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The Restricted 3-Body Problem models the motion of a 
body of negligible mass under the gravitational influence of 
two massive bodies, called the primaries. If the primaries 
perform circular motions and the massless body is coplanar 
with them, one has the Restricted Planar Circular 3-Body 
Problem (RPC3BP). In synodic coordinates, it is a two 
degrees of freedom Hamiltonian system with five critical 
points, L1, .., L5, called the Lagrange points.
The Lagrange point L3 is a saddle-center critical point which 
is collinear with the primaries and is located beyond the 
largest of the two. In this paper and its sequel [10], we 
provide an asymptotic formula for the distance between the 
one dimensional stable and unstable invariant manifolds of L3
when the ratio between the masses of the primaries μ is small. 
It implies that L3 cannot have one-round homoclinic orbits.
If the mass ratio μ is small, the hyperbolic eigenvalues are 
weaker than the elliptic ones by factor of order √μ. This 
implies that the distance between the invariant manifolds 
is exponentially small with respect to μ and, therefore, the 
classical Poincaré–Melnikov method cannot be applied.
In this first paper, we approximate the RPC3BP by an 
averaged integrable Hamiltonian system which possesses a 
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saddle center with a homoclinic orbit and we analyze the 
complex singularities of its time parameterization. We also 
derive and study the inner equation associated to the original 
perturbed problem. The difference between certain solutions 
of the inner equation gives the leading term of the distance 
between the stable and unstable manifolds of L3.
In the sequel [10] we complete the proof of the asymptotic 
formula for the distance between the invariant manifolds.

© 2022 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. The unstable and stable invariant manifolds of L3 . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Exponentially small splitting of separatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. Strategy to obtain an asymptotic formula for the breakdown of the invariant manifolds 

of L3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. A singular perturbation formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. The Hamiltonian Hp and its separatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. Derivation of the inner equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4. The solutions of the inner equation and their difference . . . . . . . . . . . . . . . . . . . . . 19

3. Analytic continuation of the separatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1. Reformulation of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Classification of the singularities of q(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3. Singularities closest to the real axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1. Paths not crossing the real axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2. Paths first crossing the real axis at R \ [0, 1] . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3. Paths first crossing the real axis at [0, 1] . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4. Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4. The inner system of coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1. The Hamiltonian in Poincaré variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2. Proof of Proposition 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5. Analysis of the inner equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1. Existence of suitable solutions of the inner equation . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1. Preliminaries and set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2. Proof of Proposition 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2. Asymptotic formula for the difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1. A homogeneous linear equation for ΔZ0 . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2. Characterization of ΔZ0 as a fixed point . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.3. Exponentially small estimates for ΔZ0 . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3. Proof of the technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.1. Proof of Lemma 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2. Proof of Lemmas 5.7 and 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1. Introduction

The understanding of the motions of the 3-Body Problem has been of deep interest 
in the last centuries. Since Poincaré, see [46], one of the fundamental problems is to 
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Fig. 1. (a) Projection onto the q-plane of the equilibrium points for the RPC3BP on rotating coordinates. 
(b) Plot of the stable (green) and unstable (blue) manifolds of L3 projected onto the q-plane for μ = 0.003. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

understand how the invariant manifolds of its different invariant objects (periodic orbits, 
invariant tori) structure its global dynamics. Assume that one of the bodies (say the 
third) has mass zero. Then, one has the Restricted 3-Body Problem. In this model, the 
two first bodies, called the primaries, are not influenced by the massless one. As a result, 
their motions are governed by the classical Kepler laws. If one further assumes that the 
primaries perform circular motion and that the third body is coplanar with them, one 
has the Restricted Planar Circular 3-Body Problem (RPC3BP).

Let us name the two primaries S (star) and P (planet). Normalizing their masses, we 
can assume that mS = 1 − μ and mP = μ, with μ ∈

(
0, 1

2
]
. Since the primaries follow 

circular orbits, in rotating (usually also called synodic) coordinates, their positions can 
be fixed at qS = (μ, 0) and qP = (μ − 1, 0). Then, denoting by (q, p) ∈ R2 × R2 the 
position and momenta of the third body and taking appropriate units, the RPC3BP is 
a 2-degrees of freedom Hamiltonian system with respect to

h(q, p;μ) = ||p||2
2 − qt

(
0 1
−1 0

)
p− (1 − μ)

||q − (μ, 0)|| −
μ

||q − (μ− 1, 0)|| . (1)

For μ > 0, it is a well known fact that h has five equilibrium points: L1, L2, L3, L4

and L5, called Lagrange points1 (see Fig. 1(a)). On an inertial (non-rotating) system 
of coordinates, the Lagrange points correspond to periodic orbits with the same period 
as the two primaries, i.e. they lie on a 1:1 mean motion resonance. The three collinear 
points with the primaries, L1, L2 and L3, are of center-saddle type and, for small μ, the 
triangular ones, L4 and L5, are of center-center type (see for instance [51]).

1 For μ = 0, the system has a circle of critical points (q, p) with ‖q‖ = 1 and p = (p1, p2) = (−q2, q1).
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Since the points L1 and L2 are rather close to the small primary, their invariant 
manifolds have been widely studied for their interest in astrodynamics applications, (see 
[12,29,37]). The dynamics around the points L4 and L5 have also been considerably 
studied since, due to its stability, it is common to find objects orbiting around these 
points (for instance the Trojan and Greek Asteroids associated to the pair Sun-Jupiter, 
see [13,28,47]).

On the contrary, the invariant manifolds of the Lagrange point L3 have received 
somewhat less attention. Still, they structure the dynamics in regions of the phase space 
of the RPC3BP. In particular, the horseshoe-shaped orbits that explain the orbits of 
Saturn satellites Janus and Epimetheus lie “close” to the invariant manifolds of L3 (see 
[44]). Moreover, the invariant manifolds of L3 (more precisely its center-stable and center-
unstable manifolds) act as effective boundaries of the stability domains around L4,5 (see 
in [49]). See the companion paper [10] for more references about the dynamics of the 
RPC3BP in a neighborhood of L3 and its invariant manifolds.

The purpose of this paper and its sequel [10] is to study the invariant manifolds of L3
and, particularly, show that they do not intersect for 0 < μ � 1 (at their first round).

1.1. The unstable and stable invariant manifolds of L3

The eigenvalues of the Lagrange point L3 satisfy that

Spec = {±√
μρ(μ),±i ω(μ)} , with

⎧⎨⎩ ρ(μ) =
√

21
8 + O(μ),

ω(μ) = 1 + 7
8μ + O(μ2),

(2)

as μ → 0 (see [51]). Notice that, due to the different size in the eigenvalues, the system 
possesses two time scales, which translates to rapidly rotating dynamics coupled with a 
slow hyperbolic behavior around the critical point L3.

The one dimensional unstable and stable invariant manifolds have two branches each 
(see Fig. 1(b)). One pair, which we denote by W u,+(μ) and W s,+(μ) circumvents L5
whereas the other, denoted as W u,−(μ) and W s,−(μ), circumvents L4. Since the Hamil-
tonian system associated to h in (1) is reversible with respect to the involution

Φ(q, p) = (q1,−q2,−p1, p2), (3)

the + branches are symmetric to the − ones. Thus, one can restrict the study to the 
first ones.

As already mentioned, the aim of this paper (and its sequel [10]) is to give an asymp-
totic formula for the distance between W u,+(μ) and W s,+(μ), for 0 < μ � 1 (in an 
appropriate transverse section). However, due to the rapidly rotating dynamics of the 
system (see (2)), the stable and unstable manifolds of L3 are exponentially close to each 
other with respect to 

√
μ. This implies that the classical Melnikov Theory [42] cannot 

be applied and that obtaining the asymptotic formula is a rather involved problem.
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The precise statement for the asymptotic formula for the distance is properly stated 
in the sequel of this paper [10]. Let us give here a more informal statement. Consider the 
classical symplectic polar coordinates (r, θ, R, G), where R is the radial momentum and 
G the angular momentum, and the section Σ = {θ = π/2, r > 1}. Then, if one denotes 
by P u and P s the first intersections of the invariant manifolds W u,+(μ), W s,+(μ) with 
Σ, the distance between these points, is given by

distΣ(P u, P s) = 3
√

4μ 1
3 e

− A√
μ

[
|Θ| + O

(
1

|logμ|

)]
, (4)

for 0 < μ � 1 and certain constants A > 0 and Θ ∈ C. The proof of this asymptotic 
formula spans both the present paper and the sequel [10]. In this first paper, we perform 
the first steps towards the proof (see Section 1.3 below). In particular, we obtain and 
describe the constants A and Θ appearing in (4).

A fundamental problem in dynamical systems is to prove that a model has chaotic 
dynamics (for instance a Smale Horseshoe). For many physically relevant problems, like 
those in Celestial Mechanics, this is usually a remarkably difficult problem. Certainly, 
the fact that the invariant manifolds of L3 do not coincide does not lead to chaotic 
dynamics. However, one should expect the existence of Lyapunov periodic orbits which 
are exponentially close (with respect to 

√
μ) to L3 and whose stable and unstable in-

variant manifolds intersect transversally. If so, the Smale-Birkhoff Theorem would imply 
the existence of a hyperbolic set whose dynamics is conjugated to that of the Bernoulli 
shift (in particular, with positive topological entropy) exponentially close to the invariant 
manifolds of L3.

1.2. Exponentially small splitting of separatrices

Even though there is a standard theory to analyze the breakdown of homoclinic and 
heteroclinic connections, the so called Poincaré-Melnikov Theory (see [42] and [35] for 
a more modern exposition), it cannot be applied to obtain (4) due to its exponential 
smallness. Indeed, the breakdown of homoclinic connections to L3 fits into what is usually 
referred to as exponentially small splitting of separatrices problems. This beyond all 
orders phenomenon was first detected by Poincaré in [46] when he studied the non 
integrability of the 3-Body Problem.

The first obtention of an asymptotic formula for an exponentially small splitting of 
separatrices did not appear until the 1980’s with the pioneering work by Lazutkin for 
the standard map [38,39]. Even if Lazutkin’s work was not complete (the complete proof 
was achieved by Gelfreich in [24]), the ideas he developed have been very influential and 
have been the basis of many of the works in the field (and in particular of this paper and 
the sequel [10]). Other methods to deal with exponentially small splitting of separatrices 
are Treschev’s continuous averaging (see [52]) or “direct” series methods (see [21]).

Usually, the exponentially small splitting of separatrices problems are classified as 
regular or singular.
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In the regular cases, even if Melnikov theory cannot be straightforwardly applied, 
the Melnikov function gives the leading term for the distance between the perturbed 
invariant manifolds. That is, Melnikov theory provides the first order for the distance 
but leads to too crude estimates for the higher order terms. This phenomenon has been 
studied in rapidly forced periodic or quasi-periodic perturbations of 1-degree of freedom 
Hamiltonian systems, see [2,3,15,16,22,25,30,36], in close to the identity area preserving 
maps, see [14], and in Hamiltonian systems with two or more degrees of freedom which 
have hyperbolic tori with fast quasiperiodic dynamics [48]. In particular, [32] provides 
the first prove of exponentially small splitting of separatrices in a Celestial Mechanics 
problem (see also [33,34]).

In the singular cases, the exponentially small first order for the distance between the 
invariant manifolds is no longer given by the Melnikov function. Instead, one has to 
consider an auxiliary equation, usually called inner equation, which does not depend on 
the perturbative parameter and provides the first order for the distance. Some results on 
inner equations can be found on [1,4,5,23,26,45] and the application of the inner equation 
analysis to the original problem can be found in [6–9,20,31,40,41].

Due to the extreme sensitivity of the exponentially small splitting of separatrices 
phenomenon on the features of each particular model, most of the available results ap-
ply under quite restrictive hypothesis and, therefore, cannot be applied to analyze the 
invariant manifolds of L3.

1.3. Strategy to obtain an asymptotic formula for the breakdown of the invariant 
manifolds of L3

For the limit problem h in (1) with μ = 0, the five Lagrange point “disappear” into 
the circle of (degenerate) critical points ‖q‖ = 1 and p = (p1, p2) = (−q2, q1). As a conse-
quence, the one-dimensional invariant manifolds of L3 disappear when μ = 0 too. For this 
reason, to analyze perturbatively these invariant manifolds, the first step is to perform 
a singular change of coordinates to obtain a “new first order” Hamiltonian which has 
a center saddle equilibrium point (close to L3) with stable and unstable manifolds that 
coincide along a separatrix. To perform the change of coordinates we use the Poincaré 
planar elements (see [43]) plus a singular (with respect to μ) scaling.

In the following list, we present the main steps of our strategy to prove formula (4). 
We split the list in two. First we explain the steps performed in this paper and later 
those carried out in its sequel [10].

In this paper, we complete the following steps:

A. We perform a change of coordinates which captures the slow-fast dynamics of the 
system. The new Hamiltonian becomes a (fast) oscillator weakly coupled to a 1-
degree of freedom Hamiltonian with a saddle point and a separatrix associated to 
it.
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B. We analyze the analytical continuation of a time-parametrization of the separatrix. 
In particular, we obtain its maximal strip of analyticity (centered at the real line). 
We also describe the character and location of the singularities at the boundaries of 
this region.

C. We derive the inner equation, which gives the first order of the original system close to 
the singularities of the separatrix described in Step B. This equation is independent 
of the perturbative parameter μ.

D. We study two special solutions of the inner equation which are approximations of the 
perturbed invariant manifolds near the singularities. Moreover, we provide an asymp-
totic formula for the difference between these two solutions of the inner equation. 
We follow the approach presented in [5].

In [10] we complete the following steps:

E. We prove the existence of the analytic continuation of suitable parametrizations 
of W u,+(δ) and W s,+(δ) in appropriate complex domains (and as graphs). These 
domains contain a segment of the real line and intersect a neighborhood sufficiently 
close to the singularities of the separatrix.

F. By using complex matching techniques, we compare the solutions of the inner equa-
tion with the graph parametrizations of the perturbed invariant manifolds.

G. Finally, we prove that the dominant term of the difference between manifolds is given 
by the term obtained from the difference of the solutions of the inner equation.

The structure of this paper goes as follows. In Section 2, we present the main results 
for the Steps A to D and introduce some heuristics to contextualize them. Sections 3-5
are devoted to the proof of the results in Section 2.

The constants in the asymptotic formula for the distance. The constant A in (4) is 
given by the height of the maximal strip of analyticity of the unperturbed separatrix 
(see Step B). Therefore, to obtain its value, one has to compute the imaginary part of 
the singularities of the separatrix which are closer to the real line.

On all the previous mentioned works on splitting of separatrices, either the separatrix 
of the unperturbed model has an analytic expression (see for example [7,15,20,31,32]) or 
otherwise certain properties of its analytic continuation are given as assumptions (see [2,
6,16,23]). In this case, we do not have an explicit expression for the time-parameterization 
of the separatrix and, to obtain its complex singularities, we need to rely on techniques of 
analytical continuation to analyze them (see Section 2.2). In particular, we describe the 
parametrization of the separatrix in terms of a multivalued function involving a complex 
integral and (see Theorem 2.2 below) we obtain
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A =

√
2−1
2∫

0

2
1 − x

√
x

3(x + 1)(1 − 4x− 4x2)dx ≈ 0.177744.

This value agrees with the numerical computations of the distance between the invariant 
manifolds given in [18,49].

Since we are in a singular case, the constant Θ in (4) is not correctly given by the 
Melnikov function but by the analysis of the inner equation of the system (see Step C 
above and also Sections 2.3 and 2.4). In particular, Θ corresponds to a Stokes constant 
and does not have a closed formula. By a numerical computation, we see that |Θ| ≈ 1.63
(see Remark 2.8). We expect that, by means of a computer assisted proof, it would be 
possible to obtain rigorous estimates and verify that |Θ| �= 0, see [11].

2. Main results

We devote this section to state the main results concerning the Steps A, B, C and 
D explained in Section 1.3. First, in Section 2.1, we present the changes of coordinates 
involved to rewrite the Hamiltonian h in (1) as a singular perturbation problem given by 
a fast oscillator weakly coupled with a one degree of freedom Hamiltonian with a saddle 
point and a separatrix (Step A). In Section 2.2, we consider the time-parametrization 
of the separatrix and analyze the properties of its analytical continuation (Step B). In 
Section 2.3 we give some heuristic ideas regarding the parametrization of the perturbed 
manifolds on certain complex domains (Step E) and deduce the singular change of vari-
ables which leads to the inner equation (Step C). Finally, in Section 2.4, we present the 
study of certain solutions of the inner equation and give an asymptotic formula for their 
difference (Step D).

2.1. A singular perturbation formulation of the problem

When studying a close to integrable Hamiltonian system at a resonance, it is usual 
to “blow-up” the “resonant zone” to capture the slow-fast time scales. In this section we 
present the singular change of coordinates which transforms the Hamiltonian h in (1)
into a pendulum-like Hamiltonian plus a fast oscillator with a small coupling, namely

H(λ,Λ, x, y) = −3
2Λ2 + V (λ) + xy

√
μ

+ o(1),

with respect to the symplectic form dλ ∧ dΛ + idx ∧ dy. In these coordinates, the first 
order of the Hamiltonian has a saddle in the (λ, Λ)–plane and a center in the (x, y)–plane. 
Notice that the system possesses two time scales (∼ 1 and ∼ 1/√μ). Recall that this 
two time scales are also present in the eigenvalues of L3 in (2).

We consider Poincaré coordinates for the RPC3BP (see (1)) in order to write the 
system as a close to integrable Hamiltonian system and decouple (at first order) the 
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saddle and the center behavior. To this end, we first consider the symplectic polar and 
Delaunay coordinates.

Polar coordinates. Let us consider the change of coordinates:

φpol : (r, θ, R,G) �→ (q, p),

where r is the radius, θ the argument of q, R the linear momentum in the r direction 
and G is the angular momentum. Then, the Hamiltonian (1), becomes

Hpol = Hpol
0 + μHpol

1 , (5)

where

Hpol
0 (r,R,G) =1

2

(
R2 + G2

r2

)
− 1

r
−G,

μHpol
1 (r, θ;μ) =1

r
− 1 − μ√

r2 − 2μr cos θ + μ2

− μ√
r2 + 2(1 − μ)r cos θ + (1 − μ)2

.

(6)

The critical point L3 (see [51] for the details) satisfies that, as μ → 0,

(r, θ, R,G) = (dμ, 0, 0, d2
μ), with dμ = 1 + 5

12μ + O(μ3). (7)

Delaunay coordinates. The Delaunay elements, denoted (	, L, ̂g, G), are action–angle 
variables for the 2-Body Problem (for negative energy) in non-rotating coordinates. The 
variable 	 is the mean anomaly, ĝ is the argument of the pericenter, L is the square root 
of the semi major axis and G is the angular momentum, (see [43]).

Let us introduce some formulae to describe these elements from the non-rotating polar 
coordinates (r, θ̂, R, G), namely θ̂ = θ + t. The action L is defined by

− 1
2L2 = 1

2

(
R2 + G2

r2

)
− 1

r
,

and the (osculating) eccentricity of the body is expressed as

e =
√

1 − G2

L2 =
√

(L−G)(L + G)
L

. (8)

Let us recall now the “anomalies”: the three angular parameters that define a position 
at the (osculating) ellipse. These are the mean anomaly 	, the eccentric anomaly u, and 
the true anomaly f , which satisfy
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r = L2(1 − e cosu) and θ̂ = f + ĝ. (9)

To use these elements in a rotating frame, we consider rotating Delaunay coordinates 
(	, L, g, G), where the new angle is defined as g = ĝ − t (the argument of the pericenter 
with respect to the line defined by the primaries S and J). As a result,

θ = f + g, (10)

and the unperturbed Hamiltonian Hpol
0 becomes

Hpol
0 = − 1

2L2 −G.

The eccentric and true anomalies are related by

cos f = cosu− e

1 − e cosu, sin f =
√

1 − e2 sin u

1 − e cosu , (11)

and the mean anomaly u is given by Kepler’s equation

u− e sin u = 	. (12)

The critical point L3 (see (7)) satisfies θ = 	 + g = 0 and

L =
√

dμ
2 − d3

μ

= 1 + O(μ), G = d2
μ = 1 + O(μ), L−G = O(μ2). (13)

Note that the Delaunay coordinates are not well defined for circular orbits (e = 0), since 
the pericenter, and as a consequence the angle g, are not well defined.

Poincaré coordinates. To “blow-down” the singularity of the Delaunay coordinates at 
circular motions, we use the classical Poincaré coordinates, which can be expressed by 
means of (rotating) Delaunay variables. Let us define

φPoi : (λ, L, η, ξ) �→ (r, θ, R,G), (14)

given by

λ = 	 + g, η =
√
L−Geig, ξ =

√
L−Ge−ig. (15)

These coordinates are symplectic and analytic. Moreover, even though they are defined 
through the Delaunay variables, they are also analytic when the eccentricity tends to 
zero (i.e. at L = G), see [17,43].

The Hamiltonian equation associated to (5), expressed in Poincaré coordinates, defines 
a Hamiltonian system with respect to the symplectic form dλ ∧ dL + i dη ∧ dξ and
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HPoi = HPoi
0 + μHPoi

1 ,

where

HPoi
0 (L, η, ξ) = − 1

2L2 − L + ηξ and HPoi
1 = Hpol

1 ◦ φPoi. (16)

In Poincaré coordinates, the critical point L3, as given in (13), satisfies

λ = 0, (L, η, ξ) = (1, 0, 0) + O(μ).

The linearized part of the vector field associated to this point has, at first order, an 
uncoupled nilpotent and center blocks,⎛⎜⎝0 −3 0 0

0 0 0 0
0 0 i 0
0 0 0 −i

⎞⎟⎠+ O(μ).

The center is found on the projection to coordinates (η, ξ) and the degenerate behavior 
on the projection to (λ, L).

The perturbative term μHPoi
1 is not explicit. We overcome this problem by computing 

the first terms of the series of μHPoi
1 in powers of (η, ξ), (see Lemma 4.1).

Notice that, on the original coordinates, Hamiltonian h (see (1)) is analytic at points 
away from collision with the primaries. However, the collisions are not as easily defined 
in Poincaré coordinates.

A singular scaling. We consider the parameter

δ = μ
1
4

and we define the symplectic scaling

φsc : (λ,Λ, x, y) �→ (λ, L, η, ξ), L = 1 + δ2Λ, η = δx, ξ = δy, (17)

and the time reparameterization t = δ−2τ . The transformed equations are Hamiltonian 
with respect to the Hamiltonian

δ−4 (HPoi
0 ◦ φsc

)
+
(
HPoi

1 ◦ φsc
)

and the symplectic form dλ ∧dΛ + idx ∧dy. The Hamiltonian (up to a constant) satisfies

δ−4 (HPoi
0 ◦ φsc

)
= −3

2Λ2 + 1
δ4Fp(δ2Λ) + xy

δ2 ,(
HPoi

1 ◦ φsc
)

= V (λ) + O(δ),
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with

V (λ) = HPoi
1 (λ, 1, 0, 0; 0),

Fp(z) =
(
− 1

2(1 + z)2 − (1 + z)
)

+ 3
2 + 3

2z
2 = O(z3).

(18)

The function V (λ), which we call the potential, has an explicit formula:

V (λ) = Hpol
1 (1, λ; 0) = 1 − cosλ− 1√

2 + 2 cosλ
, (19)

where Hpol
1 is defined in (6). Indeed, taking δ = 0 on the change of coordinates (17), we 

have that (λ, L, η, ξ) = (λ, 1, 0, 0). These coordinates, correspond with a circular orbit, 
e = 0, and applying (9) and (10), we obtain that (r, θ) = (1, λ).

We summarize the previous results in the following theorem.

Theorem 2.1. The Hamiltonian system given by h in (1) expressed in coordinates 
(λ, Λ, x, y) defines a Hamiltonian system with respect to the symplectic form dλ ∧ dΛ +
idx ∧ dy and the Hamiltonian

H = Hp + Hosc + H1, (20)

with

Hp(λ,Λ) = −3
2Λ2 + V (λ), Hosc(x, y; δ) = xy

δ2 , (21)

H1(λ,Λ, x, y; δ) =
(
HPoi

1 ◦ φsc
)
− V (λ) + 1

δ4Fp(δ2Λ), (22)

and HPoi
1 , Fp and V defined in (16), (18) and (19), respectively. Moreover, the Hamilto-

nian H is real-analytic2 away from collision with the primaries.
Moreover, for δ > 0 small enough:

• The critical point L3 (see (7)) expressed in coordinates (λ, Λ, x, y) is given by

L(δ) =
(
0, δ2LΛ(δ), δ3Lx(δ), δ3Ly(δ)

)
, (23)

with |LΛ(δ)|, |Lx(δ)|, |Ly(δ)| ≤ C, for some constant C > 0 independent of δ.
• The point L(δ) is a saddle-center equilibrium point and its linear part is⎛⎜⎜⎝

0 −3 0 0
−7

8 0 0 0
0 0 i

δ2 0
0 0 0 − i

δ2

⎞⎟⎟⎠+ O(δ).

2 Real-analytic in the sense of H(λ,Λ, x, y; δ) = H(λ, Λ, y, x; δ).



I. Baldomá et al. / Advances in Mathematics 408 (2022) 108562 13
Fig. 2. Phase portrait of equation (26). On blue the two separatrices.

Therefore, it possesses one-dimensional stable and unstable manifolds and a two-
dimensional center manifold.

The proof of Theorem 2.1 follows from the results obtained through Section 2.1.
Since the original Hamiltonian is symmetric with respect to the involution Φ in (3), 

the Hamiltonian H is reversible with respect to the involution

Φ̃(λ,Λ, x, y) = (−λ,Λ, y, x). (24)

From now on, we consider as “new” unperturbed Hamiltonian

H0(λ,Λ, x, y; δ) = Hp(λ,Λ) + Hosc(x, y; δ), (25)

which corresponds to an uncoupled pendulum-like Hamiltonian Hp and an oscillator 
Hosc, and we refer to H1 as the perturbation.

2.2. The Hamiltonian Hp and its separatrices

In this section we analyze the 1-degree of freedom Hamiltonian Hp(λ, Λ) introduced 
in (21),

Hp(λ,Λ) = −3
2Λ2 + V (λ), V (λ) = 1 − cosλ− 1√

2 + 2 cosλ
,

and the associated Hamiltonian system

λ̇ = −3Λ, Λ̇ = − sinλ

(
1 − 1

(2 + 2 cosλ) 3
2

)
. (26)

This Hamiltonian system has a singularity at λ = π, which corresponds to the collision 
with the small primary P , and a saddle at (λ, Λ) = (0, 0) with two homoclinic connections 
or separatrices, see Fig. 2. From now on, we only consider the separatrix on the right; 
by symmetry (see (24)), the results obtained below are analogous for the separatrix on 
the left.
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We consider the real-analytic time parametrization of the separatrix,

σ : R → T ×R

t �→ σ(t) = (λh(t),Λh(t)),
(27)

with initial condition

σ(0) = (λ0, 0) where λ0 ∈
(

2
3π, π

)
.

Theorem 2.2. The real-analytic time parametrization σ in (27) satisfies:

• It extends analytically to the strip

ΠA = {t ∈ C : |Im t| < A}, (28)

where

A =
a+∫
0

1
1 − x

√
x

3(x + 1)(a+ − x)(x− a−)dx ≈ 0.177744, (29)

with a± = −1
2 ±

√
2

2 .
• It has only two singularities in ∂ΠA at t = ±iA.
• There exists ν > 0 such that, for t ∈ C with |t− iA| < ν and arg (t −iA) ∈ (−3π

2 , π2 ), 
σ(t) = (λh(t), Λh(t)) can be expressed as

λh(t) = π + 3α+(t− iA) 2
3 + O(t− iA) 4

3 ,

Λh(t) = −2α+

3
1

(t− iA) 1
3

+ O(t− iA) 1
3 ,

(30)

with α+ ∈ C such that α3
+ = 1

2 .
An analogous result holds for |t + iA| < ν, arg (t + iA) ∈ (−π

2 , 
3π
2 ) and α− = α+.

In a perturbed 2-body problem, the motion of a collision singularity corresponds to 
a branching point of order 2

3 , see [50]. This fact agrees with the results in Theorem 2.2, 
since the singularity t = ±iA corresponds to a complex collision with the small primary 
P .

We can also describe the zeroes of Λh(t) in ΠA.

Proposition 2.3. Consider the real-analytic time parametrization σ(t) = (λh(t), Λh(t))
and the domain ΠA defined in (27) and (28) respectively. Then, Λh(t) has only one zero 
in ΠA at t = 0.



I. Baldomá et al. / Advances in Mathematics 408 (2022) 108562 15
Fig. 3. Representation of the domain Πext
A,β in (31).

We can expand the region of analyticity of the time parametrization σ.

Corollary 2.4. There exists 0 < β < π
2 such that the real-analytic time parametrization 

σ(t) extends analytically to

Πext
A,β = {t ∈ C : |Im t| < tan β Re t + A}∪

{t ∈ C : |Im t| < − tan β Re t + A} .
(31)

(See Fig. 3.) Moreover,

1. σ has only two singularities on ∂Πext
A,β at t = ±iA.

2. Λh has only one zero in the closure of Πext
A,β at t = 0.

Proof. By [19], there exists T > 0 such that σ(t) is analytic in {|Re t| > T}. Moreover, 
applying Theorem 2.2, σ(t) has two branching points at t = ±iA and can be expressed 
as in (30) in the domains

D1 =
{
|t− iA| < ν, arg (t− iA) ∈

(
−3π

2 , π
2
)}

∪{
|t + iA| < ν, arg (t + iA) ∈

(
−π

2 ,
3π
2
)}

,

for some ν > 0. This implies that the only singularities in D1 are at t = ±iA.
Thus, we only need to check Item 1 in(

Πext
A,β ∩ {|Re t| ≤ T}

)
\D1.

To this end, note that, by Theorem 2.2, σ(t) is analytic in the compact set D2 =(
ΠA ∩ {|Re t| ≤ T}

)
\D1. Therefore, there exists a cover of ∂D2 by open balls centered 

in ∂D2 where σ(t) is analytic. Moreover, since ∂D2 is compact, it has a finite subcover. 
This implies that there exists η > 0 such that we can extend the analyticity domain of 
σ(t) to

(ΠA+η ∩ {|Re t| ≤ T}) \D1.
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Then, taking β = arctan(η/T ), σ(t) is analytic in (Πext
A,β ∩ {|Re t| ≤ T}) \D1. The prove 

of Item 2 follows the same lines. �
2.3. Derivation of the inner equation

The inner equation associated to the Hamiltonian H in (20) describes the dominant 
behavior of suitable complex parametrizations of the invariant manifolds close to (one 
of) the singularities ±iA of the unperturbed separatrix. Let us explain how this equation 
arises from the Hamiltonian H.

First, we consider the translation of the equilibrium point L(δ) to the origin,

φeq : (λ,Λ, x, y) �→ (λ,Λ, x, y) + L(δ). (32)

Second, to measure the distance of the stable and unstable manifolds, we parameterize 
them as graphs. In the unperturbed case, we know that the invariant manifolds coincide 
along the separatrix (λh(t), Λh(t), 0, 0). Since we need to involve, in some sense, the time; 
we consider as a new independent variable u such that λh(u) = λ. Notice that u̇ = 1 for 
the unperturbed system. To this end, we consider the symplectic change of coordinates

φsep : (u,w, x, y) → (λ,Λ, x, y), λ = λh(u), Λ = Λh(u) − w

3Λh(u) , (33)

where σ = (λh, Λh) is the parametrization of the separatrix studied in Theorem 2.2. 
Notice that, except for u = 0 (see Proposition 2.3), the perturbed manifolds can be 
expressed as a graph and the change (33) is well defined.

The Hamiltonian H, written in these coordinates and after the translation φeq in (32), 
becomes

Hsep = Hsep
0 + Hsep

1 , (34)

with

Hsep
0 (w, x, y) = w + xy

δ2 , Hsep
1 = H ◦ (φeq ◦ φsep) −Hsep

0 .

Since we look for the perturbed manifolds as graphs with respect to u, we consider 
parametrizations

z�(u) = (w�(u), x�(u), y�(u))T , for � = u, s,

such that the unstable and stable invariant manifolds of H associated to L(δ) can be 
expressed as

W � =
{(

λh(u),Λh(u) − w�(u)
, x�(u), y�(u)

)
+ L(δ)

}
, for � = u, s,
3Λh(u)



I. Baldomá et al. / Advances in Mathematics 408 (2022) 108562 17
with u belonging to appropriate domains. The proof of existence of zu and zs defined 
in appropriate (complex) domains requires a significant amount of technicalities. We 
present this result in the companion paper, see [10].

Due to the slow-fast character of the system, to capture the asymptotic first order of 
the difference Δz = zu − zs, we need to give the main terms of this difference close to 
the singularities, concretely, up to distance of order δ2. To this end, we derive the inner 
equation, see [1,5], which contains the first order of the Hamiltonian Hsep (see (34)) 
close to (one of) the singularities and is independent of the small parameter δ. That 
is, we look, for instance, for a Hamiltonian which is good approximations of Hsep in a 
neighborhood of u = iA. Here, we focus on a domain near the singularity u = iA, but a 
similar analysis can be done near u = −iA.

Since we need to control the difference up to distance of order δ2 of the singularity 
u = iA, we consider U such that

u− iA = δ2U.

Notice that we can take |U | � 1 independent of δ. Close to the singularity u = iA, 
the homoclinic connection is not the dominant term of the perturbed invariant mani-
folds anymore. Let us be more precise, take Λ = Λh(u) − w

3Λh(u) , and recall that, by 
Theorem 2.2, we have

Λh(u) ∼ −2α+

3 (u− iA)− 1
3 , for |u− iA| ≤ ν,

or equivalently,

Λh(iA + δ2U) ∼ − 2α+

3δ 2
3U

1
3
∼ O

(
1

δ
2
3U

1
3

)
.

Then,

w�(iA + δ2U) ∼ 3Λ2
h(iA + δ2U) ∼ O

(
1

δ
4
3U

2
3

)
. (35)

In addition, the unperturbed Hamiltonian must have all of its terms of the same order. 
Therefore,

x�(iA + δ2U) y�(iA + δ2U)
δ2 ∼ O

(
1

δ
4
3U

2
3

)
. (36)

By symmetry, x�(iA + δ2U), y�(iA + δ2U) ∼ O(δ 1
3U− 1

3 ).
To avoid the dependence on the inner equation with respect to α+ (see Theorem 2.2) 

and to keep the symplectic character, we perform the scaling

φin : (U,W,X, Y ) → (u,w, x, y), (37)
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given by

U = u− iA

δ2 , W = δ
4
3

w

2α2
+
, X = x

δ
1
3
√

2α+
, Y = y

δ
1
3
√

2α+
,

and the time scaling τ = δ2t. The heuristics above lead us to assume that (U, W, X, Y ) =
O(1) when u − iA = O(δ2). In the following proposition, by applying the change of 
coordinates φin, we obtain the inner equation of the Hamiltonian Hsep.

Proposition 2.5. The Hamiltonian equations associated to (34) expressed in inner coor-
dinates (see (37)) are Hamiltonian with respect to

H in = H + H in
1 ,

where

H(U,W,X, Y ) = H in(U,W,X, Y ; δ)
∣∣
δ=0 = W + XY + K(U,W,X, Y ), (38)

with

K(U,W,X, Y ) = −3
4U

2
3W 2 − 1

3U 2
3

(
1√

1 + J (U,W,X, Y )
− 1

)
(39)

and

J (U,W,X, Y ) = 4W 2

9U 2
3
− 16W

27U 4
3

+ 16
81U2 + 4(X + Y )

9U

(
W − 2

3U 2
3

)

− 4i(X − Y )
3U 2

3
− X2 + Y 2

3U 4
3

+ 10XY

9U 4
3

.

(40)

Moreover, if c−1
1 ≤ |U | ≤ c1 and |(W,X, Y )| ≤ c2 for some c1 > 1 and 0 < c2 < 1, we 

have that there exist b0, γ1, γ2 > 0 independent of δ, c1, c2 such that∣∣H in
1 (U,W,X, Y ; δ)

∣∣ ≤ b0c
γ1
1 cγ2

2 δ
4
3 .

Remark 2.6. The change of coordinates (37) allows us to study an approximation of the 
invariant manifolds zu,s(u) near the singularity u = iA. To obtain an approximation near 
u = −iA, one can proceed analogously by

U = u + iA

δ2 , W = δ
4
3

w

2α2
−
, X = x

δ
1
3
√

2α−
, Y = y

δ
1
3
√

2α−
,

where α− = α+ (see Theorem 2.2).
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2.4. The solutions of the inner equation and their difference

We devote this section to study two special solutions of the inner equation given by 
the Hamiltonian H in (38). We introduce Z = (W, X, Y ) and the matrix

A =
(0 0 0

0 i 0
0 0 −i

)
. (41)

Then, the equation associated to the Hamiltonian H can be written as{
U̇ = 1 + g(U,Z),
Ż = AZ + f(U,Z),

(42)

where f = (−∂UK, i∂Y K,−i∂XK)T and g = ∂WK.
We look for solutions of this equation parametrized as graphs with respect to U , 

namely we look for functions

Z�
0 (U) =

(
W �

0 (U), X�
0 (U), Y �

0 (U)
)T

, for � = u, s,

satisfying the invariance condition given by (42), that is

∂UZ
�
0 = AZ�

0 + R[Z�
0 ], for � = u, s, (43)

where

R[ϕ](U) = f(U,ϕ) − g(U,ϕ)Aϕ

1 + g(U,ϕ) . (44)

In order to “select” the solutions we are interested in, we point out that, since we 
need some uniformity with respect to δ and U = δ−2(u − iA), then ReU → ±∞ as 
δ → 0, depending on the sign of ReU . Then, according to (35) and (36), we deduce that 
(W, X, Y ) → 0 as ReU → ±∞. For that reason, we look for Z�

0 satisfying the asymptotic 
conditions

lim
ReU→−∞

Zu
0 (U) = 0, lim

ReU→+∞
Zs

0(U) = 0. (45)

In fact, for a fixed β0 ∈
(
0, π

2
)
, we look for functions Zu

0 and Zs
0 satisfying (43), (45)

defined in the domains

Du
κ = {U ∈ C : |ImU | ≥ tan β0 ReU + κ} , Ds

κ = −Du
κ, (46)

respectively, for some κ > 0 big enough (see Fig. 4). We analyze the difference ΔZ0 =
Zu

0 − Zs
0 in the overlapping domain
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Fig. 4. The inner domain, Du
κ, for the unstable case.

Eκ = Du
κ ∩ Ds

κ ∩ {U ∈ C : ImU < 0} . (47)

Theorem 2.7. There exist κ0, b1 > 0 such that for any κ ≥ κ0, the equation (43) has an-
alytic solutions Z�

0 (U) = (W �
0 (U), X�

0 (U), Y �
0 (U))T , for U ∈ D�

κ and � = u, s, satisfying

|U 8
3W �

0 (U)| ≤ b1, |U 4
3X�

0 (U)| ≤ b1, |U 4
3Y �

0 (U)| ≤ b1. (48)

In addition, there exist Θ ∈ C and b2 > 0 independent of κ, and a function χ =
(χ1, χ2, χ3)T such that

ΔZ0(U) = Zu
0 (U) − Zs

0(U) = Θe−iU
(
(0, 0, 1)T + χ(U)

)
, (49)

and, for U ∈ Eκ,

|U 7
3χ1(U)| ≤ b2, |U2χ2(U)| ≤ b2, |Uχ3(U)| ≤ b2.

Remark 2.8. This theorem implies that Θ = limImU→−∞ ΔY0(U)eiU . Thus, we can ob-
tain a numerical approximation of the constant Θ. Indeed, for ρ > κ0, we can define

Θρ = |ΔY0(−iρ)| eρ, (50)

which, for ρ big enough, satisfies Θρ ≈ |Θ|.
To compute ΔY0(−iρ) = Y u

0 (−iρ) − Y s
0 (−iρ), we first look for good approximations 

of Zu
0 (U) for ReU � −1 and of Zs

0(U) for ReU � 1, as power series in U− 1
3 . One 

can easily check that Zu
0 (U) as ReU → −∞ and Zs

0(U) as ReU → +∞ have the same 
asymptotics expansion:

W �
0 (U) = 4

243U 8
3
− 172

2187U 14
3

+ O
(
U− 20

3

)
,

X�
0 (U) = − 2i

4 + 28
7 + 20i

10 − 16424
13 + O

(
U− 16

3

)
,

9U 3 81U 3 27U 3 6561U 3
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Table 1
Computation of Θρ, as defined in (50), for 
different values of ρ ≤ 23.
ρ |ΔY0(−iρ)| eρ Θρ

13 3.7 · 10−6 4.4 · 105 1.6373
14 1.4 · 10−6 1.2 · 106 1.6361
15 5.0 · 10−7 3.3 · 106 1.6351
16 1.8 · 10−7 8.9 · 106 1.6341
17 3.7 · 10−8 2.4 · 107 1.6333
18 6.8 · 10−8 6.6 · 107 1.6326
19 9.1 · 10−9 1.8 · 108 1.6320
20 3.4 · 10−9 4.9 · 108 1.6315
21 1.2 · 10−9 1.3 · 109 1.6312
22 4.6 · 10−10 3.6 · 109 1.6313
23 1.7 · 10−10 9.7 · 109 1.6323

Y �
0 (U) = 2i

9U 4
3

+ 28
81U 7

3
− 20i

27U 10
3

− 16424
6561U 13

3
+ O

(
U− 16

3

)
.

We use these expressions to set up the initial conditions for the numerical integration for 
computing ΔY0(−iρ). We take as initial points the value of the truncated power series at 
order U− 13

3 at U = 1000 − iρ (for � = s) and U = −1000 − iρ (for � = u). (See Table 1.)
We perform the numerical integration for different values of ρ ≤ 23 and an integration 
solver with tolerance 10−12.

Table 1 shows that the constant Θ is approximately 1.63 which indicates that it is 
not zero. We expect that this computation method can be implemented rigorously [11].

3. Analytic continuation of the separatrix

In this section we prove Theorem 2.2 and Proposition 2.3, which deal with the study of 
the complex singularities and zeroes of the analytic extension of the time-parametrization 
σ(t) = (λh(t), Λh(t)) of the homoclinic connection given in (27).

Let us recall that σ(t) is a solution of the Hamiltonian system Hp in (21) and it is 
found at the energy level Hp = −1

2 . Therefore,

(λ̇)2 = 15 − 12 cos2
(
λ

2

)
− 3

cos
(
λ
2
) . (51)

Equation (51) can be solved as t = F (λ), where F is a function defined by means of 
an integral. Prove Theorem 2.2 and Proposition 2.3 boils down to studying the analytic 
continuation of F−1.

We divide the proof of Theorem 2.2 into three main steps. First, in Section 3.1, we 
perform the change of variables q = cos(λ2 ) and rephrase Theorem 2.2 in terms of q(t)
(Theorem 3.1). Then, in Section 3.2, we analyze all the possibles types of singularities 
that q(t) may have (Proposition 3.2), which turn out to be poles or branching points. In 
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addition we prove that all the singularities have to be given by integrals along suitable 
complex paths. Finally, in Section 3.3, taking into account all complex paths leading to 
singularities, we prove that the singularities of q(t) with smaller imaginary part (in the 
first Riemann sheet of q(t)) are t = ±iA.

Finally, in Section 3.4, we use the results obtained in the previous sections, to analyze 
the zeroes of Λh(t) in the strip of analyticity ΠA (see (28)), thus proving Proposition 2.3.

In order to simplify the notation, through the rest of the section we denote by C any 
positive constant independent of t.

3.1. Reformulation of Theorem 2.2

To prove Theorem 2.2, it is more convenient to work with the variable q = cos
(
λ
2
)

instead of λ. Notice that this change of coordinates, when restricted to λ ∈ (0, π), is a 
diffeomorphism.

Theorem 3.1. Consider σ(t) = (λh(t), Λh(t)) the real-analytic time parametrization in-
troduced in (27) and denote a± = −1

2 ±
√

2
2 . Then, q(t) = cos

(
λh(t)

2

)
satisfies

q(t) ∈ [a+, 1) for t ∈ R, q(0) = a+, (52)

and the differential equation

q̇2 = 3
q
(q − 1)2(q + 1)(q − a−)(q − a+). (53)

Moreover, we have that:

• The function q(t) extends analytically to the strip ΠA defined in (28).
• The function q(t) has only two singularities on ∂ΠA at t = ±iA.
• There exists ν > 0 such that, for t ∈ C with arg (t− iA) ∈ (−3π

2 , π
2 ) and |t− iA| < ν, 

we have

q(t) = −3α+

2 (t− iA) 2
3 + O(t− iA) 4

3 , (54)

with α+ ∈ C such that α3
+ = 1

2 .
An analogous result holds for |t + iA| < ν and arg (t +iA) ∈ (−π

2 , 
3π
2 ) with α− = α+.

Theorem 2.2 is a corollary of Theorem 3.1.

Proof of Theorem 2.2. To obtain Theorem 2.2 from Theorem 3.1 it is enough to prove 
that Λh(t) has no singularities in ΠA \ {±iA} and that (λh(t), Λh(t)) can be expressed 
as in (30) close to t = ±iA.
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Since λ̇h = −3Λh and using the change of coordinates q = cos(λ2 ), we have that

Λ2
h(t) = 4

9
q̇2(t)

(1 − q2(t)) . (55)

We claim that, if Λh(t) has a singularity at t = t∗, then Λ2
h(t) has a singularity at t = t∗

as well. Indeed, the only case when the previous affirmation could be false is if t∗ is a 
branching point of order k2 with k ≥ 1 an odd natural number. In this case,

λh(t) = λh(t∗) + C(t− t∗) k
2−1 (1 + O(t− t∗)β

)
, when 0 < |t− t∗| � 1,

for some β > 0. Replacing this expression in (51) and comparing orders we see that this 
case is not possible.

Thus, we proceed to prove that Λh(t) has no singularities in ΠA \ {±iA}. Let us 
assume it has. That is, there exists t∗ ∈ ΠA \ {±iA} such that Λh(t) is singular at 
t = t∗. Note that Theorem 3.1 implies that q(t) and q̇(t) are analytic in a neighborhood 
of t∗ ∈ ΠA \ {±iA}.

1. If q2(t∗) �= 1, 1/(1 − q2(t)) is analytic for 0 < |t− t∗| � 1. Since q̇(t) is also analytic 
in this neighborhood, (55) implies that Λ2

h(t) has no singularity at t = t∗ and we 
reach a contradiction.

2. If q2(t∗) = 1, by (53) and (55), we deduce that

Λ2
h = 4

3q (1 − q)(q − a+)(q − a−). (56)

Since by Theorem 3.1 q is analytic in ΠA \ {±iA}, then Λ2
h must be as well.

Finally, we notice that, by equations (54) and (55), we have

Λ2
h(t) = 4

9α
2
±(t∓ iA)− 2

3 + O(1), when 0 < |t∓ iA| � 1.

Therefore, Λh(t) has branching points of order −1
3 in t = ±iA. Moreover, integrating 

the expression for Λh(t) and applying that q(t) = cos(λh(t)
2 ) (and (54)), it is immediate 

to see that λh(t) has branching points of order 2
3 at t = ±iA and can be expressed as 

in (30) close to t = ±iA. �
We devote Sections 3.2 and 3.3 to prove Theorem 3.1. The statements (52) and (53)

are straightforward by applying the change of coordinates q = cos(λ2 ) to equation (51).
We divide the rest of the proof of Theorem 3.1 into two parts. In Section 3.2 we 

classify the singularities of q(t) and introduce a way to compute them using integration 
in complex paths. Finally, in Section 3.3 we prove that the singularities of q(t) with 
smallest imaginary part are t = ±iA and are branching points of order 2 .
3
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3.2. Classification of the singularities of q(t)

Equation (53) with initial condition q(0) = a+ = −1
2 +

√
2

2 is equivalent to

t =
q(t)∫
a+

f(s)ds, for t ∈ R,

where

f(q) = 1
q − 1

√
q

3(q + 1)(q − a+)(q − a−) ,

is defined in R \ {[a−, −1] ∪ (0, a+] ∪ {1}} with a± = −1
2 ±

√
2

2 . From [19], we know that 
there exist υ > 0 such that q(t) can be extended to the open complex strip

Πυ = {t ∈ C : |Im t| < υ},

and q(t) has singularities in ∂Πυ. Namely,

t =
q(t)∫
a+

f(q)dq, for t ∈ Πυ. (57)

Since f is a multi-valued function in the complex plane, in order to analyze the possible 
values of 

∫ q(t)
a+

f(s)ds, we consider its complete analytic continuation. That is,

f̂ : Rf → C(
q; arg g(q)

)
�→

√
g(q)

q − 1 ,
where g(q) = q

3(q + 1)(q − a+)(q − a−) , (58)

and Rf is the Riemann surface associated to f . We define p : Rf → C as the projection to 
the complex plane. We choose the first Riemann sheet to correspond to arg g(q) ∈ (−π, π]. 
Accordingly the second Riemann sheet corresponds to (π, 3π].

To integrate f̂ along a path γ ⊂ Rf , we introduce the notation

∫
γ

f̂(q)dq =
qend∫
q0

f̂dγ =
send∫
s0

f̂(γ(s))γ′(s)ds,

such that γ : (s0, send) → Rf where lims→s0 pγ(s) = q0 and lims→send pγ(s) = qend. 
Moreover, we assume that the paths γ ⊂ Rf are C0 and C1-piecewise. Therefore, by (57), 
we have that
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t =
q(t)∫
a+

f̂dγ, for t ∈ Πυ. (59)

Now, for q ∈ Rf and an integration path γ ⊂ Rf , we define the function G as the right 
hand side of (59),

G(q) =
q∫

a+

f̂ dγ.

Notice that for a given q ∈ Rf , G(q) may depend on the integration path, and therefore, 
G may be multi-valued on Rf . However, by (59), G is single-valued when

t = G(q(t)), for t ∈ Πυ.

We use G to characterize and locate the singularities of q(t). Indeed, if function G(q) is 
biholomorphic at q = q∗, then q(t) is analytic at a neighborhood of all values of t such 
that q(t) = q∗. Therefore, q(t) may have singularities at t = t∗ when the hypothesis of 
the Inverse Function Theorem is not satisfied for G. That is, for q(t∗) = q∗ such that 
either

G′(q∗) = 0, G /∈ C1 at q = q∗, or |q∗| → ∞. (60)

Namely, when there exist q∗ and γ ⊂ Rf satisfying (60), such that

t∗ = G(q∗) =
q∗∫

a+

f̂ dγ. (61)

Since G is a multivalued function, the values of t∗ can, and in fact will, depend on the 
integration path on γ ⊂ Rf . From (58) and (60), one deduces that the singularities may 
take place only if q(t∗) = q∗ with

q∗ = 0, 1,−1, a+, a− and |q∗| → ∞. (62)

The following proposition proves that we only need to consider |q∗| → ∞ and q∗ = 0.

Proposition 3.2. Let q(t) be a solution of equation (53) with initial condition q(0) = a+. 
Then, the singularities t∗ ∈ C of the analytic extension of q(t) are characterized by either

t∗ =
0∫

a+

f̂ dγ, or t∗ =
∞∫

a+

f̂ dγ,

for some path γ ⊂ Rf .
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Moreover:

• If t∗ =
∫ 0
a+

f̂dγ and Im t∗ > 0 with arg (t− t∗) ∈
(
−3π

2 , π
2
)
, then

q(t) = −3α
2 (t− t∗) 2

3 + O(t− t∗) 4
3 , for 0 < |t− t∗| � 1, (63)

where α ∈ C satisfies α3 = 1
2 . If Im t∗ < 0 and arg (t− t∗) ∈

(
−π

2 ,
3π
2
)
, the same 

holds true.
• If t∗ =

∫∞
a+

f̂dγ, then

q(t) = − 1√
3(t− t∗)

(1 + O(t− t∗)) , for 0 < |t− t∗| � 1. (64)

Proof. To prove this result first we need to analyze all the possible values of q∗ that 
may lead to singularities, (see (62)). We will use the expressions of t and t∗ given in (59)
and (61), respectively.

1. If |q∗| → ∞, we have

t− t∗ =
q(t)∫
∞

f̂ dγ.

Then, since

f̂(q) = 1√
3q2

+ O
(

1
q3

)
, for |q| � 1,

we obtain

t− t∗ = − 1√
3q

+ O
(

1
q2

)
,

which implies (64).
2. If q∗ = a+, we have that

t− t∗ =
q∫

a+

f̂dγ. (65)

The function f̂ can be written as

f̂(q) =
ha+(q)√ ,

q − a+



I. Baldomá et al. / Advances in Mathematics 408 (2022) 108562 27
for some function ha+ which is analytic and non-zero in a neighborhood of a+. 
Then, ha+ can be written as ha+(q) =

∑∞
k=0 ck(q − a+)k, with c0 �= 0 and, for 

0 < |q − a+| � 1, we obtain from (65)

t− t∗ =
√

q − a+

∞∑
k=0

ck

k + 1
2
(q − a+)k,

which implies (t − t∗)2 = ga+(q) with

ga+(q) = (q − a+)
( ∞∑

k=0

ck

k + 1
2
(q − a+)k

)2

.

The function ga+(q) is analytic on a neighborhood of a+ and satisfies ga+(a+) = 0, 
g′a+

(a+) = 4c20 �= 0. Thus, applying the Inverse Function Theorem,

q(t) = g−1
a+

(
(t− t∗)2

)
, for 0 < |t− t∗| � 1. (66)

Therefore, q(t) is analytic for |t− t∗| � 1. One can analogously prove that the same 
happens at q∗ = a− and q∗ = −1.

3. The value q∗ = 1 corresponds to the saddle point (λ, Λ) = (0, 0) of Hp (see (21)). 
Indeed,

q∫
1

f̂dγ is divergent. (67)

This implies that q(t) �= 1 for any complex t.
4. If q∗ = 0,

t− t∗ =
q∫

0

f̂ dγ.

We can introduce h0(q) = 1√
q f̂(q) which is analytic and of the form h0(q) =∑∞

k=0 ckq
k with c0 �= 0. Then, for 0 < |q| � 1, we obtain

(t− t∗) 2
3 = g0(q) = q

( ∞∑ ck

k + 3 q
k

) 2
3

= q

(
2c0
3 + O(q)

) 2
3

,

k=0 2
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where g0(q) is analytic in a neighborhood of q = 0 and satisfies g0(0) = 0, g′0(0) =( 2
3c0

) 2
3 �= 0. Thus, applying the Inverse Function Theorem,

q(t) = g−1
0

(
(t− t∗) 2

3

)
=

∞∑
k=1

Ck(t− t∗) 2k
3 , for 0 < |t− t∗| <� 1, (68)

for some Ck ∈ C and choosing the Riemann sheet arg (t− t∗) ∈
(
−3π

2 , π
2
)

for Im t∗ >

0 and arg (t− t∗) ∈
(
−π

2 ,
3π
2
)

for Im t∗ < 0. Replacing (68) in equation (53) we obtain 
C1 = −3α

2 , where α ∈ C satisfies α3 = 1
2 , which implies (63). �

3.3. Singularities closest to the real axis

Proposition 3.2 provides the type of singularities that q(t) may posses in its first 
Riemann sheet. Then, to prove Theorem 3.1, we look for those singularities which are 
closest to the real axis. To do so, we analyze

0∫
a+

f̂dγ,

∞∫
a+

f̂dγ, (69)

along all paths γ ⊂ Rf with such endpoints and prove that, for all possible paths, the 
only singularities in the complex strip ΠA (see (28)) are t = ±iA.

We introduce the following paths

P0 =
{
γ : (s0, send) → Rf : lim

s→s0
(pγ(s), arg g(γ(s))) = (a+, 0), lim

s→send
pγ(s) = 0

}
,

P∞ =
{
γ : (s0, send) → Rf : lim

s→s0
(pγ(s), arg g(γ(s))) = (a+, 0), lim

s→send
|pγ(s)| = ∞

}
,

with the natural projection p : Rf → C.
We have chosen θ0 := lims→s0 arg g(γ(s)) = 0 without loss of generality. Indeed, since 

q(t) ∈ [a+, 1) for t ∈ R (see (52)), it could be either 0 or 2π. The paths with asymptotic 
argument 2π can be analyzed analogously and lead to singularities with opposed signed 
with respect to those given by paths in P0, P∞.

Furthermore, the asymptotic argument of the paths at its endpoints is not specified 
since it is given by the path itself.

For a given path γ ∈ P0 ∪ P∞, we can define a path T [γ] : [s0, send) → C in the 
t-plane (or, more precisely, on the Riemann surface of q(t)) as

T [γ](s) =
s∫

s0

f̂(γ(τ))γ′(τ)dτ, for s ∈ [s0, send). (70)

Note that then the value of the integrals in (69) is just



I. Baldomá et al. / Advances in Mathematics 408 (2022) 108562 29
Fig. 5. Example of paths γ ∈ P0 ∪ P∞. Left: T [γ] ⊂ ΠA and t∗(γ) = iA. Right: T [γ] ⊂ ΠA.

t∗(γ) = lim
s→send

T [γ](s) =
∫
γ

f̂(q)dq. (71)

Since we are interested in the singularities of q(t) on its first Riemann sheet, we only 
consider the paths T [γ] which belong to the complex strip ΠA (except, of course, the 
endpoint of the path t∗(γ) ∈ ∂ΠA). See Fig. 5.

The following definition characterizes the paths that we consider.

Definition 3.3. We say that a singularity t∗ of q(t) is visible if there exists a path γ ∈
P0 ∪ P∞ such that

• t∗ = t∗(γ),
• T [γ](s) ∈ ΠA, for s ∈ [s0, send).

Remark 3.4. In [27], the authors use a different definition of visible singularity: t∗ ∈ C

is considered a visible singularity if q(t) can be continued from the real axis and then 
along the vertical line with a path of the form

ζ(t) = Re t∗ + it, for t ∈ [0, Im t∗).

This condition on the paths is more restrictive than merely imposing that T [γ] ⊂ Πυ for 
υ = Im t∗. However, to compute t∗(γ), they are equivalent since both paths belong to 
Πυ.

Theorem 3.1 is a consequence of Proposition 3.2 and the following result.

Proposition 3.5. There exist two paths γ± ∈ P0 yielding the visible singularities t∗(γ±) =
±iA. Moreover, these are the only two visible singularities of q(t).

We devote the rest of this section to prove Proposition 3.5. Let us introduce some 
tools and considerations to simplify the analysis of the integrals in (69).
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• If γ ⊂ Rf is an integration path then, defining η = γ,3 we have that

∫
η

f̂(q)dq =
∫
γ

f̂(q)dq. (72)

• Notice that the paths considered cannot contain the singularities of f̂ (except in 
their endpoints) since 0, a±, ±1 /∈ Rf .

• When saying that a path γ ∈ P0 ∪ P∞ crosses R, we refer to the two lines whose 
complex projection onto Rf coincides with R. Analogously for any other interval.

• Instead of detailing the paths γ ∈ P0 ∪ P∞, we only describe their projections 
pγ ⊂ C. This omission makes sense since paths γ are continuous on Rf and, as 
a result, arg g(γ) must be continuous as well (see (58)). Therefore, we can let the 
natural arguments of pγ and the initial point (a+, 0) of the path define arg g(γ).

To prove Proposition 3.5, we classify the paths as follows.

A. Paths not crossing R:
A.1. Paths in P0 not crossing R: Lemma 3.6.
A.2. Paths in P∞ not crossing R: Lemma 3.7.

B. Paths first crossing the real axis at R \ [0, 1]:
B.1. First crossing of R at (1, +∞): Lemma 3.10.
B.2. First crossing of R at (−∞, a−): Lemma 3.11.
B.3. First crossing of R at (−1, 0): Lemma 3.12.
B.4. First crossing of R at (a−, −1): Lemma 3.13.

C. Paths first crossing the real axis at (0, 1):
C.1. Paths in P0 only crossing R at (0, 1): Lemma 3.14.
C.2. Paths in P∞ only crossing R at (0, 1): Lemma 3.15.
C.3. Paths also crossing R \ [0, 1]: Lemma 3.16.

3.3.1. Paths not crossing the real axis
In this section, we check the singularities resulting from the paths A.1 and A.2.

Lemma 3.6. There exist only two singularities, t∗1,±, given by the paths γ ∈ P0 not 
crossing the real axis. These singularities are visible and

t∗1,± = ∓iA,

with A defined in (29) and satisfying A ∈
[ 3
50 ,

3
10
]
.

3 We define the conjugation on a Riemann surface as the natural continuation of the conjugation in the 
complex plane. That is, for z = (x, θ) ∈ Rf , its conjugated is z = (x,−θ) ∈ Rf .
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Fig. 6. Example of a path γ ∈ P0 such that pγ ⊂ C+. Path γ∗ as defined in (73).

Proof. Let us consider paths γ ∈ P0 such that pγ ⊂ C+ = {Im z > 0}. Notice that, 
since γ does not cross the real axis, it does not encircle any singularity of f̂ and, by 
Cauchy’s Integral Theorem, all the paths considered generate the same singularity t∗1,+. 
The singularity t∗1,− is given by the conjugated paths (see (72)).

Let us consider the path γ∗ = γ1
∗ ∨ γ2

∗ ∨ γ3
∗ with⎧⎪⎪⎨⎪⎪⎩

γ1
∗(q) = (q, 0) with q ∈ (a+, a+ + ε],
pγ2

∗(φ) = a+ + εeiφ with φ ∈ [0, π],
pγ3

∗(q) = q with q ∈ [a+ − ε, 0),
(73)

for ε > 0 small enough, (see Fig. 6). Then, the resulting singularity is

t∗1,+ = t∗(γ∗) =
∫
γ∗

f̂(q)dq =
3∑

j=1

∫
γj
∗

f̂(q)dq.

Since 
∫
γj
∗
f̂(q)dq = O(

√
ε) for j = 1, 2, taking the limit ε → 0, we have

t∗1,+ = lim
ε→0

∫
γ3
∗

f̂(q)dq.

Then, by following the natural arguments of the path γ∗, we obtain

arg (γ3
∗) = 0, arg (γ3

∗ − a+) = π, arg (γ3
∗ + 1) = 0, arg (γ3

∗ − a−) = 0,

and, as a consequence, by the definition of A in (29), we have

t∗1,+ = lim
ε→0

∫
γ3
∗

f̂(q)dq

=
0∫

a+

1
x− 1

√
x

3(x + 1) |x− a+| eiπ(x− a−)dq = −iA.

(74)

Moreover,
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A ≤
√
a+

(1 − a+)
√

3 |a−|

a+∫
0

dx√
a+ − x

= 4
√

3
3

a
3/2
+

1 − a+
≤ 3

10 ,

A ≥ 1√
3a+(a+ + 1)(a+ − a−)

a+∫
0

√
x dx = 2 4

√
74

9 a
3/2
+ ≥ 3

50 .

Now, it just remains to see that t∗1,+ is visible, namely, we check that T [γ∗] ⊂ ΠA. Indeed, 
for s ∈ (0, a+], we have that

|ImT [γ∗](s)| =
a+∫
s

1
1 − x

√
x

3(x + 1)(a+ − x)(x− a−)dx < A. �

Lemma 3.7. There exist only two singularities, t∗2,±, resulting from the paths γ ∈ P∞ not 
crossing the real axis. These singularities are not visible and have imaginary part

Im (t∗2,±) = ∓π

√
2
21 .

Proof. Let us consider paths γ ∈ P∞ such that pγ ⊂ C+. Then, since f̂(q) decays with 
a rate of |q|−2 as |q| → ∞, all paths considered generate the same singularity, t∗2,+. The 
singularity t∗2,− is given by the conjugated paths.

Let us consider the path γ∗ = γ1
∗ ∨ γ2

∗ ∨ γ3
∗ where⎧⎪⎪⎨⎪⎪⎩

γ1
∗(q) = (q, 0) with q ∈ (a+, 1 − ε],
pγ2

∗(φ) = 1 + εeiφ with φ ∈ [π, 0],
pγ3

∗(q) = q with q ∈ [1 + ε,+∞),
(75)

for any small enough ε > 0. (See Fig. 7.) Then, the resulting singularity is

t∗2,+ = t∗(γ∗) =
3∑

j=1

∫
γj
∗

f̂(q)dq.

Since f̂(q) ∈ R when p(q) ∈ (a+, 1) ∪ (1, +∞) ⊂ R, the integrals on γ1
∗ and γ3

∗ take 
real values. Therefore, γ2

∗ is the only path that contributes to the imaginary part to the 
singularity. Notice that the path γ2

∗ partially encircles the pole q = (1, 0) of f̂(q). Then, 
one has

Im (t∗2,+) = Im
∫
γ2
∗

f̂(q)dq = −πRes
(
f̂ , (1, 0)

)
= −π

√
2
21 .

Since, by Lemma 3.6, |Im (t∗2,+)| > A, the singularity t∗2,+ is not visible. �
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Fig. 7. Example of a path γ ∈ P∞ such that pγ ⊂ C+. Path γ∗ as defined in (75).

Remark 3.8. Using mathematical software, one can see that the singularities t∗2,± in 
Lemma 3.7 satisfy t∗2,± ≈ −0.086697 ∓ 0.969516i.

3.3.2. Paths first crossing the real axis at R \ [0, 1]
In this section, we continue the proof of Proposition 3.5 by checking that the singu-

larities generated by paths B.1 to B.4 (see the list in Section 3.3) are not visible.
First, we introduce some concepts. Let us consider a path γ ∈ P0 ∪ P∞. We define 

the parameter of the first crossing of the real line as

s1(γ) = inf {s ∈ (s0, send) : Im pγ(s) = 0},

the location of the first crossing as

q1(γ) = pγ(s1(γ)) ∈ R \ {a−,−1, 0, a+, 1},

the piece of the path before the first crossing of the real line as

γ1(γ) = {γ(s) : s ∈ (s0, s1(γ))} ,

and the time of the first crossing as

t1(γ) =
∫

γ1(γ)

f̂(q)dq.

In the following lemmas, we focus on the paths that stay in C+ until the first crossing of 
the real line, that is pγ1(γ) ⊂ C+ (see (72) for the conjugate paths, i.e. pγ1(γ) ⊂ C−).

Remark 3.9. To prove that a singularity t∗(γ) is not visible (see Definition 3.3) it is 
sufficient to check that |Im t1(γ)| ≥ A.

Lemma 3.10. The singularities t∗(γ) given by paths γ ∈ P0 ∪ P∞ such that q1(γ) ∈
(1, +∞) are not visible.
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Fig. 8. Example of a path γ ∈ Hq,∞ such that q1(γ) ∈ (1,+∞) and pγ1(γ) ⊂ C+. The path η has been 
defined in (76).

Proof. Consider a path γ ∈ P0 ∪ P∞ with q1 = q1(γ) ∈ (1, +∞) and pγ1(γ) ⊂ C+. 
Integrating the function f̂ along the path γ1(γ) is equivalent to integrate f̂ along the 
path η = η1 ∨ η2 ∨ η3 where

⎧⎪⎪⎨⎪⎪⎩
η1(q) = (q, 0) with q ∈ (a+, 1 − ε],
pη2(φ) = 1 + εeiφ with φ ∈ [π, 0],
pη3(q) = q with q ∈ [1 + ε, q1),

(76)

for ε > 0 small enough, (see Fig. 8). Then,

t1(γ) =
∫
η

f̂(q)dq =
3∑

j=1

∫
ηj

f̂(q)dq,

and the integrals on η1 and η3 take real values since f̂(q) ∈ R when p(q) ∈ (a+, 1) ∪
(1, +∞) ⊂ R. Analogously to the proof of Lemma 3.7, we have that

|Im t1(γ)| =

∣∣∣∣∣∣∣Im
∫
η2

f̂(q)dq

∣∣∣∣∣∣∣ = π
∣∣∣Res

(
f̂ , (1, 0)

)∣∣∣ = π

√
2
21 > A.

Therefore, t∗(γ) is not visible (see Remark 3.9). �
Lemma 3.11. The singularities t∗(γ) given by paths γ ∈ P0 ∪ P∞ such that q1(γ) ∈
(−∞, a−) are not visible.

Proof. Consider a path γ ∈ P0 ∪ P∞ with q1 = q1(γ) ∈ (−∞, a−) and pγ1(γ) ⊂ C+. To 
compute t1(γ) we introduce the auxiliary path η∞ = γ1(γ) ∨ η̃, where

pη̃(q) = q with q ∈ [q1,−∞), (77)

(see Fig. 9). Then, taking into account that f̂ |η̃ ⊂ R,
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Fig. 9. Example of a path γ ∈ P0 such that q1(γ) ∈ (−∞, a−) and pγ1(γ) ⊂ C+. The path η̃ has been 
defined in (77).

Fig. 10. Example of a path γ ∈ P∞ such that q1(γ) ∈ (−1, 0) and pγ1(γ) ⊂ C+. The path η has been defined 
in (78).

|Im t1(γ)| =

∣∣∣∣∣∣Im
∫
η∞

f̂(q)dq

∣∣∣∣∣∣ =

∣∣∣∣∣∣Im
∫
γ∗

f̂(q)dq

∣∣∣∣∣∣ = π

√
2
21 > A,

where γ∗ is the path defined in (75). Therefore t∗(γ) is not visible. �
Lemma 3.12. The singularities t∗(γ) given by paths γ ∈ P0∪P∞ such that q1(γ) ∈ (−1, 0)
are not visible.

Proof. Let γ ∈ P0 ∪ P∞ be a path such that q1 = q1(γ) ∈ (−1, 0) and pγ1(γ) ⊂ C+. 
Integrating the function f̂ along the path γ1(γ) is equivalent to integrating f̂ along 
η = η1 ∨ η2 ∨ η3 ∨ η4 ∨ η5 where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η1(q) = (q, 0) with q ∈ (a+, a+ + ε],
pη2(φ) = a+ + εeiφ with φ ∈ [0, π],
pη3(q) = q with q ∈ [a+ − ε, ε],
pη4(φ) = εeiφ with φ ∈ [0, π],
pη5(q) = q with q ∈ [−ε, q1),

(78)

for ε > 0 small enough, (see Fig. 10). Using that 
∫
ηj f̂(q)dq = O(

√
ε) for j = 1, 2, 4, that 

f̂ |η5 ⊂ R, and (74), one has that t∗(γ) is not visible since

|Im t1(γ)| = lim
ε→0

∣∣∣∣∣∣∣
∫
3

f̂(q)dq

∣∣∣∣∣∣∣ = A. �

η
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Fig. 11. Example of a path γ ∈ P∞ such that q1(γ) ∈ (a−,−1) and pγ1(γ) ⊂ C+. Path η as defined in (79).

Lemma 3.13. The singularities t∗(γ) given by paths γ ∈ P0 ∪ P∞ such that q1(γ) ∈
(a−, −1) are not visible.

Proof. Take a path γ ∈ P0 ∪ P∞ with q1 = q1(γ) ∈ (a−, −1) and pγ1(γ) ⊂ C+. The 
integral of the function f̂ along the path γ1(γ) coincides with the integral along the path

η =
7∨

j=1
ηj , (79)

where the paths ηj , j = 1, 2, 3, 4, are defined in (78) and⎧⎪⎪⎨⎪⎪⎩
pη5(q) = q with q ∈ [−ε,−1 + ε],
pη6(φ) = −1 + εeiφ with φ ∈ [0, π],
pη7(q) = q with q ∈ [−1 − ε, q1),

for small enough ε > 0, (see Fig. 11). Then, proceeding analogously to the proof of 
Lemma 3.12,

Im t1(γ) = lim
ε→0

Im
∫
η

f̂(q)dq = −A +
7∑

j=5
lim
ε→0

Im
∫
ηj

f̂(q)dq. (80)

Since f̂ |η5 ⊂ R and 
∫
η6 f̂(q)dq = O(

√
ε), it only remains to compute the integral on η7. 

Following the natural arguments of the path η, we obtain

arg (η7) = π, arg (η7 − a+) = π, arg (η7 + 1) = π, arg (η7 − a−) = 0

and, as a consequence,

lim
ε→0

∫
η7

f̂(q)dq =
q1∫

−1

1
q − 1

√
|q|eiπ

3|q + 1|eiπ|q − a+|eiπ(q − a−)dq = −iB(q1),

where B(q1) is a real-valued, positive and strictly decreasing function for q1 ∈ (a−,−1). 
Therefore, t∗(γ) is not visible since, by (80), one has that |Im t1(γ)| = A +B(q1) > A. �
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Fig. 12. Example of paths γ ∈ P0 only crossing R at (0, 1). Left: θend(γ) = π. Right: θend(γ) = 3π.

3.3.3. Paths first crossing the real axis at [0, 1]
In this section, we check that the singularities generated by paths C.1 to C.3 (see the 

list in Section 3.3) are either not visible or ±iA.

Lemma 3.14. The singularities t∗(γ) given by paths γ ∈ P0 only crossing R at (0, 1) are 
either t∗(γ) = iA or t∗(γ) = −iA.

Proof. The paths considered in this lemma can turn around the branching point q = a+, 
but not around the other branching points nor the pole. Therefore, we classify these paths 
depending on how many turns they perform around q = a+. In order to do so, we define

θend(γ) = lim
s→send

arg (γ(s) − a+). (81)

The considered paths satisfy θend(γ) = (2k+1)π for some k ∈ Z (see Fig. 12). Integrating 
the function f̂ along the path γ is equivalent to integrating along η = η1 ∨ η2 ∨ η3 with⎧⎪⎪⎨⎪⎪⎩

η1(q) = (q, 0) with q ∈ (a+, a+ − ε],
pη2(φ) = a+ + εeiφ with φ ∈ [π, (2k + 1)π],
pη3(q) = q with q ∈ [a+ − ε, 0),

(82)

for small enough ε > 0. Since 
∫
ηj f̂(q)dq = O(

√
ε) for j = 1, 2,

t∗(γ) = lim
ε→0

∫
η3

f̂(q)dq

=
0∫

a+

1
q − 1

√
q

3(q + 1) |q − a+| ei(2k+1)π(q − a−)
dq = (−1)k+1iA. �

Lemma 3.15. The singularities t∗(γ) given by paths γ ∈ P∞ only crossing R at (0, 1) are 
not visible.

Proof. We analyze the paths γ ∈ P∞ such that pγ goes to infinity on C+ (by (72), the 
paths on C− give conjugated results). Following the proof of Lemma 3.14, we classify 
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Fig. 13. Example of paths γ ∈ P∞ only crossing R at (0, 1) such that pγ ends on the positive complex plane. 
Left: θend(γ) ∈ (0, π). Right: θend(γ) ∈ (2π, 3π).

the paths γ depending on θend(γ), the final argument with respect to a+ (see (81) and 
Fig. 13). The paths considered satisfy

θend(γ) ∈
(
2πk, (2k + 1)π

)
, for some k ∈ Z.

We compute t∗(γ) using the path η = η1 ∨ η2 ∨ η3 ∨ η4 ∨ η5 where the paths η1, η2 are 
defined in (82) and ⎧⎪⎪⎨⎪⎪⎩

pη3(q) = q with q ∈ [a+ + ε, 1 − ε],
pη4(φ) = 1 + εeiφ with φ ∈ [π, 0],
pη5(q) = q with q ∈ [1 + ε,+∞),

for small enough ε > 0. Since the integrals on η3 and η5 take real values and applying 
the results in Lemma 3.14 for η1 and η2, we obtain

Im t∗(γ) = Im
∫
η4

f̂(q)dq.

Proceeding as in the proof of Lemma 3.7 and following the natural arguments of the 
path η, one deduces that

Im t∗(γ) = −πRes
(
f̂ , (1, 2πk)

)
= (−1)k+1π

√
2
21 .

Therefore, since |Im t∗(γ)| > A, the singularity is not visible. �
Lemma 3.16. The singularities t∗(γ) given by paths γ ∈ P0 ∪P∞ both crossing (0, 1) and 
R \ [0, 1] are not visible.

Proof. Let us define the parameter of the first crossing at R \ [0, 1] as

s2(γ) = inf {s ∈ (s0, send) : Im pγ(s) = 0, Re pγ(s) /∈ [0, 1]}

and the corresponding point
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Fig. 14. Example of paths γ ∈ P∞ crossing both (0, 1) and R \ [0, 1] with q2(γ) ∈ (1, +∞) and such that pγ
approaches q2(γ) from C+. Left: θ2(γ) = 0. Right: θ2(γ) = 2π.

q2(γ) = pγ(s2(γ)) ∈ R \ {[0, 1], a−,−1} .

We consider paths γ with q2 = q2(γ) ∈ (1, +∞) and such that pγ approaches q2(γ) from 
C+ (see (72)). The cases q2 ∈ (−∞, a−), q2 ∈ (a−, −1) and q2 ∈ (−1, 0) are proved 
analogously.

The strategy is to classify the paths γ depending on how many turns they perform 
around q = a+ before crossing R \ [0, 1]. To this end, we define θ2(γ) = arg (q2(γ) − a+)
(see Fig. 14). The paths we are considering satisfy θ2(γ) = 2πk for some k ∈ Z. We also 
define the piece of path before the crossing as γ2(γ) = {γ(s) : s ∈ (s0, s2(γ))} and the 
corresponding time

t2(γ) =
∫

γ2(γ)

f̂(q)dq.

To prove that a singularity t∗(γ) is not visible, it is sufficient to check that |Im t2(γ)| ≥ A.

1. Consider θ2(γ) = 2πk with k an even number. Let us consider the path η as defined 
in (76) replacing q1 by q2 in its definition. This path η lies entirely on the first 
Riemann sheet, that is arg g(η) ∈ (−π, π]. Integrating the function f̂ along γ2(γ) is 
equivalent to integrating it along

ξ = η̃1 ∨ η̃2 ∨ η̃3 ∨ η,

where

⎧⎪⎪⎨⎪⎪⎩
η̃1(q) = (q, 0) with q ∈ (a+, a+ + ε],
pη̃2(φ) = a+ + εeiφ with φ ∈ [0, 2πk],
pη̃3(q) = q with q ∈ [a+ + ε, a+),

(83)

for ε > 0 small enough. Notice that this construction makes sense since the path η̃3

has argument arg g(η̃3) = 2πk (which belongs to the first Riemann sheet).
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Then, since 
∫
η̃j f̂(q)dq = O(

√
ε) for j = 1, 2, 3 and applying Lemma 3.10, we have

|Im t2(γ)| = lim
ε→0

∣∣∣∣∣∣∣Im
∫
ξ

f̂(q)dq

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣Im
∫
η

f̂(q)dq

∣∣∣∣∣∣ > A.

2. Consider θ2(k) = 2πk with k an odd integer. We define the path η∗, lying on the 
second Riemann sheet, as

η∗ = (pη, arg g(η) + 2π) ∈ C × (π, 3π],

where η is the path introduced in (76) (replacing q1 by q2 in its definition). Note 
that the path η lies on the first Riemann sheet (arg g(η) ∈ (−π, π]).
It can be easily checked that switching the Riemann sheet implies a change in sign. 
That is, ∫

η∗

f̂(q)dq = −
∫
η

f̂(q)dq. (84)

Then, integrating the function f̂ along the path γ2(γ) is equivalent to integrating it 
over

ξ = η̃1 ∨ η̃2 ∨ η̃3 ∨ η∗,

where paths η̃j for j = 1, 2, 3, are defined on (83). This construction makes sense since 
the path η̃3 has argument arg g(η̃3) = 2πk (which belongs to the second Riemann 
sheet).
Then, since 

∫
η̃j f̂(q)dq = O(

√
ε) for j = 1, 2, 3 and applying Lemma 3.10 and for-

mula (84), we have

|Im t2(γ)| = lim
ε→0

∣∣∣∣∣∣∣Im
∫
ξ

f̂(q)dq

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣Im
∫
η

f̂(q)dq

∣∣∣∣∣∣ > A. �

3.4. Proof of Proposition 2.3

For t ∈ R, Λh(t) satisfies Λh(t) = 0 if and only if t = 0 (see Fig. 2). To prove 
Proposition 2.3, we follow the same techniques used in the proof of Theorem 2.2.

Let us consider q(t) = cos(λh(t)
2 ) as introduced in Theorem 3.1. Then, by (56),

Λ2
h(t) = 4 (

1 − q(t)
)(
q(t) − a+

)(
q(t) − a−

)
.
3q(t)
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Let Λh(t∗) = 0 for a given t∗. Then, defining q∗ = q(t∗), we have three options:

q∗ = 1, a+, a−.

We have seen that q∗ = 1 corresponds to the saddle equilibrium point, namely |t∗| → ∞, 
(see (67)). Therefore, it cannot lead to zeroes of Λh(t). On the contrary, q∗ = a± leads to 
zeroes of Λh(t), since we have seen that q(t) is well defined and analytic in a neighborhood 
of such t∗ (see (66)).

To prove Proposition 2.3 it only remains to compute all possible values of t∗ ∈ ΠA

such that q∗ = q(t∗) with q∗ = a+, a−. To do so, we use the techniques and results 
presented in Section 3.3.

From now on, we consider integration paths γ : (s0, send) → Rf with initial point 
lims→s0 γ(s) = (a+, 0) and endpoint lims→s0 pγ(s) = q∗ = a±. Moreover, we say that a 
zero t∗ of Λh is visible if there exist a path γ such that t∗ = t∗(γ) ∈ ΠA and T [γ](s) ∈ ΠA

for s ∈ [s0, send), (see (70) and (71)).
First, we recall some of the results obtained in Sections 3.3.2 and 3.3.3.

• Consider q1 ∈ (−∞, a−) ∪ (a−, −1) ∪ (1, +∞). In the proofs of Lemmas 3.10, 3.11, 
3.13 and 3.16 we have seen that ∣∣∣∣∣∣Im

q1∫
a+

f̂dγ

∣∣∣∣∣∣ > A. (85)

• Consider q1 ∈ (−1, 0). In the proofs of Lemmas 3.12 and 3.16, we have seen that∣∣∣∣∣∣Im
q1∫

a+

f̂dγ

∣∣∣∣∣∣ = A. (86)

Now, we classify the paths depending on its endpoint q∗.

1. Consider q∗ = a−. Analogously to the proof of (85), it can be seen that

|Im t∗(γ)| =

∣∣∣∣∣∣Im
a−∫

a+

f̂dγ

∣∣∣∣∣∣ > A.

Therefore, q∗ = a− does not lead to any visible zero.
2. Consider q∗ = a+. Notice that, by (85) and (86), any path crossing R \ [0, 1] leads to 

non-visible zeroes. Therefore, we only consider paths γ either crossing (0, 1) or not 
crossing R.
Since in (0, 1) the only singularity of f̂(q) is the branching point q = a+, there exists 
a homotopic path η = η1 ∨ η2 ∨ η3 defined by
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⎧⎪⎪⎨⎪⎪⎩
η1(q) = (q, 0) with q ∈ (a+, a+ + ε],
pη2(φ) = a+ + εeiφ with φ ∈ [0, 2πk],
pη3(q) = q with q ∈ [a+ + ε, a+),

for some k ∈ Z and ε > 0 small enough. Then,

t∗(γ) =
a+∫

a+

f̂dγ = lim
ε→0

∫
η

f̂(q)dq = 0.

Therefore, these paths lead to the only visible zero t∗ = 0. �
4. The inner system of coordinates

This section is devoted to prove Proposition 2.5. That is we perform the suitable 
changes of coordinates, described in Section 2.3, to Hamiltonian H obtained in Theo-
rem 2.1 (see (20)) to obtain the inner Hamiltonian H. However, recall that the Hamil-
tonian H is defined by means of HPoi

1 (see (16)) which does not have a closed form. For 
this reason, a preliminary step to prove Proposition 2.5 is to provide suitable expansions 
for HPoi

1 in an appropriate domain. This is done in Section 4.1. Then, in Section 4.2, we 
apply the changes of coordinates introduced in Section 2.3 to conclude the proof of the 
proposition.

4.1. The Hamiltonian in Poincaré variables

First, we give some formulae to translate the Delaunay variables and other orbital 
elements into Poincaré coordinates (see (14)).

– Eccentricity e (see (8)): It can be written as

e = 2 ẽ(L, η, ξ)
√
ηξ, ẽ(L, η, ξ) =

√
2L− ηξ

2L = 1√
2L

+ O(ηξ). (87)

Notice that ẽ is analytic for (L, η, ξ) ∼ (1, 0, 0).4

– Argument of the perihelion g: By the definition of η and ξ in (15),

cos g = η + ξ

2
√
ηξ

, sin g = −i
η − ξ

2
√
ηξ

. (88)

4 This expansion is valid as long as L = 0. However, since our analysis focuses on L ∼ 1, to simplify 
notation we use this more restrictive domain.
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– Mean anomaly 	: Since λ = 	 + g, we have that

cos 	 = 1
2
√
ηξ

(
e−iλη + eiλξ

)
, sin 	 = i

2
√
ηξ

(
e−iλη − eiλξ

)
.

These expressions are not analytic at (η, ξ) = (0, 0). However, by (87),

e cos 	 = ẽ(L, η, ξ)
(
e−iλη + eiλξ

)
,

e sin 	 = iẽ(L, η, ξ)
(
e−iλη − eiλξ

)
,

(89)

are analytic for (L, η, ξ) ∼ (1, 0, 0).
– Eccentric anomaly u: It can be implicitly defined by u = 	 + e sin u (see (12)), which 

implies

u = 	 + e sin 	 + e2 cos 	 sin 	 + O(e sin 	, e cos 	)3.

Then, by (87) and (89),

e cosu = 1√
2L

(
e−iλη + eiλξ

)
+ 1

2L
(
e−iλη − eiλξ

)2
+ O(e−iλη, eiλξ)3,

e sin u = i√
2L

(
e−iλη − eiλξ

)
+ i

2L
(
e−2iλη2 − e2iλξ2)

+ O(e−iλη, eiλξ)3,

(90)

which are also analytic for (L, η, ξ) ∼ (1, 0, 0).

For any ζ ∈ [−1, 1], we define the function

D[ζ] =
(
r2 − 2ζr cos θ + ζ2) ◦ φPoi. (91)

By the definition of μHPoi
1 in (16), we have that

μHPoi
1 = 1√

D[0]
− 1 − μ√

D[μ]
− μ√

D[μ− 1]
. (92)

Lemma 4.1. For |(L− 1, η, ξ)| � 1 and any ζ ∈ [−1, 1], one can split D[ζ] as

D[ζ] = D0[ζ] + D1[ζ] + D2[ζ] + D≥3[ζ],

where
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D0[ζ](λ, L) = L4 − 2ζL2 cosλ + ζ2,

D1[ζ](λ, L, η, ξ) = η

√
2L3

2
(
3ζ − 2L2e−iλ − ζe−2iλ)

+ ξ

√
2L3

2
(
3ζ − 2L2eiλ − ζe2iλ) ,

D2[ζ](λ, L, ξ, η) = −η2Le
−iλ

4
(
ζ + 2L2e−iλ + 3ζe−2iλ)

− ξ2Le
iλ

4
(
ζ + 2L2eiλ + 3ζe2iλ)+ ηξL

(
3L2 + 2ζ cosλ

)
.

Fix � ≥ 0. Then, for |Imλ| ≤ �, the function D≥3[ζ] is analytic and satisfies

|D≥3[ζ](λ, L, η, ξ)| ≤ C |(η, ξ)|3 , (93)

with C = C(�) a positive constant independent of ζ ∈ [−1, 1].

Proof of Lemma 4.1. In view of the definition of D[ζ] in (91), we look for expansions for 
r2 and r cos θ (expressed in Poincaré coordinates) in powers of (η, ξ).

Let us consider first r2. Taking into account that r = L2(1 − e cosu) (see (9)) and the 
expansions in (90) we obtain

r2 =L4 − L3
√

2Le−iλη − L3
√

2Leiλξ + 3L3ηξ

− L3

2 e−2iλη2 − L3

2 e2iλξ2 + O(e−iλη, eiλξ)3.
(94)

Now, we compute an expansion for r cos θ. Taking into account (10) and (11),

r cos θ = L2
(
cos(g + u) − e cos g −

(√
1 − e2 − 1

)
sin u sin g

)
.

Notice that, since λ = 	 +g and u = 	 +e sin u, we have that cos(g+u) = cos(λ +e sin u)
is analytic at (η, ξ) = (0, 0). Then, using (87), (88) and (90), we deduce

r cos θ =L2 cosλ− η

√
2L3

2
(
1 + ie−iλ sin λ

)
− ξ

√
2L3

2
(
1 − ieiλ sin λ

)
− ηξL cosλ + L

4 η
2 (e−iλ + e−2iλ cosλ− 2ie−2iλ sinλ

)
+ ξ2L

4
(
eiλ + e2iλ cosλ + 2ie2iλ sin λ

)
+ O(eiλη, e−iλξ)3.

(95)

Then, joining the results in (94) and (95) with the definition of D[ζ] in (91), we obtain its 
expansion in (η, ξ). Moreover, since D[ζ] is analytic for (L, η, ξ) ∼ (1, 0, 0) and |Imλ| ≤ �, 
the terms of order 3 satisfy the estimate in (93). �
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Remark 4.2. Observe that the Hamiltonian HPoi = HPoi
0 + μHPoi

1 in (16) is analytic 
away from collision with the primaries. By the decomposition of μHPoi

1 in (92), collisions 
with the primary S are given by the zeroes of the function D[μ] and collisions with P
are given by the zeroes of D[μ − 1].

Since our analysis is performed for |(L− 1, η, ξ)| ≤ ε � 1 and 0 < μ � 1, by 
Lemma 4.1, one has

D[μ] = 1 + O(μ, ε), D[μ− 1] = 2 + 2 cosλ + O(μ, ε).

That is, collisions with S are not possible whereas collisions with P may take place when 
λ ∼ π.

4.2. Proof of Proposition 2.5

To prove Proposition 2.5, we analyze the Hamiltonian H in which is given (up to a 
constant) by

δ
4
3

2α2
+

(H ◦ φeq ◦ φsep ◦ φin) ,

where the changes φeq, φsep and φin are defined in (32), (33) and (37), and H = H0 +H1

(see (25) and H1 in (22)).
In the rest of the section, when performing changes of coordinates, to simplify nota-

tion, we omit the constant terms in the Hamiltonians.
Using the formulas for HPoi

1 in (92) and Lemma 4.1, we split HPoi
1 into two terms: one 

for the perturbation coming from the massive primary (S) and the other coming from 
the small primary (P ),

HPoi
1 = HPoi,S

1 + HPoi,P
1 ,

which, recalling that μ = δ4, are defined as

HPoi,S
1 = 1

δ4

(
1√
D[0]

− 1 − δ4√
D[δ4]

)
and HPoi,P

1 = − 1√
D[δ4 − 1]

. (96)

We also define the Hamiltonian Heq = H ◦ φeq, which can be split as

Heq = H0 + Req + Heq,P
1 + Heq,S

1 ,

with
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Heq,∗
1 (λ,Λ, x, y; δ) =HPoi,∗

1 ◦ φsc ◦ φeq, for ∗ = S, P,

Req(λ,Λ, x, y; δ) = − V (λ) + 1
δ4Fp(δ2Λ + δ4LΛ(δ))

− 3δ2ΛLΛ(δ) + δ(xLy(δ) + yLx(δ)).

(97)

We recall that φsc is the scaling given in (17), V is the potential in (19), Fp is the function 
(18) and (LΛ, Lx, Ly) are introduced in (23).

Then, the Hamiltonian H in can be written as

H in = δ
4
3

2α2
+

(
H0 ◦ Ψ + Req ◦ Ψ + HPoi,P

1 ◦ Φ + HPoi,S
1 ◦ Φ

)
, (98)

where

Ψ = φsep ◦ φin and Φ = φsc ◦ φeq ◦ φsep ◦ φin.

In the following lemmas, we introduce expressions for the changes Ψ and Φ.

Lemma 4.3. The change of coordinates Ψ = (Ψλ, ΨΛ, Ψx, Ψy) satisfies

Ψλ(U) = π + 3α+δ
4
3U

2
3
(
1 + gλ(δ2U)

)
,

ΨΛ(U,W ) = − 2α+

3δ 2
3U

1
3

(
1 + gΛ(δ2U)

)
+ α+U

1
3W

δ
2
3

(
1 + g̃Λ(δ2U)

)
,

Ψx(X) = δ
1
3
√

2α+X,

Ψy(Y ) = δ
1
3
√

2α+Y,

where gλ(z), gΛ(z), g̃Λ(z) ∼ O(z 2
3 ). Moreover, taking into account the time-parame-

trization of the separatrix (λh, Λh) given in (27), we have that

Λh ◦ φin = − 2α+

3δ 2
3U

1
3

(
1 + gΛ(δ2U)

)
. (99)

Lemma 4.4. The change of coordinates Φ = (Φλ, ΦL, Φη, Φξ) satisfies

Φλ(U) = Ψλ(U), ΦL(U,W ) = 1 + δ2ΨΛ(U,W ) + δ4LΛ(δ),

Φη(X) = δΨx(X) + δ4Lx(δ), Φξ(Y ) = δΨy(Y ) + δ4Ly(δ),

where Ψ = (Ψλ, ΨΛ, Ψx, Ψy) is the change of coordinates given in Lemma 4.3.

We omit the proofs of these lemmas since they are a straightforward consequence of 
Theorem 2.2 and the definitions of the changes of coordinates (see (17), (32), (33) and 
(37)).
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End of the proof of Proposition 2.5. We analyze each component of (98).
We denote by C(c1, c2) > 0 any constant satisfying that there exist b0, γ1, γ2 > 0

independent of c1, c2, δ such that C(c1, c2) ≤ b0c
γ1
1 cγ2

2 .

1. We compute the first term of the Hamiltonian H in in (98). Since Hp(λh, Λh) =
Hp(0, 0) = −1

2 and taking into account (99), we have

δ
4
3

2α2
+
H0 ◦ Ψ = δ

4
3

2α2
+

(
w − w2

6Λ2
h(u) + xy

δ2

)
◦ φin

=W + XY − 3
4U

2
3W 2

(
1

1 + gΛ(δ2U)

)2

=W + XY − 3
4U

2
3W 2 + O

(
δ

4
3U

2
3W 2

)
.

Since |U | ≤ c1 and |W | ≤ c2, the error term O(δ 4
3U

2
3W 2) can be bounded by 

C(c1, c2)δ
4
3 .

For the other terms in (98), to simplify the notation, we are not specifying the 
dependence of the error terms on the variables (U, W, X, Y ). Moreover, when referring 
to error terms of order O(δa), we mean that they can be bounded by C(c1, c2)δa.

2. For the second term of the Hamiltonian H in in (98) (see by (97)) we have

δ
4
3

2α2
+
Req ◦ Ψ = − δ

4
3

2α2
+
V (Ψλ) + 1

2α2
+δ

8
3
Fp

(
δ2ΨΛ + δ4LΛ(δ)

)
− 3δ 10

3 LΛ(δ)
2α2

+
ΨΛ + δ

7
3Ly(δ)√

2α+
Ψx + δ

7
3Lx(δ)√

2α+
Ψy,

(100)

where Fp(z) = O(z3) (see (18)) and V (λ) is the potential given in (19).
First we analyze the potential term. By Lemma 4.3, we have that

− δ
4
3

2α2
+
V (Ψλ(U)) = δ

4
3

2α2
+

1√
2 + 2 cosΨλ(U)

+ O(δ 4
3 )

= δ
4
3

2α2
+

(
9α2

+δ
8
3U

4
3
(
1 + gλ(δ2U)

)2 + O
(
δ

16
3 U

8
3

))− 1
2

+ O(δ 4
3 ) = 1

3U 2
3

+ O(δ 4
3 ).

Then, since c−1
1 ≤ |U | ≤ c1 and |(W,X, Y )| ≤ c2, by (100) and Lemma 4.3,

∣∣∣∣∣ δ
4
3

2α2 Req ◦ Ψ − 1
3U 2

3

∣∣∣∣∣ ≤ C(c1, c2)δ
4
3 .
+
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3. We deal with the third term of the Hamiltonian H in (see (96)). Since

|Φ(U,W,X, Y ) − (π, 1, 0, 0)| ≤ C(c1, c2)δ
4
3 and |Im Φλ(U)| ≤ C(c1)δ

4
3 ,

the hypotheses of Lemma 4.1 hold and therefore:

δ
4
3

2α2
+
HPoi,P

1 ◦ Φ = − δ
4
3

2α2
+

1√
D[δ4 − 1] ◦ Φ

= −
(

2α+

δ
8
3

(D0 + D1 + D2 + D≥3) [δ4 − 1] ◦ Φ
)− 1

2

.

We compute every term Dj [δ4 − 1], j = 0, 1, 2, ≥ 3.
a) The term D0[δ4 − 1] satisfies

D0[δ4 − 1](λ, L; δ) =L4 + 2(1 − δ4)L2 cosλ + (1 − δ4)2

=2(1 + cosλ) + 4(L− 1)(1 + cosλ)

+ 2(L− 1)2(3 + cosλ) + 4(L− 1)3

+ (L− 1)4 − 2δ4(1 + cosλ)

− 4δ4(L− 1) cosλ− 2δ4(L− 1)2 cosλ + δ8.

Performing the change Φ, by Lemma 4.4, we have that

2α+

δ
8
3
D0[δ4 − 1] ◦ Φ = 2α+

δ
8
3

(
2(1 + cosΦλ) + 4(ΦL − 1)2 + O(δ 4

3 )
)

= 9U 4
3 + 4U 2

3W 2 − 16
3 W + 16

9U 2
3

+ O(δ 4
3 ).

b) Analogously the term D1[δ4 − 1] satisfies

D1[δ4 − 1] = η

√
2L3

2
[
(−3 − 2e−iλ + e−2iλ) − 4(L− 1)e−iλ

−2(L− 1)2e−iλ + δ4(3 − e−2iλ)
]

+ ξ

√
2L3

2
[
(−3 − 2eiλ + e2iλ) − 4(L− 1)eiλ

−2(L− 1)2eiλ + δ4(3 − e2iλ)
]

and therefore
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2α+

δ
8
3
D1[δ4 − 1] ◦ Φ =

2α2
+

δ
4
3
X
(
−4i (Φλ − π) − 4(ΦL − 1) + O(δ 4

3 )
)

+
2α2

+

δ
4
3
Y
(
4i (Φλ − π) − 4(ΦL − 1) + O(δ 4

3 )
)

=X

(
−12iU 2

3 + 4U 1
3 − 8

3U 1
3

)
+ Y

(
12iU 2

3 + 4U 1
3 − 8

3U 1
3

)
+ O(δ 4

3 ).

c) The term D2[δ4 − 1] satisfies

D2[δ4 − 1] = − η2Le
−iλ

4
(
−1 + 2L2e−iλ − 3e−2iλ + δ4 (1 + 3e−2iλ))

− ξ2Le
−iλ

4
(
−1 + 2L2eiλ − 3e2iλ + δ4 (1 + 3e2iλ))

+ ηξL
(
3L2 − 2 cosλ + δ42 cosλ

)
and

2α+

δ
8
3
D2[δ4 − 1] ◦ Φ = −3X2 − 3Y 2 + 5XY + O(δ 4

3 ).

d) By the estimates of D≥3[δ4 − 1] in (93) and Lemma 4.4,∣∣∣∣2α+

δ
8
3
D3[δ4 − 1] ◦ Φ

∣∣∣∣ ≤ C(c1, c2)δ
4
3 .

Collecting these results, we conclude that

δ
4
3

2α2
+
HPoi,P

1 ◦ Φ = − 1
3U 2

3

1√
1 + J (U,W,X, Y )

+ O(δ 4
3 ),

where the function J is given in (40).
4. Proceeding analogously as for HPoi,P

1 , it can be checked that∣∣∣∣∣ δ
4
3

2α2
+
HPoi,S

1 ◦ Φ

∣∣∣∣∣ ≤ C(c1, c2)δ
4
3 . �

5. Analysis of the inner equation

We split the proof of Theorem 2.7 into two parts. In Section 5.1 we prove the existence 
of the solutions Zu

0 and Zs
0 and the estimates in (48). In Section 5.2, we provide the 

asymptotic formula for the difference ΔZ0 = Zu
0 − Zs

0 given in (49). For both parts, we 
follow the approach given in [5].
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Throughout this section, we fix the β0 ∈ (0, π2 ) appearing in the definition of the 
domains Du

κ and Ds
κ in (46) and Eκ in (47). We denote the components of all the functions 

and operators by a numerical sub-index f = (f1, f2, f3)T , unless stated otherwise. In 
order to simplify the notation, we denote by C any positive constant independent of κ.

5.1. Existence of suitable solutions of the inner equation

From now on we deal only with the analysis for Zu
0 . The analysis for Zs

0 is analogous.

5.1.1. Preliminaries and set up
The invariance equation (43), that is ∂UZu

0 = AZu
0 +R[Zu

0 ], can be written as LZu
0 =

R[Zu
0 ] where L is the linear operator

Lϕ = (∂U −A)ϕ. (101)

Notice that if we can construct a left-inverse of L in an appropriate Banach space, we 
can write (43) as a fixed point equation to be able apply the Banah fixed point theorem.

Given ν ∈ R and κ > 0, we define the norm

‖ϕ‖ν = sup
U∈Du

κ

|Uνϕ(U)| ,

where the domain Du
κ is given in (46), and we introduce the Banach space

Xν = {ϕ : Du
κ → C : ϕ analytic, ‖ϕ‖ν < +∞} .

Next lemma, proven in [1], gives some properties of these Banach spaces. We use this 
lemma throughout the section without mentioning it.

Lemma 5.1. Let κ > 0 and ν, η ∈ R. The following statements hold:

1. If ν > η, then Xν ⊂ Xη and ‖ϕ‖η ≤ (κcosβ0)η−ν ‖ϕ‖ν .
2. If ϕ ∈ Xν and ζ ∈ Xη, then ϕζ ∈ Xν+η and ‖ϕζ‖ν+η ≤ ‖ϕ‖ν ‖ζ‖η.

In the next lemma, we introduce a left-inverse of the operator L in (101).

Lemma 5.2. Consider the operator

G[ϕ](U) =

⎛⎝ U∫
−∞

ϕ1(S)dS,
U∫

−∞

e−i(S−U)ϕ2(S)dS,
U∫

−∞

ei(S−U)ϕ3(S)dS

⎞⎠T

.

Fix η > 1, ν > 0 and κ ≥ 1. Then, G : Xη ×Xν ×Xν → Xη−1 ×Xν ×Xν is a continuous 
linear operator and is a left-inverse of L.
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Moreover, there exists a constant C > 0 such that

1. If ϕ ∈ Xη, then G1[ϕ] ∈ Xη−1 and ‖G1[ϕ]‖η−1 ≤ C ‖ϕ‖η.
2. If ϕ ∈ Xν and j = 2, 3, then Gj [ϕ] ∈ Xν and ‖Gj [ϕ]‖ν ≤ C ‖ϕ‖ν .

Proof. It follows the same lines as the proof of Lemma 4.6 in [1]. �
Let us then define the fixed point operator

F = G ◦ R. (102)

A solution of Zu
0 = F [Zu

0 ] belonging to Xη×Xν ×Xν with η, ν > 0 satisfies equation (43)
and the asymptotic condition (45). Therefore, to prove the first part of Theorem 2.7
and the asymptotic estimates in (48), we look for a fixed point of the operator F in the 
Banach space

X× = X 8
3
×X 4

3
×X 4

3
,

endowed with the norm

‖ϕ‖× = ‖ϕ1‖ 8
3

+ ‖ϕ2‖ 4
3

+ ‖ϕ3‖ 4
3
.

Proposition 5.3. There exists κ0 > 0 such that for any κ ≥ κ0, the fixed point equa-
tion Zu

0 = F [Zu
0 ] has a solution Zu

0 ∈ X×. Moreover, there exists a constant b3 > 0, 
independent of κ, such that

‖Zu
0 ‖× ≤ b3.

Remark 5.4. Notice that Du
κ ⊆ Du

κ0
when κ ≥ κ0 (see (46)). Then, for some ν ∈ R, if 

ζ ∈ Xν (defined for κ) then ζ ∈ Xν (defined for κ0). This allows us to take κ as big as 
we need.

5.1.2. Proof of Proposition 5.3
We first state a technical lemma whose proof is postponed until Section 5.3.1. For 

� > 0, we define the closed ball

B(�) =
{
ϕ ∈ X× : ‖ϕ‖× ≤ �

}
.

Lemma 5.5. Let R be the operator defined in (44). Then, for � > 0 and for κ > 0 big 
enough, there exists a constant C > 0 such that, for any Z0 ∈ B(�),

‖R1[Z0]‖ 11
3
≤ C, ‖Rj [Z0]‖ 4

3
≤ C, j = 2, 3,
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and

‖∂WR1[Z0]‖3 ≤ C, ‖∂XR1[Z0]‖ 7
3
≤ C, ‖∂Y R1[Z0]‖ 7

3
≤ C,

‖∂WRj [Z0]‖ 2
3
≤ C, ‖∂XRj [Z0]‖2 ≤ C, ‖∂Y Rj [Z0]‖2 ≤ C, j = 2, 3.

The next lemma gives properties of the operator F .

Lemma 5.6. Let F be the operator defined in (102). Then, for κ > 0 big enough, there 
exists a constant b4 > 0 independent of κ such that

‖F [0]‖× ≤ b4.

Moreover, for � > 0 and κ > 0 big enough, there exists a constant b5 > 0 independent 
of κ such that, for any Z0 = (W0, X0, Y0)T , Z̃0 = (W̃0, X̃0, Ỹ0)T ∈ B(�) ⊂ X×,

‖F1[Z0] −F1[Z̃0]‖ 8
3
≤ b5

(
1
κ2 ‖W0 − W̃0‖ 8

3
+ ‖X0 − X̃0‖ 4

3
+ ‖Y0 − Ỹ0‖ 4

3

)
,

‖Fj [Z0] −Fj [Z̃0]‖ 4
3
≤ b5

κ2 ‖Z0 − Z̃0‖×, j = 2, 3.

Proof. The estimate for F [0] is a direct consequence of Lemmas 5.2 and 5.5.
To estimate the Lipschitz constant, we first estimate each component Rj[Z0] −Rj [Z̃0]

separately for j = 1, 2, 3. By the mean value theorem we have

Rj [Z0] −Rj [Z̃0] =

⎡⎣ 1∫
0

DRj [sZ0 + (1 − s)Z̃0]ds

⎤⎦ (Z0 − Z̃0).

Then, for j = 2, 3, we have

‖R1[Z0] −R1[Z̃0]‖ 11
3
≤ ‖W0 − W̃0‖ 8

3
sup

ϕ∈B(�)
‖∂WR1[ϕ]‖1

+ ‖X0 − X̃0‖ 4
3

sup
ϕ∈B(�)

‖∂XR1[ϕ]‖ 7
3

+ ‖Y0 − Ỹ0‖ 4
3

sup
ϕ∈B(�)

‖∂Y R1[ϕ]‖ 7
3
,

‖Rj [Z0] −Rj [Z̃0]‖ 4
3
≤ ‖W0 − W̃0‖ 8

3
sup

ϕ∈B(�)
‖∂WRj [ϕ]‖− 4

3

+ ‖X0 − X̃0‖ 4
3

sup
ϕ∈B(�)

‖∂XRj [ϕ]‖0 + ‖Y0 − Ỹ0‖ 4
3

sup
ϕ∈B(�)

‖∂Y Rj [ϕ]‖0 .

Applying Lemma 5.5, we obtain

‖R1[Z0] −R1[Z̃0]‖ 11
3
≤ C

(
1
κ2 ‖W0 − W̃0‖ 8

3
+ ‖X0 − X̃0‖ 4

3
+ ‖Y0 − Ỹ0‖ 4

3

)
,

‖Rj [Z0] −Rj [Z̃0]‖ 4
3
≤ C

κ2 ‖Z0 − Z̃0‖×, j = 2, 3.
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Finally, applying Lemma 5.2, we obtain the estimates in the lemma. �
Lemma 5.6 shows that, by assuming κ > 0 big enough, the operators F2 and F3 have 

Lipschitz constant less than 1. However, this is not the case for F1. To overcome this 
problem, we apply a Gauss-Seidel argument and define a new operator

F̃ [Z0] = F̃ [(W0, X0, Y0)] =

⎛⎝F1[W0,F2[Z0],F3[Z0]]
F2[Z0]
F3[Z0]

⎞⎠ ,

which has the same fixed points as F and turns out to be contractive in a suitable ball.

End of the proof of Proposition 5.3. We first obtain an estimate for ‖F̃ [0]‖×. Notice 
that

F̃ [0] = F [0] +
(
F̃ [0] −F [0]

)
= F [0] +

(
F1 [0,F2[0],F3[0]] −F1[0], 0, 0

)T
.

Then, by Lemma 5.6, (0, F2[0], F3[0])T ∈ X× and

‖F̃ [0]‖× ≤ ‖F [0]‖× + ‖F1[0,F2[0],F3[0]] −F1[0]‖ 8
3

≤ ‖F [0]‖× + C ‖F2[0]‖ 4
3

+ C ‖F3[0]‖ 4
3
≤ C ‖F [0]‖× .

Thus, we can fix � > 0 such that

‖F̃ [0]‖× ≤ �

2 .

Now, we prove that the operator F̃ is contractive in B(�) ⊂ X×. By Lemma 5.6 and 
assuming κ > 0 big enough, we have that for Z0, Z̃0 ∈ B(�),

‖F̃1[Z0] − F̃1[Z̃0]‖ 8
3
≤ C

κ2 ‖W0 − W̃0‖ 8
3

+
3∑

j=2
‖Fj [Z0] −Fj [Z̃0]‖ 4

3

≤ C

κ2 ‖W0 − W̃0‖ 8
3

+ C

κ2 ‖Z0 − Z̃0‖× ≤ C

κ2 ‖Z0 − Z̃0‖×,

‖F̃j [Z0] − F̃j [Z̃0]‖ 4
3
≤ C

κ2 ‖Z0 − Z̃0‖×, for j = 2, 3.

Then, there exists κ0 > 0 such that for κ ≥ κ0, the operator F̃ : B(�) → B(�) is well 
defined and contractive. Thus F̃ has a fixed point Zu

0 ∈ B(�) ⊂ X×. �
5.2. Asymptotic formula for the difference

The strategy to prove the second part of Theorem 2.7 is divided in three steps. In 
Section 5.2.1 we characterize ΔZ0 = Zu

0 − Zs
0 as a solution of a linear homogeneous 
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equation. In Section 5.2.2, we prove that ΔZ0 is in fact the unique solution of this linear 
equation in a suitable Banach space. Finally, in Section 5.2.3, we introduce a Banach 
subspace of the previous one (with exponential weights) to obtain exponentially small 
estimates for ΔZ0.

5.2.1. A homogeneous linear equation for ΔZ0
By Theorem 2.7, the difference ΔZ0(U) = Zu

0 (U) − Zs
0(U) is well defined for U ∈ Eκ

(see (47)). Since Zu
0 , Zs

0 satisfy the same invariance equation (43), their difference ΔZ0
satisfies

∂UΔZ0 = AΔZ0 + R(U)ΔZ0,

where

R(U) =
1∫

0

DZR[sZu
0 + (1 − s)Zs

0](U)ds, (103)

and A and R are given in (41) and (44), respectively. We denote by R1, R2 and R3, the 
rows of the matrix R.

By the method of variation of parameters, there exists c = (cw, cx, cy)T ∈ C3 such 
that

ΔZ0(U) = eAU

⎛⎝c +
U∫

U0

e−ASR(S)ΔZ0(S)dS

⎞⎠ .

By Proposition 5.3, ΔZ0 = Zu
0 − Zs

0 satisfies limImU→−∞ ΔZ0(U) = 0. Therefore ΔZ0
satisfies

ΔZ0 = ΔZinit + I[ΔZ0], (104)

where I is the linear operator

I[ϕ](U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U∫
−i∞

〈R1(S), ϕ(S)〉dS

eiU
U∫

−i∞

e−iS〈R2(S), ϕ(S)〉dS

e−iU

U∫
−iκ

eiS〈R3(S), ϕ(S)〉dS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (105)

and ΔZinit is the function
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ΔZinit(U) = (0, 0, cye−iU )T = (0, 0, eκΔY0(−iκ)e−iU )T .

5.2.2. Characterization of ΔZ0 as a fixed point
Given ν ∈ R and κ > 0, we define the norm

‖ϕ‖ν = sup
U∈Eκ

|Uνϕ(U)| ,

where the domain Eκ is given in (47), and we introduce the Banach space

Yν = {ϕ : Eκ → C : ϕ analytic , ‖ϕ‖ν < +∞} .

Note that Yν satisfy analogous properties as the ones in Lemma 5.1. In this section, we 
use this lemma without mentioning it.

We state a technical lemma, whose proof is postponed to Section 5.3.2.

Lemma 5.7. Let I be the operator defined in (105). Then, for κ > 0 big enough, there 
exists a constant b6 > 0 independent of κ such that, for Ψ ∈ Y 8

3
× Y 4

3
× Y 4

3
,

‖I1[Ψ]‖ 8
3
≤ b6

(
1
κ2 ‖Ψ1‖ 8

3
+ ‖Ψ2‖ 4

3
+ ‖Ψ3‖ 4

3

)
,

‖Ij [Ψ]‖ 4
3
≤ b6

κ2

(
‖Ψ1‖ 8

3
+ ‖Ψ2‖ 4

3
+ ‖Ψ3‖ 4

3

)
, j = 2, 3.

These estimates characterize ΔZ0 as the unique solution of (104) in the space Y 8
3
×

Y 4
3
× Y 4

3
.

Lemma 5.8. For κ > 0 big enough, ΔZ0 is the unique solution of equation (104) belonging 
to Y 8

3
× Y 4

3
× Y 4

3
. In particular,

ΔZ0 =
∑
n≥0

In[ΔZinit].

Proof. By Theorem 2.7, for κ > 0 big enough, ΔZ0 is a solution of equation (104)
which satisfies ΔZ0 = Zu

0 − Zs
0 ∈ Y 8

3
× Y 4

3
× Y 4

3
. Then, it only remains to prove that 

equation (104) has a unique solution in Y 8
3
×Y 4

3
×Y 4

3
. To this end, it is enough to show 

that the operator I is contractive with a suitable norm in Y 8
3
× Y 4

3
× Y 4

3
. Taking

‖Ψ‖× = ‖Ψ1‖ 8
3

+ κ ‖Ψ2‖ 4
3

+ κ ‖Ψ3‖ 4
3
,

Lemma 5.7 implies

‖I[Ψ]‖× ≤ C

κ
‖Ψ‖×

and, taking κ big enough, the result is proven. �
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5.2.3. Exponentially small estimates for ΔZ0
Once we have proved that ΔZ0 is the unique solution of (104) in the space Y 8

3
×Y 4

3
×

Y 4
3
, we use this equation to obtain exponentially small estimates for ΔZ0.
For any ν ∈ R, we consider the norm

�ϕ�ν = sup
U∈Eκ

∣∣UνeiUϕ(U)
∣∣ ,

and the associated Banach space

Zν = {ϕ : Eκ → C : ϕ analytic, �ϕ�ν < +∞} .

Moreover, for ν1, ν2, ν3 ∈ R, we consider the product space

Zν1,ν2,ν3 = Zν1 ×Zν2 ×Zν3 , with �ϕ�ν1,ν2,ν3
=
∑3

j=1 �ϕj�νj
.

Next lemma, gives some properties of these Banach spaces. It follows the same lines 
as Lemma 5.1.

Lemma 5.9. Let κ > 0 and ν, η ∈ R. The following statements hold:

1. If ν > η, then Zν ⊂ Zη and �ϕ�η ≤ (κcosβ0)η−ν �ϕ�ν .
2. If ϕ ∈ Zν and ζ ∈ Yη, then ϕζ ∈ Zν+η and �ϕζ�ν+η ≤ �ϕ�ν ‖ζ‖η.
3. If ϕ ∈ Zν then eiUϕ ∈ Yν and ‖eiUϕ‖ν= �ϕ�ν .

The next lemma analyzes how the operator I acts on the space Z 4
3 ,0,0. Its proof is 

postponed to Section 5.3.2.

Lemma 5.10. Let I be the operator defined in (105). For κ > 0 big enough, there exists 
a constant b7 > 0 independent of κ such that, for Ψ ∈ Z 4

3 ,0,0,

�I1[Ψ]� 7
3
≤ b7 �Ψ� 4

3 ,0,0
, �I2[Ψ]�2 ≤ b7 �Ψ� 4

3 ,0,0
, �I3[Ψ]�0 ≤ b7

κ
�Ψ� 4

3 ,0,0
.

Moreover, there exists Θ̃(κ) ∈ C (depending on Ψ), such that

I3[Ψ] − e−iU Θ̃(κ) ∈ Z1.

End of the proof of the second part of Theorem 2.7. Lemma 5.10 implies that operator 
I : Z 4

3 ,0,0 → Z 4
3 ,0,0 is well defined and contractive. Indeed, taking κ > 0 big enough and 

Ψ ∈ Z 4
3 ,0,0,

�I[Ψ]� 4
3 ,0,0

= �I1[Ψ]� 4
3

+ �I2[Ψ]�0 + �I3[Ψ]�0
≤ C �I1[Ψ]� 7 + C �I2[Ψ]�2 + �I3[Ψ]�0 ≤ C �Ψ� 4 ,0,0 .

(106)
κ 3 κ2 κ 3
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Therefore, since ΔZinit = (0, 0, cye−iU )T ∈ Z 4
3 ,0,0, Lemma 5.8 and (106) imply that

ΔZ0 = (ΔW0,ΔX0,ΔY0)T =
∑
n≥0

In[ΔZinit] ∈ Z 4
3 ,0,0.

Lemma 5.10 implies I : Z 4
3 ,0,0 → Z 7

3 ,2,0 ⊂ Z 4
3 ,0,0, which allows to give better estimates 

for ΔZ0. Indeed, we have that ΔZ0 − ΔZinit = I[ΔZ0] ∈ Z 7
3 ,2,0, which implies

ΔW0 = I1[ΔZ0] ∈ Z 7
3
, ΔX0 = I2[ΔZ0] ∈ Z2.

Moreover, by the second statement in Lemma 5.10, there exists Θ̃(κ) such that

ΔY0 − cye
−iU − Θ̃(κ)e−iU ∈ Z1.

Calling Θ = cy + Θ̃(κ) we have that ΔY0(U) − Θe−iU ∈ Z1, and, therefore Θ =
limImU→−∞ ΔY0(U)eiU , which is independent of κ. Then, ΔZ0 is of the form

ΔZ0(U) = e−iU
(
(0, 0,Θ)T + χ(U)

)
, with χ ∈ Y 7

3
× Y2 × Y1.

Now we prove that, if there exists U0 ∈ Eκ such that ΔZ0(U0) �= 0, then Θ �= 0. This 
implies ΔZ0(U) �= 0 for all U ∈ Eκ, since ΔZ0 is a solution of an homogeneous linear 
differential equation. Therefore cy �= 0. Indeed, cy = 0 would imply ΔZinit = 0 and, by 
Lemma 5.8, one could conclude ΔZ0 ≡ 0.

Thus, it only remains to prove that cy �= 0 implies Θ �= 0. By Lemma 5.8,

ΔZ0 − ΔZinit =
∑
n≥1

In[ΔZinit].

In addition, by the estimate (106), �I3� 4
3
≤ 1

4 if κ > 0 is big enough. Since ΔYinit =
cye

−iU , we deduce that

�ΔY0 − ΔYinit�0 ≤
∑
n≥1

1
4n �ΔYinit�0 = 1

3 |cy| ,

and, by the definition of the norm �·�0, for any U ∈ Eκ,

∣∣eiUΔYinit(U)
∣∣− ∣∣eiUΔY0(U)

∣∣ ≤ 1
3 |cy| .

Hence, using that eiUΔY0 = Θ + χ3(U) with χ3 ∈ Y1 and eiUΔYinit(U) = cy, we have 
that for all U ∈ Eκ,

∣∣eiUΔY0(U)
∣∣ = |Θ + χ3(U)| ≥

∣∣eiUΔYinit(U)
∣∣− 1

3 |cy| = 2
3 |cy| .

Finally, taking Im (U) → −∞, we obtain that |Θ| ≥ 2 |cy| > 0. �
3
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5.3. Proof of the technical lemmas

We devote this section to prove Lemma 5.5 of Section 5.3.1 and Lemmas 5.7 and 5.10
of Section 5.3.2.

5.3.1. Proof of Lemma 5.5
Fix � > 0 and take Z0 = (W0, X0, Y0)T ∈ B(�) ⊂ X×. By the definition of R in (44),

R[Z0](U) =
(

f1(U,Z0)
1 + g(U,Z0)

,
f̃2(U,Z0)

1 + g(U,Z0)
,

f̃3(U,Z0)
1 + g(U,Z0)

)
, (107)

where

f̃2(U,Z0) = f2(U,Z0) − iX0g(U,Z0), f̃3(U,Z0) = f3(U,Z0) + iY0g(U,Z0),

with g = ∂WK, f = (−∂UK, i∂Y K, −i∂XK)T and K is the Hamiltonian given in (39) in 
terms of the function J (see (40)).

We first estimate J and its derivatives. For κ > 0 big enough, we have

|J (U,Z0)| ≤
C

U2 , |1 + J (U,Z0)| ≥ 1 − C

κ2 ≥ 1
2 .

Moreover, its derivatives satisfy

|∂UJ (U,Z0)| ≤
C

|U |3
, |∂WJ (U,Z0)| ≤

C

|U |
4
3
,

|∂XJ (U,Z0)| ≤
C

|U |
2
3
, |∂Y J (U,Z0)| ≤

C

|U |
2
3
,

and

|∂UWJ (U,Z0)| ≤
C

|U |
7
3
, |∂UXJ (U,Z0)| ≤

C

|U |
5
3
, |∂UY J (U,Z0)| ≤

C

|U |
5
3
,

∣∣∂2
WJ (U,Z0)

∣∣ ≤ C

|U |
2
3
, |∂WXJ (U,Z0)| ≤

C

|U | , |∂WY J (U,Z0)| ≤
C

|U | ,∣∣∂2
XJ (U,Z0)

∣∣ ≤ C

|U |
4
3
, |∂XY J (U,Z0)| ≤

C

|U |
4
3
,

∣∣∂2
Y J (U,Z0)

∣∣ ≤ C

|U |
4
3
.

Using these estimates, we obtain the following bounds for g, f1, f̃2 and f̃3,

|g(U,Z0)| =
∣∣∣∣−3

2U
2
3W0 + 1

2
3

∂WJ
3
2

∣∣∣∣ ≤ C
2 ,
6U (1 + J ) |U |
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|f1(U,Z0)| =
∣∣∣∣ W 2

0

2U 1
3
− 2

9U 5
3

J√
1 + J (1 +

√
1 + J )

− 1
6U 2

3

∂UJ
(1 + J ) 3

2

∣∣∣∣ ≤ C

|U |
11
3
,

∣∣∣f̃2(U,Z0)
∣∣∣ =

∣∣∣∣ i

6U 2
3

∂Y J
(1 + J ) 3

2
− iX0g(U,Z0)

∣∣∣∣ ≤ C

|U |
4
3
,

∣∣∣f̃3(U,Z0)
∣∣∣ =

∣∣∣∣− i

6U 2
3

∂XJ
(1 + J ) 3

2
+ iY0g(U,Z0)

∣∣∣∣ ≤ C

|U |
4
3
.

Analogously, we obtain estimates for the derivatives,

|∂W g(U,Z0)| ≤ C |U |
2
3 , |∂Xg(U,Z0)| ≤

C

|U |
5
3
, |∂Y g(U,Z0)| ≤

C

|U |
5
3
,

|∂W f1(U,Z0)| ≤
C

|U |3
, |∂Xf1(U,Z0)| ≤

C

|U |
7
3
, |∂Y f1(U,Z0)| ≤

C

|U |
7
3
,

∣∣∣∂W f̃2(U,Z0)
∣∣∣ ≤ C

|U |
2
3
,

∣∣∣∂X f̃2(U,Z0)
∣∣∣ ≤ C

|U |2
,

∣∣∣∂Y f̃2(U,Z0)
∣∣∣ ≤ C

|U |2
,

∣∣∣∂W f̃3(U,Z0)
∣∣∣ ≤ C

|U |
2
3
,

∣∣∣∂X f̃3(U,Z0)
∣∣∣ ≤ C

|U |2
,

∣∣∣∂Y f̃3(U,Z0)
∣∣∣ ≤ C

|U |2
.

Using these results we estimate the components of R in (107),

‖R1[Z0]‖ 11
3

=
∥∥∥∥ f1(·, Z0)

1 + g(·, Z0)

∥∥∥∥
11
3

≤ C,
∥∥Rin

j [Z0]
∥∥

4
3

=

∥∥∥∥∥ f̃j(·, Z0)
1 + g(·, Z0)

∥∥∥∥∥
4
3

≤ C,

for j = 2, 3. Moreover,

‖∂WR1[Z0]‖3 =
∥∥∥∥∂W f1

1 + g
− f1∂W g

(1 + g)2

∥∥∥∥
3
≤ C,

‖∂XR1[Z0]‖ 7
3

=
∥∥∥∥∂Xf1

1 + g
− f1∂Xg

(1 + g)2

∥∥∥∥
7
3

≤ C,

‖∂WR2[Z0]‖ 2
3

=

∥∥∥∥∥∂W f̃2

1 + g
− f̃2∂W g

(1 + g)2

∥∥∥∥∥
2
3

≤ C,

‖∂XR2[Z0]‖2 =

∥∥∥∥∥∂X f̃2

1 + g
− f̃2∂Xg

(1 + g)2

∥∥∥∥∥
2

≤ C.

Analogously, we obtain the rest of the estimates,

‖∂Y R1[Z0]‖ 7
3
≤ C, ‖∂Y R2[Z0]‖2 ,≤ C,

∥∥∂Y Rin
3 [Z0]

∥∥
2 ≤ C,

‖∂XR3[Z0]‖2 ,≤ C, ‖∂WR3[Z0]‖ 2 ,≤ C. �

3
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5.3.2. Proof of Lemmas 5.7 and 5.10
Let us introduce, for κ > 0 and α ≥ 0, the following linear operators,

Bα[Ψ](U) = eiαU
U∫

−i∞

e−iαSΨ(S)dS,

B̃[Ψ](U) = e−iU

U∫
−iκ

eiSΨ(S)dS.

(108)

The following lemma is proven in [1].

Lemma 5.11. Fix η > 1, ν > 0, α > 0 and κ > 1. Then, the following operators are well 
defined

B0 : Yη → Yη−1, Bα : Yν → Yν , B̃ : Yν → Yν

and there exists a constant C > 0 such that

‖B0[Ψ]‖η−1 ≤ C ‖Ψ‖η , ‖Bα[Ψ]‖ν ≤ C ‖Ψ‖ν , ‖B̃[Ψ]‖ν≤ C ‖Ψ‖ν .

One has I1[Ψ] = B0[〈R1, Ψ〉], I2[Ψ] = B1[〈R2, Ψ〉] and I3[Ψ] = B̃[〈R3,Ψ〉] (see (103)
and (105)). Thus, we use this lemma to prove Lemmas 5.7 and 5.10.

Proof of Lemma 5.7. By the definition of the operator R and Lemma 5.5, we have that

‖R1,1‖3 ≤ C, ‖R1,2‖ 7
3
≤ C, ‖R1,3‖ 7

3
≤ C,

‖Rj,1‖ 2
3
≤ C, ‖Rj,2‖2 ≤ C, ‖Rj,3‖2 ≤ C, for j = 2, 3.

(109)

Then, by Lemma 5.11, for κ big enough and Ψ ∈ Y 8
3
× Y 4

3
× Y 4

3
, we have that

‖I1[Ψ]‖ 8
3

= ‖B0[〈R1,Ψ〉]‖ 8
3
≤ C ‖〈R1,Ψ〉‖ 11

3

≤ C
(
‖R1,1‖1 ‖Ψ1‖ 8

3
+ ‖R1,2‖ 7

3
‖Ψ2‖ 4

3
+ ‖R1,3‖ 7

3
‖Ψ3‖ 4

3

)
≤ C

(
1
κ2 ‖Ψ1‖ 8

3
+ ‖Ψ2‖ 4

3
+ ‖Ψ3‖ 4

3

)
,

which gives the first estimate of the lemma. Analogously, by Lemma 5.11,

‖I2[Ψ]‖ 4
3

= ‖B1[〈R2,Ψ〉]‖ 4
3
≤ C ‖〈R2,Ψ〉‖ 4

3
,

‖I3[Ψ]‖ 4
3

= ‖B̃[〈R3,Ψ〉]‖ 4
3
≤ C ‖〈R3,Ψ〉‖ 4

3
,
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and applying (109), for j = 2, 3, we have

‖〈Rj ,Ψ〉‖ 4
3
≤ ‖Rj,1‖− 4

3
‖Ψ1‖ 8

3
+ ‖Rj,2‖0 ‖Ψ2‖ 4

3
+ ‖Rj,3‖0 ‖Ψ3‖ 4

3

≤ C

κ2

(
‖Ψ1‖ 8

3
+ ‖Ψ2‖ 4

3
+ ‖Ψ3‖ 4

3

)
,

which gives the second and third estimates of the lemma. �
Proof of Lemma 5.10. Let us consider Ψ ∈ Z 4

3 ,0,0 and define

Φ(U) = eiUR(U)Ψ(U),

in such a way that, by the definition of the operator Bα in (108),

eiUI1[Ψ](U) = eiU
U∫

−i∞

e−iSΦ1(S)dS = B1[Φ1],

eiUI2[Ψ](U) = ei2U
U∫

−i∞

e−i2SΦ2(S)dS = B2[Φ2],

eiUI3[Ψ](U) =
U∫

−iκ

Φ3(S)dS.

(110)

Since eiUΨ ∈ Y 4
3
× Y0 × Y0, by the estimates in (109), we have that, for j = 2, 3,

‖Φ1‖ 7
3
≤ ‖R1,1‖1

∥∥eiUΨ1
∥∥

4
3

+
∑
k=2,3

‖R1,k‖ 7
3

∥∥eiUΨk

∥∥
0 ≤ C �Ψ� 4

3 ,0,0
,

‖Φj‖2 ≤ ‖Rj,1‖ 2
3

∥∥eiUΨ1
∥∥

4
3

+
∑
k=2,3

‖Rj,k‖2
∥∥eiUΨk

∥∥
0 ≤ C �Ψ� 4

3 ,0,0
.

(111)

Therefore, Lemma 5.11 and (110) imply

�I1[Ψ]� 7
3

= ‖B1[Φ1]‖ 7
3
≤ C ‖Φ1‖ 7

3
≤ C �Ψ� 4

3 ,0,0
,

�I2[Ψ]�2 = ‖B2[Φ2]‖2 ≤ C ‖Φ2‖2 ≤ C �Ψ� 4
3 ,0,0

.

Now, we deal with operator I3. Notice that, by the definition of the operator Bα in (108)
and (110), we have that

eiUI3[Ψ](U) =
−i∞∫

Φ3(S)dS +
U∫

Φ3(S)dS = −B0[Φ3](−iκ) + B0[Φ3](U).

−iκ −i∞
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Then, by Lemma 5.11 and using the estimates (111), we obtain

�I3[Ψ]�0 ≤ |B0[Φ3](−iκ)| + ‖B0[Φ3]‖0 ≤ 2 ‖B0[Φ3]‖0

≤ C

κ
‖B0[Φ3]‖1 ≤ C

κ
‖Φ3‖2 ≤ C

κ
�Ψ� 4

3 ,0,0
.

Finally, taking Θ̃(κ) = −B0[Φ3](−iκ), we conclude

�
I3[Ψ](U) − e−iU Θ̃(κ)

�
1

= ‖B0[Φ3]‖1 ≤ C ‖Φ3‖2 ≤ C �Ψ� 4
3 ,0,0

. �
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