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ABSTRACT. In this paper we study the basic questions of existence, unique-
ness, differentiability, analyticity and computability of one dimensional para-
bolic manifolds of degenerate fixed points, i.e. invariant manifolds tangent to
the eigenspace of 1, which is assumed to be a simple eigenvalue. We use the
parameterization method, reducing the dynamics on the parabolic manifold to
a polynomial. We prove that the asymptotic expansions of the parabolic man-
ifold are of Gevrey type. Moreover, under suitable hypothesis, we also prove
that the asymptotic expansions correspond to a real-analytic parameterization
of an invariant curve that goes to the fixed point. The parameterization is
Gevrey at the fixed point, hence C'°°.
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1. Introduction. Center manifold theory is very important in the analysis of de-
generate fixed points and in bifurcation theory. The questions of existence, unique-
ness, smoothness of the center manifold, and its applications, have been studied by
many authors, among them [25, 22, 20, 8, 28]. These works show up the puzzling
properties of center manifolds. In the study of degenerate fixed points, it is impor-
tant to know the dynamical properties of the center manifold, what is known as
reduction of the dynamics to the center manifold. In numerical applications, one
can approximate the center manifold through power series expansions whose coef-
ficients are recursively computed (see, for instance [32, 16, 21]). In order to bound
the error of finite order approximations, it is important to know the rate of growth
of the coefficient of the asymptotic expansions [33]. As far as we know, rigorous
results on Gevrey estimates of the expansions appearing in center manifold theory
or in normal form theory are still scarce. We however mention the paper [1] that
appears in this issue.
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The present paper considers the previous topics for real-analytic (local) diffeo-
morphisms with a fixed point whose linearization has 1 as a simple eigenvalue.
Thus, we look for a one dimensional invariant manifold having the fixed point at the
boundary where it is tangent to the eigenspace of 1. We will refer to this branch of
manifold as a parabolic manifold, a concept coming from the field of holomorphic dy-
namics, see [, 7]. A particular case is when the fixed point is parabolic-hyperbolic,
that is, the rest of eigenvalues are away of the unit circle, and the parabolic mani-
fold is a branch of the center manifold. But in case there were other eigenvalues of
modulus 1, we are also interested on finding these invariant branches, that would
be included inside the center manifold.

In this setting, the goals of this paper are:

(a) To give a parameterization of the parabolic manifold for which the reduced
dynamics is “simple”. In particular, we show that it can be reduced to a
polynomial.

(b) To describe the asymptotic properties of the expansions of the parabolic mani-
fold. We prove that the expansions are of the Gevrey type, i.e., the coefficients
of the expansions grow as a power of a factorial.

(¢) To prove, under suitable hypotheses, that the expansions correspond to a real-
analytic invariant manifold that goes to the fixed point (a parabolic manifold).
This is proved under the hypothesis that the dynamics tangent to the manifold
is attracting and the dynamics transversal to the manifold is not linearly
attracting. We also prove that the parabolic manifold is of Gevrey type at
the fixed point, hence C'*°.

(d) To give sufficient conditions of uniqueness of the parabolic manifold. This is
proved under the assumption that the dynamics on the manifold is attracting
and the transversal dynamics is repelling.

Notice that the map on the parabolic manifold is tangent to the identity. Several
authors have considered either conjugacy or normal form problems for maps that
are tangent to the identity. These authors find that one can reduce the dynamics
to a polynomial. For instance Takens [34] studied the C'*°-conjugation between C'*°
maps in the real line. Voronin [35] dealt with the problem of formal and conformal
conjugation between analytic maps in the complex plane. See also [13]. Hence,
instead of considering the parabolic manifold as a graph, it is natural to consider
an adapted parameterization of the manifold so that its dynamics is a polynomial.
The formal construction of the parameterization is stated in Theorem 2.3. We
emphasize that the information regarding the dynamics on the manifold is given
by this polynomial, which is of the form R(t) = t — at”™ + bt*N~1, with N > 2
and a # 0 (in fact, doing scalings one can obtain a = +1). The dynamics on the
parabolic manifold can be stable, unstable or semi-stable, depending on the sign of
a and the parity of N.

The idea of the parameterization method was developed in [9, 10, 11], for invari-
ant manifolds associated to non-resonant spectral components of the linearization
at the fixed point. With this method one finds simultaneously a parameterization
of the invariant manifold and the reduction (normal form) of the dynamics on it.
This methodology has already been used to prove the existence of C" one dimen-
sional branches of weak stable manifolds of tangent to the identity maps, see [0].
(See also [23, 14, 5, 27, 12] for different approaches and aspects of this problem,
including applications to Celestial Mechanics. See [29, 30, 31] for studies on the
stability around a parabolic fixed point of a real-analytic area preserving map). We
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also note that the parameterization method has been applied to compute invariant
manifolds attached to invariant tori [18, 17, 19].

It is well known that the center manifold of an analytic map can be non analytic
at the fixed point, even it could be non C'*°, see for instance [28]. But one always
can find a formal power series expansion of the manifold by matching terms of the
same order in the corresponding invariance equation. Thus, we are able to compute
an approximation of the center manifold. Hence, expansions are useful in numeric
calculations, so it is crucial to control the growth of these coefficients [33]. In this
paper we will prove that the formal expansion of the one-dimensional parabolic
manifold is Gevrey of order @ = 1, that is the coefficients (indexed by n) do
not grow more than C'K"™(n!)® for some constants C, K. This result is stated in
Theorem 2.3.

As Poincaré already pointed out, formal expansions, even if they are not con-
vergent, are very useful since they give information about the functions that they
represent. See for instance [26, 3]. We will use some of these asymptotic techniques
to prove that, under suitable assumptions, the formal expansion of the parabolic
manifold corresponds to a real-analytic function defined in a complex sector whose
vertex is the origin, and this function is Gevrey at the origin. See Theorem 2.4. We
emphasize that the standard techniques in the literature of center manifold theory,
such as cut-off functions, are out of question here since we work in the analytic
category.

Finally, the way we consider the uniqueness problem is quite standard in the
literature. See for instance [25, 23, 5]. Assuming that the dynamics on the parabolic
manifold is attracting, and the transversal dynamics is repelling, one constructs a
cone such that the points on the parabolic manifold and its iterates belong to this
cone and tend to the origin. Moreover, the distance between two different points in a
fiber transversal to the parabolic manifolds experience a growth when iterating. As
a result, such a fiber can only intersect one parabolic manifold, that is a weak stable
manifold (a branch of the center manifold). We present this result in Theorem 2.6.
See [28] for a different approach.

As a corollary of the results of this paper, we come back to the conjugacy problem
of tangent to the identity maps on the real line mentioned above. We prove that a
real-analytic map of this type is a-Gevrey conjugated to a polynomial of the form
R(t) =t —at™ + bt*N !, with o = <. See Corollary 2.7.

The paper is organized as follows. In Section 2 we introduce the problem and
the notation used, and we state the main three theorems of this paper. The first
theorem corresponds to the formal approach and the Gevrey estimates of the ex-
pansions, developed in Section 3. The second theorem establishes the analyticity
and differentiability properties of the parabolic manifold, proved in Section 4. The
third theorem is the uniqueness result, which is proved in Section 5. In Appendix
A we provide useful properties on Gevrey functions.

2. The problem and the results.

2.1. The parameterization method. In this paper we will consider a real-analytic
map
F: UcCRxRY — RxR?

c=(0y) — Floy)=F@y)e@y) 21)
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defined in an open neighborhood U of 0 = (0, 0), giving a discrete dynamical system
of the form .
= z—azx™ + fn(z,y)+ foni(z,y), (2.2)
y= Ay + g>2(z,y), '
where:
e the constant a is non-zero;
e 1 is not in the spectrum of A;
e N > 2 is an integer number;
e fn(z,y) is an homogencous polynomial of degree N such that fy(z,0) =
We denote v = (N — 1)19N~19, £(0,0) € R%, so that 9, fn(x,0) = 2N 1o
We will also write fx(z,y) = —az™ + fn(z,y);
o f>n41 has order N + 1 (all its derivatives up to order N vanish at (0,0));
e g>9 has order 2 (that is g>2(0,0) = 0 and Dg>2(0,0) = 0).
By “real-analytic” we mean that F' can be extended to a holomorphic function
defined in a complex neighborhood Uc of U, that is F¢ : Ue € C x C¢ — C x C%.
For the sake of simplicity, we will also use the notation F' for its complexification
Fr.

0.
T.

Remark 2.1. A natural question is to characterize the maps that are (locally)
conjugated to a map of the form (2.2). Assume that a map defines a dynamical
system with a fixed point whose linearization has 1 as a simple eigenvalue. After
a translation of the fixed point to the origin of the coordinate system, and a linear
change of variables, we can write the equations as

z= :17+f(a:,y),
{ﬂ— Ay + g(z,y), 23)

where f and g have order 2. Let N be the smaller integer such that the %(0, 0) #

0, that is the coefficient of %V in the expansion of f is non-zero. We would like to
eliminate all the terms of f of order lower than N using changes of variables. This
can be done using standard normal form techniques, under suitable non-resonance
conditions that we now describe.

Let A1,...Ag € C be the eigenvalues of the matrix A. Then, the map (2.3) is
(locally) conjugated to a map of the form (2.2) in the following cases:

o If N =2, obviously;

e If N > 2, and )\’fl .../\Zd # 1 for all (ki,...,kq) € N? such that

1<ki+--+ki<N

Remark 2.2. In particular, notice that having a parabolic-hyperbolic fixed point
(i.e., 1 is the only eigenvalue in the unit circle) and N = 2 is a degeneracy of
codimension 1.

Notice that if the matrix A is hyperbolic, it is then clear that the dynamics near
the fixed point is dominated by the lower order terms

L(z,y) = < “"AZ”“"N > (2.4)

In this case the fixed point has a center manifold (possibly non-unique) tangent to
the z-axis, whose dynamics depends on the sign of a and the parity of V. Thus,
the dynamics on the center manifold can be stable, unstable of semi-stable, see the
examples in Section 2.2. Since the center manifold is one dimensional and tangent
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to the z-axis, the parabolic manifold we defined corresponds to the left branch or
to the right branch of the center manifold. If A is non-hyperbolic, the parabolic
manifold we are looking for is an invariant curve inside the center manifold, either
(locally) included on {z > 0} (right branch) or on {2 < 0} (left branch).

Let us focus on the right parabolic manifold, since similar arguments can be
made for the left branch. The goal is to find an adapted parameterization of the
parabolic manifold, K : [0, p) — R'*? with K(0) = (0,0) and DK (0) = (1,0)", in
such a way that the invariance equation

FoK(t) = KoR(t) (2.5)

is satisfied for a suitable polynomial R(t). Notice that in such a case the parabolic
manifold

W={K(t)|tel0,p)} (2.6)
is invariant under (2.2), and that the information about its dynamics is given by
the polynomial R(t).

We can deal with (2.5) at different levels. Either we can consider (2.5) as a
functional equation in a suitable Banach space of functions, or we can consider
(2.5) in spaces of formal power series.

In both cases, a main ingredient will be the so called Faa-di-Bruno formula, which
we now recall. If f = f(w) and g = g(z) are two composible functions, that for the
sake of simplicity we assume are C°°, we can compute the [ derivative of fog by

DY (fog)(z ! DFf(g(2)) [D'g(2), - ,D"%g(z
(“9)():2 3 ISI( ) | g(l)l!mlk! 9=

(2.7)
F=1 g =

1<l;

If £(0) = 0 and g(0) = 0, denoting f = & D" f(0) and g, = £ D"g(0), formula (2.7)
at z = 0 reads

l
(f Og)l = Z Z fk[ghv T 7glk]' (28)

k=1 =
1<l,

Notice that f and gx are k-multilinear symmetric maps (that can be identified with
homogeneous polynomials of order k, and we will write frw® = fpw,.*., w], etc.).

If we think now f(w) = Yo, fiw' and §(z) = 32,5, 12" as formal power series,
then the [ order term of the formal composition fog is given by (2.8). We emphasize
that (fog); depends only on f<;(w) = Zﬁc:l frw® and g<(z) = 22:1 grz" (we will
use along the paper notations such as f<;, f>i11, etc. without more mention).
Moreover, the only term of (fog)l in which f; appears is fig!, and the only term in
which g; appears is f1¢;. This remark is important when doing induction arguments.

As a result, when one considers (2.5) in the sense of composition of formal power
series, one looks for a formal expansion K (t) = s Kot € R[[t]]' and a poly-
nomial R(t) = Ryt + - + R,,t™ of unknown degree (to be found) such that

l l
oY RIE,- K=Y Y KiRy Ry (2.9)

k=1 = F=1 g =
1<l; 1<l;

for all [ > 1.
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Let us finish this introductory section with several notational conventions that
we use throughout the paper. We denote the projection over the z-component by
7%, and the projection over the y-components by 7¥. If W € C'*¢ (or if W is a
map taking values in C'*%, or a power series with coefficients in C'*9), we write
W?* =qg*W and WY = n¥W.

2.2. Examples. The dynamical properties of one-dimensional center manifolds,
and the puzzling questions about its existence, uniqueness, differentiability and
analyticity can be grasped with the following simple but, we hope, illuminating
examples.

The first example is the time-1 map of the autonomous planar vector field

T = —axN,
{ J= (2.10)
that is
_ —1\~1/(N-1)
7= a:)\(l + (N = 1)az™ 1) (2.11)
y= ¢y,

Map (2.11) is of the form (2.2) with A = e*. The dynamical properties of the
fixed point, and the uniqueness and dynamical properties of both branches (left
and right) of the center manifold are summarized below:

e a>0,A<0(0<A<1])
— N even: saddle-node, unique left branch (weak unstable manifold), non-
unique right branch;
— N odd: attracting node, non-unique left and right branches;
ea>0,A>0(1<A)
— N even: saddle-node, non-unique left branch, unique right branch (weak
stable manifold);
— N odd: saddle, unique left and right branches (weak stable manifold);
e a<0,A<0(0<A<]
— N even: saddle-node, non-unique left branch, unique right branch (weak
unstable manifold);
— N odd: saddle, unique left and right branches (weak unstable manifold);
e a<0,A>0(1<A)
— N even: saddle-node, unique left branch (weak stable manifold), non
unique right branch ;
— N odd: repelling node, non-unique left and right branches;

Let us consider now the analytical properties of the center manifold. Notice that if
we represent it as a graph y = ¢ (z), then it is

y = cexp (ﬁ %) (2.12)

where ¢ is a constant, and the right and the left branch is defined if lim, g+ ¥(2) =0
and lim,_,o- () = 0, respectively. In particular, y = 0 is a center manifold which
is analytic, but the rest of the branches are C'"*° in the origin. Moreover, the
difference between two any branches is exponentially small. Notice also that all the
branches of center manifold have the same asymptotic expansion at the origin: it
is a formal power series with all the coefficients equal to zero.
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The second example appears in [8] with N = 3. It is the autonomous planar

vector field . N
= -z,
{ J= —yta? (2.13)

that can also easily be solved by quadratures. With respect to the asymptotic
expansion of the center manifold, represented as a graph, we obtain

y=1@) =Y 2(N+1)...(2+ (N —1)( - 1))z> =1L (2.14)
1>0

Using Stirling’s formula, it is easy to see that the coefficient 1, of ¥ in (2.14), with
k =2+ (N —1)l, can be compared with k!%*, with o = ﬁ, in such a way that

ﬂ ~ (27T)FTOC 20— % —l—%a

kle I'(2«)
where I' is the Gamma function. That is, the coefficients ¢, grow as the power «
of k!. In this case, one says that the power series (2.14) is a-Gevrey. We emphasize
again that the Gevrey order has to do with the order of the dominant term in the
center manifold: a = ﬁ We also emphasize that the center manifold is not
analytic.

Let us finish this section with one example in which our results do not apply

directly. Let us consider the 2-dimensional map

= _ 3
(12 5o a1
It is clear that, although (2.15) is not of the form (2.2), the map has a center
manifold which is tangent to the z-axis. Notice, moreover, that the lower order
terms constitute a map

= x-—uay,

{ J= 2, (2.16)
which is too degenerate (it has a line of fixed points). We can not know from the
lower order terms what is the dynamics on the center manifold. To do so, one
uses the standard reduction principle to the center manifold. In order to apply our
results, notice that one can eliminate the term zy in the first component using a
normal form analysis. See Remark (2.1).

2.3. The results. Along this paper, we denote o« = ﬁ

In the following theorems, we consider the dynamical system (2.2).

The first result is related to the formal solution of the invariance condition (2.5).
We prove that there exists a formal solution of (2.5) being R a polynomial of degree
2N — 1. Moreover, the expansions are a-Gevrey.

Theorem 2.3. Assume that 1 ¢ SpecA.

Then, there exist a unique polynomial R(t) = t — at® + bt>*N 1 and a formal
power series K(t) = o0 Knt™ € R[] with Ko = (0,0) and Ky = (1,0)"
such that

FoK = KoR
(in the sense of formal composition). Moreover, the expansion is a-Gevrey, that is
there exist constants C, M > 0 such that
IK, || < CM™n!e,

where ||-|| is a norm in R*¥9,
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We emphasize that any C* function K : [0, p) — R'T? satisfying the invariant
equation FloK = KoR, has the Taylor expansion K which, by Theorem 2.3, is an
a-Gevrey formal power series. Notice also that the dynamics on a C'°° parabolic
manifold can be reduced (via C*° transformation) to a polynomial R thanks to the
results in [34].

The following result deals with the existence of a real-analytic parameteriza-
tion K of a parabolic manifold which it turns to be a-Gevrey at 0. We state the
theorem for the case of a (weak) stable invariant right branch, i.e. a > 0, under
the assumption that the dynamics in the complementary directions is not linearly
asymptotically stable. We emphasize that those complementary directions can con-
tain eigenvalues of modulus 1. In such a case, the theorem constructs a parabolic
manifold which is a weak stable invariant manifold inside the center manifold. An
analogous result is enunciated for a (weak) unstable invariant branch. In the theo-
rem we state both results for the right branch, but they also hold for a left branch
with minor changes.

Theorem 2.4. Assume that a > 0 and SpecA C {u € C | |u| > 1} \ {1}. Then,
for any 0 < B < arm there exist p > 0 small enough and a real-analytic function
K : (0, p) — R which can be holomorphically extended to a complex sector

S=S8(B,p)={t=re¥eC|0<r<p, el <p/2}

such that
FoK = KoR

in the sector, where R is the polynomial produced in Theorem 2.3. Moreover the
parameterization K is asymptotic a-Gevrey to the expansion K produced in Theo-
rem 2.3, which implies that
1
lim —D"K(t) = K,.
$3150 7l ®) "
In particular, K can be extended to a C* function at 0. Moreover, the dynamics
in the local invariant manifold

W = {K(t) | t € [0,p)}

is (weak) asymptotically stable at 0.

Analogously, if we assume a < 0 and SpecA C {u € C | |u| < 1} \ {1,0},
then there exists a real-analytic function K satisfying FoK = KoR, that is the
parameterization of a (weak) asymptotically unstable manifold W™ at 0.

As a result, in both cases, either W™W® or W™" are parabolic manifolds.

Remark 2.5. We emphasize that the opening of the complex sector S(f, p), which
is the angle (3, is bounded by m/(N — 1). That is, the opening is related with the
degree of degeneracy of the fixed point.

Notice that in the previous theorem the result about the existence of a (weak)
unstable branch can also be obtained solving the functional equation F~'oK =
KoR. This is just to apply the first part of Theorem 2.4 to F~1.

In the following result we consider the uniqueness problem of the (weak) stable
manifold constructed in the previous theorem. We prove that it is unique under
the assumption that the complementary directions are linearly unstable. Again, an
analogous result is stated for the uniqueness of a (weak) unstable manifold.
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Theorem 2.6. (a) Assume that a > 0 and SpecA C {u € C | |u| > 1}. Then, there
is a unique right branch of center manifold, and it is (locally) W™*, the parabolic
manifold produced in Theorem 2.4.

(b) Analogously, if we assume a < 0 and SpecA C {u € C | |u] <1} \ {0}, there
is a unique right branch of center manifold, and it is (locally) W™, the parabolic
manifold produced in Theorem 2.4.

We notice that if we consider the holomorphic extension of the real-analytic dif-
feomorphism F' to a complex neighborhood of 0 in C'*¢, the complex domain of the
parabolic manifold we find vaguely resembles one of the so-called petals appearing
in the Leau-Fatou flower theorem (see, e.g., the reviews [24, 1, 7]). In this context
of holomorphic dynamics we also emphasize that, in some sense, Theorem 2.6 com-
plements results of Hakim [?] (see again [1, 7] for related results), in which it is
proved that there exist attracting domains for semi-attractive holomorphic trans-
formations of C'*9 (case (b) above). What we prove is that in such a case there
exist a (weak) unstable manifold, which is of course outside these basins of attrac-
tion. It should be interesting to extend our real-analytic results to the context of
holomorphic dynamics.

Finally we present a corollary about the conjugation of tangent to the identity
real-analytic one dimensional maps. We prove that the conjugacy is a-Gevrey and
analytic in a complex sector which does not include the origin. This result is related
with the C°° results given by [34]. In [35] the problem is studied in the holomorphic
category for the case N = 2. Related results appear in [13].

Corollary 2.7. Let f(z) = z—az™ + f(z) be a real-analytic map in a neighborhood
of 0 in R, where a # 0 and all the derivatives off up to order N vanish at 0. Then,
f is (locally) a-Gevrey conjugated to a polynomial map R(t) = t—at™ +bt>N =1 and
the conjugacy is real-analytic except possibly in 0, and it is analytic in a complex
bisector —S(8, p) US(8, p) with 8 < am . In particular, the conjugacy is C*° at 0.

Remark 2.8. We observe that this conjugation result says that formal conjugacy
is equivalent to real-analytic conjugacy in bisectors of the form —S(3, p) U S(53, p).
We recall that an analytic map f of the form f(z) = = — az™N + f(x) as above, is
formally conjugated to g(z) = x + 2V + Bo?N 1, see for instance [34, 2].

Proof. Notice that there exist a formal power series K “(t) and a unique polynomial
R(t) such that foK*(t) = K®oR(t).

For the conjugacy in the right branch, if a > 0 we take a constant A > 1 and if
a < 0 we take a constant 0 < A < 1. In both cases, we consider the 2D map F' given
by F(z,y) = (f(z), Ay). Applying Theorem 2.6 to F, we get a parameterization
of the right branch of the center manifold K (t) = (K%(t),0) for t € S(3,p). In
particular, we have foK?Y = KYoR, and therefore f is conjugated to the polynomial
R in a sector S(f3, p).

For the left branch, we perform a change of variables + — —x and we repeat
the previous argument to the function f (z) = —f(—x), obtaining a conjugacy K i
defined in a sector S(f, p). The reduced polynomial we obtain is R(t) = —R(—t).
Hence, foK?(t) = KoR(t) for t € —S(3,p), where K (t) = —K%(—t).

The conjugacy ¢ in then defined by ¢(t) = K% (t) if t € S(8,p) and by ¢(t) =
K*(t)ift € —S(8, p). Both branches of ¢ are asymptotic a-Gevrey to the expansion
K * and hence they are C> at 0. Moreover, the left and right derivatives at all
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order coincide: D'K?(0) = D'K®(0) = [!K}. In summary, ¢ satisfies the properties
stated in the corollary. O

3. The formal solution of FFo K — K o R = 0. In this section we will prove
Theorem 2.3. First of all, in subsection 3.1, we prove that there exists a formal
solution of the invariance equation F o K = K o R being R a suitable polynomial.
To do that we match powers in t. We also give a recurrence formula to compute the
coefficients K; of the formal solution K= En>1 K;t'. The main key to obtain this
recurrence formula will be the Faa-di-Bruno for formal power series formula given
n (2.8). Later we will prove that the formal expansion is actually a-Gevrey. This
is done in subsection 3.2.

It will be useful for the arguments to separate the leading term L(x,y), see (2.4),
from the higher order terms G(z,y) = F(z,y) — L(x,y).

3.1. Construction of the formal solution. The goal of this section is to prove
the following proposition:

Proposition 3.1. There exist a unique b € R such that for any ¢ € R there exist
a unique formal power series K = Y75 Kit', K; € R with K; = (1,0)7 and
K% = ¢, such that R(t) =t — at’ + bt>N =1 and K satisfies formally the equation
FoK — KoR =0.

Moreover, the coefficients of K and R can be computed inductively. In the step
I>1,

o Ifl#N: K/ =—(A-Id)'E}, K} =

0;
e Ifl=N:K{{=—(A-1d)'EY, K =c, b=Ron_1 = Ein_; +v K¥;
where

-1

m(EﬁrN—l"‘UTsz), Riyn_1=

1 I—N+1 k
25 S0 SRNCTNSU AT SIS SR | LAY
R=2 = k=2 Lteotlp=l =1
1<1;<1—1 1;>1

and
I+N—1

N
Efin_1=—a > [Txe+ > > Gy, K]

Lt tln=l4N—1 =1 k=N =14 N-1
1<l;<l—1 1<l;<i—1

-1 k
- K} > IR (3.2)
k=2

Ltfle=l4N—1 =1
1;>1

Proof. We will prove first that the error E' in the order [ approximation K < is

N+I
El(t) =FoK(t)— K< oR(t) = ( %((ttl—rl)) ) ) (3.3)

First notice that K<1(t) = (t,0), R<y(t) =t — at¥ satisfies

E'(t) = Fo K< (t) — K<i1 0 Ren(t) = ( Ogé\;:)l) ) 7
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so (3.3) holds for I = 1.

Now we proceed by induction. Let [ > 2, and assume that there exist polynomials
K of degree I — 1 and R4 n—1 of degree [+ N — 2 such that the error in the step
l—1is

_ O tNJrlfl
E"''=FoK —-KsoRo N 1= ( (O(tl) ) ) . (3.4)

We want to find K; € R and R;;y_1 € R such that Ko = Ko + Kttt and
Repyn-1 = Reppn—1+ Riyn—_1t! V1 satisfy (3.3). For that we introduce H;(t) =
Kt and Spyn_1(t) = Riyn—1t¥ =1 and we compute

FO Kgl - KSI ] RSlJerl
= B! 4 (FoK<; — FoK_; — DF(K)H,) + DF(K ) H, (3.5)
— (K<joR<jyN-1 — K<ioRcjyn—1) — HioR<j4 N1

up to order [ + N — 1 in the z-components and up to order [ in the y-component.
Now we are going to compute the different terms in (3.5). We have that

-1 B Elm+N71tl+N_1 O(tl+N)
ETN(t) = ( BVt + oty )

Pokalt) - Pk at) - DR () = (i) ).
—a N—-1 x4l UT Yl+N—1 I+N
DF(K(t))H(t) = ( (1—aNt )i(thlyt-lF ke ) + ( %((2111; ) )

R _ tl+N_1 O tl+N
K<joR<iyn-1(t) — K<io Rayn—1(t) = e + ( l+N) ,
0 O(t+)
and
HioRoppna(t) = (t —ath + OtV ) K, = Kit' — al Kt ™V =1 + O ().

Henceforth we obtain that

EY(t) = (Ef y_1 +a(l —N)K} +v" K/ = Rign_q1) tN1 N O(t+N)
(B} + (A=Td)K})t! :

Then, in order to satisfy (3.3), we take
-1

Ifl#N: K} = —(A-1d) 'E}, K} = ———
i 7é l ( ) 1 l a(l _ N)

0;

e IfI=N: K} =—(A-1d)"'EY, K§ =c¢, Roy—1=E n_; +v K.
We denote b = Ron_1 and then R(t) =t — at’ + bt2N~1. We also emphasize that
in the step N the term K7 is free, and we fix it equal to c.

We will prove now the formulae for Ely and Ef+ N_1- First, notice that Ely is the
term of order [ of m, B! =1 = FYoK —KY0Rc1yN_1,s0 that B} = Dy E'=1(0)/1..
Applying Faa-di-Bruno formula we obtain:

l -1 k
B =YY FK. K]S K} > [[R.. 36
k=1

k=1 = = Ltotl=t =1
1<(;<l—1 1<l;<I+N—2

(Bfin_1+v KV), Riyn_1 =
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In the first term, if £ = 1 the summatory vanishes, and notice that for k£ > 2
F! = GY. In the second term, K{ = 0. Then, for k > 2, if l;, > | + N — 2 we would
have [ > 1+ N — 2+ (k—1) =1+ N + k — 3, which is false. So, we have:

k k
Z HRM = Z Hle = Rk,l

b4+l =l i=1 L4 +lp=l =1
1<l;<I+N—2 1<l

Notice that Ry is the coefficient of thin
R)* = (t —at™ + o2V "1k =% — gtV TR

and in particular, R =0if k<l < N+k—1. Asaresult,2<k<[—-N+1in
the second term of (3.6). So, we have proved (3.1).

It only remains to prove (3.2). We proceed in a similar way as before. Again, no-
tice that B, \y_, is the term of order [+ N —1 of m BT = F*oK g —KZoR i yN-1.
Applying again Faa-di-Bruno formula, we obtain

xr
EH—N—l
I+N—1 -1 k
= D R LD D T DR I £
k=1 =1t N—1 k=1 Liteflp=l4N—1 =1

1<l<i-1 1<l <I+N -2

(3.7)

Since F*(z,y) = = — az™¥ + G*(x,y), then for k = 1,... N — 1 the summatory in

the first term of (3.7) vanishes, and the whole term can be replaced by

N I+N-1
—a Z HKlml—i_ Z Z Gi[Khv"' 7Klk]-
Lt Hy=l4N-1 = F=N =14 N1
1<l<I—1 1<l;<i—1
Finally, in the second term of (3.7), notice that if k = 1, then [y =14+ N —1 >

I+ N — 2, so the corresponding summatory vanishes. We obtain then (3.2).
With these lines we finish the proof of Proposition 3.1. O

3.2. Gevrey estimates. In this section we prove that the formal expansion K
given in Proposition 3.1 is a-Gevrey. First we perform some change of variables
and scalings to get some suitable conditions.

3.2.1. Preliminary changes of variable and scalings. The next lemma provide us a
change of coordinates in such a way that the new parameterization of the (formal)
parabolic manifold is flatter than the original one.

Lemma 3.2. We define the change of variables
(z,y) = H(u,v) := K<y-1(u) + (0,0)
where K<n_1(u) = E;V;ll K;u/. In these new variables:

I. F=H 'oFoH has the same form (2.2) of F'.
2. The formal solutions of F'o K — K o R =0 obtained applying Proposition 3.1
to F satisfy

Kit)=t0T+0Y), and R(t)=t—at +bt*N !
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3. b="0, so R(t) = R(t).
The proof of this lemma is straightforward.

Remark 3.3. It is clear that, if K(t) = Y272, K;t7 is a-Gevrey, then K(t) =
>ooy Kt/ is also a-Gevrey.

Now we are going to perform adequate scalings in order to get the constants a
and b small enough. We also obtain a simpler Gevrey condition for the first terms
of the series K.

From now on, for § > 0, we denote by B(6) the closed ball of radius ¢ centered
at the origin of the complex plane.

Lemma 3.4. Let ) be such that B(0) is contained in the complex domain Uc of F.
Let G = F — L and M = max, 5 |G(@,y)]-

For allly € N, ag > 0, 69 > 0 and & > 0, there exists A := A(lo, v, do, &, 6) >
0 such that the functions F(z,y) = \F(\~ 196,)\ L), G(z,y) = A\GA 'z, A" 1y),
R(t) = AR(A\"Y) and K (t) = AK(\"1t) satisfy the following properties:

1. F has the form (2.2), and its domain contains a ball B(8), with 6 = A5 > do.

2. Let M = max ||G(z,y)||. Then M = AM and hence |G| < AM6—* for
(z.y)€B(6)
all k> 0.

3. ||Kl|| < (1N for all N <1< ly. Moreover, K; =0 f2<I<N-1

4. R(t) =t — atN 4+ o>V 1 with @ = A" Nt'a # 0 and b = A\"2N*T2b. Moreover
la| <e.

5. Formally we have that

FoK—-KoR=0. (3.8)

We note that o := [;% is invariant under scalings like the given in Lemma 3.4

In order to prove that the formal power series K is a- Gevrey at 0, we will check
that K satisfies such condition. To do that we will apply Proposition 3.1 to the
map F to get an inductive formula for the coefficients K;.

First of all we provide some technical lemma which are given in section below.

3.2.2. Preliminary bounds. We define

k
Rep= > ]|k

ligeotly=p 1
1;>1

We note that in formulae of Proposition 3.1 for K i and K ;/ are involved sums of
the form KPRy, and f(,‘ngW, with v =1+ N — 1 and v = [, respectively. The
following lemma, give us a bound of these sums if we assume that ||K|| < (k!)*
(which will be the case when we will proceed by induction).

Lemma 3.5. Let

k
Rk,u = Z HRlz ) Jli,u = (k!)aRk;V'

ligetlp=p =1
1;>1
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We have that:
v—k

N
N_1°<

[ Jiol < (v = N+ D)% =mN + 1)fa|™ (1 + |o)™/2, if m:=

_ b . 1 _
where o = - Otherwise ']k,u =0.

Proof. Since Ry, is the coefficient of t” in (t — at™ + bt2N—1)¥, then

k! N
Ry, = Z (_a)mzbms'
’ mllmg!mgl
mi+mot+ms=k

mi1+Nmao+(2N—1)ms=v

The indices ma, m3 in the formula has to satisfy (N —1)mg+2(N —1)mg = [—k, that
ismo+2ms =m = (v—k)/(N—1) € N. Henceforth Ry, =0if (v—k)/(N—-1) ¢ N
and otherwise

i V_ (N_ 1) ) ( d)m72m3(~)m3'

(v —mN +m3)!(m — 2ms)lms! "

Then, since

v—(N=-1m) (v—(N-=1)m)! .
< < _ _ _
(v—Nm+m3)! = (v—Nm)! <(v—(N-1)m) (v—Nm+1)
and
0 (m — 2mg3)'ms!
(%] P
<Ja
<lar Z: ([m/2] - mg)'m3' a?
mrylal™ (1 + |o])™/2,
[7]
therefore,
1
Rirl € Ty = (V= Dm)™ 20 = Nm+ DAL+ o)™ (39)
7 .

We are now to bound J; . Notice that, since k = v — (N — 1)m, then
1
il < W(V — (N = Dm)!*(v = (N = )m)"™ (v = Nm + D)™ (1 + |o])™/?
7 .

The proof of Lemma 3.5 follows from

(v = (N = 1)m))* (v — (N = m)™~" _ (v — (N — Dm)™
(v — N+ 1)) (v—N+1)-(v - (N—l)m+1)]
(v— (N —1)m)™~
- (v = (N =1)m+ 1)m-DN-Da <1

where we use that a = ﬁ |
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In order to make estimates of the norms of K i and f(ly computed in the [ step
of the construction given in Proposition 3.1, we have to estimate

Z ||Kl1||||KlkH7

Lt =v
1<l;<v—1

where, again, v = [+ N — 1 and v = [. In the induction arguments, we have to
estimate such a sum assuming that || K7, || < ({;!)®. Notice also that we assume that
Ko =...Ky_1 =0, by Lemma 3.2.
Lemma 3.6. We denote
My, = > (1) - e
Li+-+lpg=v, ;>N
We have that:
My, < ((v—k+1D)*N*1 f kN <w.
Otherwise My, ,, = 0.
Proof. Obviously, if kN > v, M, = 0. Let us assume that kN < v. It is easy to
see that, if a,b, ¢ € N with b < ¢, then (a+b)!c! < bl(a+c)!. We fix ly,la, - ,lxp > N
such that [; + - - - 4+ = v and we use the previous property to bound /;!l5! in such
a way that, since [; > N,

Il = (lh = N+ N)lip! < NIy + 1o — N)L.
Analogously,
1N < NIy 41y — N)Us! = NIy + 1y — 2N 4+ N)l5! < (N2l + 1y 413 — 2N)!
and applying this procedure recursively we get
ol L < (NP Y4+ 41 — (k= 1DN)! = (N1 (v — (k= 1)N).
On the other hand it is clear that
#h+-+l=v,1;,>N}

=#{mi+---+mp=v—kN, m; >0} = (V_kN+k_1).

k-1
Henceforth

Mk,z/ < (N!)a(k—l)((y — (k _ 1)N)|)a (V — kN + k — 1)

k—1
<N (v —(k=1)N))*( — kN + 1)1

(v — kN + 1)1
(v — (k= 1)N + 1)a(N=1)(k-1)

< NFY(v —k+ 1))

< NFY(w—k+ 1)),

and the proof is complete. O
Lemma 3.7.
1
JE, = S (e W)™ < (1 + NF (v —k+1)H)*. (3.10)
L1t +lp=v

li:]. or lZZN
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Proof. For k = v, JZ, = 1 and the bound is obvious. Assume that 0 < k < v.
Then,

k—1

k—1
k k « —i— « (1 + N)k
JE, = Z; <i>M,H,H- < Z (i)(y—lﬁ—l)! NE==L < (y—k+1)! —
and the proof is over. O

3.2.3. The formal solution is a- Gevrey. We prove Proposition 3.8 below which finish
the proof of Theorem 2.3.

Proposition 3.8. Let o = 2(1 + N),

. 1 1
E_mln{wl Tl ||<A—fd>1|’4<1+|a|>}

and

. - 2 2M

lo > AMS (A= 1)) TN+ S+ N (14 S 3.11
(where the constants §, M are defined in Lemma 3.4).

The formal solution K = Zj’;l K;t? of the equation Fo K — K o R =0 with F
the map of Lemma 3.4 with constants ly, ag = v, 0o, €, satisfy that || K;|| < (j1)* for
all j > 0.

Proof. By Lemma 3.4, ||[K;|| < (I!)* for all | < Iy with [y satisfying the condition
(3.11) of Proposition 3.8. We proceed now by induction. Let [ > [y and assume
that for all j < — 1 we have that ||K;|| < (j1)°.

First we deal with K. From Proposition 3.1, K} = (A—1d)~(H} — H?), where

I—N+1 l
Hi= Y KR, H=) >  GlK, - K]
k=N k=2 _
it Flp =l

1<l;<1-1
Notice that KY = --- = K¥_, =0, by Lemma 3.4.) On the one hand, by Lemma
2 N-1
3.5,
I-N+1 [%27]
IH < Y (D% Rial < (= N+DY* Y (1= mN +1)(laly/1+ o)™
k=N m=1

< (L= N+ = N +1)2]aly/1+ o,

where we assume that |a| < e with \/1+[o] e < 3, which is implied by the hy-

pothesis ¢ < of Proposition 3.8. Moreover, since & = 1/(N — 1), we have

that

1
4(1+[e])

(=N+D)"a-N+) <) _zN—in;gNl) < e
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On the other hand, by Lemma 3.7 and Lemma 3.4

l l
[HP < AM Y " 67F T2, < AM Y 67 (1 -k +1))* ! (14 N)*

where we assume that Y < %, and use that 6 = \d. In summary,

ol§

(W)~ K| < 20)(A — 1) (m ol + %) <1,

because 2[(A —Id)7!|\/T+]o] e < 3 and 2|[(A — Id)~!|Mé g™ < 1 by the
hypotheses of Prop031t10n 3.8.

Now, we deal with R’l”” Again from Proposition 3.1, Kl”” =C} + C} — C} with

Gl == > HKl ,cl_fZKkRle
Litotly=l+N—1 =1
1<1;<1—1

I+N-1
1

m Z Z éi[Rll7""le]a

k=N =4 N1
1<1; <1

C} =

where in C} we use that K§ = --- = K% _, = 0 by Lemma 3.4 and that IN(ly is
already known. We notice that, using Lemma 3.7,

1
S 3 (I Iy <
L+ +Hny=l+N-1
Li=1 orN<I;<l—1

IC}| <

To bound |C?| we use Lemma 3.5 and we get

-1

|C?| < Z )Ry i—N+1

71]
1 « ~ MM m
S5 mZ:;(“) (1= N(m—1))la|™ (1 + o)™/

§ﬁ2|d|2(1 + |o))(AH* = 2/a|(1 + o) (1D,
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where we assume /1 + |o]e < 3. Finally,

— I+N-1
AM ~
Pl <— S I?
| l| _|d|(l—N) k:ZN kJI+N—-1
— I+N-1 k
AM 1 /[1+N
S l—|—N—l€!°‘—(—~ >
- 2 WS (5
AM 1, (1+N\" 2M 14+ N\"
<oy (5N < (255) e
ai-m N, PISCEANE.
where we assume that Y < 3 and we use that @ = M ~Va and 5§ =M. In
summary, we obtain the bound
~ 1 2M 1
™YK < 2(1 —(1+NY 1+ ) —= <1
@ IRE < 200+ oo+ 0+ 0 (14 255 ) g <,
because 2(1 + |o|)e < 3 and & (1 + N)V (1 + \3\]?N) loiN < 1 by the hypotheses

of Proposition 3.8.
With these lines we are done with the proof of Proposition 3.8, and so the proof
of Theorem 2.3. O

4. The solution of F o K — K o R. In this section we will prove Theorem 2.4.
In fact, we will give all the details of the proof for the stable case in which a > 0
and the eigenvalues of A are all of them of modulus not smaller than 1. At the
end of this section, we will indicate the minor changes to prove the Theorem in the
unstable case.

We will see that the formal solution K obtained in Theorem 2.3 is the a-Gevrey
asymptotic expansion of a real-analytic function K defined in a sector S, and K is
a parameterization of a one dimensional invariant manifold of F'. As a result, K is
C* in a interval [0, r), and real-analytic in (0, 7).

We recall also that a = ﬁ We also denote by Uc the domain of the analytic
extension of F' to the complex numbers.

4.1. The action of R on sectors. In this short section we are going to study how
R maps sectors of small enough opening (3 (see Appendix A) of the complex plane.
For the sake of completeness, we will consider a more general case.

Lemma 4.1. Let R(t) = t — at™ + b(t)tV*! be an analytic function defined in
a neighborhood of 0 in C, where a > 0, N > 2 is an integer number and b(t) is
analytic. Let B < am be an opening. Then, for all p small enough the function R
maps the sector S = S(, p) into itself. Moreover, for allt € S,

[R(1)] < [t1y/1 — acos AV, (4.1)
where A = (N — 1)% In fact, R maps any closed subsector S, C S into itself.

Proof. Let us write R(t) = tR(t), with R(t) = 1 — atN~1 + b(t)tN. In order to
obtain (4.1) we have just to bound R for points ¢ = re'¥ with |[t| = 7 < p and
(N —1)¢| < X\. We write R(t) = 7#e'?, so that R(t) = rie!(#1%),
Hence
72 =1 —2acos((N — 1))r¥ =t + 02 N=1),
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By taking p small enough (depending on a, b and \), we obtain 72 < 1 —acos A\rN !
and the bound (4.1).
We also obtain tan ¢ = —asin((N — 1)p)r¥=1(1 + O(rV~1)), so

¢ =—a(N - Der¥ 11 + 0N 1),

Again, by taking p small enough ¢ < 0 and |@] < |¢].
In summary, for p small enough, the points of the sector S = S(3, p) are mapped
into itself. In fact, any closed subsector S; C S gets mapped into itself. O

4.2. A quasi solution. Let K the formal solution obtained in the previous section.

Proposition 4.2. Let § < arm be an opening. For all p small enough, there exists
an analytic function K. : S = S(B,p) — Uc € C**¢ such that

(a) K is the a-Geuvrey asymptotic expansion of K,;

(b) The error function E = FoK, — K.oR is exponentially small in S of order «.
That is, for a given norm ||-|| in C*4, for every closed subsector Sy C S there exist
positive constants C, M and c, k such that

(a’) for anyn >0 andt € Sy, |[Ke(t) — K<n(t)|| < CM ™0l [t|~";

(b?) for anyt € Sy, ||E(t)| < cexp (—/@|t|7(N’1)).

Proof. The existence of a function K, such that K, &, K in a sector S = S(8,p)
is guaranteed by the Borel-Ritt-Gevrey Theorem (see Theorem A.4). Notice also
that, by Proposition A.2,

i (M) (1) — 1l
SlalggoKe (t) = nlK,. (4.2)

In particular, K.(0) =0 € Uc. So, making p small enough, we can also assure that
the image set of K, is included in the (complex) domain of F', and that R maps the
sector S to itself, which is the domain of K,.

An straightforward application of Faa-di-Bruno formula assures that the function
E is a-Gevrey in S (in fact, is a well known result that the composition of Gevrey
functions is also Gevrey). By the formal construction in Theorem 2.3 and (4.2) we
obtain that

lim E™(t) = 0.
S5t—0

Again by Proposition A.2 we obtain that F 22, 0, where here 0 means the formal
series with all the coefficients equal to 0. The exponentially small estimate of E
comes from Proposition A.5. O

4.3. The invariance equation. We will solve first the invariance equation in the
stable case. So, let us assume a > 0 and the spectral radius of A~! is not greater
than 1.

We will fix now a closed sector S1 C S(83, p), so the conclusions (a’) and (b’) of
Proposition 4.2 are satisfied, in particular that there exist positive constants ¢, x so
that [|[E(t)]| < cexp (—/1|t|’(N*1)) in S;. We emphasize that x does not depend on
the norm |[|-||.

Since K. is a quasi-solution, we will look for a “flat” and real-analytic function
H :S; — C' such that

Fo(K.+H)— (K.+H)oR=0. (4.3)

(3 %)

Let
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By writing N(z) = F(z) — Az, notice that (4.3) is equivalent to the fixed-point
equation
H=-AYE+No(K.,+H)-NoK.,— HoR) (4.4)
The Banach space in which we will consider (4.4) is

X ={H:5, U{0} - C"| continuous, real-analytic in S; and || H|/x < oo},
(4.5)
where
|H L = sup || explslt = D) H ()] (4.6)
teS,

In order to prove that the RHS F(H) of (4.4) is contracting, we have to con-
trol all the terms. In particular, since N(0) = 0 and DN(0) = 0, we can make
INo(K.+ H)— N o K.|| very small compared with H. The crux point in then to
control H o R, which is provided by the following estimate.

Lemma 4.3. )
||HOR||X < e—gzm(N—l)cosAHHHX'

Proof. From
|HoR|lx = sup (e | HoR(1)|) = sup (<0 RO gy )
tes) teSy
and, using Lemma 4.1,

N—1
2

HK&T*N;l)2|tr{N_1)(l—acosAﬁﬁN_”)i

1
> [t~V (1 + @ Ccos )\|t|(N1)>

= [t|” V=1 4 (N —1)acos A

N =

we obtain the estimate of Lemma 4.3. O

Proposition 4.4. Taking the radius r of S1 small enough, there exvists H € X
satisfying the equation (4.4).

Proof. In a given closed sector S; C S(8, p), we recall that the error E of the quasi-
solution K. is exponentially small of Gevrey order a = ﬁ and constant k (see
Proposition 4.2). We emphasize that x does not depend on the norm chosen to
make the estimates.

Since the spectral radius of A~ is 1, we can find a norm ||| in C'*% so that

I = HA71||€7%GK(N71)COS>\ <1, (47)

which makes contracting the term A~'HoR of (4.4).
Since N(0) = 0 and DN(0) = 0, there exists ¢ > 0 small enough so that for all
z € C1*4 with ||z|| <6, z € Uc and
- 1-L
IAZHHIDN ()] < —5— (4.8)
Let us also define

o 277
— 1A Y I|E =_-' 4.
n=IA" Bz, s = =5 (4.9)

Finally, let us take also the radius 7 of the S; so small that:
o forallt e Sy, [|[K.(t)| < &
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o s exp(—rr~N-D) < &,
With this election of the radius r, we claim that the operator
F: Bx(s) — Bx(s)

H — —-A Y YE+No(K.+H)-~NoK.,—HoR) (4.10)

is well-defined and contracting in the closed ball of radius s and centered in the
origin of X, Bx(s).
First, notice that for H € Bx(s), and for all t € S,
IH ()] < exp(=rlt =N V) | Hl|x < exp(—rlr|" ¥ V)s <

N

So, we can make the compositions involved in the definition of F(H).
Moreover, for all Hy, Hy € Bx(s),

| F(Hs) — F(Hi)llx
<|A7Y (INo(K. + Ha) — No(K, + Hi)|lx + ||(Hz — H1)oR| x)

< <||fll|| i, IDN(2)|| + IIAlle%““(N”CO“> [ Hy — Hi|x
2lI<

1
§§(1 + L)||Hy — Hy||x-

In particular, for all H € By (s),
[F(H)lx <[[FO)|[x + | F(H) — F(O0)]lx
1-1L 1+ L
S+ 5

1
<n+ 5L+ D)|Hllx < s=s
so F(H) € Bx(s).
Hence, we have proved the claim that F maps the closed ball By (s) into itself,
and that it is a contraction there, with Lipschitz constant %(1 -+ L). The fixed point
H satisfies (4.4). O

With the proof of Proposition 4.4 we are done with the proof of Theorem 2.4 in
the stable case.

Let us consider briefly now the unstable case, that is a < 0 and the spectral
radius of A is not greater than one. It is clear that the formal power series K
satisfies (formally) F~1oK = KoR™ ! By Lemma 4.1 the function R~' maps a
sector S(3, p) into itself. Hence, following previous arguments, one can deduce that
there exists an analytic function K. in a sector S(/3, p), such that K is its asymptotic
a-Gevrey expansion and the error £ = F~1oK, — K,oR™! is exponentially small
(Proposition 4.2). From now, all the arguments in the stable case apply now in the
unstable case, changing F by F~' and R by R~'.

5. The uniqueness of the parabolic manifold. In this section we will prove
Theorem 2.6. We only deal with the stable case, being the unstable case analogous.
In particular, we will prove that the parabolic manifold, the right branch of center
manifold, is uniquely determined by the parameterization K founded in the previous
section. The main assumption is that the dynamics in the y-direction is strongly
repelling, that is specA C {u € C : |u| > 1}. Hence we fix a norm in R? such that
Al > 1 and ||A7!|| < 1. We define the norm in R'*? by ||(z,y)|| = max{|z|, |y|/}.
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We will follow the scheme presented in [23, 5] to prove that the (weak) stable
invariant manifold is actually the graph of a suitable function.
For h,p > 0, we define the cone

C(h,p) ={z=(z,y) eR'":0 <z <h, |ly| < pz},
which is a convex subset of R1t2. We also define the sector

S={¢=(&n eR™ :[¢] < [nll}-

From now on we will take p < 1 so that ||(z,v)| = |z| if (z,y) € C(h,p). Now
we are going to prove a technical lemma, which will be used as an induction step.

Lemma 5.1. For all h,p small enough, the cone C(h,p) satisfies the following
properties:

1. There exists a constant M > 0 such that for all z = (z,y) € C(h,p)

0 < n®F(z,y) < z(1 - MzN1h).
2. Let 21,29 € C(h,p) such that zo — 2z, € S. Then
F(z2) = F(z1) € S and  |[7¥(F(22) — F(21))l| = [|7¥(22 — 21)-
Proof. We recall that the map F' can be expressed as
z+ fn(@,y) + fona(z,y) )
F = =
(=:9) ( Ay + g>2(,y)
with R .
fN(xay):_axN+fN($uy)7 a>07 fN((E,O):O

Since fN is an homogeneous polynomial of degree N and fN(:v,O) = 0, there
exists a positive constant C' such that fx(x,y) < Clly| ||(z, )| ~!. Moreover,
since all the derivatives up to order N of f> 41 vanish at zero, for any € > 0 there
exists h > 0 small enough so that |f>ny1(z,y)| < el|(z,y)||V for ||(z,y)] < h.
Hence, for all points (z,y) in the cone C'(h,p), with p <1, we have

T F(z,y) =2 — az™ + fn(2,9) + fonia(z,y)
with R
[fn(z,y)l < Oplal™ and |foni(e,y)| < elal

The first item is proved taking p and e small enough.

Now we deal with the second item. Let 21,22 € C(h,p) such that ( = 20—z € S.
By the mean’s value theorem, we have that

1
F(z)—F(z) = / DF(z(t))(z2 — 21) dt,
0
where z(t) = 21 + t(z2 — z1) € C(h,p) for all t € [0, 1]. Notice that,

(10 O(l=IN=1) O(|l=IN 1)
DF(Z)—(O A>+( O(|12) O(lI=l)) )

Moreover, since ¢ = (&, n) satisfies [£] < ||n]], ||| = |[nll- Then, using that ||z(¢)| =
|7 2(t)| < h, there exists a constant C' satisfying

1 1
/0 T DF(z(t))C dt S/O (Il + Cll=z®IM M Ich) dt < (1 + ChY=1) |Inl.

1 1
/ wyDF<z<t>><dtH > lan] = [ 1= DFG)E - Al di > (1A~ = Cn) o]
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Henceforth, taking h small enough F(z1) — F(23) € S provided that ||[A7Y < 1.
Moreover,

17 (F(22) = F(z0) | = (IATHIT = Ch) [lnll > [[7¥ (22 = z0).

The next result follows from induction arguments.

Lemma 5.2. Let C(h,p) be the cone of Lemma 5.1. We have that:

1. If z belongs to the parabolic manifold then F™(z) € C(h,p) for all n > 0.

2. If z € C(h,p) and for alln >0 F"(z) € C(h,p), then lim F"(z) = 0.

3. If z1,22 € C(h,p) such that zo —z € S, and for alln > 0 F™(z1),F"(z2) €
C(h,p), then z1 = 2.

Proof. We prove that if (z,y) belongs to the center manifold, then (z,y) € C(h,p).

Since
1 0
proa=( 1 %)

the origin has an unstable manifold which is tangent at the origin to the vector
(0,1) " and the center manifold which is tangent at the origin to the vector (1,0)"
(of course the center manifold could not be unique). It is clear that the parabolic
manifold is one of the branches of the center manifold, hence it is tangent at the
origin to the vector (1,0)" and the claim follows trivially. Finally we note that, if
z belongs to the center manifold, then F"(x,y) also satisfies this condition, for all
n > 0 and henceforth, by the previous claim, F"(z,y) € C(h,p) for all n > 0.

For 2., let us consider the sequence z, = (zn,yn) = F"(2) € C(h,p). For 1. of
Lemma 5.1, the sequence of positive numbers z,, is strictly decreasing and then it has
a non-negative limit, say ... Moreover, from the fact that z,1 < 2, (1 — foy_l)
it follows than the limit is 2o, = 0. Since for all n we have ||y,|| < pz,, then the
sequence ¥, goes to zero when n goes to co. In summary, lim F"(z) = 0.

For 3., notice that both sequences F™(z1) and F™(z3) go to the origin of R1+9.
Notice also that from 2. of Lemma 5.1 we obtain that for all n > 0 F™(z2)—F"(z1) €
S and that the sequence ||7¥(F"(z2) — F™(z1))|| is increasing (and converges to 0!).
So m¥z9 = m¥z. Finally, since zo — z1 € S, then |7% (22 — z1)| < ||[7¥(22 — z1)|| = 0,
SO Z21 = Z2.

We are now ready to prove the following uniqueness result, which is a corollary
of the previous lemma.

Proposition 5.3. There is only one right branch of center manifold, Moreover,
this parabolic manifold is a (weak) stable manifold of the origin.

Proof. We observe that applying Theorem 2.4, we already know that for any « €
(0,7) there exists at least one y; € R™ such that (x,y;) belongs to the center
manifold. Indeed, this is due to the fact that 7% K is invertible, hence there exists
t such that = 7 K (t) and therefore y; = 7Y K (t) satisfies that (z,y;) belongs to
the center manifold.

Let us assume that there exists « € (0, h) such that there are y; # yo satisfying
that (z,y1), (x, y2) belong to the center manifold. Let z; = (x,y1) and 22 = (x, y2).

We notice that by 1. of Lemma 5.2, F"(z1), F"(22) € C(h,p) for all n > 0.
Moreover, by 2. of Lemma 5.2 lim F"(z;) = 0. Obviously, we also have lim F"(z3) =
0.



318 I. BALDOMAA AND A. HARO

Since zo — z1 = (0,y2 —y1) € S and for all n > 0 F"(zy1), F"(22) € C(h,p) then,
by 3. of Lemma 5.2, 21 = z5. So y1 = y» for all 0 < = < h, and both branches
coincide. O

Remark 5.4. We emphasize that the uniqueness result stated in Proposition 5.3
holds under the assumption that F'is O™, with r > N.

Appendix A. Some elementary facts on Gevrey asymptotics. In this paper,
we deal with asymptotic expansions of real-analytic functions which can be extended
to analytic functions in sectorial regions of complex numbers. In this appendix we
review some definitions and results on Gevrey asymptotics, adapted to the purposes
of this paper. See, for instance, [3].

A sector of radius p > 0 and opening v € (0, 27] is the set

Sty,p)={z=re¥eCl0<r<p, o] <v/2}.
A closed sector is given by
S(v,p)={z=re? €Cl0<r<p, ¢ <7/2}.
In the following, a € (0, 1].
We say that a formal power series f =Y. fnz™ € C[[2]] is a-Gevrey iff there
exist positive constants C, K such that for every non-negative integer n
|fn] < CK™nle.

The set of a-Gevrey power series is denoted by C|[z]]q.

We say that an analytic function f in a sector S is a-Gevrey iff for every closed
subsector 1 C S there exist positive constants C, K such that for every non-
negative integer n and every z € Sy,

1
1 g(n) n, |o
n!” (z)| < CK"nl*.

The set of a-Gevrey functions in a sector S is denoted by G (S5).
We say that an analytic function f in a sector S is asymptotic a-Gevrey to a
formal power series f , or that f 18 the a-Gevrey asymptotic expansion of f, in short

=, f, iff for every closed subsector S; C S there exist positive constants C, K
such that for every non-negative integer n and every z € Sy,

[rp(z,n)| < CK"™nl®

where 7 is the residue

rr(z,n)=z"" <f(z) — i szk> .
k=0

The set of asymptotic a-Gevrey functions in a sector S is denoted by A, (.5).
The following propositions relate the notions introduced above.

Proposition A.1. Let f be an analytic Sfunction in a sector S, asymptotic a-Gevrey

to a formal power series f. Then, [ is a-Geuvrey.

Proof. Let z be any point in S. Take S; a closed subsector of S containing z. Then,
75 (2,n) = ful = |2llry (2,0 + 1) < [2| CK™FH (n 4 1)1

Therefore

li .
S s Gor) = fo
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Since, in any closed subsector S; we have |rs(z,n)] < CK"n!® for suitable
constants C, K, we obtain the same bound when z goes to zero. So, |f,| < CK™"nl®.
O

Proposition A.2. Let f be an analytic function in a sector S and f(z) = ano fnz"

be a formal power series. Then, f is asymptotic a-Gevrey to f if and only if f is
a-Gevrey and for every non-negative integer n

li (M) () =nlf. . Al
Jim f(z) = i, (A1)
Proof. Let us assume first that f =, f . Notice that we can consider the termwise
l-derivative formal series of f,

FO@R) =D 02" =" (n+1)...(n+1) far2",
n>0 n>0
and the corresponding residues of f(*), T (2,m).

Let S; C S be a closed subsector, and take S5 C S another closed subsector
such that S, ; So. Let § > 0 be small enough so that for every z € S1 we have
B(z,|z|0) C Sa. Let Cy, Ko be the a-Gevrey constants of f in the sector Ss.

Let z € S1, and n,l non-negative integers. From Cauchy’s theorem

d 1! Wt (w,n + 1)
n _ Y rontl _ AW,
AR (27 n) CdA! (Z T‘f(Z, nt l)) 2mi /w—z—6|z| (w - Z)lJrl a

and (n +1)! < 2"+ pll!, we obtain
ey (2,m)] < O (29(1 + 8)0 1 Ko) 1179 (29(1 + 6) Ko)" 0!,
!
incidentally proving that f() =2, f® [3]. Moreover, we have
_ I da
1FO ()] = Irpay(2,0)] < Co (27(1 4 6)5 1 Ky) 1M,
proving that f is a-Gevrey. Finally,
' W) = 1 . — D _p
S%lzniof (2) S%lzni@ T (2,0) = fo 0.

Conversely, assume that f is a-Gevrey at the sector S and that the limit (A.1)
exists. We consider the Taylor residues

n—1 (k) u
Ry(zum) == (£5) - 3 T )
k=0 ’

—n n gl
- % /O FO(w+ Mz —w) (1—A)""Ldx,

for every z,u € S and n > 0. We observe that

rr(z,n) = s%iirioRf(z’u’n)' (A.2)
We fix now a closed subsector S; C S, and let C, K be the corresponding a-Gevrey
constants. For z,u € S1, [f™ (u+ Az —u))| < CK™(n!)'**, so

|Ry(z,u,n)| <|z|7 "z —u|"CK"nl®.
Therefore, using (A.2) we have that
[rp(z, N)| < S;iunlo || M|z —u|NCK™(n))* = CK™n!®,



320 I. BALDOMAA AND A. HARO

and the proof is complete. |

Notice that Proposition A.2 incidentally proves that the asymptotic a-Gevrey
expansion f of an asymptotic a-Gevrey function f in a sector S is unique, by (A.1).
We can then define a map J : A, (S) — CJ[z]]o mapping each f to its asymptotic
expansion f .

The following proposition is straightforward.

Proposition A.3. Let S be a sector. The sets C[[z]]a, Ga(S) and Ay(S), under
natural operations, are differential algebras. Moreover, J : Ay (S) — C[[z]]a is a
morphism of differential algebras.

So, for an asymptotic a-Gevrey function in a sector S, there is a unique a-Gevrey
asymptotic expansion f = J f. The following is a Borel-Ritt-Gevrey theorem, which
states that J is surjective if the opening of S is “small”.

Theorem A.4. Let f € C[[z]]a and a sector S of opening < am. Then, there
exists a function f, analytic in S, so that f =, f.

A natural question is then how much do two asymptotic a-Gevrey functions with
the same asymptotic expansion differ. The answer is in the following proposition.

Proposition A.5. Let S be a sector of opening § < am, and let [ be analytic
in S with f =, 0, where 0 denotes the zero power series. Then, for every closed
subsector S1 C S there exist ¢,k > 0 so that

[f(2)] < cexp (—/g|z|_é)

for all z € Sy. That is, f is exponentially small in S of Gevrey order o and constant
K.
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