)]| dr

and the statement holds. [

We will use the following result from degree theory. We will denote by d(f, D, p)
the degree of /" at p relative to D. We recall that if d(f, D,p)#0, then pef (D). See
[11] for details. We recall the following result.

Proposition 3.14. Let f,g: DcR"—>R" be two continuous maps. If there exists a
homotopy H:[0,1] x D—>R" from f to g and p¢ H(t,0D) for all te[0,1] then
d(f,D,p) =d(g,D,p).

Let 7~ be an open neighborhood of V(r, )\{(0,0)} such that " n{x =0} = 0.
Below D7’ will denote an open set of R™, such that 0eD)’ and that D_j” is
homeomorphic to a closed ball. Therefore dD7" will be homeomorphic to a sphere.
Given y: D' —> 7" we will denote by I' the image of y, i.e. I' = y(D”’) At some places
we will identify y with I'. Let

H(x) = {y:Diyq"/':yeCl,T_,FcS(oc) Vel nV(r,B),7( D))=V (r, B)°}.

We note that the condition 7.I' <= S(«) implies that I'n V' (r, f) can be expressed as
the graph of a function y:7*(I'nV(r,f))—=R" in the form I =
{W(),y):yelnV(r,p)} with

1Dy ()] <1/ (3-9)
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This is easily seen because if ve R"\{0} we have that 1 ((y + tv),y + tv) is a curve
in I" and hence its derivative at t =0, (Dy(y)v,v), belongs to Ty () ) I'=S(x) and
then [[o]] >/ [ Dy (1)1l

Our goal is to iterate manifolds of H(x) by F. A subtle and delicate point is to
check that the iterates remain nonvoid. When m = 1 this is a simple consequence of
Bolzano’s theorem, but if m> 1 we are forced to apply degree theory. This motivates
in part the definition of H ().

Lemma 3.15. If cf <o, we have that if I'e H(«) then F(I')nV (r, ) e H(x).

Proof. We perform the change of variables C defined by (x,v) (x,y = v||x]|)
which transforms the cone-like domain ¥ (r, ) to the cylinder-like domain

V(r, f) = {(x,0) eR"™ 1 xe V (1), o] < B}

This change is invertible and its inverse is continuous when we restricted us to
V(r, B)\{x = 0}. Indeed if (x,y)eV(r,p) then x#0, and we can write the inverse
change explicitly as (x, y)+— (x,v = y/||x||). In these new variables F is expressed as
F = C 'oFoC with

m' F(x,0) = x + p(x, vl x[]) +f (x, vl|x]])

o tlll+ gl + gl ol
T ) = e, ol + 7 G oD

If I'e H(x), we denote by I" the image of I' by this change of variables, i.e. I' =
C~(I'). We claim that I can also be represented as a graph of a function l/; Indeed,
if I ={(¥(y),y):yeDy}, then I' = {(Y(»),»/|[¥(V)l]) : ye Dy }. Now, we are going
to check that 2 : y— y/||¥(y)|| is invertible and that its inverse is continuous. First
we note that yy#0 and then the map is well defined and continuous. Now we prove
that & is one to one. If yi, yo€Dy and Z(y1) = Z(y2) we can write y[||y(12)|| —
Wl + 1 = y2)[[¥(n)]] = 0 and then, if we assume that y; #ys,

Y )l = OOl _ Gl

byl Il (3.10)
By (3.9)
WO = IOl WG —woll_1
[ly1 — »2l| S b=yl e

On the other hand, since (¥ (1), y1) € V(r, ), |l (»1)||/|Iy1]|=1/p. Putting these two
last bounds in (3.10) we obtain 1/5<1/a, which gives a contradiction.

Next we prove that 2! is Lipschitz. Indeed, let y;, y2€Dy and let My >0
be such that for all yeDy, ||y(»)||<My. Such M, exists by compactness
of Dy. Then, using that of[s(y1) —¥(y2)l[<I[y1 = y2l| and |[|y:[|<BlW¥(»:)l| for
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i=1,2, we get that

(I W2l = ol + =yl ol ]

ogon-wl-soot
WOl G OO G2

1
> m[llw =22l OOl = [l T Gl = [ ol ]

N
OO )

>
[ ol ()]

= (1/My)[1 = B/o]|ly1 = yal|-

oIl = Hyll/odllyr = yal|

[ oll = Bllw oll/dllyr = 2|l

Therefore we can write I' = {(y/(2 ' (v)),v) : ve Z(Dy)}. We call § = o ™"

Now we look at the image of I" = graph iJ by F. First we prove that the image of
B (0) = {yeR":||y||<B} by 2 Fo(f(y), ) covers By (0). For this we will use degree
theory. Let

_ IO + 1@ 0). MO + g (0 PO
W) + W)y OID + o G0, I GIDI

H(t,y)

be a homotopy from the identity to 72Fo(y(y), y) and let yq € By (0). If yoedBy(0),

then ((y0), yo) €dV(r, B) and by the conclusions of Lemmas 3.7 and 3.8 translated
to F we deduce that yo¢ H(t, 9B} (0)) and hence from Proposition 3.14 we get that

d(nzFNO(lpv Id), B’;?(O)J’o) = d(Id, B7}1(O)vy0) =1
Going back to the original variables (x,y) we obtain that F(I') is the image of
D= Fop = Co(CToFoC)o(C ') = CoPo(C7').

We will need to restrict the domain D, to D, in such a way that for all {eD,,
7({)e¥". Therefore we also obtain that F(dD, )<V (r,p)". Finally the fact that
T.(F(I'))=S(«) for all ze F(I')n V(r, ) comes from Lemma 3.13. O

With the previous lemmas we can prove Theorem 3.1.
Proof of the Theorem 3.1. Given I'e H(x) we define the sequence

Fo=T, T'i=FTx1)nV(r,p), k=1
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By Lemma 3.15 all elements of this sequence belong to H(«). We introduce I, =
F~*(I'). We claim that (I;), is a nested sequence of nonempty compact sets. Indeed:

I = FXF(e ) nV(r,B))cF X (F(_,)) = F* () = I_,.

The fact that ; are nonempty comes from Lemma 3.15. Hence (-, fx #0. Next we
consider a particular sort of initial I'g. For every x"eV we define I' =Ty =
{(x,»):x = x% ||y||<Bl|x||}- Let « given by Lemma 3.9. It is clear that I'e H(x) and
that for all z',22e Ty, 22> — z' e S(a).

We will prove that (., Ix reduces to a point. Assume that there exist
2!, 22€ Niso Ix- Then FX(z"), F¥(z2)e V(r, B), Vk=>0. By Lemma 3.7 we have that
||[m' (F¥(z"))|| is a strictly decreasing sequence of real numbers. Therefore it has a
limit which must be 0. Moreover, for all k, ||z>(F*(z"))||<p||x' (F¥(z"))||, thus
7?(Fk(z')) also goes to 0. The same happens to n*(F¥(z?)). Applying Lemma 3.13
iteratively we get

| (F¥(22) = FE(N)l[ 2 [|n(z" = 2)]l.

Taking the limit when k — oo we obtain n?(z%) = n(z!). Also, since 22 — z' € (), we
have that 7' (z?) = n' (z') and hence z* = z'. Therefore (., /x is a point and has the
form (x°,°). Furthermore

() =In {(x,y)enwm  lim F¥(z) =0, F*(z) eV (r, ﬁ),k>0}.
k>0 K— 0

We define ¢ by ¢(x°) = 3. The graph of ¢ is the invariant manifold we looked for.
Now it remains to be proved that ¢ is Lipschitz. If we assume that Lip ¢ is not
smaller than o, there would exist two different points x!, x> V(r, B) such that

lo(x*) — (x|
[l — x|

Applying Lemma 3.13 iteratively we have
17 (F* (%, (%)) = FE(x", o ()| = []0(x%) — o (x| > ol [x* — x']].
Since (x!, p(x!)) and (x?, p(x?)) belong to the stable manifold

lim 7°(F*(x*, ¢(x?)) — F*(x', p(x))) = 0

k— o0

and hence we deduce that x> = x!, which is a contradiction. Therefore ¢ is Lipschitz
with Lipp<a. O

Remark 3.16. From the fact that we can take o as small as we want if we take r
small enough, we get that ¢ has an arbitrarily small Lipschitz constant in a
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sufficiently small neighborhood of the origin. Therefore ¢ is differentiable at 0 and
Dp(0) =0.

4. The analytic case

In this section we shall prove that if F is analytic then ¢ is also analytic
in a suitable complex enlargement of its domain. We consider F defined in an
open set of C""". We introduce the following notation: if xe C", ||Re x|| and ||Im x||
mean the norm of (Rexy,...,Rex,) and (Im xy, ...,Im x,,) respectively as elements
of R" and

[[x]] = max{[[Re x|, |[Tm x][}.

We take the norm of ||y|| in an analogous way and finally ||(x, y)|| = max{||x||, ||v||}-
Given y,r>0 we define the sets

Q(r,y) ={xeC": RexeV(r),||Im x||<y||Re x|},

A(r,y, B) ={(x,»)€C" x C" : xeQ(r,y), [I¥[|<Bl|x|[}.

We will need the set Q(r,7) to be invariant by x> n! F(x, y) for |[y|| < B||x||. Actually
we will need that there exists an invariant open set containing V' (r) and contained in
Q(r,y). We will see in Lemma 4.3 that a technical sufficient condition for the
invariance of Q(r,y) for some r,7y is

H4 For all xe V'(p), ||[Id 4+ D.p(x,0)|| + ||Id — Niprp(x, 0)]|<2.

Note that if H4 holds, since V'!'(p) is a compact set, there exists # >0 such that for
all xe V'!(p) we have ||[Id + Dyp(x,0)|| + ||Id — Niprp(x, 0)]|<2—1n.

Theorem 4.1. Let F be an analytic map of the form (3.1). Assume that the hypotheses
H1-H4 hold. Then, the map ¢ obtained in Theorem 3.1 is analytic in V(r).

To prove Theorem 4.1 we will consider a suitable analytic initial function and then
the sequence of its iterates by the graph transform.

Since we are interested in the stable manifold we will consider the graph transform
associated to the inverse map F~'. This causes that when one has an iterate, next
iterate is defined implicitly. Rouché’s theorem is used to show that the graph of the
next iterate has no irregular points and the implicit function theorem implies
analyticity. Lemma 4.3 below provides the necessary estimates to apply Rouché’s
theorem.

First we state a technical lemma.
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Lemma 4.2. Let A(x,y) = (a;(x,y)),;; be a k x k matrix such that
(@) Foralli,je{l,...,k}, a;;: A(r,y, B) > C* are C' homogeneous functions of degree

N — 1.
(b) There exists a constant M >0 such that the matrix A(x,0) satisfies

I[1d 4+ A(x,0)||<1— M||x|[""",  for all xeV(r).

Then, there exist positive numbers r, 5,7, K>0 such that

I1d + A(x, )||<1 = K||x|[N7",  for all xeA(r,y,p). (4.1)

Proof. We denote x = x| + ix; and A(x,0) = 4;(x1,x2) + ida(x1,x2). If we take
y<l and xeQ(r,y) then ||x|| =||xi||. Moreover, it is clear that there exists
K; >0 such that max”wHS;,HMH||DxZA1(xl,W)H<K1||x||N72. Then, if xeQ(r,y), by
hypothesis (b)

[Hd + A4 (1, x2) [ < [[Id 4 Ay (x1, 0)| 4 |41 (x1,0) — Ay (x1, x2) ]
<1 —(M =K
<1 — M ||x|"!

with M| >0 if we take y small enough. Moreover, since 4>(x;,0) = 0, there exists
K> >0 such that ||45(x1, x2)|| <pKa||x|[Y . Let ve C be such that |[v|| = 1. We write

v = v + iv;. Using the previous bounds, if r and y are small enough, there exists
My >0 such that

o + Ay (1, x2)v1 = Ao (x1, x2)v2|| < T = Mo||x||V!
and

o2 + Ay (31, X2)v2 + Aa (1, x2)v1 || < T — Mol[x|[¥ .

Therefore, |[Id 4+ 4(x,0)|| <1 — My||x||¥~" for xeQ(r,7).
Finally, using again the mean value theorem

11 + A(x, )| < [[1d + A(x, 0)[| + [|4(x,0) — 4(x, y)|
< 1= (Mo — BK3)|Ixl[¥

which implies the bound (4.1) if § is small enough. [
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Lemma 4.3. There exist r,y, >0 such that

(1) if (x,y)€A(r,y, B) then n'F(x,y)eQ(r,7),
(2) if (x,y)€A(r,y, B) and ||y|| = B||x|| then ||n*F(x,y) — y||<|Iy|],
(3) if (x,y)€A(r,y, B) and ||y|| = Bl|x|| then B||x'F(x,y)||<||x*F(x,y)||.

Proof. (1) Let xeQ(r,y). We write x = x; +ix; with x;,xeR" and p(x,0) =
pl(x1,x2) +ip*(x1,x2) with p'(x1,x2),p*(x1,x2)eR". By the Cauchy-Riemann
equations, we have that

D.p'=D.p* D.p'=-D,p* (4.2)
We observe that, since p?(x1,0) = 0, by (4.2) we get
Dy,p'(x1,0) = =Dy, p*(x1,0) = 0. (4.3)
We claim that there exist positive constants y,, Ky such that

132+ p* (er, x2)|| = yllx1 -+ p! (1, x2)l[ < = Kol x|

for all xeQ(r,y), 7<Y- (4.4)
Indeed, we denote
1
C(x1,x2) = / Dy,p*(x1,5%,) ds, (4.5)
0
1 1
A(x1,x2) = — Dy, p' (x1,X2), (4.6)
P
1 1
B(Xl,XQ) = FD-X‘zp (X],Xz) (47)
P

and we notice that, by (4.2) and (4.3)
C(x1,0) = N,A(x1,0), B(x;,0) =0.

Let xeQ(r,y). Then
(2 + p?(x1,32)[| =

|(Id + C(x1, x2))x2][ < ]2 [[Td + Cx1, x2)]|

< 7llall [1d 4 C(x1, x2)| (4.8)

and, by Euler’s theorem
[Ix1 4+ p' (1, x2) | = [I(Id + A(x1, %2))x1 + Blx1, x2)x2 |

1
= ||xal =
[I(Id + A(x1, x2)) ||
Next we will see that there exist y small enough and K; such that for all
(x1,x2)€Q(r,y) we have that
1d + C(vr, x2)|| + ||(Xd 4+ A(x1,x2)) ] <2 = K[ || (4.10)

- "/IIB(Xl,Xz)|>- (4.9)
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Bound (4.10) is a consequence of hypothesis H4. Indeed,
[Hd + C(x1, 0)|] + [[Id — A(x1, 0)]]

= [[1d + N, A(x1,0)[| + [[1d — A(x1, 0)]|
= [11d + Nl et 1M A e /], )]+ [11d — [[ae1 [[¥ 7 A /[ xal ], 0)
<l + NpACer /11 0)] = 11/ x|V

+ |11 = A/ [bea |, Ol = 1 1/

=2+ [l [I11d + NpA (e /|11, 0)]| + [1d = ACxi /[[x1]], 0)]] 2]

<2 =l (4.11)

Using (4.11), the mean value theorem and the homogeneity of the derivatives of C
and A4, there exists y small enough such that

[1Id + C(x1, x2)|| + |[Id — A(x1, x2)]|
<|[Id + C(x1,0)|| + [|[Id — A(x1,0)||
+ [1C(x1,0) = Clxi, xa)[| + [|4(x1,0) = A (x1, x2) |
<2 =l 4 29K Y
<2 /)l

This implies (4.10). Using the general simple fact that if a,b>0 and a+b<2 — 75
then ab< (1 — 5/ 2)2, from (4.10) we obtain the following bound for the product of

norms ||Id + C(x1,x2)|| [|(Ad + A(x1, %)) || <1 — K> ||x1||*~". We observe that, if y
is small enough, then, by hypothesis H1

1+ A(x1,x2) 7[> ||>1

1
||Id + A(X] s Xz)
and that, there exists K3>0 such that max <y |[[B(x1,w)]| gyK3||x1\|N”71.
Therefore, if y is small enough,

1 — Ko |x ||V
11 + Clx1,x0)||< 2|l -
[[(Id + A(x1,x2)) " ||

1
[(Id + A(x1,x2)) 7|
1 N,—1
—— = 7|B(x1, x2)|| — Kalx1][™”
(Id + A(x1,x2)) 7]

which together with (4.8) and (4.9) implies (4.4).

= Kol x|V = 9| BCxr, x2)l| 4 91 Bloxi xa) |

S ‘

Ol



64 L Baldoma, E. Fontich | J. Differential Equations 197 (2004) 45-72
To prove (1) we have to check that Re n' F(x,y)e V(r,7). We have that

Re RIF(X,y) = [X] —|—p1(x1,0)] + [Rep(xv O) _pl(x170)]

+ Re (p(x,y) — p(x,0)) + Re f(x, ). (4.12)

The second term in the right hand of (4.12) is less than yK||x;||"*"'. The third
M and the fourth

term is o(|[x||*"). Therefore, by H3, if y and p are sufficiently small
Ren!F(x,y)e V(r).
It remains to prove that ||[Im ©' F(x, y)|| <7

term is bounded by max<pj |[DyRe p(x, w)|| [[y]|<BK]||x]|

Re ! F(x,y)||. We have that

[[Im (2" F(x, )l = 7l|Re (2" F (x, )]

<2 + P (1, x2)|| = 7llx1 + p' (1, x0) |
+ |Ip*(x1,x2) = Im p(x,p)[| + 7/[p" (x1,x2) — Re p(x, y)l|
+ [[Im £ (x, y)|| + yl|Re f(x, )]

< = Koyl|x|" + 2BK]|x[|Y + o(||x]|™) <0

if r and f are small.

(2) Let xeQ(r,y) and y such that ||y|| = f||x||. Let je{l,...,m} be such that
Wil = [yl Then [|m*F(x,y) =yl = llg(x,») + g, | <K][x[|Y = K]|x[[Y"||[l/
B<||yl| if r is such that Kr¥e~! < B, since, as |[y|| = B||x||, y#0.

(3) We will see that under the conditions in (3)

1y +q(x,3) + g0 >yl (4.13)

and

x4+ p(x,y) +7 (e, ) <X (4.14)

From 4.13 and 4.14, (3) follows immediately. We deal with (4.13). Since D,¢(x,0) =
0, we have that ¢(x,0)=0. Moreover ¢(x,y) = Q(x,y)y where Q(x,y) =
fol Dyq(x,sy) ds. Clearly Q(x,0) = D,q(x,0), then by (3.3) it is clear that the matrix
—Q(x,y) satisfies the hypotheses of Lemma 4.2, therefore, there exist f§, Ky >0 such
that, if r,7 are small enough, for all (x,y)eA(r,y, ), we have ||[Id — O(x,p)||<1 —

Kollx||¥'. Thus, we have that ||(Id+ Q(x,y)) '||<1 — Mol|x]|
constant M.

N,—1
4 for some
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If  is small enough, then max|j,| <« Ilg(x, w)|| < B(Mo/2)||x|[", and since ||y|| =
BlIxl,
[y +q(x,») + g(x, )= 1](1d + Q(x, »))2l| = [lg(x, )|

I
(Id + Q(x,») |

M, _
> (1 501 Y

>[Iyl

M, N,—1
Il = 222 1

|

since, as ||y|| = Bl|x[], y#0.
Using Euler’s theorem and (3.2) we can prove bound (4.14) in a similar way. O

We will also need a multidimensional version of the classical Rouché’s theorem.
First we recall the definitions of index and multiplicity.

Definition 4.4. Let D=C" be an open set and f a continuous function on D. Let zy be
an isolated zero of f.

(1) We define the index of zy as i(f,z,0) = d(f,%,0) where % is any bounded
neighborhood of zy which does not contain any zero of f* different from zy and d
stands for topological degree.

(2) We define the multiplicity of zy as i(f,xo,p). We say that z is simple if its
multiplicity is one.

The following version of Rouché’s theorem can be found in [11].

Theorem 4.5. Let D be a bounded, open set in C". Suppose that f,g are two
holomorphic functions on D such that ||g(z)||<||f(2)|| for all zedD. Then, f has
finitely many zeros in D, and, counting multiplicity, f and f + g have the same number
of zeros in D.

In particular, if f has a unique zero in D of multiplicity one, f + g also has a unique
zero in D.

We define the set of functions
AH ={h:Q(r,y) > C": h real analytic in Q, ||h(x)||<p||x||}
and also the sets
A% ={(x,y)eC" x C":xeQ(r,y). ||| <BlIxII},
A={(x,p)eC" x C":xeQ(r,y), Iy <BlIxI[},

D(xo) ={zeC":||z[| <Bllxol[} for xo€Q(r,7).
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For xoeQ(r,7), ye D(xo) and he #, we define
H(x07y) = TEZF(X(),y) - h(T[lF(X(),y))

and we want to solve H(xo, ) = 0 with respect to y. The interpretation of H(xo,y) =
0 is that, if we solve y = y*(x), graph y* is the preimage by F of graph /. Notice that
if xoeQ(r,7) and yeD(xo), H is well defined and analytic in A°. Let us see that
H(xp,y) = 0 has a unique solution in D(x). Indeed, by Lemma 4.3, if xo€Q(r,7)
and [|y|| = B||xo|| then

[17°F (0, %) = plI<Iyl-

Therefore by Rouché’s theorem, the functions y and n?F(xg,y) (as functions of y)
have the same number of zeros in D(xy). Since the first function is the identity they
have a unique zero.

On the other hand, if ||y|| = B||x0||, by Lemma 4.3 we have that

Bl F (xo, )| <[|w*F (xo, )|
and hence
[1H (x0,) — w*F (x0,)|| = ||h(' F(x0, »))|| < Bl|n" F(x0, )|
< [|n*F (x0, )l

and again by Rouché’s theorem, H has a unique zero in D(x() which we denote by
y*(xo). Clearly |[y*(xo)|| <p]|xol|-

By the implicit function theorem, since this zero is unique, it depends analytically
with respect to xo. Hence we can define a map & : # — # by

Fh(x) =y (x),

where y*(x) such that H(x,y*(x)) = 0 for all xeQ(J).

Since H is real analytic and the solution y(x) is unique the latter must be real
analytic. Otherwise the conjugate would be another solution on D(x). We have
proved that % sends # into .

Furthermore by construction we have F(graph(#h))cgraph(h) and if 0<m<n

F™(graph(#"h)) = graph(F"""h) e A.

Given hge # we define the sequence h, = F"hye A. Since h,e A the sequence is
uniformly bounded and, by Montel’s theorem, it has a subsequence convergent to
some function he #. To check that F™(graph(/)) € A, we shall assume the contrary,
that is, that there exist m>0 and xeQ (r,7) such that F™(x,(x))¢ A. Since F™ is
continuous there exists ¢>0 such that if ||y — A(x)||<e¢ then F™(x,y)¢ A, but for
n>m big enough ||A,(x) — h(x)|| <e, and this would imply F™(x, h,(x)) ¢ A which is
a contradiction. Hence F"(graph(h))e A, VmeN.
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If xeQ(r,y)nR" = V we have, if f§ is small enough, that
graph hyy = Wy, . {yeR" :||y|[<B||x[|} = graph ¢.

Therefore, A = ¢ which implies that ¢ is a real analytic function. This ends the
proof of Theorem 4.1.
5. Examples

1. A simple example of application of the above theorem is the map
F:R**' S5 R*! defined by

X1 X1 — X3+ 3x1x3 + f1(x1,X2,)
X2 | = x2+ x% — 3x%x2 +f2(x1, %2, )
y y+q(x1,x2,) +g(x1,x2,)

where ¢(x1, x2,y) is a homogeneous polynomial of degree 3, f1, f> and g are analytic
functions of order 4. We will work with the supremum norm. Let r<1/+/3, V(r) =
{(x1,x2)eR?*:x,€(0,7),5|xa|<|x1]}, p=1/v/3 and V'(p)={(1/V3,x2):|x1]
<1/(5v/3)}. We assume that ¢(xi,x2,) = yg(x1,x2,¥) and §(x1,x2,0)>0 on
V'(p). Below we will check that F satisfies the hypotheses of Theorem 4.1.
Therefore, if r is small there exists a stable invariant manifold of the origin given by
the graph of an analytic function ¢ : V(r) > R.

We write pi(x1,x2,y) = —x] +3x;x3 and pa(x1,x2,y) = x3 —3xix, and p=
(p1,p2). The hypothesis H1 is equivalent to 3x} — 3x3>[6x,x,| for (x1,x2)e V!(p)
which is easily seen to be true. The hypothesis H2 holds by the conditions we have on

q.
To check H3, given x = (x,x2) € V' (r) we estimate the distances of x + p(x,0) to

the three parts of OV (r):
{(x1,x2) :x1 = 5x, =0, 0<x; <r},
{(x1,%2):x1 +5x, =0, 0<x;<r} and
{(x1,%2):x1 =71, |x2]<r/5}.

Since x; — 5x2 >0 and x; >0 we have that

X — x% +3x1x5 — 5(x2 +x% — 3xpx?)
- V26
~xi (1= x4+ 3x3) — 5xa(1 4 x3 — 3x})
- V26
X (2x7 + 2x3) S 2

V26 V26~

dist(x + p(x,0), X7 — 5X, = 0)
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which means that x + p(x,0) stays at the same side of X; — 5X, = 0 than (xj, x»)
does and that the distance is O(||(x1, x2)|[).

Analogously  dist(x + p(x,0), X + 5X> = 0)>(2/v26)x]. Since —xj +r>0,
x; >0 and 5|XQ| <X

dist(x + p(x,0), = X; +7r=0) = — x; +x] — 3x1335 + r=x(x7 — 3x3)

22
This proves that if xe V(r), dist(x + p(x,0), V(r)) > (2/v26)x; = (2/v/26)]|x]*.
Finally, hypothesis H4 follows directly from

1
[|IId + Dyp(x,0)|| + Hld — ngp(x, 0)H<2 —2x% 4233 + 8xy|xa| <2

for x = (x1,x2)e V'(p).

2. The second example is the elliptic three-body problem. It consists in the
study of the motion of three bodies of masses | — u, u, 0, with ue(0,1). The first
two bodies, called primaries, move on ellipses of eccentricity e and semimajor
axis a in a plane. The third body moves in the space under the effect of the attraction
of the two primaries. The formulae {; = (z;cosf,z;sinf,0), {, = —(zzcosf,
zsinf, 0) with

_u(l-éY) _(=p-4 df (1 +ecosf)’
Zl_1+ecosf’ 2= 1 +ecosf and dr (1 - ) (5.1)

describe the position of the primaries. The motion of the third body is governed by
the equation

(-4 -4
H R? I8 R%’

{(=(X,Y,2),

where R; =||{ — (|| and R, =||{ —{;||- To study the behavior of the system
in a vicinity of infinity, we perform a change of coordinates, inspired in the
McGehee coordinates, to transform the infinity to a suitable manifold.
This submanifold will be foliated by periodic orbits which will be labeled by
two parameters, o, and p_. We are interested in the invariant manifolds of these
periodic orbits.

We introduce the new coordinates x, y, o, p, 0,7 given by

2 2 . 2 .
X =—cosacost), Y =—sinacost, Z=—sinb
X X X
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and
X = ycosacos O — x*p sinocos 0 — 0 cos o sin 0,
Y = ysin acos 0 + x>p cos o cos 0 — 70 sin o sin 0,
Z = ysin 0 + 10 cos 0.

Writing the equations in these new variables we get the system

1
f=—ply y=—px 1000 + 00T,

R S 8 I
t=—5x + O(x%), 9—2x97:,

1
i=xtp. p =0+ O(x) + 0(0*exp),

(1+ecosf )

/= (1—e2)*?

(5.2)

if 0 is close to zero. We observe that the points of the form (x,y,7,0,0,p) =
(0,0,0,0,0,,p.,) for every fixed constants o, and p_,, give place to periodic orbits.
The set

I:{(x’y’a’p’g’r7f):x:0}

is called the infinity manifold, and obviously, it is invariant. Moreover, the flow
extends analytically to it. The set Iy = In{y = 0,7 = 0,0 = 0} is called the parabolic
infinity. It is foliated by periodic orbits which can be labeled by o« and p. Our
objective is to prove that they have an analytic stable invariant manifold.

For this we perform the change of coordinates given by

Lttt —os  p(1=0%) —p,
X ’ X

)

then, we get the system

1 1
X = _ZX3 y, y= _ZX4 + h.o.t.,

1 |
= ) x*t> +hot, 0= §x20r,

1 1
a= Zx2ya +h.ot., = szyr + h.o.t.

(14ecosf)’

f: (1 _e2)3/2
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Computing the Poincaré map P from f = 0 to 2n we obtain

xi=x—Kx'y+hot, y =y—Kx*+ho.t.,
71 =1 —2Kx*t?> + hoot,, 0, =0+2Kx*t0+ h.o.t.,

ay =a+ Kx*ya+h.ot., r =r+Kx’ya+ho.t,

where (x1,y1,01,11,a1,r1) = P(x,»,0,t,a,r) and

2 3/2 2n
k== / L y-T
4 0o (1+ecosf) 2

It is clear that the origin is a fixed point of the Poincaré map, which corresponds to
the periodic orbit with parameters o, and p . This map is not yet in a suitable form.
We perform the change of variables given by u = x +y, v = x — y, and then, the
Poincaré map takes the form

uy = u— Cu(u+v)’ +hot, v =v+ Co(u+v) +hot,
11 =1—4Cu+v)’® +hot, 6, =0+4Cu+0v)*t0+ho.t.,

a1 =a+ Clu+v)(u—v)a+hot, r =r+Cu+v)(u—0v)r+hot.,

where C = K/8.
This map satisfies the hypotheses H1-H4 of Theorem 4.1. It is sufficient to
consider the convex set

V={(u1):ct<u<t/c},

for some ¢ >0 fixed. To check them is a straightforward calculation. Therefore from
Theorem 4.1 we conclude that there exists a two-dimensional stable invariant
manifold of the origin, which, for ry small enough, can be expressed as the graph of
an analytic function (v,6,r,a) = @(u,1), (u,7)€ V(ry).

It remains to transform the invariant manifold to the originals coordinates. On the
invariant manifold, x = (u+v)/2 = (u+ ¢,(u,7))/2 = h(u, 7). We observe that /i is
an analytic function such that Liphé%( 1 + Lip ¢,) <1, therefore, there exists an
analytic function y such that u = y/(x, 1), and then the stable invariant manifold of
the periodic orbit labeled by (¢«,p,) can be represented as the graph of



L Baldoma, E. Fontich | J. Differential Equations 197 (2004) 45-72 71
(,0,p,2) = p(x,7) with
lﬂ(x, T) — ¢ (lp(x7 ‘C)7 T)

¢l(x7f) = > )
§~02(va) = @2('//()‘:7 T)af)’
P3(x.1) = 1 by + X030 (x,7), 7)),

B 1 - (p%(lﬁ(x,r),r)
@4()@‘5) = o +x§04(l//(xv T)vf) - 2)/@)3()(7,‘[),

where (x,7) belongs to a complex neighborhood of (0, x¢) x (0, 79).

In order to prove the existence of an unstable invariant manifold of the periodic
orbit labeled by o, and p., for the system (5.2) we perform the change given by
s = —t and

()_C,)_/,f,@,o?,ﬁ,f_) = (X, _% _T707_O(;Pa_f)'

In these new variables the dominant terms of system (5.2) do not change and
therefore we can make the same argument as for the stable manifold and to conclude
that there exists a two-dimensional unstable manifold associated to the periodic orbit
of the system (5.2) labeled by o, and p,.
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