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Abstract
Space debris mitigation guidelines represent the most effective method to preserve
the circumterrestrial environment. Among them, end-of-life disposal solutions play a
key role. In this regard, effective strategies should be conceived not only on the basis
of novel technologies, but also following an advanced theoretical understanding. A
growing effort is devoted to exploit natural perturbations to lead the satellites toward
an atmospheric reentry, reducing the disposal cost, also if departing from high-altitude
regions. In the case of the Medium Earth Orbit region, home of the navigation satel-
lites (like GPS and Galileo), the main driver is the gravitational perturbation due to
the Moon, that can increase the eccentricity in the long term. In this way, the pericen-
ter altitude can get into the atmospheric drag domain and the satellite can eventually
reenter. In this work, we show how an Arnold diffusion mechanism can trigger the
eccentricity growth. Focusing on the case ofGalileo, we consider a hierarchy ofHamil-
tonian models, assuming that the main perturbations on the motion of the spacecraft
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are the oblateness of the Earth and the gravitational attraction of the Moon. First,
the Moon is assumed to lay on the ecliptic plane and periodic orbits and associated
stable and unstable invariant manifolds are computed for various energy levels, in the
neighborhood of a given resonance. Along each invariant manifold, the eccentricity
increases naturally, achieving its maximum at the first intersection between them. This
growth is, however, not sufficient to achieve reentry. By moving to a more realistic
model, where the inclination of the Moon is taken into account, the problem becomes
non-autonomous and the satellite is able to move along different energy levels. Under
the ansatz of transversality of the stable and unstable manifolds in the autonomous
case, checked numerically, Poincaré–Melnikov techniques are applied to showhow the
Arnold diffusion can be attained, by constructing a sequence of homoclinic orbits that
connect invariant tori at different energy levels on the normally hyperbolic invariant
manifold.

Keywords Space debris mitigation · Arnold diffusion · MEO · Third-body
perturbation
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1 Introduction

One of the key actions to mitigate the space debris problem and ensure a sustainable
exploitation of the circumterrestrial environment is to implement effectively end-of-
life procedures. While for the Low Earth Orbit and the Geosynchronous protected
regions, there exist well-defined guidelines (Inter-Agency Space Debris Coordination
Committee 2023), for the Medium Earth Orbit (MEO) region still a discussion is
ongoing. This is due to the fact that the MEO region is very broad (in principle, it
goes from an altitude of 2000km up to the geostationary altitude) and not yet critical
in terms of population density.

The MEO region is mostly known because it is where the satellites of the Global
Navigation Satellite Systems (GNSS) orbit, namely GPS, Galileo, GLONASS and
Beidou-M (Alessi et al. 2014). They cover a range of semi-major axis between about
25500 km (GLONASS) and 29600 km (Galileo) and their nominal inclination is
55◦ ± 2◦ (GPS and Beidou-M), 56◦ ± 2◦ (Galileo), 65◦ ± 2◦ (GLONASS) [see, e.g.,
Rossi (2008),Alessi et al. (2016) and references herein]. In the recent ESA’s zero debris
policy (European Space Agency 2023), the GNSS orbits are defined as “valuable
orbits” and the possibility of extending the protection to this region is introduced.
Given the high altitude, so far at the end of life the GNSS satellites were either left
in the operational orbit or re-orbited by a given amount (Alessi et al. 2014). The
accumulation of non-operational satellites in a limited region eventually will lead
to a critical situation in terms of potential collisions and thus fragmentations. For
this reason, Jenkin and Gick (2005) proposed to dilute the collision probability by
increasing the orbital eccentricity of the satellites at the end of life. Indeed, the GNSS
inclination and altitude are such that in the long term the third-body perturbation, that
is, the gravitational perturbation exerted by Sun and Moon, could lead to a natural
eccentricity growth up to reentry, if a suitable initial orbital orientation is chosen.
This mechanism was proven numerically by several authors (see, e.g., Rossi 2008;
Radtke et al. 2015; Alessi et al. 2016; Armellin and San-Juan 2018; Gondelach et al.
2019; Pellegrino et al. 2021, 2022), but an exhaustive theoretical explanation of the
underlying mechanism is still missing.

More precisely, following Kaula (1962) the disturbing function corresponding to
the gravitational perturbation due to a third body can be written as a series expansion
depending on semi-major axis, eccentricity, inclination of both the satellite and the
third body, and a periodic term involving the longitude of the ascending node, the
argument of perigee and the mean anomaly of both the satellite and the third body.
By doubly averaging the periodic terms (over the orbital period of the satellite and the
orbital period of the Moon), and considering only the first-order effect, we define the
secular Hamiltonian.1

A possible way to deal with the secular Hamiltonian is to assume that only one
periodic term is dominant at a time, in particular,when its argument is resonant.Most of
the past works2 focus on such “isolated resonance hypothesis” and on the eccentricity

1 In what follows, this step will be omitted because it can be found in several past works (see references
above).
2 It is beyond the scope of this work to provide a review of all the past investigations on the subject. Here,
we recall only the works that are relevant to our contribution.
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growth associated with an inclination-dependent resonance, involving the argument of
the pericenter ω and the longitude of the ascending node of the satellite �. For quasi-
circular orbits at MEO altitudes, and assuming the Galileo inclination (≈ 56◦), the
dominant resonance is 2ω̇+�̇ ≈ 0.3 As a first approximation,ω and� change in time
because of the Earth’s oblateness, but the third body perturbation has also an effect.

The authors in Rosengren et al. (2015), Daquin et al. (2016) assumed the isolated
resonance hypothesis and brought forward the concept that the eccentricity growth
that ensures a reentry is due to a chaotic behavior, that occurs when two or more res-
onances overlap. The Chirikov criterion is mainly proven by detailed fast Lyapunov
indicators (FLI) maps that show the location of the chaotic regions. The phase space
associated with each possible resonance of the secular dynamics was investigated also
in Lei et al. (2022), but in this case, the authors remarked the role of the Laplace plane.
More recently, the authors in Gkolias et al. (2019), Daquin et al. (2022), Legnaro and
Efthymiopoulos (2023) proposed the idea that the high eccentricity growth is due,
not to the chaos generated by overlapping resonances, rather to the normally hyper-
bolic invariant manifold (NHIM) associated with the given resonance and through
an Arnold diffusion mechanism. They showed, with refined FLI maps and an ad hoc
Hamiltonian derived for circular orbits in the neighborhood of the resonance, that
what triggers the phenomenon is the variation of a given integral of motion. They also
emphasized the role of the Laplace plane for the motion on the invariant tori. Some
of the invariant objects “necessary” to achieve Arnold diffusion were already identi-
fied in these works (Daquin et al. 2022; Legnaro and Efthymiopoulos 2023), that also
showed, numerically, hyperbolicity and unstable motions along the resonance.

The goal of the present paper is to show how to construct rigorously the Arnold
diffusion mechanism that creates the drift in eccentricity. In particular, we focus our
study on the resonance 2ω + � with the Galileo satellites values. Nonetheless, our
approach is fairly general and can be adapted for other resonances and values. In other
words, we follow the idea that it is the NHIM the cause that we have to investigate, and
we will show how it is possible to construct homoclinic connections that “connect”
different energy levels on the NHIM associated with the 2ω+� resonance. Moreover,
we will show how to construct orbits that shadow (follow closely) this sequence of
homoclinic orbits. These shadowing orbits achieve a drift in eccentricity large enough
so that the satellite renters the Earth’s atmosphere.

The mathematical proofs will be obtained on the basis of two important assump-
tions. First, we will focus only on the third-body effect exerted by the Moon, thus
neglecting the Sun, and second, we will apply a perturbative approach with respect
to the inclination of the Moon on the ecliptic plane iM (which has a real value of
iM = 5.15◦ ≈ 0.08 rad), that is assuming that iM is small enough. More details on this
will be given in the next subsection. Notice that the model we consider can be seen as
a rather simplified version of the initial problem. However, we expect that the outcome
of this work will pave the way for the analysis of a more realistic model, that can be
used to estimate the measure of the Arnold diffusion orbits and the diffusion time. In
turn, this is the first step to define more rigorously effective end-of-life solutions for
MEO.

3 For GLONASS the inclination is ≈ 63◦ and thus the dominant resonance is 2ω̇.

123



Journal of Nonlinear Science             (2025) 35:8 Page 5 of 54     8 

Note that there are other well-known mechanisms to achieve drift of eccentricity.
Among them, a classical one is the so-called Kozai–Lidov mechanism (Kozai 1962;
Lidov 1962) (see also von Zeipel 1910) in which, through a secular resonance, the
orbit of the satellite may undergo an exchange between eccentricity and inclination
thanks to the Moon’s gravitational influence. However, this takes place in a different
region of phase space and arises in a different model [see Clarke et al. (2023) for an
Arnold diffusion result through the Kozai–Lidov mechanism].

The paper is structured as follows. In Sect. 2, we define the secular Hamiltonian
and provide formulas for it. Then, we state the main result of this paper. In Sect. 3, we
introduce a “good” system of coordinates which captures the timescales of the model.
In Sect. 4, relying on what we call hierarchy of models, we explain how the Arnold
diffusion mechanism takes place in the secular Hamiltonian. Finally, we also provide
definitions for the main tools we use: a normally hyperbolic invariant manifold and the
associated scatteringmaps. In Sect. 5, we analyze the dynamics for the coplanar model
(that is, taking iM = 0). We use this analysis to describe, in Sect. 6, the dynamics for
the full secular Hamiltonian with iM > 0 small enough.

1.1 An Arnold DiffusionMechanism

V. Arnold in 1964 (see Arnold 1964) showed, in a cleverly chosen model, that actions
can vary drastically in nearly integrable Hamiltonian systems (of at least 2 and a half
degrees of freedom, that is a phase space of at least dimension 5). Then, he conjectured
that such behavior, nowadays called Arnold diffusion, should be typical. In (nearly
integrable) physical models, it is expected that Arnold diffusion is a fundamental
mechanism leading to transport in phase space. Such transport is achieved by drifting
along resonances.

The understanding of Arnold diffusion mechanisms has had outstanding progress
in the last decades, relying on a wide variety of techniques: the original geomet-
ric approach by Arnold, which has been deeply developed in Bolotin and Treschev
(1999), Delshams et al. (2000, 2006a, b), Delshams and Huguet (2009), Gelfreich
and Turaev (2008), Delshams et al. (2019), Gelfreich and Turaev (2017), variational
methods (Cheng and Yan 2004; Cheng 2017), topological tools (Gidea and de la Llave
2006; Clarke et al. 2023), the so-called separatrix map (Treschev 2004, 2012) or a
combination of different approaches (Bernard et al. 2016; Kaloshin and Zhang 2020).

As stated before, the goal of this paper is to explain how an Arnold diffusion mech-
anism can enhance drift in eccentricity along the 2ω + � resonance. The mechanism
we propose relies on geometric tools in the spirit of the seminal work by Arnold. They
are explained in detail in Sect. 4.2.

Let us mention here just the main ingredients. We show that, along the resonance,
there exists a normally hyperbolic invariant cylinder (see Definition 4.3 below). The
stable and unstable manifolds of this cylinder intersect transversally. Thus, we can
construct trajectories that, following closely a sequence of homoclinic orbits to the
cylinder, achieve a considerable drift in eccentricity. Such drift allows the satellite, by
flattening its osculating ellipse, to enter the Earth’s atmosphere.
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Toperformsuch analysis,we assume that the inclinationof theMoon iMwith respect
to the ecliptic plane is small enough. This allows us to use perturbative arguments to
construct the “highways” that lead to the drift. Note that it is fundamental that iM > 0,
because in the coplanar case, namely when iM = 0, there are not enough dimensions
to achieve Arnold diffusion.

Even if our tools rely on the fact that iM > 0 is small enough, we expect that
the same mechanism takes place for a realistic value of iM, because, indeed, it is
expected that transport phenomena are even stronger and more robust in far from
integrable Hamiltonians. Nevertheless, in that setting, one cannot combine analytical
and numerical techniques to describe the cylinder and its invariant manifolds, as we
do in the present paper. Instead, one has to describe them fully numerically. In this
work, numerical simulations are done for a lower dimensional model (what we call
the coplanar Hamiltonian) and can be kept “simple”. Otherwise, it would require
to compute numerically high dimensional objects in the 5-dimensional phase space.
Moreover, when iM increases other resonances could come to play also an important
role and an resonance overlapping could take place.

Finally, note that, for applications, it is fundamental to know the speed of such
transport mechanisms. For arbitrarily small iM > 0 the mechanism is rather slow (the
drifting time is T ∼ 1/iM). However, for a realistic value of iM it is expected to be
faster. Moreover, one may expect that combining Arnold diffusion mechanism with
maneuvers could speed up considerably the drifting.

2 The Secular Hamiltonian System and theMain Result

Let us consider a spacecraft that is affected by the gravitational attraction of the
Earth, the perturbation due to the Earth’s oblateness and the lunar gravitational per-
turbation. In the geocentric equatorial reference system, the motion of the spacecraft
takes place on an ellipse, that is described by the orbital elements semi-major axis
a, eccentricity e, inclination i , longitude of the ascending node � and argument of
pericenter ω. The ellipse changes in time due to the perturbations. The orbit of the
Moon is defined in the geocentric ecliptic reference system by the corresponding
orbital elements (aM, eM, iM,�M, ωM), where aM = 384400 km, eM = 0.0549006,
iM = 5.15◦, while the longitude of the ascending node of the Moon with respect to
the ecliptic plane varies approximately linearly with time in a period T�M of 1 Saros
[about 6585.321347 days (Roy 1973; Perozzi et al. 1991)] due to the solar gravitational
perturbation, namely,

�M(t) = �M,0 + n�M t, n�M = 2π/T�M, (2.1)

where �M,0 is the longitude of ascending node of the Moon at a given epoch.
Since we consider the secular model (the system averaged over the mean anomalies

of both the satellite and themoon), the semi-major axis a is a constant ofmotionwhich,
in the case of Galileo, corresponds to a = 29,600 km. Let us define

α = a/aM,

123



Journal of Nonlinear Science             (2025) 35:8 Page 7 of 54     8 

which characterizes the Earth-satellite distance with respect to the Earth–Moon dis-
tance.

Then, in Delaunay action-angle variables,4 the secular dynamics is described by
the Hamiltonian (Daquin et al. 2016)

H(L,G, H , g, h,�M; iM) = HK(L) + H̃0(L,G, H)

+α3H̃1(L,G, H , g, h,�M; iM), (2.3)

where

HK(L) = −1

2

μ2

L2

is the constant termassociatedwith theEarth’smonopole, beingμ = 398600.44 km3/s2

the mass parameter of the Earth, and

H̃0(L,G, H) = 1

4

ρ0

L3

G2 − 3H2

G5
(2.4)

is the perturbative term associated with the Earth’s oblateness, averaged over the
orbital period of the spacecraft, being ρ0 = μ4 J2R2, with J2 = 1.08 × 10−3 the
coefficient of the second zonal harmonic in the geopotential and R = 6378.14 km the
mean equatorial radius of the Earth. The secular perturbative term due to the Moon is
instead

H̃1(L,G, H , g, h,�M; iM)

= − ρ1

L2

2∑

m=0

2∑

p=0

D̃m,p(L,G, H)

2∑

s=0

cm,s F2,s,1(iM)

×
[
Um,−s
2 (ε) cos

(
ψ̃m,p,s(g, h,�M)

)
+Um,s

2 (ε) cos
(
ψ̃m,p,−s(g, h,�M)

)]
.

The function Um,∓s
2 (ε) corresponds to the Giacaglia function with ε = 23.44◦ (see

Table 2 in “Appendix A.1”) being the obliquity of the ecliptic with respect to the
equatorial plane.

Also, one has that

D̃m,p(L,G, H) = F̃m,p(G, H)X̃ p(L,G), (2.5)

where F̃m,p(G, H) is a function of the Kaula’s inclination functions F2,m,p(i),5

4 Recall that in celestial mechanics, these are the classical canonical variables, defined as

L = √
μa, l = M,

G = L
√
1 − e2, g = ω,

H = G cos i, h = �.

(2.2)
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see Kaula (1966), and X̃ p(L,G) is a function of the zero-order Hansen coefficient

X2,2−2p
0 (e)6, see Hughes (1980), and

ψ̃m,p,σ (g, h,�M) = 2(1 − p)g + mh + σ
(
�M − π

2

)
− y|σ |π, (2.6)

where σ = ±s defines the relative orientation satellite-Moon. In addition, the other
variables are constants defined as

ρ1 = μμM

(1 − e2M)3/2
, εn =

{
1 if n = 0
2 if n �= 0

,

cm,s = (−1)�m/2	 εmεs
2

(2 − s)!
(2 + m)! , y|s| =

{
0 if s is even
1/2 if s is odd

,

(2.7)

where μM = 4902.87 km3/s2 is the mass parameter of the Moon.

Remark 2.1 By Kaula’s inclination functions (see Kaula 1966), one obtains that

F2,s,1(iM) =
⎧
⎨

⎩

− 1
2 + 3

4 sin
2 iM if s = 0,

− 3
2 sin iM cos iM if s = 1,

3
2 sin

2 iM if s = 2.
(2.8)

We remark that when iM = 0, the inclination function F2,s,1(0) = 0 for all s, except
for s = 0 which is F2,0,1(0) = −1/2.

In other words, assuming that the Moon lies on the ecliptic plane, the Hamiltonian
H in (2.3) is autonomous, because the angle ψ̃m,p,s(g, h,�M) does not depend on�M
for s = 0.

Remark 2.2 In the numerical computations that will be presented throughout the text,
all the variables will be taken in non-dimensional units defined in such a way that the
semi-major axis a of the orbit of the Galileo satellites (equal to 29,600km) is the unit
of distance and the corresponding orbital period is 2π .

The main result of the paper is the following. It assumes several ansätze that are
stated below and are verified numerically.

Theorem 2.3 Consider the secular Hamiltonian H in (2.3) with the parameters just
fixed, take

α = 0.077 (2.9)

and assume that the Ansätze 5.1, 5.6 and 6.6 are satisfied.

5 Since H = G cos i , one has that F̃m,p(G, H) = F2,m,p(arccos
H
G ).

6 Since G = L
√
1 − e2, one has that X̃ p(L,G) = X2,2−2p

0

(√
1 − G2

L2

)
.
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Then, for iM > 0 small enough, there exist a time T > 0 and a trajectory z(t) =
(L(t),G(t), H(t), g(t), h(t),�M(t)) such that

H(z(0)) = 1.7 · 10−8 and H(z(T )) = 1.3 · 10−6.

Moreover, along the energy increase the osculating eccentricity and inclination satisfy

e(0) = 0 and e(T ) = 0.78,

and

i(t) ∈ [56.06◦, 58.09◦] for t ∈ [0, T ].
Note that such evolution would not be possible if iM = 0 since in that case the Hamil-
tonian is autonomous and therefore the energy is a first integral (recall Remark 2.1).

Concerning the evolution of the eccentricity, we note that it is already oscillating
when iM = 0. However, the size of this oscillations depends on the energy value.
Indeed, the orbit that we obtain in Theorem 2.3 is such that at the initial time, assuming
i = 56.06◦ the eccentricity is oscillating (approximately) between 0 and 0.35, whereas
at the final time T is oscillating between 0 and 0.78. Therefore, at the initial time the
satellite is far from the Earth’s atmosphere, whereas at the final time the satellite is
reentering.

Theorem 2.3 does not provide any estimate on the time T > 0 needed to achieve
the drift in eccentricity. As mentioned before, more quantitative shadowing arguments
compared to those used in the present paper [see, for instance, Treschev (2002), Pif-
tankin (2006)] should lead to estimates for T = T (iM) of the form

|T | � C

iM
,

for some constant C > 0 independent of iM > 0 (see Remark 4.5 below).
Finally, in what follows, we will omit the Keplerian term of the Hamiltonian HK,

since it does not contribute to the variation of the orbital elements. As well, we omit
the dependence of the Hamiltonian on the variable L since it is a constant of motion.

3 A Good System of Coordinates

Let us start by focusing on the region of the phase space where an orbit satisfies the
“2g + h resonance” in the unperturbed problem, defined by the Hamiltonian H̃0 in
(2.4) (i.e., α = 0), which is integrable.

The resonance is the set of points in action space where the condition ẋ = 0 holds,
where x = 2g + h is the resonant angle. This is satisfied if the orbital inclination is
equal to i
 � 56.06◦ in the prograde case or to i
 � 110.99◦ in the retrograde case.
Indeed, according to the equations of motion, the resonance occurs when

5H2 − G2 − HG = 0,
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that is, for all G �= 0 (i.e., e < 1) and H = G cos i
 (see (2.2)) that satisfy

5X2 − 1 − X = 0, X = cos i
.

Hence, we can distinguish two situations:

• the prograde case for i
 = arccos
(
1+√

21
10

)
� 56.06◦,

• the retrograde case for i
 = arccos
(
1−√

21
10

)
� 110.99◦.

In what follows, i
 will be mentioned as the inclination of the (exact) 2g + h-
resonance and we will focus on the prograde case.

The unperturbed Hamiltonian highlights that x is constant for i = i
, while it
circulates for |i − i
| > 0. Moreover, in a small enough neighborhood of the (exact)
resonance the angular variables evolve at different rates: g and h are “fast” angles
compared to x which undergoes a “slow” rotation of O(i − i
).

3.1 Slow–Fast Coordinates (y, x)

Instead of using the Delaunay action-angle variables, in order to take advantage of the
timescales separation,we introduce the transformation (G, H , g, h) = ϒDel(y, �, x, h)
given by

x = 2g + h, y = G

2
, � = H − G

2
(3.1)

and the symplectic form d x ∧ d y + d h ∧ d �.

Notice that several symplectic transformations are possible; however, we prefer the
one such that the resonant action y does not depend on the inclination.7 Hence, the
action-angle variables (y, x) are associated with the variation in eccentricity.

In slow–fast variables, the Hamiltonian of the full problem can be written as

H(y, �, x, h,�M; iM) = H0(y, �) + α3H1(y, �, x, h,�M; iM)

where

H0(y, �) = (H̃0 ◦ ϒDel)(y, �) = ρ0

128

y2 − 6y� − 3�2

L3y5

and
H1(y, �, x, h,�M; iM) = (H̃1 ◦ ϒDel)(y, �, x, h,�M; iM). (3.2)

See “Appendix A.1” and, in particular, Eq. (A.1) for a detailed expansion of the
functions involved in the expression of the Hamiltonian H1.

7 Even if we focus our analysis on the 2g+h resonance, our approach is fairly general. A similar change of
coordinates can be considered for a different resonance.What is important is to choose the angle x as the one
corresponding to the slow dynamics. The other changes of variables are chosen so that the transformation
is symplectic.
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Notice that, in the unperturbed problem (α = 0), � and y are first integrals of the
problem, because the Hamiltonian does not depend on the angles h and x , while in
the full problem (α > 0), the phase space is no more integrable. Moreover, in the
integrable case once fixed a and e, the dynamics can be catalogued as a function of
the inclination.

In the coordinates just defined, the 2g + h-resonance becomes the x-resonance. In
the unperturbed problem, the action space associated with the resonance is defined by
the condition

ẋ = ∂H0(y, �)

∂ y
= 3

128

ρ0

L3

5�2 + 8y� − y2

y6
= 0.

In other words, the resonance can take place on the two lines

� = y
−4 + √

21

5
and � = y

−4 − √
21

5
, (3.3)

with (y, �) �= (0, 0), that are associated with prograde and retrograde orbits, respec-
tively.

3.2 Poincaré Coordinates (�, �)

The next step is to study the dynamics in the neighborhood of a circular orbit, that is for
small values of e > 0. However, the slow–fast variables derived from the Delaunay
variables (as happens with the original Delaunay variables) are singular at e = 0.
In order to overcome this difficulty, we introduce the set of Poincaré coordinates
(y, �, x, h) = ϒPoi(η, �, ξ, h) where

ξ = √
2L − 4y cos

( x
2

)
, η = √

2L − 4y sin
( x
2

)
, (3.4)

which are symplectic. Notice that ξ and η are, respectively, equivalent to e cos(x/2)
and e sin(x/2) for quasi-circular orbits, that is when e ≈ 0.

In this set of coordinates, the Hamiltonian of the full problem can be written as

H(η, �, ξ, h,�M; iM) = H0(η, �, ξ) + α3H1(η, �, ξ, h,�M; iM) (3.5)

where

H0(η, �, ξ) = (H0 ◦ ϒPoi)(η, �, ξ)

= ρ0

2

(2L − ξ2 − η2)2 − 24(2L − ξ2 − η2)� − 48�2

L3(2L − ξ2 − η2)5

(3.6)

and

H1(η, �, ξ, h,�M; iM) = (H1 ◦ ϒPoi)(η, �, ξ, h,�M; iM). (3.7)
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See “Appendix A.2” and, in particular, Eq. (A.2) for a detailed expansion of the
functions involved in the expression of Hamiltonian H1.

4 The Hierarchy of Models and Dynamical Systems Tools

We devote this section to explain the geometric framework that will lead to the drifting
orbits. To this end, it is convenient to autonomize the Hamiltonian. Let us recall
equation (2.1) for the time variation of �M ∈ T, namely

�M(t) = �M,0 + n�M t .

We introduce �M as a variable and define its symplectic conjugate variable J . Then,
we define the 3-degree-of-freedom Hamiltonian

K(η, �, J , ξ, h,�M; iM) = H(η, �, ξ, h,�M; iM) + n�M J , (4.1)

where H is the Hamiltonian introduced in (3.5).
We analyze this Hamiltonian in two steps, relying on the smallness of iM. In

Sect. 4.1, we explain the strategy of this analysis. In this section, we also introduce the
h-averaged Hamiltonian. We will not rely on it to construct our diffusion mechanism.
However, we introduce it since it has been widely studied numerically in literature
(see, e.g., Daquin et al. 2022). and is a convenient simplified model to use as a first
step in certain numerical studies of the full problem. In the paper (Alessi et al. 2024),
we perform a detailed analytic study of the h-averaged Hamiltonian, and we describe
its equilibrium points and their stability.

In Sect. 4.2, we introduce the two main tools that will create the “highway” of
unstable orbits: a normally hyperbolic invariant cylinder and the associated scattering
maps.

4.1 The Hierarchy of Models

To construct the intermediate models, we rely on the fact that the model depends on
two parameters: the inclination of the Moon with respect to the ecliptic plane iM and
the ratio between the semi-major axis of the satellite and the one of the Moon α.

In our analysis, we consider iM arbitrarily small—the perturbative parameter—and
a realistic value for α (see Theorem 2.3). Still, the smallness of α creates different
timescales that may be taken into account.

Main reduction: the Coplanar Model Since we are assuming that the inclination
of theMoon is small, the main reduction that one can do to have an intermediate model
is to take iM = 0. We refer to this model as the Coplanar Model since it corresponds
to assuming that the orbit of the Moon is coplanar to that of the Earth. When doing
this reduction, the HamiltonianK in (4.1) becomes�M independent, see Remark 2.1.
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Starting from (4.1), we define

KCP(η, �, J , ξ, h) = K(η, �, ξ, h,�M; 0) = H(η, �, ξ, h,�M; 0) + n�M J ,

(4.2)

where the subscript CP stands for coplanar. SinceKCP is�M-independent, J is a first
integral. In fact, one can work in the reduced phase space and consider the 2-degree-
of-freedom Hamiltonian

HCP(η, �, ξ, h) = H(η, �, ξ, h,�M; 0). (4.3)

This Hamiltonian can be written as

HCP(η, �, ξ, h) = H0(η, �, ξ) + α3HCP,1(η, �, ξ, h),

where H0 is the Hamiltonian introduced in (3.6) and HCP,1 is the Hamiltonian H1
in (3.7) with iM = 0, that is,

HCP,1(η, �, ξ, h) = H1(η, �, ξ, h,�M; 0).

See “Appendix A.2” and, in particular (A.3), for the explicit expression of HCP,1.
Apossible further reduction: the h-averaged problemThe departing point of our

analysis is the coplanar Hamiltonian in (4.3) above. However, in literature extensive
investigations have been based on the h-averaged coplanar model. The reduction to the
h-averaged model is based on the fact that if α is a small parameter, the autonomous
HamiltonianHCP has a timescale separation between the slow and fast angles, respec-
tively x and h. Indeed,

ξ̇ , η̇ ∼ α3 whereas ḣ ∼ 1.

A classical way to exploit this feature is to simplify the Hamiltonian HCP by another
one in which the fast oscillations have been removed by averaging over the longitude
of the ascending node h. That is,

HAV(η, �, ξ) = 1

2π

∫ 2π

0
HCP(η, �, ξ, h)d h.

We refer to thisHamiltonian as the h-averagedHamiltonian. Note that since theHamil-
tonian H0 in (3.6) is h-independent, HAV can be written as

HAV(η, �, ξ) = H0(η, �, ξ) + α3

2π

∫ 2π

0
HCP,1(η, �, ξ, h)d h.

Notice thatHAV is a 1-degree-of-freedomHamiltonian provided that� is a first integral
of the h-averaged system.
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4.1.1 Theoretical Results for the Coplanar and h-Averaged System

The mechanism we use to show the existence of drifting orbits is the Arnold diffusion
mechanism (see Sects. 4.2 and 4.3 below). A key point in the analysis is to study the
relative position between the invariant manifolds of the hyperbolic periodic orbits of
the coplanar model.

In this work, we use circular periodic orbits, that is, the periodic orbits located at
(η, ξ) = (0, 0) (see (3.4)). Indeed, let us recall thatHCP(η, �, ξ, h) is a 2-degrees-of-
freedom autonomousHamiltonian that can be expressed asHCP = H0+α3HCP,1 with
H0 as given in (3.6) andHCP,1 in (A.3). From the explicit expressionof theHamiltonian
obtained in “Appendix A.2”, one can easily see that it does not have linear terms with
respect to (η, ξ) = (0, 0). This implies that (η, ξ) = (0, 0) is invariant. Then, to
analyze the circular periodic orbits, it is enough to look for periodic solutions of the
1-degree-of-freedom Hamiltonian HCP(0, �, 0, h). In “Appendix A.2”, we provide
formulas for this Hamiltonian (see Lemma A.1).

In Alessi et al. (2024), we prove the existence of periodic orbits at {η = ξ = 0}
when the semi-major axis a ∈ [amin, amax] with

amax = 30,000 km, amin = 6378.14 km (to avoid collision).

We also introduce Lmin,max = √
μamin,max.

Theorem 4.1 For any L ∈ [Lmin, Lmax], we define

E1(L) = HCP(0, 0.49L, 0, π), E2(L) = HCP(0, 0, 0, 0).

Then, for any energy level E ∈ [E1(L),E2(L)], there exists a periodic orbit of the
form PE (t) = (0, �E (t), 0, hE (t)) such that, hE (0) = 0 and, for t � 0, ḣE (t) �= 0,
�E (t) ∈ [0, 0.49L] and

HCP(0, �E (t), 0, hE (t)) = E .

In addition, for the case of Galileo, namely L = 1 in non-dimensional units (which
corresponds to a = 29,600 km see Remark 2.2), one has that

E1(1) = −2.515161379204321 · 10−5, E2(1) = 2.477266122798186 · 10−6.

This result ensures the existence of periodic orbits but does not give information about
the character of them. A first theoretical approach for solving this problem is to study
the character of the equilibrium point (η, ξ) = (0, 0) for the h-averaged system and to
consider the coplanar Hamiltonian as a perturbation with respect to α of HAV. Since
in this work we deal with a realistic value of α = 0.077 (see (2.9)), this perturbative
approach is not useful in our case. However, it gives an insight about the scenario we
can encounter. In Alessi et al. (2024), the following result about HAV is proven.

Theorem 4.2 There exist two functions �1, �2 : [Lmin, Lmax] → (
0, L

2

)
such that, for

L ∈ [Lmin, Lmax]:
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• If either � ∈ (0, �1(L)) or � ∈ (
�2(L),

L
2

)
, then (0, 0) is a center of HAV.

• If � ∈ (�1(L), �2(L)), then (0, 0) is a saddle of HAV.
• If � = �1(L) or � = �2(L), the origin is a degenerated equilibrium point ofHAV.

In addition, L−1�1(L) ∈ (
0, m

2

)
and L−1�2(L) ∈ (m

2 ,
1
2

)
, with m := −4+√

21
5 (i.e.,

the slope of the prograde resonance line in (3.3)).

For a given L , the values of �1,2 can be numerically computed (as the zeroes of
some appropriate function). For instance, for the case of Galileo (i.e., L = 1),

�1(1) = 0.029613649805289, �2(1) = 0.084971418151141,

and the corresponding energy levels (for the h-averaged system) are

EAV
1 (1) = 2.072230388690642 · 10−6, and EAV

2 (2) = −3.473759155836634 · 10−7,

respectively. Therefore, for L = 1 and E ∈ (EAV
2 (1),EAV

1 (1)), as a consequence of
Theorem 4.2, the origin is a saddle point of the h-averaged system.

Applying perturbation techniques, it can be seen (see Alessi et al. 2024) that if α3

is small enough, the circular periodic orbits for the coplanar Hamiltonian, HCP, stated in
Theorem 4.1, are of saddle type if they belong to certain energy levels close enough to those
of HAV(0, �, 0) with � ∈ (�1(L), �2(L)). However, as expected, there is no quantitative
information about the maximum value of α such that this result can be applied. For this
reason, we have decided to consider the coplanar (non-averaged) model to build the Arnold
diffusion mechanism. This is important to have a more realistic numerical computation of
the hyperbolic periodic orbits and the corresponding manifolds (see Sect. 5.1).

4.2 Normally Hyperbolic Invariant Manifolds and ScatteringMaps

We devote this section to explain the main tools that we use to construct the “instability
paths” along which the eccentricity of the satellite drifts. These are normally hyperbolic
invariant manifolds, the homoclinic intersections of their invariant manifolds and the asso-
ciated scattering maps.

Such objects can be defined for maps or flows. We will use them both for maps and
flows in Sects. 5 and 6. Here, we provide the definitions for flows. The ones for maps are
analogous.

In this section, we denote by M a Cr smooth manifold, by X ∈ Cr (M, T M) a vector
field on M and by ϕt : M → M the associated smooth flow. Let� ⊂ M be a compact ϕt -
invariant submanifold, possibly with boundary. By ϕt -invariant we mean that X is tangent
to �, but that orbits can escape through the boundary (a concept sometimes referred to as
local or weak invariance).

Definition 4.3 We call � a normally hyperbolic invariant manifold for ϕt if there is 0 <

ν < ϑ−1, a positive constant C and an invariant splitting of the tangent bundle

T�M = T� ⊕ E s ⊕ Eu
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with T� =
⋃

P∈�

({P} × TP�
)
, E s,u =

⋃

P∈�

({P} × E s,u
P

)
such that, for all P ∈ �,

‖Dϕt (P)v‖ � Cϑ |t | for all t ∈ R, v ∈ TPM,

‖Dϕt (P)v‖ � Cνt for all t � 0, v ∈ E s
P ,

‖Dϕt (P)v‖ � Cν−t for all t � 0, v ∈ Eu
P .

Moreover, � is called an r -normally hyperbolic invariant manifold if it is Cr smooth
and

0 < ν < ϑ−r < 1 for r � 1. (4.4)

Fenichel theory (Fenichel 1971, 1974, 1977) ensures that normally hyperbolic invariant
manifolds are persistent under perturbations. Moreover, they possess stable and unstable
invariant manifolds W s,u(�) ⊂ M defined as follows. The local stable manifold W s

loc(�)

is the set of points in a small neighborhood of � whose forward orbits never leave the
neighborhood, and tend with exponential rate to �. The local unstable manifold W u

loc(�)

is the set of points in the neighborhood whose backward orbits stay in the neighborhood
and tend exponentially to �. We then define the stable and unstable manifold of � as

W s(�) =
∞⋃

t�0

ϕ−t (W s
loc(�)

)
, W u(�) =

∞⋃

t�0

ϕt (W u
loc(�)

)
.

The stable and unstable manifolds of � are foliated by what is usually called the strong
stable and strong unstable foliations, the leaves of which we denote byW s,u(P) for P ∈ �.
For each P ∈ �, the leaf W s(P) (resp. W u(P)) of the strong stable foliation is tangent at
P to E s

P (resp. Eu
P ). Moreover, the foliations satisfy that ϕt (W s(P)) = W s

(
ϕt (P)

)
and

ϕt (W u(P)) = W u
(
ϕt (P)

)
for each P ∈ � and t ∈ R.

Then, one can define the usually called wave maps π s,u : W s,u(�) → � to be pro-
jections along leaves of the strong stable and strong unstable foliations. That is to say, if
Q ∈ W s(�) then there is a unique Q+ ∈ � such that Q ∈ W s(Q+), and so π s(Q) = Q+.
Similarly, if Q ∈ W u(�) then there is a unique Q− ∈ � such that Q ∈ W u(Q−), in which
case πu(Q) = Q−. The points Q± satisfy that

lim
t→±∞ dist(ϕt (Q±), ϕt (Q)) = 0.

Now, suppose that Q ∈ (W s(�) � W u(�)) \� is a transverse homoclinic point such
that Q ∈ W s(Q+) ∩ W u(Q−). We say that the homoclinic intersection at Q is strongly
transverse if

TQW
s(Q+) ⊕ TQ

(
W s(�) ∩ W u(�)

) = TQW
s(�),

TQW
u(Q−) ⊕ TQ

(
W s(�) ∩ W u(�)

) = TQW
u(�).

(4.5)

In this case, in a small enough neighborhood � of Q in W s(�) ∩ W u(�), (4.5) holds at
each point of �, and the restrictions to � of the holonomy maps, π s,u, are bijections onto
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their images. We call� a homoclinic channel. In such domain, following (Delshams et al.
2008), we define the scattering map as follows.

Definition 4.4 Let Q− ∈ πu (�), let Q = (πu|�)−1 (Q−), and let Q+ = π s(Q). The
scattering map S : πu(�) → π s(�) is defined by

S = π s ◦ (
πu)−1 : Q− �−→ Q+.

Assume that both M (the manifold) and X (the vector field) are Cr with r � 2 and that
(4.4) is satisfied, so that � is also Cr . Then, the scattering map S is Cr−1 (see Delshams
et al. 2008). Moreover, if the vector field has a Cr -dependence on some parameters, then
the scattering map depends on a Cr−1 on them.

In general, the scattering map is only locally defined, as the transverse homoclinic
intersection of stable and unstable manifolds can be very complicated. In the present
paper, we are able to describe quite precisely the domains of the scattering maps that we
consider.

4.3 The Arnold Diffusion Instability Mechanism

Once we have introduced the hierarchy of models in Sect. 4.1 and the dynamical systems
tools in Sect. 4.2, we are ready to explain the instability mechanism that we consider to
achieve drift in the eccentricity of the satellite. Such mechanism fits into what are usually
called a priory chaoticHamiltonian systems in Arnold diffusion literature (Delshams et al.
2000; Piftankin 2006; Féjoz et al. 2016).

Consider first the coplanar Hamiltonian HCP in (4.3), namely iM = 0. Since HCP is
autonomous, its energy is a first integral, and therefore the coordinate J as well for the
HamiltonianKCP in (4.2) (in the extended phase space). In Sect. 5, we will see that at each
energy level (in a certain interval), the HamiltonianHCP has a periodic orbit at the 2g+h-
resonance. In Poincaré variables, this periodic orbit is located at {η = ξ = 0}. Moreover,
in the considered energy interval, these periodic orbits are hyperbolic and, thus, they have
stable and unstable invariantmanifolds. In addition, we obtain numerical evidence that they
intersect transversally within each energy level. The obtained homoclinic orbit has a range
of eccentricity between e = 0 (the periodic orbit) and certain e = emax which depends
on the energy level.8 For energy levels realistic for Galileo emax � 0.35 (in particular,
its orbit does not enter the Earth’s atmosphere), whereas for higher energies emax reaches
0.78 (which implies that the osculating ellipse of the satellite hits the Earth atmosphere)
or higher.

In the extended phase space (i.e., adding the pair (J ,�M) and considering the Hamil-
tonian KCP in (4.2)) these periodic orbits become 2-dimensional tori. If one considers the
union of such tori for an energy interval, one has a normally hyperbolic invariant cylinder
(see Definition 4.3). Analogously, the union of the stable and unstable manifolds of the
periodic orbits (now tori) constitute the invariant manifolds of the cylinder and their trans-
verse intersections give rise to homoclinic channels (see Fig. 1-left). This allows to define
scattering maps (in suitable domains, detailed in Sect. 5).

The fact that J is constant when iM = 0, implies that solutions close to the invariant
manifolds of the cylinder have a constrained drift in eccentricity: it ranges from e = 0

8 By energy level we mean with respect to the coplanar secular Hamiltonian HCP.
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Fig. 1 The normally hyperbolic invariant cylinder and its invariant manifolds. In the left figure iM = 0 and
therefore J is a first integral. The cylinder is foliated by invariant tori whose invariant manifolds intersect
transversally within J = constant giving rise to a homoclinic channel. In the right figure, iM > 0 (small
enough). Then, J is not a first integral anymore and one can construct heteroclinic connections between
different tori in the cylinder (diamond intersections in the picture). See Corollary 5.2 and Theorem 6.1,
respectively, for a detailed description of the notation

(close to the cylinder) to close to the alreadymentioned emax (close to the “first” homoclinic
point), which depends on J .

When iM > 0 but still small enough the dynamics changes drastically. Indeed, in
Sect. 6, we construct solutions of the full Hamiltonian K in (4.1) such that the action J
undergoes big changes. Equivalently, we construct solutions of the HamiltonianH in (3.5)
with energy drift. These solutions travel along the resonance (3.3) and therefore, while
increasing energy along the resonance, they perform larger homoclinic excursions which
lead to larger oscillations in eccentricity.

The achievement of this drift is given by anArnold diffusionmechanism,which relies on
the normally hyperbolic invariantmanifold and the associated invariantmanifolds and scat-
tering maps (see Sect. 4.2). Indeed, classical Fenichel theory (see Fenichel 1971) implies
that the normally hyperbolic invariant cylinder of the Hamiltonian HCP in (4.3) persists
for iM small enough and the same happens for the associated stable and unstable invariant
manifolds (see Fig. 1-right). Moreover, all the objects are regular with respect to iM. This
implies that the transverse intersections present in the case iM = 0 are also persistent and
the associated scattering maps are also smooth with respect to iM.

We use the scattering maps to construct what is usually called a pseudo-orbit. That is,
a sequence of concatenated “pieces of orbits”. More precisely, this pseudo-orbit is formed
by pieces of orbits in the cylinder (that is, pieces of orbits of what is usually called the inner
dynamics) which are connected by heteroclinic orbits (see Fig. 2-left). Recall that a point
in the cylinder Q− is mapped to a point Q+ by the scattering map if there is a heteroclinic
orbit of the Hamiltonian (4.1) between them. Thus, to construct a pseudo-orbit one has to
understand how to “combine” the inner dynamics (the flow restricted to the cylinder) and
the scattering map (in occasions also called outer map) to achieve drift in J .

Both the inner and scattering maps are computed numerically relying on perturbative
methods (for iM > 0 small enough). Thanks to the particular form of theHamiltonian (4.1),
these maps have a rather simple form. Indeed, note that one can reduce the dimension of
the model by considering a Poincaré map associated with the section {h = 0} and by
eliminating the variable � through energy conservation. Then, the cylinder becomes two
dimensional and a good system of coordinates for it is (J ,�M). In these coordinates, the
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Fig. 2 The pseudo-orbit (left) and the shadowing orbit (right): The blue orbit shadows (follows closely) the
pseudo-orbit formed by heteroclinic orbits connecting different points in the cylinder and pieces of cylinder
orbits

inner map is of the form

Fin
iM :

(
J

�M

)
�→

(
J + iM

(
A+
1 (J )e

i�M + A−
1 (J )e

−i�M
) + O(i2M)

�M + n�MT0(J ) + O(iM)

)
, (4.6)

and one can define two scattering maps (denoted as primary and secondary) of the form

Fout,∗
iM

:
(

J
�M

)
�→

(
J + iM(B∗,+

1 (J )ei�M + B∗,−
1 (J )e−i�M) + O(i2M)

�M + n�Mζ
∗(J ) + O(iM)

)
, (4.7)

for ∗ ∈ {pri, sec}, associated with two different homoclinic channels. We compute numeri-
cally the functions appearing in the first orders of these maps. Those of the scatteringmaps,
Fout,∗
iM

, are given by Melnikov-like integrals [similar so those in Delshams et al. (2000),
Fejoz and Guardia (2016)].

Note that the scattering maps are not globally defined since the invariant manifolds of
the cylinder may have tangencies. This is the reason why wemust use two scattering maps:
the union of domains of the two scattering maps contain the whole region of the cylinder
we are interested in.

Then, we construct a drifting pseudo-orbit. Note that we cannot use now the classical
results (Moeckel 2002; Le Calvez 2007), which ensure that such pseudo-orbits exist pro-
vided the inner and scattering maps dynamics share no common invariant curves, since
they require globally defined maps (which is not the case for the scattering maps in the
present paper). Instead, we construct it from a “generalized transition chain”, that is, a
sequence of invariant quasi-periodic tori of either the inner map or one of the scattering
maps, which are connected by an iteration of the other map. This is done in Sect. 6.

Once the pseudo-orbit is constructed, the final step is to show that there is a true orbit of
the Hamiltonian (4.1) which “shadows” (i.e., follows closely) the pseudo-orbit (see Fig. 2-
right). For this last step, we rely on shadowing results developed in Gidea et al. (2020).
These results are rather flexible and can be easily applied to our setting. Unfortunately,
they do not provide time estimates.

Remark 4.5 Instead of Gidea et al. (2020), we could have relied on more quantitative
shadowing arguments (see for instance Treschev 2002; Piftankin 2006; Gidea and de la
Llave 2006; Clarke et al. 2023) which could provide time estimates. However, they require
a more precise knowledge of the inner dynamics and, therefore, to keep the proof simple,
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we do not use them. Still, they should be applicable also to our setting and should lead to
instability times T = T (iM) satisfying

|T | � C

iM
,

for some constant C > 0 independent of iM > 0.

5 The Coplanar Secular Hamiltonian

In this section, we analyze the dynamics of the Hamiltonian HCP (see (4.3)). That is,
we consider the secular Hamiltonian with no inclination of the Moon with respect to the
ecliptic plane (i.e., iM = 0). In particular, we analyze certain features of its dynamics and
then we “translate” them to the Hamiltonian KCP (see (4.2)) in the extended phase space.

Since we consider α = 0.077 as a fixed parameter9 (see (2.9)), the application of
perturbative techniques to analyzeHCP is not possible. Instead, in the following sections,
we assume certain ansätze on the Hamiltonian and verify them numerically.

5.1 Periodic Orbits and Their Invariant Manifolds

Concerning the secular coplanar Hamiltonian in (4.3) we assume the following ansatz. It
concerns the existence of hyperbolic periodic orbits at circular motions and the transverse
intersections of their stable and unstable invariant manifolds.

As we claimed in Sect. 4.1.1, the plane {η = ξ = 0} is invariant by the coplanar
Hamiltonian. The ansatz is related to the (circular) periodic orbits lying on {η = ξ = 0}.
Ansatz 5.1 The Hamiltonian HCP(η, �, ξ, h) given in (4.3) satisfies the following state-
ments.

1. In every energy level E ∈ [Emin, Emax] = [−2.12 · 10−7, 1.36 · 10−6], the periodic
orbit PE (t) = (0, �E (t), 0, hE (t)) provided in Theorem 4.1 is hyperbolic. Denoting
T(PE ) its period, we have that

n�MT(PE ) ∈ [3.9π, 4.15π ], HCP(PE (t)) = E .

Both the periodic orbit and the period depend smoothly on E. In addition, T(PE ) is a
strictly increasing function with respect to E.

2. For each E ∈ [Emin, Emax], the invariant manifolds Wu(PE ) and Ws(PE ) intersect
transversally. Let QE (t) be any of these homoclinic orbits.

3. For E ∈ [Emin, Emax], the periodic orbitPE (t) and the homoclinic orbitQE (t) satisfy

i(QE (t)), i(PE (t)) ∈ [55.70◦, 58.18◦], for all t ∈ R,

and

max
t∈R e(QE (t)) � 0.795,

9 Instead of taking it “small enough”.
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Fig. 3 Examples of periodic orbits for iM = 0, non-dimensional units. The colorbar reports the value of
HCP. Here, it is shown the behavior of a range of energies larger than the one we are interested in

where i(·) and e(·) denote the osculating inclination and eccentricity respectively.

Note that this ansatz assumes the existence of transverse homoclinic orbits to the periodic
orbits but does not provide information on how these homoclinic orbits depend on E . In
fact, we will have to consider the intersections between different branches of the invariant
manifolds depending on the energy levels to avoid homoclinic tangencies.

We devote the next section to verify numerically this ansatz.

5.1.1 Numerical Verification of Ansatz 5.1

Asweclaimed inSect. 4.1.1, the existence of the circular periodic orbits located at {η = ξ =
0} is guaranteed by Theorem 4.1. Considering non-dimensional units (see Remark 2.2),
some examples of these periodic orbits computed for the system given byHCP are shown
in Fig. 3. Note that Galileo corresponds toHCP = 1.7 · 10−8 (assuming i = 56.06◦).

Concerning the stability, the eigenvalues of the monodromy matrix of a given periodic
orbit are of the type

{
1, 1, eTλ, e−Tλ}, with T the period of the given orbit, in case of orbits

with hyperbolic nature, or
{
1, 1, iν,−iν

}
in case of orbits with elliptic nature. We will

consider only the former case. In Fig. 4, we show the behavior of the eigenvalue greater
than 1 for the hyperbolic periodic orbits, as a function ofHCP.

In Fig. 5, we show the period of the hyperbolic periodic orbits and the value of n�MT
as a function of HCP. Recall that �M(t) = �M,0 + n�M t (see (2.1)); therefore, the value
n�MT indicates the ratio between the periods of the variables h and �M. Notice that at
HCP ≈ 4.4472 · 10−7 ∈ [Emin, Emax] (non-dimensional units), the period is such that
n�MT = 4π which corresponds to the resonance 2h − �M (that is, T = 2T�M). This
double resonance was already observed in Daquin et al. (2022) and will be commented
further at the end of the paper.

Next, we analyze the dynamics of the stable and the unstable manifolds of the circular
periodic orbits and we look for transverse intersections between them at each energy level
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Fig. 4 The value of the
eigenvalue greater than 1, λ, as a
function of theHCP for the
hyperbolic periodic orbits

(Item 2 in the ansatz). Note that the Hamiltonian HCP is reversible with respect to the
involutions

�h(η, �, ξ, h) = (−η, �, ξ,−h) and �v(η, �, ξ, h) = (η, �,−ξ,−h),

where h and v stand for horizontal and vertical respectively, referring to the projection of
the symmetry axis onto the (ξ, η) plane, which are {η = 0, h = 0}, {η = 0, h = π}
and {ξ = 0, h = 0}, {ξ = 0, h = π} respectively. These symmetries simplify the
numerical verification of the ansatz since one can easily see that the intersections between
W u(PE ) and W s(PE ) have points at these symmetry axes in all the considered energy
levels. However, these intersections may not be transverse. Indeed, the angles between the
invariant manifolds at the symmetry axes depend analytically on the energy and they may
vanish for a discrete set of values of the energy.

In Fig. 6, on the left, we show the behavior of the unstable invariantmanifolds associated
with the periodic orbit on the Poincaré section {h = 0}, together with the corresponding

Fig. 5 The period (left) T of the hyperbolic periodic orbits as a function of HCP. On the right, nSarosT
(where nSaros ≡ n�M) as a function ofHCP
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Fig. 6 Left: the unstable manifolds on the Poincaré section {h = 0} for different energy levels. The colorbar
depicts the evolution of the eccentricity along these unstable manifolds. Right: the behavior of the unstable
manifolds computed assuming as Poincaré map {h = 0} (purple) and {h = π} (green), for a given energy
level

eccentricity growth (colorbar). Each curve corresponds to a different energy levels. In the
same figure on the right, we show the behavior of the invariant manifolds on the Poincaré
section {h = 0} (purple) and {h = π} (green), for a same value of energy.

All the computations of the hyperbolic manifolds have been performed following the
procedure explained in Féjoz et al. (2016). The first intersection between the stable and
the unstable manifolds takes place at η = 0 (ξ �= 0), after about 30 iterations on the
Poincaré map of the fundamental domain assuming an initial displacement of 10−8 in
non-dimensional units from the periodic orbit along the eigendirections. This choice cor-
responds to an error of 10−11 following (Féjoz et al. 2016).

To verify Item 2 in the ansatz, we must show that, at every energy level, the circular
periodic orbit has a transverse homoclinic. We first consider the homoclinic point at {η =
0, h = 0}with ξ > 0. The corresponding value of ξ and the maximum eccentricity growth
achieved are shown in Fig. 7. The invariant manifolds are transverse at these points for all
energies within the considered energy range except for 6 values. (These values will be
showed later in the first column of Table 1, see also Fig. 8).

For these 6 energy levels, we must look for other homoclinic points and check the
corresponding transversality. Note that one cannot consider the homoclinic points at {η =
0, h = 0} with ξ < 0 (see Fig. 6) since they have the same tangencies as the first branch
considered as they are�v-symmetric. The first choice is to look for the homoclinic points
at the symmetry axis {η = 0, h = π} (with either ξ > 0 or ξ < 0, since they are
�v-symmetric). However, the energy values for which these homoclinic points develop
tangencies are very close to those of the other branch considered. This is shown in Table
1 and Fig. 8, where we show the splitting angle computed at the first point of intersection
between the negative branch of the stable and the unstable manifolds at {η = 0, h = 0}
and {η = 0, h = π} as a function of the given energy level. One should expect that even
if they look to be very close, the tangency energy values of the two branches are disjoint.
However, to check this would require a numerical analysis with a much higher precision.

Instead, to keep the numerical analysis “simple”,we consider a different branch:we look
for homoclinic points at the symmetry axis {ξ = 0, h = 0}. We refer to these homoclinic
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Fig. 7 Left: first point of intersection ξ0 between negative branch of the stable and the unstable manifolds of
a given periodic orbit at the crossing with the {η = 0, h = 0} axis, as a function ofHCP (non-dimensional
units). Right: the corresponding maximum eccentricity achievable along the hyperbolic manifolds as a
function ofHCP (non-dimensional units)

Table 1 The value ofHCP corresponding to a non-transverse intersection at {η = 0, h = 0} and the absolute
and relative difference with respect to the value of HCP corresponding to a non-transverse intersection at
{η = 0, h = π}. On the last column, the splitting angle φ (rad) computed at {ξ = 0, h = 0} at the same
energy level

HCP �HCP �HCP/HCP φ

1.34294e−6 1.2e−11 8.9e−6 0.788

1.23642e−6 1.5e−10 1.2e−4 0.997

1.09175e−6 6.1e−12 5.6e−6 1.183

8.9030e−7 6.6e−12 7.4e−6 1.276

6.0662e−7 2.5e−11 4.1e−5 1.554

2.1005e−7 7.5e−11 3.5e−4 1.935

points as secondary since their orbits approach twice the saddle, in contrast to the first
branch, which we denote by primary. The corresponding splitting angle φ is shown in
Table 1 (last column), and an example of such intersection is given in Fig. 9.

Once we have computed the periodic orbits and the associated transverse homoclinics,
Item3of the ansatz can be easily verified by integrating numerically the flowof the coplanar
system.

5.2 The Invariant Cylinder and Their Invariant Manifolds

In this section, we analyze how the periodic orbits provided by Ansatz 5.1 (Item 1) give
rise to a normally hyperbolic invariant cylinder and, by means of Item 2 of Ansatz 5.1,
we analyze the associated stable and unstable invariant manifolds and their intersections.
Then, we study the inner dynamics (dynamics restricted to the cylinder) and the scattering
maps of the coplanar secular model (see Sect. 4.2).

Our aim is to study the complete problem as a perturbation of the coplanar one. To
this end, we consider the HamiltonianKCP (see (4.2)) defined in the extended phase space
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Fig. 8 Splitting angle between the negative branch of the stable and the unstable manifolds computed at
{η = 0, h = 0} (purple) and {η = 0, h = π} axis (green), as a function of HCP (non-dimensional units).
The tangencies of both branches are very close to each other and beyond the numerical accuracy that we
consider

Fig. 9 Homoclinic intersection (green point) computed at {ξ = 0, h = 0} for HCP = 2.1005 · 10−7

(non-dimensional units). In red the negative branch of the unstable manifold, in blue the negative branch
of the stable manifold (Color figure online)

(η, �, J , ξ, h,�M). In other words, we keep the conjugated variables (J ,�M) even if�M

is a cyclic variable (see (2.1)). As a result, the periodic orbits considered in Ansatz 5.1
become 2-dimensional invariant tori. Indeed, we first notice that the energy levelKCP = 0
in the extended phase space corresponds to HCP = E with E = −n�M J . In addition,
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since ḣE (t) �= 0, t = h−1
E (h). Then, from functions h−1

E (t) and �E (t), we can obtain a
parametrization of these tori in terms of (h,�M) of the form

(
0, �ext

J (h), J , 0, h,�M

)
, for (h,�M) ∈ T

2,

for

J ∈ [Jmin, Jmax] =
[
− Emax

n�M

,− Emin

n�M

]
,

with Emax, Emin as given in Ansatz 5.1. Therefore, the union of these 2-dimensional invari-
ant tori form a normally hyperbolic invariant 3-dimensional manifold �0, diffeomorphic
to a cylinder T2 ×[Jmin, Jmax]. Applying the implicit function theorem with respect to the
energy J , one can see that the cylinder is analytic (by Ansatz 5.1, the periodic orbits are
hyperbolic, thus non-degenerate). We summarize this fact in the following lemma, which
is a direct consequence of Ansatz 5.1 (see also Fig. 1-left).

Corollary 5.2 Assume Ansatz 5.1. Then, the Hamiltonian KCP (see (4.2)) has an ana-
lytic normally hyperbolic invariant 3-dimensional cylinder �0, which is foliated by
2-dimensional invariant tori on the constant invariant hyperplanes J = J0 ∈ [Jmin, Jmax].

Moreover, the cylinder�0 has 4-dimensional invariant manifolds, denoted by Wu(�0)

and Ws(�0), which, for every J ∈ [Jmin, Jmax], intersect transversally either at the sym-
metry axis {η = 0, h = 0} with ξ > 0 or at {ξ = 0, h = 0} with η > 0.

Fromnowon,wewill call primary homoclinic orbits (and denote themwith a superindex
pri) those which intersect the symmetry axis {η = 0, h = 0} with ξ > 0 and we will call
secondary homoclinic orbits (and denote themwith a superindex sec) those which intersect
the symmetry axis {ξ = 0, h = 0} with η > 0. Indeed, the first ones only get close to the
periodic orbit once while the second ones approach it twice.

To analyze the dynamics on the cylinder and the scatteringmap associatedwith the trans-
verse intersections of its invariant manifolds it is more convenient to consider a Poincaré
map. Therefore, we define a global Poincaré section and work with maps to reduce the
dimension by one.

There are two natural choices of section, {h = 0} or {�M = 0}, since both variables
satisfy ḣ �= 0 (see Theorem 4.1) and �̇M = n�M �= 0. It would seem more natural to
choose the section {�M = 0}; however, since we aim to prove drift on the energy J , it is
more convenient to consider the section

� = {h = 0}

and the induced Poincaré map

�0 : � → � (5.1)

Notice that this Poincaré section was already used in the numerical study in Sect. 5.1. In
addition, we denote the intersection of the cylinder �0 with the section � as

�̃0 = �0 ∩ �.
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Notice that �̃0 is a 2-dimensional normally hyperbolic manifold for the Poincaré map�0

with 3-dimensional stable and unstable manifolds, which we denoteW u(�̃0) andW s(�̃0)

for j = 1, 2.They intersect at transverse homoclinic orbitswhich are just the those analyzed
in Corollary 5.2 intersected with the section �.

To fix notation, we denote byD∗
0, with ∗ ∈ {pri, sec}, the subset of [Jmin, Jmax] for which

there exist primary/secondary homoclinic orbits to the corresponding invariant torus in the
cylinder. By Corollary 5.2, Dpri

0 ∪ Dsec
0 = [Jmin, Jmax].

Corollary 5.3 Assume Ansatz 5.1. The Poincaré map �0 defined in (5.1) and induced by
HamiltonianKCP (see (4.2)) has a normally hyperbolic 2-dimensional cylinder �̃0 foliated
by invariant curves. In addition, there exists an analytic function G0 : [Jmin, Jmax] ×T →
R
3 × T

3,

G0(J ,�M) = (
0,G�

0 (J ), J , 0, 0,�M
)
,

that parametrizes �̃0,

�̃0 = {G0(J ,�M) : (J ,�M) ∈ [Jmin, Jmax] × T}.

Moreover, for ∗ ∈ {pri, sec}, within the hypersurface J = J0 with J0 ∈ D∗
0, the invari-

ant manifolds Wu(�̃0) and Ws(�̃0) intersect transversally at the symmetry axis of the
involutions �h (for ∗ = pri) and �v (for ∗ = sec).

Let �∗
0 denote these transverse intersections on the symmetry axes. Then, there exists

an analytic function C∗
0 : D∗

0 × T → R
3 × T

3, such that

Cpri0 (J ,�M) =
(
0, C�,pri0 (J ), J , Cξ,pri0 (J ), 0,�M

)
,

Csec0 (J ,�M) =
(
Cη,sec0 (J ), C�,sec0 (J ), J , 0, 0,�M

)
,

that parametrizes �∗
0. That is,

�∗
0 = {C∗

0(J ,�M) : (J ,�M) ∈ [Jmin, Jmax] × T}.

The subscript 0 in the previous structures and parameterizations indicates that we are
dealing with the coplanar case, i.e., iM = 0.

Notice that Corollary 5.2 gives global coordinates for the cylinder �̃0. Moreover, these
coordinates are symplectic with respect to the canonical symplectic form d�M ∧ d J .
Indeed, Corollary 5.3 implies that at the cylinder �̃0 one has η = ξ = h = 0 and
� = G�

0 (J ). Then, the pullback of the canonical form dξ ∧ dη + dh ∧ d� + d�M ∧ d J
to �̃0 is just d�M ∧ d J .

Next, we consider the inner and the two scattering maps (for the primary and secondary
homoclinic channels). The inner map is defined in the whole cylinder �̃0, whereas the scat-
tering maps are defined in open domains of the cylinder where the associated homoclinic
channels are transverse. Since J is conserved by the inner and scattering maps, these maps
are integrable and the variables (J ,�M) are action-angle coordinates. In these variables, it
will be easier to later understand the effect of the inclination iM on the inner and scattering
maps.
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5.2.1 The Coplanar Inner Map

In this section, we study the inner map, as introduced in (4.6), restricted to the normally
hyperbolic manifold �̃0. In particular, the inner map Fin

0 : �̃0 → �̃0 is defined as the
Poincaré map �0 in (5.1) restricted to the symplectic invariant manifold �̃0. We express
Fin
0 using the global coordinates (J ,�M) of �̃0. Since J is an integral of motion and

�̇M = n�M, the inner map has the form of

Fin
0 :

(
J

�M

)
�→

(
J

�M + n�MT0(J )

)
, (5.2)

where T0(J ) is the period of the periodic orbit obtained in Ansatz 5.1 on the corresponding
energy surface E = −n�M J .

The following lemma is a direct consequence of Ansatz 5.1 (see Fig. 5).

Lemma 5.4 Assume Ansatz 5.1. The analytic symplectic inner map Fin
0 defined in (5.2) is

twist, that is

∂JT0(J ) < 0 for J ∈ [Jmin, Jmax].

In addition, there exists a unique Jres ∈ [Jmin, Jmax] such that

n�MT0(Jres) = 4π.

Moreover,

n�MT0(J ) /∈ 2πZ for all J ∈ [Jmin, Jmax] \ {Jres}.

This lemma is crucial to later, inSect. 6.3, construct the heteroclinic connections between
different tori of the perturbed cylinder (with iM > 0).

5.2.2 The Coplanar Scattering Maps

In this section, we study the scattering maps, as introduced in (4.7), associated with the
Poincaré map �0 which sends �̃0 to itself by means of the homoclinic channels �pri

0 and
�sec

0 (see Corollary 5.3). For each homoclinic channel, we denote

Fout,pri
0 : �̃0 → �̃0, Fout,sec

0 : �̃0 → �̃0.

Notice the abuse of notation since the scattering maps are only defined provided J ∈ D
pri
0

or J ∈ Dsec
0 , respectively, and not in the whole cylinder �̃0.

The scattering map is always exact symplectic, see Delshams et al. (2008). So, since J
is preserved, the scattering maps must be of the form

Fout,∗
0 :

(
J

�M

)
�→

(
J

�M + n�Mζ
∗(J )

)
, for ∗ ∈ {pri, sec}. (5.3)
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The functions ζ ∗ are usually called phase shift. Indeed the homoclinic orbits in �∗
0 are

homoclinic to a periodic orbit. However, they are asymptotic to different trajectories (that
is, different phases) in the periodic orbit.

To compute the phase shifts ζ ∗, it is convenient to deal with a flow instead of the
associated Poincaré map, because then one can rely on Melnikov theory. However, the
outer map induced by the flow associated with the Hamiltonian (4.2) does not preserve
the section {h = 0} and, therefore, one cannot deduce the outer map associated with
the Poincaré map �0 from that of the flow. Then, we reparameterize the flow so that its
scattering maps preserve this section. This reparameterization corresponds to identifying
the variable h with time t and is given by

dξ

ds
= ∂ηHCP(η, �, ξ, h)

∂�HCP(η, �, ξ, h)
,

dη

ds
= − ∂ξHCP(η, �, ξ, h)

∂�HCP(η, �, ξ, h)
,

dh

ds
= 1,

d�

ds
= − ∂hHCP(η, �, ξ, h)

∂�HCP(η, �, ξ, h)
,

d�M

ds
= n�M

∂�HCP(η, �, ξ, h)
,

d J

ds
= 0.

(5.4)

Note that the right hand side of the system of equations (5.4) does not depend on �M. Let
ϕ̂CP{s, (η, �, J , ξ, h,�M)} be the flow associated with Eq. (5.4) and ϕCP{s, (η, �, ξ, h)}
be the flow associated with its (η, �, ξ, h) components. Componentwise, for the reduced
and extended phase space, it can be written as

ϕCP{s, (η, �, ξ, h)} = (
ϕη{s, (η, �, ξ, h)}, ϕ�{s, (η, �, ξ, h)},
ϕξ {s, (η, �, ξ, h)}, h + s

)
,

ϕ̂CP{s, (η, �, J , ξ, h,�M)} = (
ϕη{s, (η, �, ξ, h)}, ϕ�{s, (η, �, ξ, h)}, J ,
ϕξ {s, (η, �, ξ, h)}, h + s,�M + ϕ�M{s, (η, �, ξ, h)}).

(5.5)

In addition, we denote the trajectories departing from points either in the normally
hyperbolic cylinder or in one of the homoclinic channels, respectively, as

γJ (s) = ϕCP{s, (0,G�
0 (J ), 0, 0)}, χ

pri
J (s) = ϕCP{s, (0, C�,pri0 (J ), Cξ,pri0 (J ), 0)},

χ sec
J (s) = ϕCP{s, (Cη,sec0 (J ), C�,sec0 (J ), 0, 0)}.

(5.6)

Lemma 5.5 Assume Ansatz 5.1.
The functions ζ ∗(J ) involved in the definition of the outer maps in (5.3) are given by

ζ ∗(J ) = ζ ∗+(J ) − ζ ∗−(J ).

where

ζ ∗+(J ) = −ζ ∗−(J ) = lim
N→+∞

N−1∑

l=0

(∫ 2π(l+1)

2πl

ds

∂�HCP ◦ χ∗
J (s)

− T0(J )
)
.
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Fig. 10 As a function of HCP ≡ −n�M J , we show on the left nSarosζ pri(J ). Here nSaros ≡ n�M. Note

that at HCP = 4.4472 × 10−7 corresponding to the existence of a secondary resonance (see Fig. 5 on the
right), nSarosζ pri(J )/π ≈ 5.61. On the right, nSarosζ sec(J )/2π for the non-transverse values (see Table 1).
The integral of Lemma 5.5 has been computed by means of the function qags of the quadpack Fortran
package

In Fig. 10-left, we plot the function ζ pri(J ) for the case under study. This figure prompts
us to assume the following ansatz, which will be used in Sect. 6.3. Roughly speaking it
will ensure that the inner and outer maps do not have simultaneous resonances at their first
orders in iM.

Ansatz 5.6 For J = Jres, the value introduced in Lemma 5.4, the function ζ pri satisfies
that

ζ pri(Jres) /∈ πZ and ∂J ζ
pri(Jres) �= 0,

Note that in Fig. 10-left we only depict the horizontal lines at ζ pri = 2πk instead of
ζ = πk to have a clear picture. In Fig. 10-right, we plot the functions ζ sec(J ) for the values
of J ∈ [Jmin, Jmax] where the primary homoclinic channel is not transverse (see Table 1).

Proof of Lemma 5.5 Since the flow component (ϕ̂CP)�M is of the form �M + ϕ�M with
ϕ�M independent of �M, its behavior is given by

ϕ�M{s, (η, �, ξ, h)} = n�M

∫ s

0

ds

∂�HCP ◦ ϕCP{s, (η, �, ξ, h)} . (5.7)

First, we obtain an integral expression for the period T0(J ) given in (5.2). Indeed, since
the inner map is just the 2π -time map of the flow ϕ̂CP for the components (J ,�M), by
Corollary 5.3 one has that,

T0(J ) = ϕ�M{2π, (0,G�
0 (J ), 0, 0)}

and, by (5.6) and (5.7),

T0(J ) =
∫ 2π

0

ds

∂�HCP ◦ γJ (s)
. (5.8)
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Let us now consider the primary scattering map. One has the homoclinic point

Cpri0 (J ,�M) = (0, C�,pri0 (J ), J , Cξ,pri0 (J ), 0,�M) ∈ W u,1(�0) ∩ W s,1(�0) ∩ {h = 0},

(see Corollaries 5.2 and 5.3). Since the (η, �, ξ, h) components are independent of �M,
this point is forward asymptotic (in the reparametrized time) to a point

Q+ = (
0,G�

0 (J ), J , 0, 0,�M + n�Mζ
pri
+ (J )

)
,

and backward asymptotic to a point

Q− = (
0,G�

0 (J ), J , 0, 0,�M + n�Mζ
pri
− (J )

)
.

The scattering map corresponds to the application Q− �→ Q+ (see Definition 4.4). Then,
by the expression of the map Fout,pri

0 in (5.3), one has that

ζ pri(J ) = ζ
pri
+ (J ) − ζ

pri
− (J ).

By the definition of ζ pri+ (J ), using definitions (5.6) of χpri
J , γJ and applying (5.7), one

obtains

ζ
pri
+ (J ) = 1

n�M

lim
s→+∞

(
ϕ�M{s, (0, C�,pri0 (J ), Cξ,pri0 , 0)} − ϕ�M{s, (0,G�

0 (J ), 0, 0)}
)

(5.9)

= lim
s→+∞

∫ s

0

(
dσ

∂�HCP ◦ χ
pri
J (σ )

− dσ

∂�HCP ◦ γJ (σ )

)
.

Since system (5.4) is 2π -periodic in s, due to the identification of s with h, it is more
convenient to write these integrals as

ζ
pri
+ (J ) = lim

N→+∞

∫ 2πN

0

(
ds

∂�HCP ◦ χ
pri
J (s)

− ds

∂�HCP ◦ γJ (s)

)
,

and, taking into account (5.8), one has that

ζ
pri
+ (J ) = lim

N→+∞

N−1∑

l=0

∫ 2π(l+1)

2πl

(
ds

∂�HCP ◦ χ
pri
J (s)

− T0(J )
)
.

Let us recall that HCP is reversible with respect to �h(η, �, ξ, h) = (−η, �, ξ,−h)
(see (5.4)). Therefore, the flow satisfies ϕCP{s, (0, �, ξ, 0)} = �h ◦ ϕCP{−s, (0, �, ξ, 0)}.
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Then, one can see that ϕ�M{s, (0, �, ξ, 0)} = −ϕ�M{−s, (0, �, ξ, 0)}. As a result,

ζ
pri
− (J ) = 1

n�M

lim
s→−∞

(
ϕ�M{s, (0, C�,pri0 (J ), Cξ,pri0 , 0)} − ϕ�M{s, (0,G�

0 (J ), 0, 0)}
)

= −ζ
pri
+ (J ). (5.10)

We proceed analogously for the secondary scattering map. ��

6 Dynamics of the Systemwith iM > 0

In this section, we consider the HamiltonianK in (4.1) and assume 0 < iM � 1. Since we
want to compare its dynamics with that of KCP (see also (4.2)), we write K as

K(η, �, J , ξ, h,�M; iM) = H(η, �, ξ, h,�M; iM) + n�M J

= HCP(η, �, ξ, h) + α3iMR(η, �, ξ, h,�M; iM) + n�M J ,
(6.1)

whereHCP has been introduced in (4.3). See “Appendix A.2” for the whole expression of
R.

6.1 Perturbative Analysis of the Inner and ScatteringMaps

The first step is to compute perturbatively the inner and outer maps. To this end, we
apply Poincaré–Melnikov techniques. As done in the previous section (see (5.4)), we
reparameterize the flow so that the variable h becomes “time”. Namely,

dξ

ds
= ∂ηH(η, �, ξ, h,�M; iM)

∂�H(η, �, ξ, h,�M; iM)
,

dη

ds
= − ∂ξH(η, �, ξ, h,�M; iM)

∂�H(η, �, ξ, h,�M; iM)
,

dh

ds
= 1,

d�

ds
= − ∂hH(η, �, ξ, h,�M; iM)

∂�H(η, �, ξ, h,�M; iM)
,

d�M

ds
= n�M

∂�H(η, �, ξ, h,�M; iM)

d J

ds
= −α3iM

∂�MR(η, �, ξ, h,�M; iM)

∂�H(η, �, ξ, h,�M; iM)
.

(6.2)

This system isO(iM)-close to (5.4). Analogously, we consider the Poincarémap associated
with this system,

�iM : � → �, � = {h = 0}, (6.3)

which is a O(iM)-perturbation of the map �0 given in (5.1).
We study the systemgivenbyHamiltonianK (see (6.1)) as a perturbation of the one given

byKCP (see (4.2)). By classical Fenichel theory (see Fenichel 1971) and Corollary 5.2, one
has that the flow associated with the HamiltonianK has a normally hyperbolic invariant 3-
dimensional cylinder which is iM-close to the cylinder�0. Analogously, by Corollary 5.3,
the Poincarémap�iM has a normally hyperbolic invariant 2-dimensional cylinder at section
�.
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Recall that, also by Corollary 5.3, the cylinder �̃0 possesses two homoclinic channels
which we denote by pri and sec, which are defined for J ∈ D∗

0 ⊂ [Jmin, Jmax] for ∗ ∈
{pri, sec}. Moreover, the sets D∗

0 satisfy that Dpri
0 ∪ Dsec

0 = [Jmin, Jmax].
For the full model, with iM > 0 small enough, we still have transverse homoclinic

connections but in slightly smaller domains. In order to characterize them, we define

D∗
δ = {

J ∈ D∗
0 : dist(J , ∂D∗

0) > δ
}
, for ∗ ∈ {pri, sec}. (6.4)

Analogously, we also define

Dδ = [Jmin + δ, Jmax − δ].

Next theorem, which is a direct consequence of the classical Fenichel theory and Corol-
lary 5.3, summarizes the perturbative context.

Theorem 6.1 Assume Ansatz 5.1. For any δ > 0 and r � 4, there exists i0M > 0 such that,
for any iM ∈ (0, i0M), the map �iM introduced in (6.3) has the following properties.

1. It has a Cr normally hyperbolic invariant manifold �̃iM,δ , which is iM-close in the
C1-topology to �̃0. In addition, there exists a function GiM : Dδ ×T → R

3 ×T
3 of the

form

GiM(J ,�M) = (
Gη
iM
(J ,�M),G�

iM(J ,�M), J ,Gξ
iM
(J ,�M), 0,�M

)
,

which parameterizes the cylinder �̃iM,δ as a graph, that is

�̃iM,δ = {GiM(J ,�M) : (J ,�M) ∈ Dδ × T}.

2. There exists a nonvanishing Cr−1 function, aiM , such that the pull back of the canonical
form dξ ∧ dη + dh ∧ d� + d�M ∧ d J onto the cylinder �̃iM,δ is of the form

aiM(J ,�M)d�M ∧ d J . (6.5)

3. The homoclinic channels obtained in Corollary 5.3 are persistent. That is, there exist
Cr functions C∗

iM : D∗
δ × T → R

3 × T
3,

C∗
iM(J ,�M) =

(
Cη,∗iM

(J ,�M), C�,∗iM
(J ,�M), J , Cξ,∗iM

(J ,�M), 0,�M

)
,

with ∗ ∈ {pri, sec}, such that the manifolds

�∗
iM,δ = {C∗

iM(J ,�M) : (J ,�M) ∈ D∗
δ × T},

belong to the transverse intersections between the invariant manifolds Wu(�̃iM,δ) and
Ws(�̃iM,δ). Moreover, the functions C∗

iM are Cr regular with respect to iM and areO(iM)

to the function C∗
0 obtained in Corollary 5.3.
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We can define the inner and scattering maps in the invariant cylinder �̃iM,δ given in
Theorem 6.1 as we have done in Lemmas 5.4 and 5.5, respectively, for the coplanar case
(iM = 0). We also compute for them first order expansions. To this end, we consider the
following definition.

Definition 6.2 Let f be a 2π -periodic function in �M and denote by f [k] its k-th Fourier
coefficient. Then, we define the set

N�M( f ) = {k ∈ Z : f [k] �≡ 0}.

Let us recall thatH = HCP+α3iMR (see (6.1)) and thatHCP , the coplanar Hamiltonian,
is independent of �M. However, the remainderR has the following harmonic structure

R(η, �, ξ, h,�M; iM) =R1(η, �, ξ, h,�M) + iMR2(η, �, ξ, h,�M) + O(i2M),

with

N�M(R1) = {±1} and N�M(R2) = {0,±2}.

This is a consequence of the particular formulas of R in “Appendix A.2” (see equa-
tions (A.4) and (A.5)). To fix notation, we write R1 as

R1(η, �, ξ, h,�M) = ei�MR+
1 (η, �, ξ, h) + e−i�MR−

1 (η, �, ξ, h).

Note that R−
1 = R+

1 . We analyze the harmonic structure of all the objects involved in
the definition of the inner and scattering maps. The first step is to study the asymptotic
expansion with respect to iM of the flow associated with the vector field (6.2).

Lemma 6.3 Let ψ iM{s, (η, �, J , ξ, h,�M)} be the flow associated with the vector field
in (6.2) induced by the Hamiltonian K in (6.1). Then, for iM > 0 small enough, it has an
expansion

ψ iM{s, (η, �, J , ξ, h,�M)} = ϕ̂CP{s, (η, �, J , ξ, h,�M)} + iMψ1{s, (η, �, J , ξ, h,�M)}
+ i2Mψ2{s, (η, �, J , ξ, h,�M)} + O(i3M),

where ϕ̂CP has been introduced in (5.5) and the remaining functions satisfy that

N�M(ψ1{s, (η, �, J , ξ, h,�M)}) = {±1},
N�M(ψ2{s, (η, �, J , ξ, h,�M)}) = {0,±2}.

The proof of this lemma is analogous to that of Lemma 3.6 in Féjoz et al. (2016), and
relies on classical perturbation theory jointly with the special form of (6.2).

Lemma 6.4 Assume Ansatz 5.1. Let GiM , aiM and C∗
iM , for ∗ ∈ {pri, sec}, be as given in

Theorem 6.1. Then, for iM > 0 small enough, they have an asymptotic expansion of the
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form

GiM(J ,�M) = G0(J ,�M) + iMG1(J ,�M) + i2MG2(J ,�M) + O(i3M),

aiM(J ,�M) = 1 + iMa1(J ,�M) + i2Ma2(J ,�M) + O(i3M),

C∗
iM(J ,�M) = C∗

0(J ,�M) + iMC∗
1(J ,�M) + i2MC∗

2(J ,�M) + O(i3M),

where G0 and C∗
0 have been introduced in Corollary 5.3 and the remaining functions satisfy

that

N�M(G1) = {±1}, N�M(G2) = {0,±2},
N�M(a1) = {±1}, N�M(a2) = {0,±2},
N�M(C∗

1) = {±1}, N�M(C∗
2) = {0,±2},

and that, for i = 1, 2,

Gi (J ,�M) = (
Gη
i (J ,�M),G�

i (J ,�M), 0,Gξ
i (J ,�M), 0, 0

)
,

C∗
i (J ,�M) = (

Cη,∗i (J ,�M), C�,∗i (J ,�M), 0, Cξ,∗i (J ,�M), 0, 0
)
.

Lemmas 6.3 and 6.4 allow to compute asymptotic expansions in iM > 0 for the inner
and scattering maps of the inclined model. First, we introduce notation (see (5.6)) for the
evolution of the coplanar flow for points on the normally hyperbolic invariant cylinder �̃0

and on the homoclinic channels �∗
0 (see Corollary 5.3):

γJ (s) = ϕCP{s, (0,G�
0 (J ), 0, 0)}, χ

pri
J (s) = ϕCP{s, (0, C�,pri0 (J ), Cξ,pri0 (J ), 0)},

χ sec
J (s) = ϕCP{s, (Cη,sec0 (J ), C�,sec0 (J ), 0, 0)},

γ̃J (s) = ϕ�M{s, (0,G�
0 (J ), 0, 0)}, χ̃

pri
J (s) = ϕ�M{s, (0, C�,pri0 (J ), Cξ,pri0 (J ), 0)},

χ̃ sec
J (s) = ϕ�M{s, (Cη,sec0 (J ), C�,sec0 (J ), 0, 0)},

(6.6)

where ϕCP and ϕ�M have been introduced in (5.5).

Theorem 6.5 Assume Ansatz 5.1. Fix δ > 0 and iM > 0 small enough. The normally
hyperbolic manifold �̃iM,δ given in Theorem 6.1 of the map�iM (see (6.3)) has associated
inner and outer maps which are Cr (also with respect to iM) and are of the following form.

• The inner map is of the form

Fin
iM

(
J

�M

)
=

(
J + iMA1(J ,�M) + i2MA2(J ,�M) + O(i3M)

�M + n�M

{
T0(J ) + iMT1(J ,�M) + i2MT2(J ,�M) + O(i3M)

}
)
,

where (J ,�M) ∈ Dδ×T, the function T0 has been introduced in (5.2) and the functions
A1, A2, T1 and T2 satisfy that

N�M(A1),N�M(T1) = {±1}, N�M(A2),N�M(T2) = {0,±2}.
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Moreover, A1 is of the form

A1(J ,�M) = A+
1 (J )e

i�M + A−
1 (J )e

−i�M ,

where

A±
1 (J ) = ∓iα3

∫ 2π

0

R±
1 (γJ (s))

∂�HCP(γJ (s))
e±i γ̃J (s)ds.

• For ∗ ∈ {pri, sec}, the scattering map is of the form

Fout,∗
iM

(
J

�M

)
=

(
J + iMB∗

1 (J ,�M) + i2MB∗
2 (J ,�M) + O(i3M)

�M + n�M

{
ζ ∗(J ) + iMD∗

1(J ,�M) + i2MD∗
2(J ,�M) + O(i3M)

}
)
,

where (J ,�M) ∈ D∗
δ × T, the function ζ ∗(J ) = ζ ∗+(J ) − ζ ∗−(J ) has been introduced

in Lemma 5.5 and the functions B∗
1 , B

∗
2 , D

∗
1 and D∗

2 satisfy that

N�M(B
∗
1 ),N�M(D

∗
1) = {±1}, N�M(B

∗
2 ),N�M(D

∗
2) = {0,±2}.

Moreover, the functions B∗
1 are of the form

B∗
1 (J ,�M) = B∗,+

1 (J )ei�M + B∗,−
1 (J )e−i�M ,

where

B∗,±
1 (J ) = ±iα3 lim

s→−∞

[ ∫ s

0

R±
1 (χ

∗
J (σ ))

∂�HCP(χ
∗
J (σ ))

e±i(χ̃∗
J (σ )+n�M ζ ∗+(J ))dσ

−
∫ s

0

R±
1 (γJ (σ ))

∂�HCP(γJ (σ ))
e±i γ̃J (σ )dσ

]

∓iα3 lim
s→+∞

[ ∫ s

0

R±
1 (χ

∗
J (σ ))

∂�HCP(χ
∗
J (σ ))

e±i(χ̃∗
J (σ )+n�M ζ ∗+(J ))dσ

−
∫ s

0

R±
1 (γJ (σ ))

∂�HCP(γJ (σ ))
e±i(γ̃J (σ )+2n�M ζ ∗+(J ))dσ

]
.

Proof First, we focus on the inner map. Its regularity is a consequence of the regularity
of the original flow and the regularity of the invariant cylinder (which is a consequence of
Fenichel theory). Notice that, since it is the dynamics of the Poincaré map �iM (defined
in (6.3)) restricted to �̃iM,δ , it satisfies the following homological equation

�iM ◦ GiM = GiM ◦ Fin
iM , (6.7)

where GiM has been introduced in Theorem 6.1. Notice that �iM is defined by

�iM(η, �, J , ξ, 0,�M) = ψ iM{2π, (η, �, J , ξ, 0,�M)},
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whereψ iM is the flow associated with the vector field (6.2). Therefore, by Lemma 6.3, one
can consider the following expansion

�iM = �0 + iM�1 + i2M�2 + O(i3M),

where,

�0(η, �, J , ξ, 0,�M) = ϕ̂CP{2π, (η, �, J , ξ, 0,�M)},
�k(η, �, J , ξ, 0,�M) = ψk{2π, (η, �, J , ξ, 0,�M)}, k = 1, 2.

Let us consider the following expansions of the inner map

Fin
iM = Fin

0 + iMFin
1 + i2MFin

2 + O(i3M).

By (6.7) and Lemma 6.4, the map Fin
0 is as given in (5.2). Moreover,

�1 ◦ G0 + (D�0 ◦ G0)G1 = G1 ◦ Fin
0 + (DG0 ◦ Fin

0 )Fin
1 .

and

�2 ◦ G0 + (D�1 ◦ G0)G1 + 1

2
(D2�0 ◦ G0)G⊗2

1 + (D�0 ◦ G0)G2

= G2 ◦ Fin
0 + (DG1 ◦ Fin

0 )Fin
1 + 1

2
(D2G0 ◦ Fin

0 ) + (DG0 ◦ Fin
0 )Fin

2 .

(6.8)

Then, by Corollary 5.3 and Lemma 6.4,

π�{Fin
1 } = π�{�1 ◦ G0 + (D�0 ◦ G0)G1}}, � = J ,�M, (6.9)

where πJ and π�M denote the projections onto the coordinates J and �M, respectively.
Since N�M(G1),N�M(�1) = {±1} one has that N�M(Fin

1 ) = {±1}. Moreover, using
analogous arguments and Eq. (6.8), one can obtain that N�M(Fin

2 ) = {0,±2}.
Now it only remains to compute the formula for A1(J ,�M). Indeed, by (6.9) and taking

into account that ∂J�0 = (0, 0, 1, 0, 0, 0), we have that

A1(J ,�M) = πJ {Fin
1 (J ,�M)} = πJ {�1 ◦ G0} = πJ ψ1{2π,G0(J ,�M)}.

Since ψ iM is the flow associated with the vector field (6.2), we can apply the fundamental
theorem of calculus and the expression ofR in (A.2) to obtain

πJ ψ
iM{2π,G0(J ,�M)} = −α3iM

∫ 2π

0

∂�MR(ψ iM{s,G0(J ,�M)}; iM)

∂�H(ψ iM{s,G0(J ,�M)}; iM)
ds

= −α3iM

∫ 2π

0

∂�MR1(ϕ̂CP{s,G0(J ,�M)})
∂�HCP(ϕCP{s,G0(J ,�M)}) ds + O(i2M).
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Then, by the expression ofR1 in (A.4) and of functions (6.6), one has that

A1(J ,�M) = − iα3
∫ 2π

0

R+
1 (γJ (s))e

i(�M+γ̃J (s))

∂�HCP(γJ (s))
ds

+ iα3
∫ 2π

0

R−
1 (γJ (s))e

−i(�M+γ̃J (s))

∂�HCP(γJ (s))
ds.

Next, we compute the scattering maps for a fixed ∗ = {pri, sec} (see Definition 4.4).
Its regularity is proven in Delshams et al. (2008) (for regular vector fields with regular
normally hyperbolic invariant manifolds).

Let us consider points GiM(J+,�+
M),GiM(J−,�−

M) ∈ �̃iM,δ and C∗
iM
(J 0,�0

M) ∈ �∗
iM,δ

(see Theorem 6.1) such that the unstable fiber of GiM(J−,�−
M) intersects the stable fiber

of GiM(J+,�+
M) at the point C∗

iM
(J 0,�0

M) in the homoclinic channel �∗
iM,δ . This implies

that

lim
s→±∞

∣∣ψ iM{s,GiM(J±,�±
M)} − ψ iM{s, C∗

iM(J
0,�0

M)}∣∣ = 0, (6.10)

where ψ iM is the flow associated with the vector field (6.2). In other words, the scattering
map satisfies that (J+,�+

M) = Fout,∗
iM

(J−,�−
M).

The analysis of the harmonic structure can be done as for the inner map. We show
now how to compute the first order of the J -component. Recall that πJGiM(J ,�M) =
πJC∗

iM
(J ,�M) = J . By the fundamental theorem of calculus and using (6.10), one has

that

J 0 − J± = lim
s→±∞

[ ∫ 0

s
πJ ∂sψ

iM{σ, C∗
iM(J

0,�0
M)}dσ

−
∫ 0

s
πJ ∂sψ

iM{σ,GiM(J±,�±
M)}dσ

]
.

Then, by (6.2),

J 0 − J± = α3iM lim
s→±∞

( ∫ s

0

∂�MR(ψ iM{σ, C∗
iM
(J 0,�0

M}; iM)

∂�H(ψ iM{σ, C∗
iM
(J 0,�0

M)}; iM)
dσ

−
∫ s

0

∂�MR(ψ iM{σ,GiM(J±,�±
M)}; iM)

∂�H(ψ iM{σ,GiM(J±,�±
M)}; iM)

dσ

)

and, by Lemmas 6.3, 6.4 and the expression ofR in (A.2), we obtain

J 0 − J± = α3iM lim
s→±∞

( ∫ s

0

∂�MR1(ϕ̂CP{σ, C∗
0(J

0,�0
M)})

∂�HCP(ϕ̂CP{σ, C∗
0(J

0,�0
M)}) dσ

−
∫ s

0

∂�MR1(ϕ̂CP{σ,G0(J±,�±
M)})

∂�HCP(ϕ̂CP{σ,G0(J±,�±
M)}) dσ

)
+ O(i2M).
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Finally, by the expression ofR1 in (A.4), of ϕ̂CP in (5.5) and of the functions (6.6)

J 0 − J± = iα3iM lim
s→±∞

( ∫ s

0

R+
1 (χ

∗
J 0
(σ ))e

i�0
M+i χ̃∗

J0
(σ ) − R−

1 (χ
∗
J 0
(σ ))e

−i�0
M−i χ̃∗

J0
(σ )

∂�HCP(χ
∗
J 0
(σ ))

dσ

−
∫ s

0

R+
1 (γJ±(σ ))ei�

±
M+i γ̃J± (σ ) − R−

1 (γJ±(σ ))e−i�±
M−i γ̃J± (σ )

∂�HCP(γJ±(σ ))
dσ

)
+ O(i2M).

Notice that, by Lemma 5.5, (5.9) and (5.10), one has that

�±
M = �0

M + n�Mζ
∗±(J 0) + O(iM),

with ζ ∗+ = −ζ ∗−. Therefore, since J± = J 0 + O(iM), one has that

�0
M = �−

M + n�Mζ
∗+(J−) + O(iM),

�+
M = �−

M + 2n�Mζ
∗+(J−) + O(iM)

and, as a consequence,

J+ = J− + (J 0 − J−) − (J 0 − J+)

= J− + iM
(
B∗,+
1 (J−)ei�

−
M + B∗,−

1 (J−)e−i�−
M

)
+ O(i2M),

with B∗,±
1 are the functions defined in the statement of the result.

��

6.2 Existence of Diffusing Orbits

Once we have computed the first orders in iM of both the inner and the scattering maps (see
Theorem 6.5), the next step is to construct a “drifting pseudo-orbit”. By a pseudo-orbit,
we mean a sequence of points in the cylinder obtained by applying successively iterations
of the inner map Fin

iM
and the scattering maps Fout,pri

iM
and Fout,sec

iM
. By drifting, we mean

that we look for a pseudo-orbit such that its initial condition is close to the bottom of the
cylinder, i.e., J ∼ Jmin, and that eventually it hits a neighborhood of its top, i.e., J ∼ Jmax.

To construct this pseudo-orbit, we rely on the following ansatz, which we verify numer-
ically. See Figs. 11, 12 and 13.

Ansatz 6.6 For any δ > 0 and ∗ ∈ {pri, sec}, the following functions of J

f ∗±(J ) =
(
e±in�MT0(J ) − 1

)
B∗,±
1 (J ) −

(
e±in�M ζ ∗(J ) − 1

)
A±
1 (J ),

do not vanish in the domain D∗
δ .

The following theorem ensures the existence of a pseudo-orbit. Its proof is deferred to
Sect. 6.3.
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Fig. 11 The components of A+
1

as a function of HCP
(non-dimensional units)

Theorem 6.7 Assume Ansätze 5.1, 5.6, 6.6. Fix ν > 0 and δ > 0. Then, if iM > 0 is small
enough, there exist z0 ∈ �̃iM,δ , N ∈ N and lm ∈ {pri, sec}, jm, km ∈ N for m = 1 . . . N
such that the sequence

zm = (
Fin
iM

) jm ◦ Fout,lm
iM

◦ (
Fin
iM

)km
(zm−1)

satisfies zm ∈ �̃iM,δ for all m = 1 . . . N and the initial and final points z0 and zN satisfy

|πJ z0 − Jmin| � ν and |πJ zN − Jmax| � ν,

where πJ denotes the projection onto the J component.
Moreover, in the regions

Jmin = (Jmin, Jmin + ν) × T, Jmax = (Jmax − ν, Jmax) × T,

Fig. 12 For ∗ ∈ {pri, sec}, we plot the real functions B∗
1,cos = B+

1 + B−
1 and B∗

1,sin = i(B+
1 − B−

1 )

as a function of HCP (non-dimensional units). Left, the ∗ = pri case. Right, the ∗ = sec case for the
non-transverse values (see Table 1)
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Fig. 13 As a function ofHCP ≡ −J , we show the norm of f
pri
+ (J ) in Ansatz 6.6 on the left. The minimum

value computed is 0.0014295 and corresponds to HCP = 4.81143 × 10−7. On the right, the same norm
computed for the non-transverse cases (see Table 1). The corresponding integrals have been computed by
means of the function qags of the quadpack Fortran package

the inner map Fin
iM has invariant tori which are a graph over h and whose dynamics are

conjugated to rigid quasi-periodic rotation.

Once we have a pseudo-orbit, the final step to prove Theorem 2.3 is to construct a true
orbit of the Poincaré map�iM which shadows the pseudo-orbit, that is, which visits small
neighborhoods of the points zm of the pseudo-orbit given by Theorem 6.7. This shadowing
will rely on the following theorem by Gidea et al. (2020).

Theorem 6.8 [Lemma 3.2 in Gidea et al. (2020)] Assume that f : M → M is a Cr
map with r � 4, � ⊂ M is a normally hyperbolic invariant manifold, � j , j = 1 . . . N

are homoclinic channels and σ j : D j
1 → D j

2 are the associated scattering maps, where

D j
1,2 ⊂ � are open sets. Assume that � and � j are compact manifolds (possibly with

boundary).
Then, for every ν > 0, there exist functions n∗

i : Ni → N and functions m∗
i : N2i+1 ×

N
i+1 → N such that for every pseudo-orbit {yi }y�0 in � of the form

yi+1 = f mi ◦ σαi ◦ f ni (yi ),

with ni � n∗
i (α0, . . . , αi−1), mi � m∗

i (n0, . . . , ni ,m0, . . . .mi−1, α0, . . . , αi ) and αi ∈
{1, . . . , N }, there exists an orbit {zi }i�0 of f in M such that, for all i � 0,

zi+1 = f mi+ni (zi ) and d(zi , yi ) < ν.

Theorem 2.3 is a direct consequence of the following lemma.

Lemma 6.9 Assume Ansätze 5.1, 5.6, 6.6 and fix ν > 0 small. Then, for iM > 0 small
enough, there exist a point p0 ∈ � (see (6.3)) and k1 . . . kN such that the iterates

p j = �
k j
iM
(p0)
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satisfy that

∣∣p j − GiM(z j )
∣∣ � 2ν, j = 1 . . . N ,

where {z j }Ni=0 is the pseudo-orbit obtained in Theorem 6.7 and GiM is the parameterization
of the cylinder given in Lemma 6.1.

Moreover,

|πJ p0 − Jmin| � 2ν and |πJ pN − Jmax| � 2ν.

Proof To prove Lemma 6.9, we have to apply Theorem 6.8. To this end, we denote by �

a domain of the cylinder �̃iM,δ delimited by one of the “‘top” and “bottom” invariant tori
given by Theorem 6.7. This makes� compact and invariant. Note that the projection onto
J of the homoclinic channels �∗

iM,δ obtained in Theorem 6.1 covers the whole interval
[Jmin + δ, Jmax − δ] and that one can choose compact sets inside the homoclinic channels
that still cover the same interval.

Then, to apply Theorem 6.8, it only remains to ensure that the amount of iterates of the
inner maps is large enough to fit the hypotheses of the theorem.We follow ideas developed
in Gidea et al. (2020).

Since � is compact and invariant by �iM and Fin
iM

is an area preserving map, we can
use the Poincaré Recurrence Theorem to construct a pseudo-orbit which is arbitrarily close
to that of Theorem 6.7 and satisfies the hypotheses of Theorem 6.8. Indeed, the Poincaré
Recurrence Theorem assures that there exists z̃0 and k̃1 big enough such that Q̃0 :=
(
Fin
iM

)k̃1(z̃0) is as close as necessary to Q0 := (
Fin
iM

)k1(z0). Since Fout,im
iM

is continuous,

also Q1 := Fout,im
iM

(Q0) and Q̃1 := Fout,im
iM

(Q̃0) are as close as necessary. Then, applying

again the Poincaré Recurrence Theorem, there exists j̃1 such that z̃1 = (
Fin
iM

) j1(Q̃1) and

z1 = (
Fin
iM

) j1(Q1) are close enough. We can repeat this procedure N -times to obtain the
result.

��

Lemma 6.9 completes the proof of Theorem 2.3. Indeed the trajectory of the secular
Hamiltonian H in (2.3) with initial condition p0 achieves the drift of energy stated in the
theorem. It only remains to prove the statements on eccentricity and inclination stated in the
theorem. To this end, it is enough to recall the estimates on the inclination and eccentricity
on the periodic and homoclinic orbits of the coplanar Hamiltonian given in Ansatz 5.1.
Then, since taking iM small enough, the shadowing orbits can be taken arbitrarily close to
these periodic and homoclinic orbits, we obtain the statements in the theorem.

6.3 Proof of Theorem 6.7

To construct the pseudo-orbit, the first step is to compare the inner and the scattering map
obtained in Theorem 6.5. In order to do so, we apply two steps of averaging either to the
innermap or to one of the scatteringmaps (in some domains). These changes of coordinates
straighten the J component of one of the maps up to orderO(i3M) and therefore it becomes
straightforward to compare the “vertical jumps” of the inner and outer maps.
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Since we want to construct symplectic transformations, it is convenient to straighten
first the symplectic form given in (6.5).

Lemma 6.10 Assume Ansatz 5.1. There exists an iM-close to the identity change of coor-
dinates ϒ : D2δ × T → Dδ × T, (J ,�M) = ϒ( qJ , q�M), which transforms the symplectic
form a(J ,�M)d�M ∧ d J given in (6.5) into d q�M ∧ d qJ .

In these new coordinates,

• The inner map is of the form

qFin
iM

(
qJ
q�M

)
=

(
qJ + iMA1( qJ , q�M) + i2M

qA2( qJ , q�M) + O(i3M)

q�M + n�M

{
T0( qJ ) + iMqT1( qJ , q�M) + i2M

qT2( qJ , q�M) + O(i3M)
}
)
,

where ( qJ , q�iM) ∈ D2δ ×T, the function T0 is the one given for the coplanar inner map
(see (5.2)), the function A1 is given in Theorem 6.5 and the functions qA2,qT1 and qT2
satisfy that

N�M(
qA2) = {0,±2}, N�M(

qT1) = {±1}, N�M(
qT2) = {0,±2}.

• For ∗ = {pri, sec}, the scattering maps are of the form

qFout,∗
iM

(
qJ
q�M

)
=

(
qJ + iMB∗

1 (
qJ , q�M) + i2M

qB∗
2 (

qJ , q�M) + O(i3M)

q�M + n�M

{
ζ ∗( qJ ) + iM qD∗

1(
qJ , q�M) + i2M

qD∗
2(

qJ , q�M) + O(i3M)
}
)
,

where ( qJ , q�iM) ∈ D∗
2δ × T, the functions ζ ∗(J ) and B∗

1 are given in Lemma 5.5

and (6.5) respectively and the functions qB∗
2 ,

qD∗
1 and qD∗

2 satisfy that

N�M(
qB∗
2 ) = {0,±2}, N�M(

qD∗
1) = {±1}, N�M(

qD∗
2) = {0,±2}.

The proof of this lemma is analogous to that of Féjoz et al. (2016, Lemma 4.1).
Now we perform an averaging procedure. The inner map has a resonance (see

Lemma 5.4) in whose neighborhood one cannot perform averaging. Then, we perform
two steps of averaging to the inner map in a domain away from the resonance. On the con-
trary, in a neighborhood of the resonance we perform two steps of averaging to straighten
the primary outer map (this is possible thanks to Ansatz 5.6 which ensures the absence of
low order resonances). Taking this into account, we consider the new domains

D̂2δ = {J ∈ D2δ : dist(J , Jres) > 2δ} , R5δ = (Jres − 5δ, Jres + 5δ),

where Jres is the constant introduced in Lemma 5.4. Note that the two domains are chosen
so that they overlap (and they will still overlap after applying the averaging changes of
coordinates). Note that one can define analogously the domains D̂∗

2δ (see (6.4)), for ∗ ∈
{pri, sec}.
Lemma 6.11 Fix δ > 0 and assume Ansatz 5.1. There exists a symplectic change of vari-
ables iM-close to the identity ϒ̃ : D̂3δ × T → D̂2δ × T, ( qJ , q�M) = ϒ̃( J̃ , �̃M), such that,
in these new coordinates,
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• The inner map is transformed into

F̃in
iM

(
J̃

�̃M

)
=

(
J̃ + O(i3M)

�̃M + n�M

{
T0( J̃ ) + i2MT̃2( J̃ ) + O(i3M)

}
)
,

where ( J̃ , �̃iM) ∈ D̂3δ × T and T0 is the function introduced in (5.2).
• For ∗ ∈ {pri, sec}, the scattering maps are transformed to

F̃out,∗
iM

(
J̃

�̃M

)
=

(
J̃ + iM B̃∗

1 ( J̃ , �̃M) + O(i2M)

�̃M + n�M

{
ζ ∗( J̃ ) + O(iM)

}
)
,

where ( J̃ , �̃iM) ∈ D̂∗
3δ×T, ζ ∗ is given in Lemma5.5 and B̃∗

1 ( J̃ , �̃M) = B̃∗,+
1 ( J̃ )ei�̃M+

B̃∗,−
1 ( J̃ )e−i�̃M with

B̃∗,±
1 ( J̃ ) = B∗,±

1 ( J̃ ) − A±
1 ( J̃ )

e±in�M ζ ∗( J̃ ) − 1

e±in�MT0( J̃ ) − 1
.

Lemma 6.12 Fix δ > 0. Assume Ansätze 5.1 and 5.6. There exists a symplectic change of
variables iM-close to the identity ϒ̂ : R4δ × T → R5δ × T, ( qJ , q�M) = ϒ̂( Ĵ , �̂M), such
that, in these new coordinates,

• The primary scattering map is transformed to

F̂out,pri
iM

(
Ĵ

�̂M

)
=

(
Ĵ + O(i3M)

�̂M + n�M

{
ζ pri( Ĵ ) + i2MD̂pri

2 ( Ĵ ) + O(i3M)
}
)
,

where ( Ĵ , �̂iM) ∈ R̂4δ × T and ζ pri is given in Lemma 5.5.
• The inner map is transformed to

F̂in
iM

(
Ĵ

�̂M

)
=

(
Ĵ + iM Â1( Ĵ , �̂M) + O(i2M)

�̂M + n�M

{
T0( Ĵ ) + O(iM)

}
)
,

where ( Ĵ , �̂iM) ∈ R̂4δ × T, T0 is given in (5.2) and Â1( Ĵ , �̂M) = Â+
1 ( Ĵ )e

i�̂M +
Â−
1 ( Ĵ )e

−i�̂M with

Â±
1 ( Ĵ ) = A±

1 ( Ĵ ) − Bpri,±
1 ( Ĵ )

e±in�MT0( Ĵ ) − 1

e±in�M ζ pri( Ĵ ) − 1
.

The proofs of these two lemmas are analogous to that of Féjoz et al. (2016, Lemma
3.9).

Now we analyze the KAM curves that these maps possess in each of the regions. We
rely on a version of the KAM Theorem from Delshams et al. (2000) (see also Herman
1983).

Theorem 6.13 Let f : [0, 1] × T → R × T be an exact symplectic C map with  > 4.
Assume that f = f0 + ε f1 where f0(I , ψ) = (I , ψ + A(I )), A is C , |∂I A(I )| > M and
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‖ f1‖C � 1. Then, if ε1/2M−1 = ρ is sufficiently small, for a set of Diophantine numbersω
with exponent θ = 5/4, we can find 1-dimensional invariant tori which are graph of C −3

functions uω, the motion on them is C −3 conjugate to the rotation by ω, ‖uω‖C −3 � ε1/2

and these tori cover the whole annulus [0, 1] × T except for a set of measure of order
M−1ε1/2.

Lemmas 6.11 and 6.12 and Theorem 6.13 imply the following lemma.

Lemma 6.14 Fix δ > 0 small. Then, for iM > 0 small enough the following is satisfied.

• There exists a sequence of tori {T1,k}N1
k=1 ⊂ �̃iM,δ which are invariant by the map Fin

iM
and whose dynamics are conjugated to a quasi-periodic rigid rotation such that

Fout,∗
iM

(T1,k) � T1,k+1, k = 1 . . . N1 − 1,

for either ∗ = pri or ∗ = sec and

T1,1 ⊂ [Jmin, Jmin + 2δ] and T1,N1 ⊂ [Jres − 5δ, Jres − 2δ]. (6.11)

• There exists a sequence of tori {T2,k}N2
k=2 ⊂ �̃iM,δ which are invariant by the map

Fout,pri
iM

and whose dynamics are conjugated to a quasi-periodic rigid rotation such
that

Fin
iM(T2,k) � T2,k+1, k = 1 . . . N2 − 1

and

T2,1 ⊂ [Jres − 5δ, Jres − 2δ] and T2,N2 ⊂ [Jres + 2δ, Jres + 5δ].

Moreover,

T1,N1 � T2,1. (6.12)

• There exists a sequence of tori {T3,k}N3
k=1 ⊂ �̃iM,δ which are invariant by the map Fin

iM
and whose dynamics are conjugated to a quasi-periodic rigid rotation such that

Fout,∗
iM

(T3,k) � T3,k+1, k = 1 . . . N3 − 1,

for either ∗ = pri or ∗ = sec and

T3,1 ⊂ [Jres + 2δ, Jres + 5δ] and T3,N3 ⊂ [Jmax − 2δ, Jmax].

Moreover,

T2,N2 � T3,1.

123



    8 Page 46 of 54 Journal of Nonlinear Science             (2025) 35:8 

Proof Since the proofs of the three statements follow exactly the same lines, we only prove
the first one. We prove the statement in the coordinates provided by Lemma 6.11. Since
they are O(iM)-close to the original coordinates, one can easily deduce the statement for
the original coordinates from that of the averaging coordinates.

By Lemma 6.11, the inner map F̃in
iM isO(i3M)-close to integrable. Moreover, by Lemma

5.4 themap is twist and the twist has a lower bound independent of iM. Then, Theorem 6.13
implies that there is a sequence of invariant tori {T̃1,k}N1

k=1 ⊂ �̃iM,δ with quasi-periodic
dynamics which satisfy (6.11) and

dist
(
T̃1,k, T̃1,k+1

)
� Ci3/2M k = 1, . . . , N1 − 1. (6.13)

for some C > 0.
Let uk be such that T̃1,k can be expressed as graph as J = uk(�M). From the expression

of F̃in
iM in Lemma 6.11, uk(�M) = J k + O(i3M) with J k a constant. Then F̃out,∗

iM (T̃1,k) is
the graph of

wout
k+1(�M) = J k + iMB1(J

k,�M − n�Mζ
∗(J k)) + O(i2M).

Therefore the intersection F̃out,∗
iM (T̃1,k) ∩ T̃1,k+1 is defined by the points satisfying

J k + iM B̃∗
1

(
J k,�M − n�Mζ

∗(J k)
) = J k+1 + O(i3M).

This condition, since by (6.13), |J k − J k+1| � Ci3/2M , is equivalent to

B̃∗
1

(
J k,�M − n�Mζ

∗(J k)
) = O(i1/2M ).

Now, byAnsatz 6.6, the functions B̃∗,±
1 introduced in Lemma 6.11 do not vanish for J ∈ D̂∗

δ

and B∗
1 has just harmonics ±1. Therefore, one can easily show that

B̃∗
1 (J ,�M) = |B̃∗,+

1 (J )| cos(�M + ψ(J )), ψ = arg(B∗,+
1 (J ))

and to conclude that F̃out,∗
iM (T̃1,k) and T̃1,k+1, for k = 1, . . . , N1−1, intersects transversally.

Finally, doing analogous arguments as the previous one, the transversality in (6.12) is
a direct consequence of Ansatz 6.6.

��
Then, the pseudo-orbit given in Theorem 6.7 can be easily obtained from the sequence

of tori given by Lemma 6.14. Indeed, note that the fact the tori are quasi-periodic imply
the following. Take points

P1 ∈ Fout,∗
iM

(T1,k−1) � T1,k and P2 ∈ Fout,∗
iM

(T1,k) � T1,k+1

Then, for any ν > 0 arbitrarily small, there exists K such that

∣∣∣(Fin
iM)

K (P1) − P2
∣∣∣ � ν.
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Therefore, to construct the pseudo-orbit it is enough to use that both the inner and outer
maps are regular with respect to the parameter iM.

7 Conclusions

In this work, we have shown how to model the eccentricity growth for the Galileo con-
stellation by an Arnold diffusion mechanism. To this end, we have considered the full
quadrupolar expansion of the lunar gravitational perturbation, coupled with the Earth’s
oblateness. By assuming that the Moon lies on the ecliptic plane, the dynamical system is
autonomous and we can compute numerically the normally hyperbolic invariant manifold
stemming from the 2g + h resonance and the associated stable and unstable manifolds.
Then, we are able to describe the full dynamics under the assumption that the inclination
of the Moon is small enough. Indeed, in this regime, the cylinder, its dynamics and its
invariant manifolds are close to those of the coplanar one. In other words, the inner map
describing the cylinder dynamics and the outer map describing the homoclinic connections
to the cylinder are first derived for the coplanar case, and then extended to the full system
by means of a perturbative approach, assuming the lunar inclination as a small parameter.
Thanks to the existence of the homoclinic connections, we are able to concatenate invariant
objects along which the eccentricity increases, on different energy levels. There exist orbits
that shadow the sequence of homoclinic orbits. Along these orbits, for a = 29,600 km,
the eccentricity can transition from 0 to 0.78 and higher, eventually to achieve a re-entry.

The work is based on the idea that the chaotic behavior associated with the homoclinic
connection can be exploited to jump from one energy level to the other. Although already
proposed in very recent works (Daquin et al. 2022; Legnaro and Efthymiopoulos 2023),
the Arnold diffusion is handled here in a semi-analytical way, considering the full model.
Possible resonance overlappings, although detected in the numerical computation, are not
considered as the main trigger to get to the atmospheric reentry. As a matter of fact, in
the normally hyperbolic invariant cylinder the resonance 2h − �M plays a role. This was
already mentioned in Daquin et al. (2022), where they see that when a = 29,600 km, both
2g + h and 2h − �M resonances interact. However, under the assumption that iM > 0 is
small, the second resonance is weak and, in particular, it does not break up the invariant
cylinder that exists along the 2g + h resonance. Therefore, one can apply an Arnold-like
mechanism to drift along the 2g + h resonance even in the presence of a crossing weak
resonance.

The procedure developed is general and can be applied to other resonances (e.g., for
GLONASS) and other values of semi-major axis, for instance, to show where to locate
initially the satellites to facilitate eventually the end-of-life phase. The same argument can
be applied also to design very stable graveyard solutions, by exploiting the dynamics in
such a way that the excursion in eccentricity along the stable and unstable manifolds gets
lower and lower (0 in the limit).10

The analysis and the tools provided in the work lay the foundations to study the problem
with the actual value of iM. In this regard, we expect that the mechanism will persist and
that the time of diffusion will reduce, but that the second resonance could be significant.11

10 Note that at the resonances one can find stability zones associatedwith secondary tori and elliptic periodic
orbits. Their analysis is beyond the scope of this paper.
11 See Kaloshin and Zhang (2020) for the analysis of Arnold diffusion along double (strong) resonances.
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A Expression of the Hamiltonian

This appendix is devoted to compute explicit computations for the perturbative term of the
HamiltoniansH1 given in (3.2) andH1 in (3.7). In “AppendixA.1”,we obtain an expression
for H1 in the slow–fast coordinates introduced in Sect. 3.1 and in “Appendix A.2” an
expression forH1 in the Poincaré coordinates introduced in Sect. 3.2.

A.1 Hamiltonian in Slow–Fast Coordinates (y, x)

In this section, we compute explicit expressions for the Hamiltonian H1 given in (3.2). Let
us recall its expression here:

H1(y, �, x, h,�M; iM) = − ρ1

L2

2∑

m=0

2∑

p=0

Dm,p(y, �)
2∑

s=0

cm,s F2,s,1(iM)

×
[
Um,−s
2 (ε) cos

(
ψm,p,s(x, h,�M)

)
+Um,s

2 (ε) cos
(
ψm,p,−s(x, h,�M)

)]
,

where Dm,p = D̃m,p ◦ϒDel and ψm,p,s = ψ̃m,p,s ◦ϒDel (see (2.5), (2.6) and (3.1) for the
change of coordinates). In addition, Um,∓s

2 (ε) is the Giacaglia function given in Table 2.
Applying the corresponding change of coordinates, one obtains the expressions for

Dm,p given in Table 3.
Moreover,

ψm,p,s(x, h,�M) = (1 − p)x − (1 − p − m)h + s
(
�M − π

2

)
− y|s|π.

with y|s| as given in (2.7). Then,

ψm,p,0(x, h) = (1 − p)x − (1 − p − m)h,

ψm,p,1(x, h,�M) = ψm,p,0(x, h) + �M − π,

ψm,p,−1(x, h,�M) = ψm,p,0(x, h) − �M,

ψm,p,2(x, h,�M) = ψm,p,0(x, h) + 2�M − π,

ψm,p,−2(x, h,�M) = ψm,p,0(x, h) − 2�M + π.

See Table 3 for the values of ψm,p,0(x, h). Moreover, notice that for s,m ∈ {0, 1, 2} the
constants cm,s as defined in (2.7) do not depend on s. Therefore, we denote

ĉ0 := c0,s = 1

2
, ĉ1 := c1,s = 1

3
, ĉ2 := c2,s = − 1

12
.

Applying all these expressions, one can express the Hamiltonian H1 as a series in iM.
Indeed, considering the Kaula’s inclination functions in (2.8), one has that

F2,s,1(iM) =
⎧
⎨

⎩

− 1
2 + O(i2M) if s = 0,

− 3
2 iM + O(i3M) if s = 1,

O(i2M) if s = 2.
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Table 2 The Giacaglia function
Um,s
2 (ε) for the moon

perturbation (see Giacaglia
1974) where C = cos ε

2 and
S = sin ε

2 and its value for
ε = 23.44◦

m s Um,s
2 (ε) �

0 0 1 − 6C2 + 6C4 0.762646

0 −1 −2CS−1
(
2C4 − 3C2 + 1

)
0.364961

0 1 −2CS
(
1 − 2C2

)
0.364961

0 −2 C2S−2
(
C2 − 1

)2
0.039558

0 2 C2S2 0.039558

1 0 −3CS−1
(
2C4 − 3C2 + 1

)
0.547442

1 −1 S−2
(
4C6 − 9C4 + 6C2 − 1

)
0.116974

1 1 C2
(
4C2 − 3

)
0.800502

1 −2 −CS−3
(
C2 − 1

)3
0.008206

1 2 −C3S −0.190687

2 0 6C2S−2
(
C2 − 1

)2
0.237353

2 −1 −4CS−3
(
C2 − 1

)3
0.032826

2 1 −4C3S−1
(
C2 − 1

)
0.762750

2 −2 S−4
(
C2 − 1

)4
0.001702

2 2 C4 0.919179

Table 3 Computation of the functions (Dm,p)m,p∈{0,1,2} and (ψm,p,0)m,p∈{0,1,2} for the prograde case

m p Dm,p(y, �) ψm,p,0

0 0 − 15
64 (Ly)

−2(y − �)(3y + �) (L − 2y) (L + 2y) x − h

0 1 1
32 (Ly)

−2(y2 − 6�y − 3�2)
(
5 L2 − 12y2

)
0

0 2 − 15
64 (Ly)

−2(y − �)(3y + �) (L − 2y) (L + 2y) −x + h

1 0 15
32 (Ly)

−2√(y − �)(3y + �) (3y + �) (L − 2y) (L + 2y) x

1 1 − 3
16 (Ly)

−2√(y − �)(3y + �)(� + y)
(
5 L2 − 12y2

)
h

1 2 − 15
32 (Ly)

−2√(y − �)(3y + �) (y − �) (L − 2y) (L + 2y) −x + 2h

2 0 15
32 (Ly)

−2 (3y + �)2 (L − 2y) (L + 2y) x + h

2 1 3
16 (Ly)

−2(y − �)(3y + �)
(
5 L2 − 12y2

)
2 h

2 2 15
32 (Ly)

−2 (y − �)2 (L − 2y) (L + 2y) −x + 3 h

Therefore, the Hamiltonian H1 can be expressed as

H1(y, �, x, h,�M; iM) =HCP,1(y, �, x, h) + iMR(y, �, x, h,�M; iM),

R(y, �, x, h,�M; iM) =R1(y, �, x, h,�M)

+ iMR2(y, �, x, h,�M) + O(i3M),

(A.1)
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where

HCP,1(y, �, x, h) = ρ1

L2

2∑

m=0

2∑

p=0

f 0mDm,p(y, �) cos
(
ψm,p,0(x, h)

)
,

R1(y, �, x, h,�M) = cos(�M)Rcos,1(y, �, x, h) + sin(�M)Rsin,1(y, �, x, h),

Rcos,1(y, �, x, h) = 3ρ1
2L2

2∑

m=0

2∑

p=0

f cosm Dm,p(y, �) cos
(
ψm,p,0(x, h)

)
,

Rsin,1(y, �, x, h) = 3ρ1
2L2

2∑

m=0

2∑

p=0

f sinm Dm,p(y, �) sin
(
ψm,p,0(x, h)

)
,

with

f 0m = ĉmU
m,0
2 , f cosm = ĉm

(
Um,1
2 −Um,−1

2

)
, f sinm = ĉm

(
Um,1
2 +Um,−1

2

)
.

In addition, the harmonics of R2 satisfy that (see Definition 6.2)

N�M(R2) = {0,±2}.

A.2 Hamiltonian in Poincaré Coordinates (�, �)

In this section, we compute explicit expressions for the HamiltonianH1 given in (3.7). Let
us recall that

H1(η, �, ξ, h,�M; iM) = (H1 ◦ ϒPoi)(η, �, ξ, h,�M; iM),

with ϒPoi as given in (3.4). Following the expression in (A.1), one has that

H1(η, �, ξ, h,�M; iM) =HCP,1(η, �, ξ, h) + iMR(η, �, ξ, h,�M; iM),

R(η, �, ξ, h,�M; iM) =R1(η, �, ξ, h,�M)

+ iMR2(η, �, ξ, h,�M) + O(i3M),

(A.2)

whereHCP,1 = HCP,1 ◦ ϒPoi,R1 = R1 ◦ ϒPoi andR2 = R2 ◦ ϒPoi. Taking into account
that the Poincaré change of coordinates satisfy that

y = 2L − ξ2 − η2

4
, (L − 2y) cos x = ξ2 − η2

2
, (L − 2y) sin x = ξη,

one has that
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Table 4 Computation of the functions (Dm,p)m,p∈{0,1,2} with M := ξ2 + η2

m p Dm,p(η, �, ξ)

0 0 − 15
128 L

−2(2L − M)−2(2L − M − 4�)(6L − 3M + 4�)(4L − M)

0 1 1
128 L

−2(2L − M)−2((2L − M)2 − 24(2L − M)� − 48�2)

0 2 − 15
128 L

−2(2L − M)−2(2L − M − 4�)(6L − 3M + 4�)(4L − M)

1 0 15
64 L

−2(2L − M)−2√(2L − M − 4�)(6L − 3M + 4�)3/2(4L − M)

1 1 − 3
64 L

−2(2L − M)−2√(2L − M − 4�)(6L − 3M + 4�)(2L − M + 4�)

1 2 − 15
64 L

−2(2L − M)−2(2L − M − 4�)3/2
√
6L − 3M + 4�(4L − M)

2 0 15
64 L

−2(2L − M)−2(6L − 3M + 4�)2(4L − M)

2 1 3
64 L

−2(2L − M)−2(2L − M − 4�)(6L − 3M + 4�)

2 2 15
64 L

−2(2L − M)−2(2L − M − 4�)2(4L − M)

HCP,1 = ρ1

L2

2∑

m=0

[
f 0mDm,0(η, �, ξ)

(
ξ2 − η2

2
cos

(
(1 − m)h

) + ξη sin
(
(1 − m)h

))

+ f 0mDm,1(η, �, ξ)
(
8L2 + 12L(ξ2 + η2) − 3(ξ2 + η2)2

)
cos(mh)

+ f 0mDm,2(η, �, ξ)

(
ξ2 − η2

2
cos

(
(1 + m)h

) + ξη sin
(
(1 + m)h

)) ]
,

(A.3)

where the functions (Dm,p)m,p∈{0,1,2} are given in Table 4. From this explicit expression,
one can easily see that the coplanarHamiltonianHCP = H0+α3HCP,1 (see (3.6) and (A.3))
is quadratic with respect to (η, ξ) = (0, 0). This implies the following lemma.

Lemma A.1 The Hamiltonian system given by HCP(η, �, ξ, h) in (4.3) has orbits of the
form (η, �, ξ, h) = (0, �(t), 0, h(t)) satisfying that

ḣ = ∂�H0(0, �, 0) + α3∂�HCP,1(0, �, 0, h), �̇ = −α3∂hHCP,1(0, �, 0, h),

where

∂�H0(0, �, 0) = − 3ρ0
4L8 (L + 2�),

∂�HCP,1(0, �, 0, h) = − ρ1

8L4

(
3U 0,0

2 (L + 2�) + 4U 1,0
2

L2 − 4L� − 4�2

√
(L − 2�)(3L + 2�)

cos h

−U 2,0
2 (L + 2�) cos(2h)

)
,

∂hHCP,1(0, �, 0, h) = ρ1

16L4

(
2U 1,0

2

√
(L − 2�)(3L + 2�)(2� + L) sin h

+U 2,0
2 (L − 2�)(3L + 2�) sin(2h)

)
.

123



    8 Page 52 of 54 Journal of Nonlinear Science             (2025) 35:8 

Analogously, one can proceed forR1, which can be written as

R1(η, �, ξ, h,�M) = ei�MR+
1 (η, �, ξ, h) + e−i�MR−

1 (η, �, ξ, h), (A.4)

where

R±
1 = 3ρ1

2L2

2∑

m=0

[
f ±
m Dm,0(η, �, ξ)

(
ξ2 − η2

2
cos

(
(1 − m)h

) + ξη sin
(
(1 − m)h

))

+ f ±
m Dm,1(η, �, ξ)

(
8L2 + 12L(ξ2 + η2) − 3(ξ2 + η2)2

)
cos(mh)

+ f ±
m Dm,2(η, �, ξ)

(
ξ2 − η2

2
cos

(
(1 + m)h

) + ξη sin
(
(1 + m)h

)) ]
,

with

f ±
m = ĉm

2

(
(1 ∓ i)Um,1

2 − (1 ± i)Um,−1
2

)
.

In addition, the harmonics ofR2 satisfy that

N�M(R2) = {0,±2}. (A.5)
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