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Abstract: Exponential small splitting of separatrices in the singular perturbation theory
leads generally to nonvanishing oscillations near a saddle–center point and to nonexis-
tence of a true homoclinic orbit. It was conjectured long ago that the oscillations may
vanish at a countable set of small parameter values if there exist a quadruplet of singu-
larities in the complex analytic extension of the limiting homoclinic orbit. The present
paper gives a rigorous proof of this conjecture for a particular fourth-order equation
relevant to the traveling wave reduction of the modified Korteweg–de Vries equation
with the fifth-order dispersion term.
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1. Introduction

Homoclinic orbits arise in dynamical systems at the intersections of stable and unstable
manifolds (also known as the separatrices) associated to a saddle equilibrium point.
They represent spatial profiles of traveling solitary waves in nonlinear dispersive wave
equations from which spatial dynamical systems are obtained in the traveling reference
frame. Existence of a homoclinic orbit connected at a saddle point is a generic phenomena
in a planar Hamiltonian system if there exists a center point near the saddle point.

The phase space of many spatial dynamical systems has the dimension higher than
two, in which case the equilibrium point may admit a center manifold in addition to the
stable and unstable manifolds. For such a saddle-center point, intersection of the sepa-
ratrices is not generic and homoclinic orbits do not generally exist. The corresponding
traveling solitary waves are not fully decaying since their spatial profiles approach the
oscillatory tails spanned by orbits along the center manifold.

It is rather common in analysis of solitary waves to consider an asymptotic limit
when a higher-dimensional spatial dynamical system with a saddle-center point formally
reduces to the planar Hamiltonian dynamical system with a homoclinic orbit. This leads
to the main question of the singular perturbation theory if the homoclinic orbit persists
under the perturbation. The standard answer to this question is negative because the
exponentially small splitting of the separatrices generally occurs due to the singular
perturbations.

First examples of the exponentially small (beyond-all-order) phenomena and the rel-
evant asymptotic analysis can be found in [13,16,26,32,36,48]. Rigorous mathematical
analysis and the proof of the existence of oscillatory tails near the saddle-center point in
four-dimensional spatial dynamical systems was later developed in [40,51]. The oscil-
latory tails are present if a certain constant (called the Stokes constant) is nonzero, the
proof of which usually relies on numerical computations. The numerical data in [52] for
a particular model of the fifth-order Korteweg–de Vries (KdV) equation suggest that the
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Stokes constant is generally nonzero but may vanish along bifurcations of co-dimension
one if another parameter is present in the spatial dynamical system.

Compared to the standard setting of the non-vanishing oscillatory tails in the beyond-
all-order expansions, a rather novel mechanism of obtaining a countable number of true
homoclinic orbits was proposed in [3]. The mechanism is related to the location of
singularities of the truncated homoclinic orbit in a complex plane. If there is only one
symmetric pair of singularities in the complex plane nearest to the real line, then the
Stokes constant is generally nonzero and no true homoclinic orbit persists in the singular
perturbation theory. However, if there exist a quadruplet with two symmetric pairs of
singularities at the same distance from the real line, then the singular perturbation theory
exhibits a countable set of true homoclinic orbits as the small parameter goes to zero.

The theory from [3] was illustrated on a number of other mathematical models involv-
ing nonlocal integral equations [2], lattice advance-delay equations [1,45], and differ-
ential advance-delay equations for traveling waves in lattices [19,20,41,42]. The spatial
profiles of solitary waves in such models must generally exhibit oscillatory tails (in which
case, they are usually called generalized solitary waves or nanoptera), see analysis in
[21,23] and numerical results in [22,42,54]. However, the tails miraculously vanish
along a countable set of bifurcation points if the singular limit admits a real analytic
solution with a quadruplet of complex singularities nearest to the real line. A similar
idea for homoclinic orbits in symplectic discrete maps has been discussed in [27] some
time before [3], see also analysis of splitting of separatrices in the presence of several
singularities in [38] and in [29].

Despite a number of examples supporting the conjecture from [3], no mathematically
rigorous proof was developed in the literature. The purpose of this paper is to give a
proof of this conjecture for the simplest four-dimensional dynamical system with a
saddle-center equilibrium point.

1.1. Main model. Let γ, ε ∈ R be parameters and consider the fourth-order equation
for some u ∈ C∞(R,R),

ε2u′′′′ + (1 − ε2)u′′ − u + u2 + 2γ u3 = 0. (1.1)

If ε is a small parameter, then the formal limit ε → 0 yields the second-order equation

u′′ − u + u2 + 2γ u3 = 0 (1.2)

with (0, 0) being a saddle point of the planar Hamiltonian system{
u′ = w,

w′ = u − u2 − 2γ u3.
(1.3)

The second-order equation (1.2) appears in the traveling wave reduction of the mod-
ified Korteweg–de Vries (KdV) equation

∂η

∂t
+ 2η

∂η

∂x
+ 6βη2 ∂η

∂x
+
∂3η

∂x3 = 0, (1.4)

where η = η(x, t) is real and β is a parameter. Traveling waves of the modified KdV
equation (1.4) correspond to the form η(x, t) = ηc(x − ct) with the wave speed c and
the wave profile ηc found from the third-order equation

η′′′
c (x)− cη′

c(x) + 2ηcη
′
c(x) + 6βη2

cη
′
c(x) = 0. (1.5)
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Fig. 1. Phase portraits of (1.3) for γ = 1 (left) and γ = −0.1 (right)

If c > 0, the scaling transformation ηc(x) = cu(
√
cx) and integration of (1.5) with zero

integration constant for solitary wave solutions yields equation (1.2) with γ := βc.
If γ > 0, there exist two families of periodic solutions and two solitary wave solutions

of equation (1.2), see, e.g., [14,39]. If γ < 0, there exists only one family of periodic
solutions and only one solitary wave solution of equation (1.2), see, e.g., [46]. This also
follows from the phase portraits for the dynamical system (1.3) on the phase plane (u, w)
shown in Fig. 1 for γ = 1 (left) and γ = −0.1 (right).

The fourth-order equation (1.1) is the traveling wave reduction of the modified KdV
equation with the fifth-order dispersion term, also known as the Kawahara equation [35],

∂η

∂t
+ 2η

∂η

∂x
+ 6βη2 ∂η

∂x
+
∂3η

∂x3 + α
∂5η

∂x5
= 0, (1.6)

where α is another parameter. Traveling waves of the form η(x, t) = ηc(x − ct) satisfy
the fifth-order equation, which can be integrated once with the zero integration constant.
The scaling transformation ηc(x) = cu(

√
c(1 − ε2)x) yields (1.1) with γ = βc and ε2

found from the equation
ε2

(1 − ε2)2
= αc.

This is always possible for small ε if αc is small.
For β = 0, the Kawahara equation (1.6) has been one of the main toy model of the

shallow water wave theory to study periodic oscillations arising at the exponential tails
of the solitary wave profiles, see recent works [15,34,50]. Since the true homoclinic
orbits are known not to exist for β = 0 [32,48], the main motivation for our study is to
show the existence of a sequence of true homoclinic orbits in the modified Kawahara
equation for β �= 0.

The homoclinic orbit of the second-order system (1.3) with γ = 0 is known in the
exact analytical form:

u0(x) = 3

2
sech2

( x
2

)
.

The profile of u0 has double poles on the imaginary axis with the nearest singularities
at x = ±iπ . If γ �= 0, the double poles split into pairs of simple poles and the splitting
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is different for γ > 0 and γ < 0. The homoclinic orbit for γ = 0 is continued in the
exact analytical form for every 1 + 9γ > 0 as

u0(x) = 3√
1 + 9γ cosh(x) + 1

. (1.7)

For γ > 0, the poles of u0 nearest to the real axis split along the imaginary axis as
simple poles at

x = ±iπ ± i arccos

(
1√

1 + 9γ

)
,

with four independent choices of signs. For γ ∈ (− 1
9 , 0) the poles of u0 split off the

imaginary axis as simple poles at

x = ±iπ ± cosh−1 1√
1 + 9γ

, (1.8)

again with four independent choices of signs. This is precisely the case which fits the
theory from [3] and coincides with Example 1 in [3]. The numerical data on Figure 1
in [3] already provide a convining evidence of the existence of a countable sequence
{εn(γ )}n∈N for every γ ∈ (− 1

9 , 0) such that εn(γ ) → 0 as n → ∞ with the homoclinic
orbits persisting in the full equation (1.1) for ε = εn(γ ) and with u(x) being close to
u0(x) in (1.7).

Hence, in what follows we are only interested in the case γ ∈ (− 1
9 , 0), when the only

homoclinic orbit with the profile u0 is available in the form (1.7). For completeness, we
mention that another homoclinic orbit exists for γ > 0, see the left panel of Fig. 1, and
its (negative) profile is given by

ũ0(x) = − 3√
1 + 9γ cosh(x)− 1

.

The simple poles of ũ0 are located at the imaginary axis at

x = ±i arccos

(
1√

1 + 9γ

)
+ 2π in, n ∈ Z.

For γ ≤ 0, ũ0 is singular on real line and hence is neglected.

1.2. Main result and the method of proof. The main result of this paper is the following.

Theorem 1.1. For any γ ∈ (− 1
9 , 0
)
, there exists N0 ∈ N large enough and a sequence

{εn}n≥N0 of the form

εn = α

nπ

[
1 +

1

n
O
(

1

log n

)]
, where α = cosh−1 1√

1 + 9γ
, (1.9)

such that equation (1.1) with ε = εn has a homoclinic orbit to the origin in R
4.
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We prove this result by analyzing the stable and unstable invariant manifolds of the
origin in R

4 and measuring their distance at a suitable cross-section of R
4. To this end, we

rewrite the fourth-order equation (1.1) as two second-order equations. By introducing

f (u) := u2 + 2γ u3 and v := u′′ − u + f (u), (1.10)

equation (1.1) becomes the system
{
u′′ = u + v − f (u)
v′′ = − 1

ε2 v + f ′(u)(u + v − f (u)) + f ′′(u)(u′)2. (1.11)

The phase space of system (1.11) is written in the variables (u, u′, v, v′) ∈ R
4. Moreover,

this system has the first integral

G(u, u′, v, v′) =(1 − ε2)
(u′)2

2
− u2

2
+ F(u)

+ ε2
[
u′(v′ + u′ − f ′(u)u′)− (u + v − f (u))2

2

]
,

(1.12)

with

F(u) =
∫ u

0
f (v)dv = u3

3
+
γ u4

2
.

We notice that the origin in R
4 is a saddle-center equilibrium point of the second-

order system (1.11) with associated eigenvalues
{ − 1, 1, iε−2,−iε−2

}
which are of

different scales. Therefore, the stable and unstable manifold associated to the origin
have dimension one and, thus, they are just trajectories in R

4.
Since system (1.11) is autonomous, in order to find homoclinic connections, it is

necessary that there exists a time parameterization of the stable and unstable invariant
manifolds, denoted by(

u
(x), (u
)′(x), v
(x), (v
)′(x)
)
, 
 = u, s

(which also depend on the parameters ε and γ ), such that(
uu(0), (uu)′(0), vu(0), (vu)′(0)

) = (us(0), (us)′(0), vs(0), (vs)′(0)
)
.

In a general setting two curves do not intersect in a four dimensional space, however
system (1.11) is reversible with respect to the involution

� : (u, u′, v, v′) → (u,−u′, v,−v′) (1.13)

whose symmetry plane is

� = {(u, u′, v, v′) ∈ R
4 : u′ = 0, v′ = 0}. (1.14)

In other words, if (u(x), u′(x), v(x), v′(x)) is a solution of system (1.11), then the
function defined by �(u(−x), u′(−x), v(−x), v′(−x)) is also a solution. In particular

us(x) = uu(−x), vs(x) = vu(−x)

and therefore us(0) = uu(0) and vs(0) = vu(0).
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As a consequence, a homoclinic orbit exists if the unstable curve to (0, 0, 0, 0) as
x → −∞ intersects the symmetry plane �. Indeed, if such intersection occurs, then
the unstable curve to (0, 0, 0, 0) as x → −∞ is reflected by the involution to the stable
curve to (0, 0, 0, 0) as x → +∞.

It can be seen that the perturbed invariant manifolds can be approximated by the
homoclinic orbit for the unperturbed problem (1.2),

(u(x), u′(x), v(x), v′(x)) = (u0(x), u
′
0(x), 0, 0)

with u0 given in (1.7). Then, we define the section


 = {(u, u′, v, v′) ∈ R
4 : u′ = 0}. (1.15)

We observe that the homoclinic orbit (u(x), u′(x)) = (u0(x), 0) of the second-order
system (1.2) with u0 computed in (1.7), satisfies u′

0(0) = 0 and it intersects transversally
the section 
 with (v, v′) = (0, 0).

Next theorem gives an asymptotic formula for the distance between the stable and
unstable manifolds of the origin in R

4 at 
.

Theorem 1.2. There exist two unique solutions (uu, vu) and (us, vs) of system (1.11)
such that (uu)′(0) = (us)′(0) = 0 and

lim
x→−∞(u

u(x), vu(x)) = 0, lim
x→+∞(u

s(x), vs(x)) = 0.

Moreover, there exists a constant � ∈ R, � �= 0, such that

uu(0)− us(0) = 0

vu(0)− vs(0) = 0

(vu)′(0)− (vs)′(0) = − 4�√|γ |ε3
e− π

ε

(
sin
(α
ε

)
+ O

(
1

| log ε|
))

.

Theorem 1.1 is a direct consequence of Theorem 1.2.

Proof of Theorem 1.1. Since the system (1.11) is reversible it is enough to obtain a point
in the unstable manifold which intersects the symmetry plane � in (1.14). Since

(uu(0), (uu)′(0), vu(0), (vu)′(0)) ∈ 


it is enough to look for values of ε such that (vu)′(0) = 0.
By reversibility,

(uu(0), (uu)′(0), vu(0), (vu)′(0)) = (us(0),−(us)′(0), vs(0),−(vs)′(0)).

and therefore

2(vu)′(0) = (vu)′(0)− (vs)′(0) = − 4�√|γ |ε3
e− π

ε

(
sin
(α
ε

)
+ O

(
1

| log ε|
))

.

Since � �= 0, the values of εn are found from roots of

sin
(α
ε

)
+ O

(
1

| log ε|
)

= 0,

which yields (1.9). 
�
The main steps in the proof of Theorem 1.2 are explained in Sect. 2. The proof of

each step is deferred to Sects. 3–7 and Appendices A–C.
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1.3. Exponentially small splitting of separatrices. Theorem 1.2 fits into what is usu-
ally called exponentially small splitting of separatrices. This phenomenon occurs in
dynamical systems which have a hyperbolic behavior whose invariant manifolds are
exponentially close with respect to a small parameter of the system. Here we review the
literature on the topic and explain the main tools to deal with the exponentially small
phenomenon.

The exponentially small splitting of separatrices was first pointed out by Poincaré
(see [47]) and nowadays it is well known that appear in many analytic models with
multiple time scales and a conservative structure (Hamiltonian, volume preserving) or
reversibility. The first rigorous analysis of this phenomenon was not achieved until the
1980’s in the seminal work by Lazutkin on the standard map [37], who proposed a
scheme to prove the exponentially small transversality of the invariant manifolds of the
saddle equilibrium point this map possesses. A full proof of this fact was obtained in
1999 by Gelfreich [24].

The approach proposed by Lazutkin (detailed below in this section) has been imple-
mented in multiple settings in the past decades such as area preserving maps [17,43,44]
and integrable Hamiltonian systems with a fast periodic or quasiperiodic forcing [8,18,
25,49]. Note that the approach is extremely sensitive on the analyticity properties of the
model and therefore “implementing” it in different settings is, by no means, straight-
forward. Strongly related to the present paper are those dealing with volume preserving
or Hamiltonian Hopf-zero bifurcations. This was first addressed in [5–7,11,12] and
in [28], and has later been applied to the breakdown of breathers in the Klein-Gordon
equation (which can be seen as an infinite dimensional Hopf-zero bifurcation) [30] and
in the invariant manifolds of L3 in the restricted planar 3 body problem [9,10]. Note that
the exponentially small splitting of separatrices phenomena can be analyzed by other
methods such as the so-called continuous averaging method [53].

Let us explain the main steps of the approach proposed by Lazutkin applied to Hopf-
zero bifurcations. Note first that the unperturbed separatrix is analytic in a complex strip
centered at the real line. Then, in all the mentioned works and in the approach explained
below, one makes the strong assumption that, at each of the boundary lines of the strip,
the separatrix has only one singularity. Then, an asymptotic formula for the distance
between the perturbed invariant manifolds can be obtained following these steps.

(1) Choose coordinates which capture the slow-fast dynamics of the model so that it
becomes a (fast) oscillator weakly coupled to an integrable system with a saddle
point and a separatrix associated to it.

(2) Prove the existence of the analytic continuation of suitable parametrizations of the
perturbed invariant manifolds in appropriate complex domains. These domains con-
tain a segment of the real line and intersect a neighborhood sufficiently close to the
singularities of the separatrix.

(3) Derive the inner equation, which gives the first order of the original system close to
the singularities of the separatrix. This equation is independent of the perturbation
parameter.

(4) Study two special solutions of the inner equation which are approximations of the
perturbed invariant manifolds near the singularities and provide an asymptotic for-
mula for the difference between these two solutions of the inner equation.

(5) By using complex matching techniques, compare the solutions of the inner equation
with the parametrizations of the perturbed invariant manifolds.

(6) Finally, prove that the dominant term of the difference between manifolds is given
by the term obtained from the difference of the solutions of the inner equation.
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This approach and all the aforementioned references rely on several hypotheses one
has to assume on the model. In particular, as already said, one must assume that, at each
of the boundary lines of its analyticity strip, the time-parameterization of the unperturbed
separatrix has only one singularity. This assumption is rather strong and it is known to
be non-generic (see [3,27]). In particular, the model (1.1) with γ ∈ (− 1

9 , 0
)

we consider
in this paper does not satisfy this hypothesis since two singularities exist at each of these
lines.

As far as the authors know, no proof of exponentially small splitting of separatrices
for separatrices with multiple singularities with the same imaginary part existed until
now. The reason is that to analytically extend the invariant manifolds to complex do-
mains one needs to estimate quite sharply certain oscillatory integrals and this is not so
straightforward when one has several singularities with the same imaginary part. In the
present paper we propose a new approach which relies on considering “auxiliary orbits”
of the model. The approach is rather flexible and we expect to be applicable to a wide
set of models admitting any number of singularities with the same imaginary part (see
Sect. 1.4 below).

Let us explain the main steps in the proof of Theorem 1.2, comparing them with
the classical Lazutkin’s approach explained above. The singularities of the unperturbed
separatrix closest to the real axis are those given in (1.8).

(1) Choose coordinates which capture the slow-fast dynamics of the model. In the
present paper the coordinates in (1.11) suffice. Note that this system possesses a
first integral (see (1.12)).

(2) Prove the existence of the analytic continuation of the time-parametrization of the
perturbed unstable invariant manifolds in an appropriate complex domain (see (2.7)).
This domain contains a segment of the real line and intersects a neighborhood suffi-
ciently close to the singularities of the separatrix with negative real part (see (1.8)).
Analogously, extend the perturbed stable invariant manifold up to the singularities
with positive real part. This is done in Theorem 2.2.

(3) Consider an auxiliary solution of (1.11) which belongs to the same level of the first
integral and that can be defined in a lozenge shaped complex domain which contains
a segment of the real line and domains ε-close to all four singularities of the unper-
turbed separatrix (see (2.10)). This is done in Theorem 2.3. Note that this solution
does not belong to neither the stable nor the unstable invariant manifold. Instead
of measuring the distance between the stable and unstable invariant manifolds at a
given section, we will measure the distance between the unstable manifold and the
auxiliary solution and between the auxiliary solution and the stable manifold.

(4) Derive the inner equation (see (2.25)), which gives the first order of the original
system close to the singularities of the separatrix. Note that the same inner equation
appears close to all four singularities in (1.8).

(5) Study two special solutions of the inner equation and provide an asymptotic formula
for the difference between these two solutions of the inner equation. This is done in
Theorem 2.8.

(6) Close to the singularities with negative real part, by using complex matching tech-
niques, compare the solutions of the inner equation with the parametrization of
the perturbed unstable invariant manifold and the auxiliary solution (analogously
close to the singularities with positive real part and the auxiliary solution and the
parameterization of the stable invariant manifold). This is done in Theorem 2.10.

(7) Prove that the dominant term of the difference between the unstable manifold and the
auxiliary solution is given by the term obtained from the difference of the solutions of



215 Page 10 of 65 I. Baldomá, M. Guardia, D. E. Pelinovsky

the inner equation close to the singularities with negative real part (analogously for
the stable manifold and the auxiliary solution close to the rightmost singularities).
This is done in Propositions 2.7 and 2.11. Joining the two asymptotic formulas
provides the difference between the stable and unstable invariant manifolds.

1.4. Further directions and applications. Although we have addressed a very particular
model, the fourth-order equation (1.1), which is relevant for traveling waves of the
modified Kawahara equation (1.6), the statement and proof of Theorem 1.2 can be
extended to other dynamical systems with the saddle-center points.

One example where a sequence of homoclinic orbits appears in the singular pertur-
bation theory was considered in [1]. The limiting second-order equation is given by

u′′ − u +
u3

1 + γ u2 = 0, (1.16)

with a parameter γ > 0 and it appears as the standing wave reduction of the focusing
nonlinear Schrödinger (NLS) equation with a saturation term. If γ = 0, the homo-
clinic orbit is given by u0(x) = √

2sech(x) with the simple pole singularities along the
imaginary axis at

x = iπ(2n + 1)

2
, n ∈ Z.

However, for every γ > 0 it was proven in [1, Theorem 2.2] that the nearest singulari-
ties to the real line appear as a quadruplet in the complex plane. Hence, the numerical
approximations in [1, Section 3] showed the existence of a countable sequence of true
homoclinic orbits in the dynamical system in R

4, where the limiting second-order equa-
tion (1.16) is perturbed by the fourth-order derivative term.

This example is rather striking since the term u3/(1 + γ u2) with γ > 0 does not
change the number and types of the critical points in the dynamical system on the real
line, but only change the number and types of singularities in the complex plane.

Another example appears in the cubic–quintic NLS equation

u′′ − u + u3(1 + 3γ u2) = 0 (1.17)

with another parameter γ ∈ R. The homoclinic orbit is given by

u0(x) = 2√
1 +

√
1 + 16γ cosh(2x)

.

The simple pole singularity for γ = 0 at x = iπ
2 splits vertically along the imaginary

axis for γ > 0 and horizontally for γ < 0 with a pair of the square root branch point
singularities. In the latter case, we have a quadruplet of square root singularities in the
complex plane which lead to a sequence of homoclinic orbit in the dynamical system in
R

4, where the second-order equation (1.17) is perturbed by the fourth-order derivative
term.

For both models (1.16) and (1.17), the singularities in the complex plane are more
complicated than poles and involve branching points, see [1].

The analytical proof of Theorem 1.2 can be extended from fourth-order dynamical
systems to other finite-dimensional dynamical systems. It is nevertheless an open di-
rection to extend the analysis to the infinite-dimensional dynamical systems such as
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the differential advance-delay equations. Such situations with the saddle-center points
and the quadruplets of singularities in the complex plane are well-known in the context
of traveling solitary waves in diatomic Fermi–Pasta–Ulam (FPU) systems [19,41]. If
the center manifold is still two-dimensional and the stable and unstable manifolds are
infinite-dimensional, we conjecture that a similar sequence of true homoclinic orbits
exist in the singular limit of the diatomic FPU system, in agreement with the numerical
results in [22,42,54]. However, the proof of this conjecture is left for further studies.

2. Details of the Proof

We devote this section to prove Theorem 1.2. First in Sect. 2.1 we provide analytic
properties of the unperturbed solution (1.7). Then, in Sect. 2.2 we study the analytic
continuation of the perturbed solutions in suitable complex domains and we also analyze
the auxiliary solution. In Sect. 2.3 we give exponential upper bounds for the difference
between two solutions for the stable and unstable invariant manifolds at a given transverse
cross-section. To provide an asymptotic formula for this difference we analyze the first
order of the perturbed solutions close to the singularities of the unperturbed solution.
This is done in Sect. 2.4 by means of an inner equation and complex matching techniques.
Finally, in Sect. 2.5 we obtain the asymptotic formula for the difference between two
solutions for the stable and unstable invariant manifolds.

We will use the notation ′ and ∂x to indicate the derivative with respect to x . In
addition, when defining functional operators, we usually omit the dependence of some
known functions such as u0 on x .

2.1. Properties of the unperturbed solution. The first step in the proof of Theorem 1.2
is to analyze the analytic properties of the unperturbed solution u0 introduced in (1.7).
This is contained in the following lemma, the proof of which can be found in Appendix
A.

Lemma 2.1. For γ ∈ (− 1
9 , 0), the function u0 in (1.7) has the following properties:

• At the line �x = π u0 has exactly two singularities at

x± = ±α + π i, α = cosh−1 1√
1 + 9γ

(2.1)

and at �x = −π u0 has singularities at the conjugate points x±
• u0 is real analytic in C\{x± + i2kπ, x± − i2kπ}k∈N.
• In a neighborhood of x±, u0 satisfies

u0(x) = c±1

x − x±
+ O(1) as x → x±,

with

c±1 = ∓ 1√|γ | . (2.2)
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• The second derivative of u0 has exactly eight zeros, x
±
j , j = 1, 2, 3, 4 with |�x±

j | ≤
π of the form

x±
1 = ±ib, x±

2 = ±a, x±
3 = ±a + iπ, x±

4 = ±a − iπ

with

b ∈
(π

2
, π
)
, a > α, a ∈ (0, α).

2.2. The outer scale. The second step in the proof of Theorem 1.2 is to look for pa-
rameterizations of the one-dimensional stable and unstable invariant manifolds in the
system (1.11). We parameterize them as solutions of equation (1.11) by fixing the initial
condition at 
 defined in (1.15).

We analyze the invariant manifolds by a perturbative approach close to (u0, 0)where
u0 is the solution of (1.2) introduced in (1.7) that satisfies u′

0(0) = 0. To this end, we
write

u = u0 + ξ, v = η,

which yields the following system
{L1ξ = F1[ξ, η],
L2η = F2[ξ, η], (2.3)

where the linear operators are defined by

{L1 = −∂2
x + 1 − 2u0(x)− 6γ u2

0(x),
L2 = ∂2

x + 1
ε2 ,

(2.4)

and {F1[ξ, η] = −η + (1 + 6γ u0)ξ
2 + 2γ ξ3,

F2[ξ, η] = f ′(u0 + ξ) (u0 + ξ + η − f (u0 + ξ)) + f ′′(u0 + ξ)(u′
0 + ξ ′)2, (2.5)

with f defined in (1.10). Now, since

η′ = u′′′ − u′ + f ′(u)u′,

the first integral (1.12) becomes

G̃(ξ, ξ ′, η, η′, x) =1

2
(1 − ε2)

[
(u′

0)
2 + 2u′

0ξ
′ + (ξ ′)2

]
− 1

2

[
u2

0 − 2u0ξ − ξ2
]

+ F(u0 + ξ)

+ ε2
[ (

u′
0 + ξ ′) (η′ + u′

0 + ξ ′ − f ′(u0 + ξ)(u′
0 + ξ ′)

)

− 1

2
(η + u0 + ξ − f (u0 + ξ))2

]
, (2.6)

which is constant along solutions of (2.3).
The following theorem, whose proof is given in Sect. 3, provides two solutions of (2.3)

which decay exponentially as �x → +∞ and �x → −∞ respectively. They correspond
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Fig. 2. The outer domain Dout,u
κ introduced in (2.7)

to the parameterizations of the invariant manifolds. Moreover, we prove that they can
be analytically extended to the so-called outer domains defined as

Dout,u
κ = {x ∈ C : |Im(x)|<− tan θ Re(x − x−) + Im x− − κε} ,

Dout,s
κ = {x ∈ C : |Im(x)|< tan θ Re(x − x+) + Im x+ − κε} , (2.7)

where 0 < θ < atan
(
π
3α

)
, with α defined in (2.1), is a fixed angle independent of ε and

κ ≥ 1 (see Fig. 2). Observe that Dout,

κ , 
 = u, s, reach domains at a κε–distance of the

singularities x = x− and x = x+ of u0 respectively.

Theorem 2.2. Fix 0 < θ < atan
(
π
3α

)
. There exists κ0, ε0 > 0, such that, if ε ∈ (0, ε0)

and κ > κ0, then there exist real-analytic functions (ξ
, η
), 
 = u, s, defined in the
domain Dout,


κ which are solutions of (2.3) satisfying

lim�x→−∞(ξ
u, ηu) = (0, 0), lim�x→∞(ξ

s, ηs) = (0, 0)

and

∂xξ

(0) = 0, G̃(ξ
, ∂xξ


, η
, ∂xη

, x) = 0,

where G̃ is the first integral introduced in (2.6).
Moreover, there exists M1 > 0, depending only on θ, κ0, ε0, such that ξ
 and η
,


 = u, s, satisfy the following estimates.

• For x ∈ Dout,

κ ∩ {| Re(y)| ≥ 2α},

|ξ
(x)| ≤ M1ε
2e−|�x |, |η
(x)| ≤ M1ε

2e−|�x |

and

|∂xξ
(x)| ≤ M1ε
2e−|�x |, |∂xη
(x)| ≤ M1ε

2e−|�x |.
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• For x ∈ Dout,

κ ∩ {| Re(y)| ≤ 2α},

|ξ
(x)| ≤ M1ε
2

|x − x−|3|x − x−|3|x − x+|3|x − x+|3 ,

|η
(x)| ≤ M1ε
2

|x − x−|5|x − x−|5|x − x+|5|x − x+|5 ,

|∂xξ
(x)| ≤ M1ε
2

|x − x−|4|x − x−|4|x − x+|4|x − x+|4 ,

|∂xη
(x)| ≤ M1ε

|x − x−|5|x − x−|5|x − x+|5|x − x+|5 .

Finally,

ξ s(x) = ξu(−x), ηs(x) = ηu(−x)

or, in other words, the unstable curve is reflected by the involution � in (1.13) to the
stable one.

To prove Theorem 1.2, we analyze the difference

� = (�ξ,�η) = (ξu − ξ s, ηu − ηs). (2.8)

However, since its difference is exponentially small, to obtain an asymptotic formula, we
would need to analyze this difference in ε-neighborhoods of the singularities x = x±.
Note that Theorem 2.2 does not provide the analytic continuation of (ξ s, ηs) to points
κε-close to x− (and same happens for (ξu, ηu) and x+).

Instead of performing the analytic extension of the invariant manifolds in the κε-
neighborhood of the points x±, we rely on auxiliary functions (ξ aux, ηaux). These func-
tions will be solutions of the same equation (2.3) and will also belong to the same energy
level with respect to G̃ as (ξu,s, ∂xξ

u,s, ηu,s, ∂xη
u,s). Then, the analysis of the difference

(2.8) will be deduced by the differences

�u = (�ξu,�ηu) = (ξu − ξ aux, ηu − ηaux),

�s = (�ξ s,�ηs) = (ξ aux − ξ s, ηaux − ηs).
(2.9)

The following theorem, whose proof is given in Sect. 4, provides the existence of the
functions (ξ aux, ηaux) in the domain

Daux
κ = {x ∈ C : |Im(x)|< tan θ Re(x − x−) + π − κε}

∩ {x ∈ C : |Im(x)|<− tan θ Re(x − x+) + π − κε} (2.10)

with κ, θ > 0. The domain is shown in Fig. 3.

Theorem 2.3. Let 0 < θ < arctan
(
π
α

)
. There exists κ0, ε0 > 0, such that, if ε ∈ (0, ε0)

and κ > κ0, then there exist real-analytic functions (ξ aux, ηaux) defined in the domain
Daux
κ which are a solution of (2.3) and satisfy

∂xξ
aux(0) = 0 and G̃(ξ aux, ∂ξ aux, ηaux, ∂xη

aux, x) = 0

where G̃ is the first integral introduced in (2.6).
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Fig. 3. The auxiliary domain Daux
κ introduced in (2.10)

Moreover, there exists M2, depending on θ, κ0, ε0 such that, for x ∈ Daux
κ ,

|ξ aux(x)| ≤ M2ε
2

|x − x−|3|x − x−|3|x − x+|3|x − x+|3

|ηaux(x)| ≤ M2ε
2

|x − x−|5|x − x−|5|x − x+|5|x − x+|5

|∂xξ aux(x)| ≤ M2ε
2

|x − x−|4|x − x−|4|x − x+|4|x − x+|4
|∂xηaux(x)| ≤ M2ε

|x − x−|5|x − x−|5|x − x+|5|x − x+|5
In addition (ξ aux(x), ηaux(x)) = (ξ aux(−x), ηaux(−x).

2.3. Exponentially small estimates. The next step in the proof of Theorem 1.2 is to
analyze the differences �u, �s defined in (2.9). Since (ξ
, η
), 
 = u, s, aux are all
solutions of (2.3), we can conclude in the following lemma that the differences �
 are
solutions of a linear system in the following domains

Eout,u
κ = {x ∈ C : |Im(x)|<− tan θ Re(x − x−) + Im x− − κε,�x>�x−} ,

Eout,s
κ = {x ∈ C : |Im(x)|< tan θ Re(x − x+) + Im x+ − κε,�x<�x−} , (2.11)

(see Fig. 4). Note that these domains, with θ such that 0 < θ < atan
(
π
3α

)
, satisfy

Eout,

κ ⊂ Dout,


κ ∩ Daux
κ , 
 = u, s.

Lemma 2.4. The functions �
 = (�ξ
,�η
), 
 = u, s, in (2.9) are defined in the
domains Eout,


κ in (2.11) and are solutions of the linear system
{L1�ξ = N1[�ξ,�η],
L2�η = N2[�ξ,�ξ ′,�η], (2.12)

where {N1[�ξ,�η](x) = −�η(x) + a(x)�ξ(x),
N2[�ξ,�ξ ′,�η](x) = b(x)�ξ(x) + c(x)�ξ ′ + d(x)�η(x), (2.13)
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Fig. 4. The intersection domain Eout,u
κ introduced in (2.11)

for some functions a, b, c and d, which satisfy that, for x ∈ Eout,

κ ,

|a(x)| ≤ M3ε
2

|x − x−|4|x − x−|4|x − x+|4|x − x+|4 ,

|b(x)| ≤ M3

|x − x−|4|x − x−|4|x − x+|4|x − x+|4 ,

|c(x)| ≤ M3

|x − x−|3|x − x−|3|x − x+|3|x − x+|3 ,

|d(x)| ≤ M3

|x − x−|2|x − x−|2|x − x+|2|x − x+|2 ,

for some constant M3 independent of ε and κ .

To obtain the exponentially small estimates for the differences �
 (
 = u, s), we use
the existence of the first integral G̃(ξ, ξ ′, η, η′, x). The first integral gives us an extra
relation for the components of the difference�
, which allows us to get rid of analyzing
�ξ
.

The following lemma is straightforward taking into account Lemma 2.1 and Theorems
2.2 and 2.3.

Lemma 2.5. The functions �
 = (�ξ
,�η
), 
 = u, s, defined in (2.9) satisfy

(−u′′
0(x) + m(x)

)
�ξ +

(
u′

0(x) + n(x)
)
�ξ ′ + p(x)�η + q(x)�η′ = 0
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for some functions m, n, p and q, which satisfy that, for x ∈ Eout,

κ ,

|m(x)| ≤ M4ε
2

|x − x−|5|x − x−|5|x − x+|5|x − x+|5 ,

|n(x)| ≤ M4ε
2

|x − x−|4|x − x−|4|x − x+|4|x − x+|4 ,

|p(x)| ≤ M4ε
2

|x − x−|3|x − x−|3|x − x+|3|x − x+|3 ,

|q(x)| ≤ M4ε
2

|x − x−|2|x − x−|2|x − x+|2|x − x+|2 ,

with M4 > 0 a constant independent of ε and κ .

By using Lemma 2.5, we reduce the system of two second-order equations (2.12)
to a third-order system imposed on �ζ = �ξ ′, �η and �η′. The following lemma is
obtained directly from Lemmas 2.4 and 2.5.

Lemma 2.6. The functions�ζ
 = ∂x�ξ

,�η
, 
 = u, s, are defined in Eout,
 in (2.11)

and are solutions of the linear equation{ L̂1�ζ = N̂1[�ζ,�η,�η′],
L2�η = N̂2[�ζ,�η,�η′], (2.14)

where

L̂1 = −∂x +
u′′′

0

u′′
0
, (2.15)

and { N̂1[�ζ,�η,�η′] = −�η + r̂(x)�ζ + ŝ(x)�η + t̂(x)�η′,

N̂2[�ζ,�η,�η′] = ĉ(x)�ζ + d̂(x)�η + ê(x)�η′,

for some functions r̂ , ŝ, t̂ , ĉ, d̂ and ê, which satisfy that, for x ∈ Eout,

κ ,

|̂r(x)| ≤ M5ε
2

|x − x−|3|x − x−|3|x − x+|3|x − x+|3 ,

|̂s(x)| ≤ M5ε
2

|x − x−|2|x − x−|2|x − x+|2|x − x+|2 ,

|̂t(x)| ≤ M5ε
2

|x − x−||x − x−||x − x+||x − x+| ,

|̂c(x)| ≤ M5

|x − x−|3|x − x−|3|x − x+|3|x − x+|3 ,

|d̂(x)| ≤ M5

|x − x−|2|x − x−|2|x − x+|2|x − x+|2 ,

|̂e(x)| ≤ M5ε
2

|x − x−|3|x − x−|3|x − x+|3|x − x+|3 ,

with M5 a constant independent of ε and κ .
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By using Lemma 2.6, we provide an asymptotic formula for �
 at x = 0. Note that,
by Theorem 2.2 and 2.3, �ζ
(0) = ∂x�ξ


(0) = 0 (and that �ξ(0) can be obtained by
Lemma 2.5 once the other components are known). Therefore, in order to prove Theorem
1.2, it is sufficient to look for an asymptotic formula for �η
(0) and ∂x�η
(0).

Assume for a moment that �η
 satisfy

L2�η = 0

(that is, assume that ĉ = d̂ = ê = 0). Then, �η
 would be of the form

�η
(x) = C

1e

ix
ε + C


2e
− i x

ε . (2.16)

We introduce

ρ− = x− − iκε and ρ+ = x+ − iκε (2.17)

with x± = ±α +π i and α defined in Lemma 2.1. We observe that, by Theorems 2.2 and
Theorem 2.3, �ηu is defined at ρ−, ρ− and �ηs is defined at ρ+, ρ+. Evaluating �ηu

in (2.16) at x = ρ− and x = ρ−, using that e
iρ−
ε and e− iρ−

ε are of size e− π
ε , one obtains

that Cu
1 and Cu

2 must satisfy

Cu
1 = �ηu(ρ−)e− iρ−

ε + h.o.t. and Cu
2 = �ηu(ρ−)e

iρ−
ε + h.o.t.. (2.18)

An analogous formula follows for Cs
1,2 changing ρ− by ρ+.

Now, the equation for �η
, 
 = u, s, in (2.12) has a right hand side (2.13) with
nonzero ĉ, d̂, ê and therefore one has to proceed more carefully than in the arguments
above. The following proposition gives the needed result.

Proposition 2.7. The functions �η
, 
 = u, s, introduced in (2.9) are defined in Eout,


given by (2.11) and are of the form

�η
(x) = C

1e

ix
ε + C


2e
− i x

ε + R
(x) (2.19)

where

• The constants C

1 and C


2 satisfy

�ηu(ρ−) = Cu
1e

iρ−
ε + Cu

2e
− iρ−

ε

�ηu(ρ−) = Cu
1e

iρ−
ε + Cu

2e
− iρ−

ε

�ηs(ρ+) = Cs
1e

iρ+
ε + Cs

2e
− iρ+

ε

�ηs(ρ+) = Cs
1e

iρ+
ε + Cs

2e
− iρ+

ε .

(2.20)

• The functions R
 satisfy that

Ru(ρ−) = 0, Ru(ρ−) = 0, Rs(ρ+) = 0, Rs(ρ+) = 0, (2.21)

and that, for x ∈ Eout,

κ ,

∣∣R
(x)
∣∣ ≤ M6

κ
e

1
ε
|�x | (|Cu

1 | + |Cu
2 |)

∣∣∂xR
(x)
∣∣ ≤ M6

εκ
e

1
ε
|�x | (|Cu

1 | + |Cu
2 |) ,

(2.22)

for some constant independent M6 > 0 independent of ε and κ .
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Note that the properties ofC

j are a direct consequence of evaluating (2.19) at x = ρ±

and x = ρ± and the properties of R
. That is, to prove Proposition 2.7 boils down to
prove the properties stated for the functions R
. This is done in Sect. 7.

By Proposition 2.7, proceeding as for (2.16), we have that indeed, Cu
1,2 is of the form

in (2.18) and analogous formula are also true forCs
1,2. As a consequence, of this analysis

and using also that, by Theorems 2.2 and 2.3

|�η∗(ρ±)|, |�η∗(ρ±)| ≤ M
1

κ5ε3
,

we have that

|C

1,2| ≤ M

1

ε3 e
− π
ε .

However, in order to prove the asymptotic formula in Theorem 1.2, we need to perform
a more accurate analysis of the functions η
 (and ξ
) around the points ρ± and ρ±. This
is done in the following subsections by means of the inner equation (Theorem 2.8) and
complex matching techniques (Theorem 2.10).

2.4. The inner scale. We perform the change of coordinates to the inner variables. We
consider the new variables

z = ε−1(x − x±) (2.23)

and, recalling the definition of c±1 in (2.2), we define the functions

φ(z) = ε

c±1
ξ(x± + εz), ψ(z) = ε3

c±1
η(x± + εz). (2.24)

Recall that γ < 0 and therefore c2±1γ = −1. Applying the change of coordinates to
equation (2.3) and letting ε → 0 we obtain the limiting inner equation,

{Lin
1 φ = J in

1 [φ,ψ],
Lin

2 ψ = J in
2 [φ,ψ], (2.25)

with {Lin
1 = −∂2

z + 6
z2 ,

Lin
2 = ∂2

z + 1,
(2.26)

and

⎧⎨
⎩
J in

1 [φ,ψ] = −ψ − 6
z φ

2 − 2φ3,

J in
2 [φ,ψ] = −6

(
1
z + φ

)2
(
ψ + 2

(
1
z + φ

)3
)

− 12
(

1
z + φ

) (
− 1

z2 + ∂zφ
)2
.

(2.27)

This equation is reversible with respect to the symmetry

(φ,ψ) → (−φ,−ψ), z → −z. (2.28)
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Fig. 5. The inner domain Du,in
θ,κ introduced in (2.29)

We analyze this equation in the inner domains (see Fig. 5)

Du,in
θ,κ = {z ∈ C : |�(z)| > tan θ�(z) + κ},

Ds,in
θ,κ = {z ∈ C : −z ∈ Du,in

θ,κ },
(2.29)

for 0 < θ < π/2 and κ > 0.
The following theorem, which is proved in Sect. 5, provides an asymptotic formula

for the difference between the two solutions of the inner equation.

Theorem 2.8. Let 0 < θ < π
2 be fixed. There exists κ0 ≥ 1 big enough such that, for

each κ ≥ κ0,

(1) Equation (2.25) has two real-analytic solutions (φ0,
, ψ0,
) : D
,in
θ,κ → C

2, 
 = u, s,

which, for every z ∈ D
,in
θ,κ , satisfy

∣∣∣φ0,
(z)
∣∣∣ ≤ M7

|z|3 ,
∣∣∣ψ0,
(z)

∣∣∣ ≤ M7

|z|5 ,

for some M7 > 0 independent of κ . Moreover, they satisfy that, for z ∈ Du,in
θ,κ ,

(φ0,u(z), ψ0,u(z)) = (−φ0,s(−z),−ψ0,s(−z)). (2.30)
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(2) The differences�φ0(z) = φ0,u(z)−φ0,s(z),�ψ0(z) = ψ0,u(z)−ψ0,s(z) are given
by

�φ0(z) = �e−i z (−1 + χ1(z))

�ψ0(z) = �e−i z (1 + χ2(z))

∂z�φ
0(z) = −i�e−i z (−1 + χ̂1(z))

∂z�ψ
0(z) = −i�e−i z (1 + χ̂2(z))

(2.31)

for z ∈ Rin
θ,κ = Du,in

θ,κ ∩ Ds,in
θ,κ ∩ {z : iR,�z < 0}, where � ∈ R is a constant, and

χ1, χ2, χ̂1, χ̂2 are analytic in z and satisfy that, for z ∈ Rin
θ,κ ,

|χ1(z)| ≤ M8

|z| , |χ2(z)| ≤ M8

|z| , |χ̂1(z)| ≤ M8

|z| |χ̂2(z)| ≤ M8

|z| ,

for some M8 > 0 independent of κ .
(3) The constant � satisfies � �= 0 if and only if there exists z0 ∈ Rin

θ,κ such that

�φ0(z0) �= 0.

Theorem 2.8 does not ensure that the first-order constant� is non-zero. This is stated
in the next proposition, whose proof is deferred to Appendix B.

Proposition 2.9. The constant � ∈ R introduced in Theorem 2.8 satisfies � �= 0.

Once we have obtained the solutions of the inner equation and analyzed their differ-
ence, the next step is to “measure” how well they approximate the functions obtained
in Theorems 2.2 and 2.3. This is done through what is usually called complex matching
techniques.

We first define the matching domains where these differences are analyzed. Let
0 < ν < 1 and 0 < θ2 < θ < θ1 < π

2 , where θ is the angle introduced in (2.7).
We denote

ρ− = −iκε + x−, x−
1 = −iκε − ενeiθ1 + x−, x−

2 = −iκε + ενeiθ2 + x−.

and

ρ+ = −iκε + x+. x+
1 = −iκε + ενe−iθ1 + x+, x+

2 = −iκε − ενe−iθ2 + x+.

Notice that ρ+ = −ρ−, x+
1 = −x−

1 , x+
2 = −x−

2 , where we have denoted by z the complex
conjugate of z. We define the matching domains as

D−,match
θ1,θ2,ν

= ̂ρ−, x−
1 , x−

2 , −D+,match
θ1,θ2,ν

= ̂ρ+, x+
1 , x

+
2 (2.32)

that is, D−,match
θ1,θ2,ν

as the triangle with vertexs ρ−, x−
1 , x

−
2 while D−,match

θ1,θ2,ν
is the triangle

with vertexs −ρ+, x+
1 , x

+
2 (see Fig. 6).

We also introduce

ξ
0,u
− (x) = c−1

ε
φ0,u(ε−1(x − x−)

)
, η

0,u
− (x) = c−1

ε3 ψ
0,u(ε−1(x − x−)

)
,

ξ
0,s
+ (x) = c1

ε
φ0,s(ε−1(x − x+)

)
, η

0,s
+ (x) = c1

ε3ψ
0,s(ε−1(x − x+)

) (2.33)
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Fig. 6. The matching domain D−,match
θ1,θ2,ν

introduced in (2.32)

and

ξ
0,aux
− (x) = c−1

ε
φ0,s(ε−1(x − x−)

)
, η

0,aux
− (x) = c−1

ε3 ψ
0,s(ε−1(x − x−)

)
,

ξ
0,aux
+ (x) = c1

ε
φ0,u(ε−1(x − x+)

)
, η

0,aux
+ (x) = c1

ε3ψ
0,u(ε−1(x − x+)

)
.

(2.34)

The following theorem, which is proved in Sect. 6, provides estimates between
(ξ

0,∗
± , η

0,∗
± ) and (ξ∗, η∗) with 
 = u, s, aux in the corresponding matching domains.

Theorem 2.10. Let θ > 0, κ0 be fixed as in Theorems 2.8, 2.3 and θ as in Theorem 2.2.
Take 0 < θ2 < θ < θ1 < atan

(
π
3α

)
and ν ∈ (0, 1).

We introduce the functions
(
δξu−, δηu−

) = (ξu − ξ
0,u
− , ηu − η

0,u
−
)
,(

δξ s
+, δη

s
+

) = (ξ s − ξ
0,s
+ , ηs − η

0,s
+
)
,(

δξ aux± , δηaux±
) = (ξ aux − ξ

0,aux
± , ηaux − η

0,aux
±

)
.

Then there exist κ1 ≥ κ0 and a constant M9 > 0 such that for all κ ≥ κ1 and x ∈
D±,match
θ1,θ2,ν

∣∣δξu−(x)
∣∣, ∣∣δξ s

+(x)
∣∣, ∣∣δξ aux± (x)

∣∣ ≤ M9| log ε| ε2−ν

|x − x±|2 ,
∣∣∂xδξu−(x)

∣∣, ∣∣∂xδξ s
+(x)

∣∣, ∣∣∂xδξ aux± (x)
∣∣ ≤ M9| log ε| ε2−ν

|x − x±|3
∣∣δηu−(x)

∣∣, ∣∣δηs
+(x)(x)

∣∣, ∣∣δηaux± (x)
∣∣ ≤ M9| log ε| ε2−ν

|x − x±|4 ,
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∣∣∂xδηu−(x)
∣∣, ∣∣∂xδηs

+(x)
∣∣, ∣∣∂xδηaux± (x)

∣∣ ≤ M9| log ε| ε1−ν

|x − x±|4 .

2.5. The asymptotic formula. Now, to prove Theorem 1.2 it only remains to provide an
asymptotic formula for the constantsC


1 andC

2. This is done in the following proposition,

which is proved in Sect. 2.6. From now on we take

κ = c| log ε| (2.35)

for some suitable constant c > 0 to be chosen later.

Proposition 2.11. The constants C

1 and C


2 introduced in Proposition 2.7 satisfy

Cu
1 = 1√|γ |ε3

e− i x−
ε

(
� + O

(
1

| log ε|
))

Cu
2 = 1√|γ |ε3

e
ix−
ε

(
� + O

(
1

| log ε|
))

Cs
1 = − 1√|γ |ε3

e− i x+
ε

(
� + O

(
1

| log ε|
))

Cs
2 = − 1√|γ |ε3

e
ix+
ε

(
� + O

(
1

| log ε|
))

.

Evaluating at x = 0 the formula for �
 in (2.19) together with Propositions 2.7
and 2.11 lead to the asymptotic formulas

�ηu(0) = 1√|γ |ε3
e− π

ε

(
2� cos

(α
ε

)
+ O

(
1

| log ε|
))

∂x�η
u(0) = 1√|γ |ε4

e− π
ε

(
−2� sin

(α
ε

)
+ O

(
1

| log ε|
))

�ηs(0) = − 1√|γ |ε3
e− π

ε

(
2� cos

(α
ε

)
+ O

(
1

| log ε|
))

∂x�η
s(0) = − 1√|γ |ε4

e− π
ε

(
2� sin

(α
ε

)
+ O

(
1

| log ε|
))

,

where α is the constant introduced in (2.1).
To complete the proof of Theorem 1.2 we recall that �η = �ηu + �ηs and that

by the symmetry properties in Theorem 2.2 and 2.3 of ηu, ηs, ηaux one has that, for
x ∈ Daux

κ ∩ R

�ηu(x) = ηu(x)− ηaux(x) = ηs(−x)− ηaux(−x) = −�ηs(−x)

and therefore �ηu(0) = −�ηs(0). This completes the proof of Theorem 1.2.

Remark 2.12. Notice that we could argue by symmetry that �ηs(x) = −�ηu(−x) and
skip the constants Cs

1,2 of our analysis. However we have preferred to keep all constants
in order to emphasize that the method does not depend on the symmetries of the system.
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2.6. Proof of Proposition 2.11. To prove Proposition 2.11, the first step is to provide an
asymptotic formula for �ηu(ρ−),�ηu(ρ−) and �ηs(ρ+),�η

s(ρ+).

Lemma 2.13. Let ν ∈ (0, 1) and consider the points x = ρ− and x = ρ− introduced
in (2.17) with κ as in (2.35) and c ∈ (0, 1 − ν) .

Then, the functions �ηu,�ηs in (2.9) satisfy

�ηu(ρ−) = c−1

ε3 e−κ
(
� + O

(
1

| log ε|
))

�ηu(ρ−) = c−1

ε3 e−κ
(
� + O

(
1

| log ε|
))

,

and

�ηs(ρ+) = c+1

ε3 e−κ
(
� + O

(
1

| log ε|
))

�ηs(ρ+) = c+1

ε3 e−κ
(
� + O

(
1

| log ε|
))

,

where c±1 and � are the constants introduced in (2.2) and Theorem 2.8 respectively.

Proof. We provide the proof for�ηu(ρ−). The other formula can be proven analogously.
Note that �ηu can be written as

�ηu(x) = ηu(x)− η
0,u
− (x) + η0,u

− (x)− η
0,aux
− (x) + η0,aux

− (x)− ηaux(x)

= c−1

ε3 �ψ
0
(
x − x−
ε

)
+ δηu−(x)− δηaux− (x)

where η0,

− , 
 = u, aux are defined in (2.33), (2.34),�ψ0 is the function analyzed in

Theorem 2.8 (recall the inner change of variables (2.23)) and δηu−, δηaux− are the functions
introduced in Theorem 2.10. Then, it is enough to use the asymptotic formula (2.31) and
the estimates in Theorem 2.10. Indeed, using that ρ− − x− = −iκε, we obtain

�ηu(ρ−) = c−1

ε3

(
�e−κ(1 + χ(−iκ)

)
+ O

(
ε1−ν

| log ε|3
))

= c−1

ε3 e−κ
(
� + O

(
1

| log ε|
)

+ eκO
(

ε1−ν

| log ε|3
))

and therefore, from eκ = ε−c ≤ εν−1, we obtain the result. Notice that

�ηs(x) = ηaux(x)− η
0,aux
+ (x) + ηaux,0

+ (x)− η
0,s
+ (x) + η0,s

+ (x)− ηs(x)

= c+1

ε3 �ψ
0
(
x − x+

ε

)
+ δηaux

+ (x)− δηs
+(x)

so the result for �ηs follows analogously as the one for �ηu. 
�
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To complete the proof of Proposition 2.11, it suffices to solve the linear system (2.20).
Indeed, we have that, the linear system for Cu

1,2 can be rewritten as

(
1 e− 2iρ−

ε

e
2iρ−
ε 1

)(
Cu

1
Cu

2

)
=
(
e− iρ−

ε �ηu(ρ−)
e
iρ−
ε �ηu(ρ−)

)
.

Thus, using that ε−1i(ρ− − ρ−) = −ε−12π , that ρ− = x− − iκε and Lemma 2.13

Cu
1 = c−1

ε3 e− i x−
ε

(
� + O

(
1

| log ε|
))

Cu
2 = c−1

ε3 e
ix−
ε

(
� + O

(
1

| log ε|
))

.

Proceeding analogously for Cs
1,2 we obtain

Cs
1 = c+1

ε3 e− i x+
ε

(
� + O

(
1

| log ε|
))

Cs
2 = c+1

ε3 e
ix+
ε

(
� + O

(
1

| log ε|
))

.

Since c∓1 = ±(√|γ |)−1 is given in (2.2), this completes the proof of Proposition 2.11.

2.7. Notation and preliminaries. The rest of the paper is devoted to prove the inter-
mediate results in the previous sections. In order to do so, here, we set some standard
notations used in our work and to provide (and prove) a general result improving the
classical fixed point theorem. We will use the following notation and conventions:

• For g, h : � ⊂ C → C, a function defined in a complex set �, we will say that
|g(x)| � |h(x)| if there exists a constant M such that for all x ∈ �, |g(x)| ≤ M |h(x)|.

• Let X be a Banach space endowed with the norm ‖ · ‖X . We will use the notation
B(�) ⊂ X for the closed ball of radius � centered at the origin of X , namely

B(�) = {x ∈ X : ‖x‖X ≤ �}.
• From now on, κ0, ε > 0 will be fixed; κ0 is as large and we need and ε0 > 0 is as

small as necessary. All the constants appearing in the results are uniform with respect
to ε ∈ (0, ε0] and κ ≥ κ0. Moreover, when we say in the statement of a result, that
ε is small enough (resp. κ is big enough) we mean that we are choosing ε0 > 0
small enough (resp. κ0 big enough) such that the statement hold for ε ∈ (0, ε0] (resp.
κ ≥ κ0).

• We will denote by D the closure of a set D.

We present now a result which is a consequence of the Banach fixed point theorem.
We will use it several times along the work.

Theorem 2.14. Let (X‖·‖X ), (Y, ‖·‖Y )beBanach spaces and take any (x0, y0) ∈ X×Y .
Consider F : X × Y → X × Y an operator, F = (FX ,FY ), satisfying that, there exist
positive constants c,

� ≥ 3(c + 1)max{‖FX [x0, y0] − x0‖X , ‖FY [x0, y0] − y0)‖Y },
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L1, L2 and L3 such that

‖FX [x, y] − FX [̃x, ỹ]‖X ≤ c‖y − ỹ‖Y + L1‖x − x̃‖X
‖FY [x, y] − FY [̃x, ỹ]‖Y ≤ L2‖x − x̃‖X + L3‖y − ỹ‖Y (2.36)

for any (x − x0, y − y0), (̃x − x0, ỹ − y0) ∈ B(�)× B(�) ⊂ X × Y . Then, if

L1 + c(L2 + L3), L2 + L3 ≤ 1

3
, (2.37)

the fixed point equation (x, y) = F[x, y] restricted to B(�)×B(�) has a unique solution.

Proof. We endow X × Y with the norm ‖(x, y)‖× = max{‖x‖X , ‖y‖Y }. We notice that
B(�)× B(�) ⊂ X × Y is indeed the ball of radius � centered at the origin.

We first claim that, if (x − x0, y − y0) ∈ B(�) ⊂ X × Y , then

(x − x0,FY [x, y] − y0) ∈ B(�) ⊂ X × Y.

Indeed, it is clear that

‖FY [x, y] − y0‖Y ≤ ‖FY [x, y] − FY [x0, y0]‖Y + ‖FY [x0, y0] − y0‖Y
≤ �

(
L2 + L3 +

1

3(c + 1)

)
≤ �

where we have used that L2 + L3 ≤ 1
3 .

Consider the operator

F̂[x, y] = (FX (x,FY [x, y]),FY [x, y]),
which has the same fixed points that F, and we compute the Lipschitz constant of the
operator F̂. By hypothesis we have that

‖F̂X [x, y] − F̂X [̃x, ỹ]‖X ≤ c‖FY [x, y] − FY [̃x, ỹ]‖Y + L1‖x − x̃‖X
≤ cL3‖y − ỹ‖Y + (L1 + cL2)‖x − x̃‖X .

Then, denoting L = max{L1 + cL2 + cL3, L2 + L3}
‖F̂[x, y] − F̂[̃x, ỹ]‖× ≤ L‖(x, y)‖×

and hence, the Lipschitz constant of F̂ is L ≤ 1
3 by hypothesis.

In addition, for (x − x0, y − y0) ∈ B(�) ⊂ X × Y ,

‖F̂[x, y] − (x0, y0)‖× ≤‖F̂[x, y] − F̂[x0, y0]‖× + ‖F̂[x0, y0] − (x0, y0)‖×
≤L‖(x, y)− (x0, y0)‖× + ‖F̂[x0, y0] − F[x0, y0]‖×

+ ‖F[x0, y0] − (x0, y0)‖×
≤L� + ‖FX [x0,FY [x0, y0]] − FX [x0, y0]‖X +

�

3(c + 1)

≤�
(
L +

1

3(c + 1)
+

c
3(c + 1)

)
≤ �.

Therefore, the map F̂ is a contraction from B(�) ⊂ X × Y to itself and the fixed point
theorem implies the existence of an unique fixed point belonging to B(�) ⊂ X × Y . 
�
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3. The Invariant Manifolds in the Outer Domain

Here we prove Theorem 2.2 with a fixed point argument. Then the first step of the proof,
done in Sect. 3.1, is to reformulate Theorem 2.2 as a fixed point problem. In Sect. 3.2 we
prove that the fixed point operator is a contraction in a suitable closed ball of a Banach
space.

We prove Theorem 2.2 for the unstable manifold and we obtain the corresponding
result for the stable manifold taking advantage of the symmetries of the system. Indeed,
by definition (2.7) of Dout,


κ , x ∈ Dout,s
κ if and only if −x ∈ Dout,u

κ and using that the
system is reversible with respect to the involution� in (1.13), we deduce that, if (ξu, ηu)

satisfy the conditions in Theorem 2.2, then

ξ s(x) := ξu(−x), ηs(x) := ηu(−x)

satisfy the corresponding properties.

3.1. The fixed point approach. For given κ > 0 and θ ∈ (
0, arctan

(
π
3α

))
we recall

definition (2.7) (see also Fig. 2) of the complex domains Dout,u
κ . From now on we fix θ

and we do not write explicitly the dependence of the domains on θ . The role of κ , as we
will see, is completely different.

We introduce, for a real-analytic function h : Du,out
κ → C, which extends continu-

ously to the boundary, the norm

‖h‖m,� = sup
x∈Du,out

κ ∩{�(x)≤−2α}
| cosh x |m |h(x)|

+ sup
x∈Du,out

κ ∩{�(x)≥−2α}
|x − x−|�|x − x−|�|h(x)|

with �,m ∈ R. Then, we define the associated Banach space

Em,� = {h : Du,out
κ → C continuous and real-analytic on Du,out

κ with ‖h‖m,� < ∞},
DEm,� = {h : Du,out

κ → C, h ∈ Em,� with ‖h‖m,� + ‖h′‖m,�+1 < ∞},
and the product Banach space

E× = DE1,3 × E1,5,

with the product norm

‖(h1, h2)‖× = max
{‖h1‖1,3 + ‖h′

1‖1,4, ‖h2‖1,5
}
.

We have the following lemma, whose proof is straightforward.

Lemma 3.1. There exists M > 0 depending only on θ , such that, for any κ > 0 and
g, h : Dout,u

κ → C, it holds

(1) If �2 ≥ �1 ≥ 0, then

‖h‖m,�2 ≤ M‖h‖m,�1 and ‖h‖m,�1 ≤ M

(κε)�2−�1
‖h‖m,�2 .
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(2) If �1, �2 ≥ 0 and ‖g‖m1,�1 , ‖h‖m2,�2 < ∞, then

‖gh‖m1+m2,�1+�2 ≤ ‖g‖m1,�1‖h‖m2,�2 .

(3) If m2 ≥ m1, � ≥ 0 and ‖g‖m2,� < ∞ then

‖g‖m1,� ≤ M‖g‖m2,�.

In this functional setting, Theorem 2.2 (for the unstable solution) is a straightforward
consequence of the following result.

Proposition 3.2. Consider the system (2.3), that is

L1ξ = F1[ξ, η], L2η = F2[ξ, η] (3.1)

withL1,L2 andF = (F1,F2) defined in (2.4) and (2.5) respectively. There exists κ0, ε0
and a constant M1 such that for ε ∈ (0, ε0) and κ > κ0, system (3.1) has solutions
(ξu, ηu) ∈ E× satisfying ‖(ξu, ηu)‖× ≤ M1ε

2 and ∂xξu(0) = 0.

Remark 3.3. By definition of the Banach space E×, since (ξu, ηu) ∈ E×, it satisfies the
boundary conditions

lim�x→−∞(ξ
u(x), ηu(x)) = (0, 0). (3.2)

Therefore, by Cauchy’s theorem, it is also true for x on R that

lim
x→−∞(∂xξ

u(x), ∂xη
u(x)) = (0, 0).

Then,

lim
x→−∞ G̃(ξu(x), ∂xξ

u(x), ηu(x), ∂xη
u(x), x) = G̃(0, 0, 0, 0) = 0,

with G̃ the first integral defined in (2.6), and therefore, for x ∈ Dout,u
κ ,

G̃(ξu(x), ∂xξ
u(x), ηu(x), ∂xη

u(x), x) = 0.

In addition, for x ∈ Dout,u
κ , we have |x−x+|, |x−x+| ≥ M for some constant M > 0 and

hence the estimates in Theorem 2.2 in the domain Dout,u
κ ∩ {�x ≥ −2α} hold trivially.

The remaining part of this section is devoted to prove Proposition 3.2. In order to do
so, we seek a fixed point formulation of (3.1) in a suitable ball of E×. Therefore, the next
step in our analysis is to look for suitable right inverses of the operators L1 and L2.

We start with L1. The homogeneous equation L1ξ = 0 has two linearly independent
solutions ζ1 and ζ2, where the odd function ζ1(x) = u′

0(x) is a solution due to the trans-
lation symmetry and the even function ζ2(x) is uniquely defined by the normalization

ζ1(x)ζ
′
2(x)− ζ ′

1(x)ζ2(x) = 1, x ∈ R, (3.3)

which follows from the Wronskian identity. The following lemma gives the second
solution ζ2 and it is proved in Appendix C.

Lemma 3.4. For a given κ > 0, there exists a unique real analytic even function ζ2 :
Dout,u
κ → C satisfying (3.3). In addition, ζ2(0) �= 0 and ‖ζ2‖−1,2 + ‖ζ ′

2‖−1,3 ≤ M for
some constant independent of κ ≥ 1.
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Remark 3.5. We notice that ζ1 = u′
0 ∈ DE1,2.

The classical theory of second-order differential equations implies that we can con-
struct right inverses of the operator L1 as

L−1
1 [h](x) = ζ1(x)

[
C1 +

∫ x

x1

ζ2(s)h(s)ds

]
+ ζ2(x)

[
C2 −

∫ x

x2

ζ1(s)h(s)ds

]
(3.4)

for any given x1, x2,C1,C2 ∈ R. However, we are interested in solutions (ξu, ηu)

satisfying the boundary conditions ∂xξ(0) = 0 and the decay behavior (3.2). Therefore,
we impose the same conditions on the solutions of L1ξ = h and we easily obtain that
the right inverse is formally given by

Gout
1 [h](x) = ζ1(x)

∫ x

0
ζ2(s)h(s)ds − ζ2(x)

∫ x

−∞
ζ1(s)h(s)ds (3.5)

where the (complex) integration path is, in the first integral, the segment between 0 and
x and, in the second integral, corresponds to the path parameterized by s = x + t , with
t ∈ (−∞, 0].

In addition, it is straightforward to check that a right inverse of the operator L2 can
be formally expressed as

Gout
2 [h] = − iε

2
eiε

−1x
∫ x

−∞
e−iε−1sh(s)ds +

iε

2
e−iε−1x

∫ x

−∞
eiε

−1sh(s)ds, (3.6)

where the integration path is the horizontal line s = x + t , t ∈ (−∞, 0].
The following lemma describes how the operators Gout

1 and Gout
2 act on functions

belonging to DE1,3 and E1,5 respectively. Its proof follows the same lines as the ones of
Proposition 4.3 in [31] and we sketch the main steps of the proof in Appendix C.

Lemma 3.6. The operatorsGout
1 andGout

2 introduced in (3.5) and (3.6) have the following
properties.

(1) Gout
i ◦ Li = Li ◦ Gout

i = Id.
(2) For any m > 1 and � ≥ 5, there exists a constant M > 0 independent of ε and κ

such that, for every h ∈ Em,�,∥∥Gout
1 [h]∥∥1,�−2 ≤ M‖h‖m,� and

∥∥∂xGout
1 [h]∥∥1,�−1 ≤ M‖h‖m,�

and

∂xGout
1 [h](0) = 0.

In addition, if h is real analytic, then G1[h] is also real analytic.
(3) For any m ≥ 1, � ≥ 0, there exists M > 0 such that for h ∈ Em,�,∥∥Gout

2 [h]∥∥m,� ≤ Mε2‖h‖m,�
Moreover, when h is real analytic, Gout

2 [h] is also real analytic.
In order to prove Proposition 3.2, we use Lemma 3.6 and look for solutions of (3.1)

belonging to E×, satisfying ∂xξ(0) = 0 as fixed points of the operator

Fout = (Gout
1 ◦ F1,Gout

2 ◦ F2
)

(3.7)

where Fi are the operators defined in (2.5).
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3.2. The contraction mapping. We prove Proposition 3.2 using Theorem 2.14. To do
so, we study Fout[0, 0] (Lemma 3.7) and the Lipschitz constant of Fout in a suitable
ball B(Rε2) ⊂ E× (Lemma 3.8).

Lemma 3.7. There exists a constant b1 > 0 independent of ε and κ such that

‖Fout[0, 0]‖× ≤ b1ε
2.

Proof. From definition (2.5) of F ,

F[0, 0] = (0, f ′(u0)(u0 − f (u0)) + f ′′(u0)(u
′
0)

2).

Since u0 ∈ E1,1, see (1.7) and Lemma 2.1, and f (u) = u2+2γ u3,F2[0, 0] ∈ E2,5 ⊂ E1,5
with ‖F2[0, 0]‖1,5 � 1 and from Lemma 3.6 the result holds true. 
�
Lemma 3.8. There exists C1 > 0 such that for all R > 0, if (ξ, η), (̃ξ , η̃) ∈ B(Rε2) ⊂
E×, then the operator Fout in (3.7) satisfies

∥∥Fout
1 [ξ, η] − Fout

1 (̃ξ , η̃)
∥∥

1,3 ≤ C1‖η − η̃‖1,5 +
C

κ2 ‖(ξ, η)− (̃ξ , η̃)‖×
∥∥∂xFout

1 [ξ, η] − ∂xFout
1 [̃ξ, η̃]∥∥1,4 ≤ C1‖η − η̃‖1,5 +

C

κ2 ‖(ξ, η)− (̃ξ , η̃)‖×
∥∥Fout

2 [ξ, η] − Fout
2 [̃ξ, η̃]∥∥1,5 ≤ C

κ2 ‖(ξ, η)− (̃ξ , η̃)‖×.

for some constant C = C(R) > 0 independent of ε and κ .

Proof. Let (ξ, η), (̃ξ , η̃) ∈ B(Rε2). We define ζλ = (ξλ, ηλ) = (̃ξ , η̃) + λ
(
(ξ, η) −

(̃ξ , η̃)
)
. Then, using the mean value theorem

F1[ξ, η](x)− F1 [̃ξ, η̃](x) =
∫ 1

0
DF1[ζλ](x)

(
ξ(x)− ξ̃ (x), η(x)− η̃(x)

)�
dλ

with

DF1[ζλ](x) = (∂ξF1[ζλ](x), ∂ηF1[ζλ](x)
) = (12γ u0(x)ξλ(x) + 2ξλ(x) + 6γ ξ2

λ (x),−1
)

and satisfying

‖∂ξF1[ζλ]‖1,2 � ε2

(εκ)2
+
ε2

εκ
+

ε4

(εκ)4
� 1

κ2 ,

where we have used Lemma 3.1, that κ is big enough and that ε is small enough. Then
by the second item in Lemma 3.6 and recalling that Fout

1 = Gout
1 ◦ F1

‖Fout
1 [ξ, η] − Fout

1 [̃ξ, η̃]‖1,3 ≤ M‖F1[ξ, η] − F1 [̃ξ, η̃]‖1,5

≤ M‖η̃ − η‖1,5 +
C

κ2 ‖ξ − ξ̃‖1,3

where M is the constant provided in item (2) of Lemma 3.6, which is independent on
R. In addition, using again item (2) in Lemma 3.6

‖∂xFout
1 [ξ, η] − ∂xFout

1 [̃ξ, η̃]‖1,4 ≤ M‖η̃ − η‖1,5 +
C

κ2 ‖ξ − ξ̃‖1,3.
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With respect to the second component, we define

M[ξ, η, ξ ′] = f ′(u0 + ξ) (u0 + ξ + η − f (u0 + ξ)) + f ′′(u0 + ξ)(u′
0 + ξ ′)2

which satisfies M[ξ, η, ξ ′] = F2[ξ, η]. We note that ‖u0 + ξλ‖1,1, ‖u′
0 + ξ ′

λ‖1,2 � 1.
Then, computing

∂ξ ′M[ξλ, ηλ, ξ ′
λ] = 2 f ′′(u0 + ξλ)(u

′
0 + ξ ′

λ),

we have that

‖∂ξ ′M[ξλ, ηλ, ξ ′
λ]‖2,1 � 1

(κε)2
.

In addition

‖∂ηM[ξλ, ηλ, ξ ′
λ]‖2,0 � 1

(κε)2
, ‖∂ξM[ξλ, ηλ, ξ ′

λ]‖2,2 � 1

(κε)2
.

Then, using the mean’s value theorem as Lemma 3.1, we obtain

‖F2[ξ, η] − F2 [̃ξ, η̃]‖1,5 � 1

(κε)2
‖(ξ, η)− (̃ξ , η̃)‖×,

from which the last bound in Lemma 3.8 follows by recalling that Fout
2 = Gout

2 ◦F2 and
applying the third item of Lemma 3.6. 
�
End of the proof of Proposition 3.2. We apply now Theorem 2.14 to the operator Fout.
Indeed, using Lemmas 3.7 and 3.8, we take (with the notation in Theorem 2.14) (x0, y0) =
(0, 0), c = C1,

� = 3(C1 + 1)b1ε
2 ≥ 3(C1 + 1)‖Fout[0, 0]‖×

and L1 = L2 = L3 = C
κ2 . Hence the conditions (2.36) and (2.37) in Theorem 2.14 are

trivially satisfied taking κ big enough. Therefore, Fout has a unique fixed point which
belongs to B(3(C1 + 1)b1ε

2). This completes the proof of Proposition 3.2.

4. An Auxiliary Solution

Here we prove Theorem 2.3 by constructing a real-analytic solution (ξ aux, ηaux) of
equation (2.3) defined in the domain Daux

κ , see (2.10) and Fig. 3. As we have done in
Sect. 3, we fix θ ∈ (0, arctan

(
π
α

))
and we omit the dependence on it along the proof.

We will run the fixed point argument similar to that of Sect. 3. Note however that we
have to modify some arguments in a suitable way so that

• The integrals defining the right inverse of the linear operators L1,L2 have to be
over paths within the new domain Daux

κ , see (3.5) and (3.6).
• We have to ensure that the solutions belongs to the 0 level curve of the first integral
G̃ given by (2.6).
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4.1. The fixed point approach. We first define the Banach space where the fixed point
argument is carried out. Given κ > 0, we define for a real-analytic function h : Daux

κ →
C which extends continuously to the boundary, the norm

‖h‖� = sup
x∈Daux

κ

|(x − x−)�(x − x−)�(x − x+)
�(x − x+)

�h(x)|, (4.1)

with the associated Banach spaces

Y� = {h : Daux
κ → C continuous and real-analytic on Daux

κ with ‖h‖� < ∞},
DY1

� = {h : Daux
κ → C, h ∈ Y� with ‖h‖� + ‖h′‖�+1 < ∞},

DY2
� = {h : Daux

κ → C, h ∈ Y� with ‖h‖� + ε‖h′‖� < ∞}.
(4.2)

Then, we define the product Banach space

Y× = DY1
3 × DY2

5

with the norm

‖(ξ, η)‖× = max
{‖ξ‖3 + ‖ξ ′‖4, ‖η‖5 + ε‖η′‖5

}
.

The counterpart of Lemma 3.1 for the Banach spaces Y� is the following result whose
proof is left to the reader.

Lemma 4.1. There exists M > 0, such that, for any κ > 0 and g, h : Daux
κ → C, it

holds that

(1) If �2 ≥ �1 ≥ 0, then

‖h‖�2 ≤ M‖h‖�1 and ‖h‖�1 ≤ M

(κε)�2−�1
‖h‖�2 .

(2) If �1, �2 ≥ 0 and ‖g‖�1, ‖h‖�2 < ∞, then

‖gh‖�1+�2 ≤ ‖g‖�1‖h‖�2 .

We rephrase Theorem 2.3 as the following proposition.

Proposition 4.2. There exist κ0, ε0 > 0 and M2 > 0, such that, if ε ∈ (0, ε0) and
κ > κ0, the system (2.3) has real-analytic solutions (ξ aux, ηaux) ∈ Y× satisfying

G̃(ξ aux, ∂xξ
aux, ηaux, ∂xη

aux, x) = 0, ∂xξ
aux(0) = 0,

where G̃ is the first integral introduced in (2.6), and‖(ξ aux, ηaux)‖× ≤ M2ε
2. In addition,

ξ aux(x) = ξ aux(−x) and ηaux(x) = ηaux(−x).

To prove Proposition 4.2, we recall that system (2.3) is

L1ξ = F1[ξ, η], L2η = F2[ξ, η]
with L1,L2 and F = (F1,F2) defined in (2.4) and (2.5) respectively. Therefore, in
order to set up the fixed point equation, we first introduce the suitable right inverses of
the linear operators L1,L2. We use the fundamental set of solutions ζ1 = u′

0 and the
analytic continuation of ζ2 (see Lemma 3.4). The following lemma specifies another
suitable property for ζ2, and it is proved in Appendix C.
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Lemma 4.3. The even function ζ2 in Lemma 3.4 has an even analytic continuation to
Daux
κ . In addition, ζ2 ∈ DY1

2 .

We define now the linear operators

Gaux
1 [h](x) = ζ1(x)

∫ x

0
ζ2(s)h(s)ds − ζ2(x)

∫ x

0
ζ1(s)h(s)ds,

Gaux
2 [h](x) = − iε

2
eiε

−1x
∫ x

−iρ
e−iε−1sh(s)ds +

iε

2
e−iε−1x

∫ x

iρ
eiε

−1sh(s)ds,
(4.3)

where ρ = ρ(θ) = α+ tan θ + π − κε with α+ = �x+, the superior vertex of Daux
κ .

The following lemma gives estimates for the linear operators Gaux
1 ,Gaux

2 . Its proof
follows the same lines as the one of Lemma 3.6 and it is deferred to Appendix C.

Lemma 4.4. The operators Gaux
1 and Gaux

2 introduced in (4.3) have the following prop-
erties.

(1) Li ◦ Gaux
i [ξ ] = ξ .

(2) For any � ≥ 5, there exists a constant M > 0 independent of ε and κ such that, for
every h ∈ Y�,∥∥Gaux

1 [h]∥∥
�−2 ≤ M‖h‖� and

∥∥∂xGaux
1 [h]∥∥

�−1 ≤ M‖h‖�.
In addition, if h is real analytic, Gaux

1 [h] is real analytic.
(3) For any � ≥ 0, there exists M > 0 such that for every h ∈ Y�,∥∥Gaux

2 [h]∥∥
�

≤ Mε2‖h‖�,
∥∥∂xGaux

2 [h]∥∥
�

≤ Mε‖h‖�
When h is real analytic, Gaux

2 [h] is also real analytic.
Now, to set up the fixed point argument we proceed in two steps so that we fix the G̃

level curve. For the η component, we just impose that it satisfies

η = Gaux
2 ◦ F2[ξ, η].

Note that, then in particular,

η(0) = Gaux
2 ◦ F2[ξ, η](0).

We use this equality to fix G̃ at x = 0. Indeed, as we claimed in (3.4), L1 in (2.4) has
several right inverses

L−1
1 [h] = ζ1(x)

[
C1 +

∫ x

0
ζ2(s)h(s)ds

]
− ζ2(x)

[
C2 +

∫ x

0
ζ1(s)h(s)ds

]
.

The condition ξ ′(0) = 0 implies that one has to impose C1 = 0 (recall that ζ2 is an even
function, see Lemma 3.4). We choose a suitable C2 so that the solution lies in G̃ = 0.
Indeed, we have

G̃
(−ζ2(0)C2, 0, η(0), η′(0), 0

) = 0.

The following lemma ensures that, for a given η and ξ in a suitable Banach space,
there exists a unique C2 satisfying this equality.
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Lemma 4.5. Fix R > 0. There exists ε0 such that for ε ∈ (0, ε0), there is a function
I : B(Rε2) ⊂ DY2

5 → C such that, for any η ∈ B(Rε2),

G̃
(−ζ2(0)I[η], 0, η(0), η′(0), 0

) = 0 (4.4)

and ∣∣I[η]∣∣ � ε2.

Moreover, for any η, η̃ ∈ B(Rε2) ⊂ DY2
5 ,

|I[η] − I [̃η]| � ε2‖η − η̃‖5.

Proof. The proof follows by an implicit function theorem. Take η ∈ B(Rε2) ⊂ Y5
and denote η0 = η(0) which satisfies |η0| � ε2. Then, since u′

0(0) = 0, see (1.7),
equation (4.4) is equivalent

0 = G(ξ0, ε; η0) = −u′′
0(0)ξ0 − ε2

2
(η0 + u0(0) + ξ0 − f (u0(0) + ξ0) + G̃(ξ0)

with |G̃(ξ0)| � |ξ0|2. It is clear that G(0, 0; η) = 0, then, recalling that u′′
0(0) �= (see

Lemma 2.1), the implicit function theorem assures, for ε small enough, the existence of
ξ0 = ξ0(ε; η0), satisfying |ξ0| � ε2. In addition, since |∂η0ξ0(ε; η0)| � ε2, |ξ0(ε; η0)−
ξ0(ε; η̃0)| � ε2|η0 − η̃0| for any |η0|, |̃η0| � ε2. Taking I[η] = −ξ0(ε; η(0))(ζ2(0))−1,
the result follows provided |η(0)| � ‖η‖5. 
�

Based on the results of Lemmas 4.4 and 4.5, we look for the functions (ξ aux, ηaux)

in Proposition 4.2 as fixed points of the operator

Faux[ξ, η] =
(Faux

1 [ξ, η]
Faux

2 [ξ, η]
)

=
(−ζ2 · I[η] + Gaux

1 ◦ F1[ξ, η]
Gaux

2 ◦ F2[ξ, η]
)

(4.5)

with Gaux
1 ,Gaux

2 defined in (4.3), ζ2 defined by Lemma 4.3 and F = (F1,F2) is given
in (2.5).

4.2. The contraction mapping. The following two lemmas analyze the operator Faux

defined in (4.5).

Lemma 4.6. There exists a constant b2 > 0 independent of ε and κ such that

‖Faux[0, 0]‖× ≤ b2ε
2.

Lemma 4.7. There exists C2 such that for all R > 0, if (ξ, η), (̃ξ , η̃) ∈ B(Rε2) ⊂ Y×,
the operator Faux in (4.5) satisfies

∥∥Faux
1 [ξ, η] − Faux

1 [̃ξ, η̃]∥∥3 ≤ C2‖η − η̃‖5 +
C

κ2 ‖(ξ, η)− (̃ξ , η̃)‖×,
∥∥∂xFaux

1 [ξ, η] − ∂xFaux
1 [̃ξ, η̃]∥∥4 ≤ C2‖η − η̃‖5 +

C

κ2 ‖(ξ, η)− (̃ξ , η̃)‖×,
∥∥Faux

2 [ξ, η] − F̂aux
2 [̃ξ, η̃]∥∥5 ≤ C

κ2 ‖(ξ, η)− (̃ξ , η̃)‖×,
∥∥∂xFaux

2 [ξ, η] − ∂xFaux
2 [̃ξ, η̃]∥∥5 ≤ C

εκ2 ‖(ξ, η)− (̃ξ , η̃)‖×,

for some constant C = C(R) > 0 independent of ε and κ .
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The proofs of Lemmas 4.6 and 4.7, using Lemmas 4.4 and 4.5 follow exactly the
same lines as Lemma 3.7 and 3.8 and are left to the reader.

As in Sect. 3, the Lipschitz constant for Faux obtained in Lemma 4.7 is not smaller
than one. To overcome this problem we use Theorem 2.14 to establish that Faux has a
unique fixed point (ξ aux, ηaux) belonging to the ball B(3(C2 + 1)b2ε

2).
Let ξ̃ aux, η̃aux be such that

ξ̃ aux(x) = ξ aux(−x), η̃aux(x) = ηaux(−x).

It is clear that (̃ξ aux, η̃aux) ∈ B(3(C2 + 1)b2ε
2) provided the auxiliary domain Daux

κ is
symmetric with respect to {�x = 0} and {�x = 0}. Therefore, by uniqueness of the
solution of the fixed point equation (ξ, η) = Faux[ξ, η], in the ball B(3(C2 + 1)b2ε

2),
in order to finish the proof of Proposition 4.2, we only need to argue that (̃ξ aux, η̃aux) is
also a solution of this fixed point equation. For that we emphasize that

Faux
1 [̃ξ aux, η̃aux](x) = Faux

1 [ξ aux, ηaux](−x).

Indeed, from definition (2.5),

F1 [̃ξ aux, η̃aux](x) = F1[ξ aux, ηaux](−x), F2 [̃ξ aux, η̃aux](x) = F2[ξ aux, ηaux](−x)

and from definition (4.3) of Gaux
1 ,Gaux

2 and Lemma 4.3, denoting h̃(x) = h(−x), we
easily prove that

Gaux
1 [̃h](x) = Gaux

1 [h](−x), Gaux
2 [̃h](x) = Gaux

2 [h](−x).

In addition, it follows from definition (2.6) of G̃ and Lemma 4.5 that I [̃ηaux] = I[ηaux]
provided

G̃(ξ0, 0, η0, η
′
0, 0) = G̃(ξ0, 0, η0,−η′

0, 0), ∀ξ0, η0, η
′
0 ∈ R.

This completes the proof of Proposition 4.2.

5. The Inner Equation

Here we prove Theorem 2.8 with item (1) proved in Sect. 5.1 and item (2) proved in
Sect. 5.2.

5.1. The solutions of the inner equation. Given � ≥ 0 and an analytic function f :
Du,in
θ,κ → C, which extends continuously to the boundary and where Du,in

θ,κ is given
in (2.29), consider the norm

‖ f ‖� = sup
z∈Du,in

θ,κ

|z� f (z)|, (5.1)

and the Banach spaces

X� = { f : Du,in
θ,κ → C; f is continuous and real-analytic on Du,in

θ,κ with ‖ f ‖� < ∞},
DX � = { f : Du,in

θ,κ → C; f ∈ X� with ‖ f ‖� + ‖ f ′‖�+1 < ∞}.
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We also define the product space

X× = DX3 × X5

endowed with the norm

‖(φ,ψ)‖× = max
{‖φ‖3 + ‖φ′‖4, ‖ψ‖5

}
.

The proof of the following lemma can be found in [4].

Lemma 5.1. Given analytic functions g, h : Du,in
θ,κ → C, the following statements hold

for some constant M > 0 depending only on θ ,

(1) If �1 ≥ �2 ≥ 0, then

‖h‖�1−�2 ≤ M

κ�2
‖h‖�1 .

(2) If �1, �2 ≥ 0, and ‖g‖�1, ‖h‖�2 < ∞, then

‖gh‖�1+�2 ≤ ‖g‖�1‖h‖�2 .

(3) If h ∈ X� (with respect to the inner domain Du,in
θ,κ ), then ∂zh ∈ X�+1 (with respect to

the inner domain Du,in
2θ,4κ ), and

‖∂zh‖�+1 ≤ M‖h‖�.
The first item in Theorem 2.8 is now rewritten as the following proposition.

Proposition 5.2. Consider system (2.25), namely

Lin
1 [φ] = J in

1 [φ,ψ], Lin
2 [ψ] = J in

2 [φ,ψ] (5.2)

with Lin
1 ,Lin

2 defined in (2.26) and J in
1 ,J in

2 in (2.27). There exists κ0 big enough and a
constant M7 > 0 such that for κ > κ0, equations (5.2) have solutions (φ0,u, ψ0,u) ∈ X×
with ‖(φ0,u, ψ0,u)‖× ≤ M7.

As in Sects. 3 and 4, the suitable right inverse of the linear operators Lin
1 ,Lin

2 are
given by the linear operators

Gin
1 [h](z) = z3

5

∫ z

−∞
h(s)

s2 ds − 1

5z2

∫ z

−∞
s3h(s)ds

Gin
2 [h](z) = 1

2i

∫ z

−∞
e−i(s−z)h(s)ds − 1

2i

∫ z

−∞
ei(s−z)h(s)ds.

(5.3)

The following lemma provides bounds for the linear operator Gin
1,2. Its proof is straight-

forward from Proposition 5.2 in [31] (see also [4,9,12]).

Lemma 5.3. Consider κ ≥ 1 big enough. Given � > 2, the operators Gin
1 : X�+2 → X�

and Gin
2 : X� → X� are well defined and the following statements hold.

(1) Gin
i ◦ Lin

i [h] = Lin
i ◦ Gin

i [h] = h, i = 1, 2.
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(2) For any � > 4, there exists a constant M > 0 independent of κ such that, for every
h ∈ X�,

∥∥∥Gin
1 [h]

∥∥∥
�−2

≤ M‖h‖�,∥∥∥∂zGin
1 [h]

∥∥∥
�−1

≤ M‖h‖�.

(3) For any � > 1, there exists a constant M > 0 independent of κ such that, for every
h ∈ X�,

∥∥∥Gin
2 [h]

∥∥∥
�

≤ M‖h‖�.

We use the integral operators in (5.3) in order to obtain solutions of (5.2) with certain
decay as |z| → ∞ (within D
,in

θ,κ , 
 = u, s). Indeed, such solutions must be fixed points
of the operator

F in = (Gin
1 ◦ J in

1 ,Gin
2 ◦ J in

2

)
, (5.4)

where the operators J in
1 ,J in

2 are those introduced in (2.27).

The following two lemmas give properties of the operator F in when analyzed in the
Banach space X× = DX 3 × X5. The proofs of these two lemmas are straightforward
using the definition of J in

1 and J in
2 in (2.27), see (5.4), and Lemmas 5.3 and 5.1.

Lemma 5.4. There exists a constant b3 > 0 independent of κ such that

‖F in[0, 0]‖× ≤ b3.

Lemma 5.5. There exists C3 > 0 such that for all R > 0, if (φ,ψ), (φ̃, ψ̃) ∈ B(R) ⊂
X×, the operator F in in (5.4) satisfies

∥∥∥F in
1 [φ,ψ] − F in

1 [φ̃, ψ̃]
∥∥∥

3
≤ C3‖ψ − ψ ′‖5 +

C

κ2 ‖(φ,ψ)− (φ̃, ψ̃)‖in,∥∥∥∂zF in
1 [φ,ψ] − ∂zF in

1 [φ̃, ψ̃]
∥∥∥

4
≤ C3‖ψ − ψ ′‖5 +

C

κ2 ‖(φ,ψ)− (φ̃, ψ̃)‖in,∥∥∥F in
2 [φ,ψ] − F in

2 [φ̃, ψ̃]
∥∥∥

5
≤ C

κ2 ‖(φ,ψ)− (φ̃, ψ̃)‖in,

for some constant C = C(R) > 0 independent of κ .

We use again Theorem 2.14 to conclude the existence of a fixed point of (φ,ψ) =
F in[φ,ψ] belonging to B(3(C3 + 1)b3) ⊂ X×. This fixed point is the function given in
item (1) of Theorem 2.8. Moreover, by construction it satisfies the stated estimates and
they are real analytic functions. The symmetry is a consequence of the reversibility of
equation (2.25) with respect to (2.28)
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5.2. The difference between the solutions of the inner equation. To complete the proof
of Theorem 2.8, we analyze the differences

�φ0(z) = φ0,u(z)− φ0,s(z), �ψ0(z) = ψ0,u(z)− ψ0,s(z),

for z ∈ Rin,+
θ,κ with

Rin,+
θ,κ = Du,in

θ,κ ∩ Ds,in
θ,κ ∩ {z ∈ iR and �(z) < 0}.

Given a continuous function f : Rin,+
θ,κ → C, we define the norm

‖ f ‖�,exp = sup
z∈Rin,+

θ,κ

|z�eiz f (z)|

and the Banach spaces

Z�,exp =
{
f : Rin,+

θ,κ → C; continuous with ‖ f ‖�,exp < ∞
}
,

DZ�,exp =
{
f : Rin,+

θ,κ → C; continuous with ‖ f ‖�,exp + ‖ f ′‖�,exp < ∞
}
.

We will consider the product Banach space

Z×,exp = DZ0,exp × Z0,exp

and denote by ‖ · ‖×,exp the associated norm:

‖(φ,ψ)‖×,ε = max{‖φ‖0,exp + ‖φ′‖0,exp, ‖ψ‖0,exp}.
It can be easily seen that, if f ∈ X�1 and g ∈ Z�2,exp, then f g ∈ Z�1+�2,exp and
‖ f g‖�1+�2,exp ≤ ‖ f ‖�1‖g‖�2,exp.

The second item in Theorem 2.8 can be rewritten as the following proposition, which
will be proved in the rest of this section.

Proposition 5.6. There exist� ∈ R and κ0,M8 > 0 such that for κ > κ0,�φ0,�ψ0 ∈
DZ0,exp and they satisfy

‖�φ0 +�e−i z‖1,exp + ‖∂z�φ0 − i�e−i z‖1,exp ≤ M8|�|,
‖�ψ0 −�e−i z‖1,exp + ‖∂z�ψ0 + i�e−i z‖1,exp ≤ M8|�|.

Since both the stable and unstable solutions satisfy equation (5.2), applying the mean
value theorem, one can see that the functions �φ0, �ψ0 satisfy a linear homogeneous
equation of the form

{ L̃in
1 �φ

0 = P1[�φ0,�ψ0],
Lin

2 �ψ
0 = P2[�φ0,�ψ0], (5.5)

where L̃in
1 = −∂2

z , Lin
2 is the operator introduced in (2.26) and P1, P2 are defined by

{P1[�φ0,�ψ0](z) = a11(z)�φ0(z)−�ψ0(z),

P2[�φ0,�ψ0](z) = a21(z)�φ0(z) + a22(z)�ψ0(z) + a23(z)∂z�φ0(z),
(5.6)
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where, introducing �0,
 = (φ0,
, ψ0,
), 
 = u, s and defining N as the functional such
that the operator J in

2 [φ,ψ] in (2.27) can be written as

J in
2 [φ,ψ] = N [φ,ψ, ∂zφ],

ai, j is defined as

a11(z) = − 6

z2 +
∫ 1

0
D1J in

1 [�0,s(z) + σ(�0,u(z)−�0,s(z))]dσ,

a2 j (z) =
∫ 1

0
Dj N

[
�0,s(z) + σ(�0,u(z)−�0,s(z)),

∂zφ
0,s(z) + σ(∂zφ

0,u(z)− ∂zφ
0,s(z))

]
dσ.

Using the norm introduced in (5.1), these functions satisfy

‖a11‖2 � 1, ‖a21‖4 � 1, ‖a22‖2 � 1, ‖a23‖3 � 1. (5.7)

We now write equation (5.5) as an integral fixed point equation. On the one hand,

∂z�φ
0(z) = C1 −

∫ z

z1

P1[�φ0,�ψ0](s)ds

with C1 = ∂z�φ
0(z1). Since lim�z→−∞ ∂z�φ

0(z) = 0, we conclude that

∂z�φ
0(z) = −

∫ z

−i∞
P1[�φ0,�ψ0](s)ds

and as a consequence, reasoning analogously,

�φ0(z) =
∫ z

−i∞

∫ s

−i∞
P1[�φ0,�ψ0](σ )dσ. (5.8)

On the other hand, recalling that Lin
2 [�ψ0] = ∂2

z�ψ
0 +�ψ0, we have

�ψ0(z) = eiz
(
C1 +

1

2i

∫ z

z1

e−ish(s)ds

)
+ e−i z

(
C2 −

∫ z

z2

eish(s)ds

)

with

2ieiz1C1 = i�ψ0(z1) + ∂z�ψ
0(z1), 2ie−i z2C2 = i�ψ2(z2)− ∂z�ψ

0(z2),

Using (5.7), taking z2 = −iκ and imposing that lim�z→−∞�ψ0(z) = 0, we obtain

�ψ0(z) =
∫ z

−i∞
e−i(s−z)

2i
P2[�φ0,�ψ0](s)ds +�0e

−i z

−
∫ z

−iκ

ei(s−z)

2i
P2[�φ0,�ψ0](s)ds

(5.9)

with

�0 = �0(κ) = 1

2i
eκ
(
i�ψ0(−iκ)− ∂z�ψ

0(−iκ)
)
. (5.10)
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We emphasize that, from item (1) of Theorem 2.8, |�φ0(z)| � |z|−3, |�ψ0(z)| � |z|−5

uniformly on the domain Rin
θ,κ and hence, using also bounds (5.7) of ai j , the improper

integrals in (5.8) and (5.9) are well defined. Therefore, (�φ0,�ψ0) satisfies the fixed
point equation

{
�φ0(z) = G̃in

1 ◦ P1[�φ0,�ψ0](z),
�ψ0(z) = �0e−i z + G̃in

2 ◦ P2[�φ0,�ψ0](z). (5.11)

where the constant �0 = �0(κ) is defined in (5.10), P in (5.6) and G̃in = (G̃in
! , G̃in

2 ) is

the integral linear operator defined on functions h : Rin,+
θ,κ → C, as

G̃in
1 [h](z) = −

∫ z

−i∞

∫ s

−i∞
h(σ )dσ ds,

G̃in
2 [h](z) =

∫ z

−i∞
e−i(s−z)h(s)

2i
ds −

∫ z

−iκ

ei(s−z)h(s)

2i
ds.

Denoting ��0 = (�φ0,�ψ0), equation (5.11) can be rewritten as

��0 = ��0
0 + P̃[��0], ��0

0(z) =
(

0
�0e−i z

)
,

where P̃ is the linear operator defined by

P̃ = (P̃1, P̃2
) = (G̃in

1 ◦ P1, G̃in
2 ◦ P2

)
. (5.12)

Notice that, if the operator Id − P̃ were invertible, then we could write ��0 = (
Id −

P̃)−1[��0
0] and study ��0 through P̃ and ��0.

The following lemma specifies properties of the linear operator P̃ . Its proof is straight-
forward using the estimates in (5.7) and the definition of the operators in (5.12), where
we also recall that Rin

θ,κ is a subset of iR.

Lemma 5.7. The linear operator P̃ : Z×,exp → Z×,exp given in (5.12), is well defined.
Moreover, there exists a constant M such that for each κ ≥ 1,

(1) The linear operators P̃1, ∂zP̃1 : Z×,exp → Z0,exp satisfy

‖P̃1[�φ0,�ψ0]‖0,exp ≤ M

κ2 ‖�φ0‖0,exp + M‖�ψ0‖0,exp,

‖∂zP̃1[�φ0,�ψ0]‖0,exp ≤ M

κ2 ‖�φ0‖0,exp + M‖�ψ0‖0,exp.

(2) The linear operator P̃2 : Z×,exp → Z0,exp satisfy

‖P̃2[�φ0,�ψ0]‖0,exp ≤ M

κ
‖(�φ0,�ψ0)‖0,exp.
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This result of Lemma 5.7 does not lead to check that P̃ has small norm so that Id − P̃
is invertible. Hence we proceed in a similar way as in the proof of Theorem 2.14. We
emphasize that ��0 is also a solution of

��0 = ̂��0
0 + P̂[��0], ̂��0

0(z) = ��0
0(z) +

(P̃1[��0
0]

0

)
, (5.13)

where P̂ is the linear operator defined by

{ P̂1[�φ0,�ψ0] = P̃1
[
�φ0, P̃2[�φ0,�ψ0]],

P̂2[�φ0,�ψ0] = P̃2[�φ0�ψ0].

Lemma 5.7 implies that P̂ satisfies

∥∥∥P̂[�φ0,�ψ0]
∥∥∥×,exp

� 1

κ

∥∥∥�φ0,�ψ0
∥∥∥×,exp

.

Then we conclude that, taking κ big enough, Id − P̂ is invertible in Z×,exp. On the other
hand, using that�0

0(z) = (0,�0e−i z)�, formula (5.6) of P1 and that P̃1 = G̃in
1 ◦P1, we

obtain that

̂��0
0(z) =

(P̃1[��0
0](z)

�0e−i z

)
=
(−�0e−i z

�0e−i z

)
∈ Z×,exp. (5.14)

As a consequence, it follows from equation (5.13) that
(
Id − P̂)��0 = ̂��0

0 ∈ Z×,exp
and we conclude

��0 = (Id − P̂)−1[̂��0
0] ∈ Z×,exp.

In addition, this implies that, for z ∈ Rin,+
θ,κ ,

(
�φ0(z)
�ψ0(z)

)
= �0e

−i z
(−1 + O ( 1

κ

)
1 + O ( 1

κ

)
)
.

Note that this asymptotic formula is not the one given in Proposition 5.6. Indeed, the
asymptotics here is given with respect to κ−1 whereas the one in Proposition 5.6 is given
in terms of z−1. To improve the asymptotics, we need to define a new constant � which
is κ−1 close to �0.

We define the constant

� = �0 −
∫ −i∞

−iκ

eizP2[�φ0,�ψ0](z)
2i

dz. (5.15)

Note that the fact that (�φ0,�ψ0) ∈ Z×,exp implies that the integral is convergent and
the constant � is well-defined.

Proposition 5.6 (and hence the second statement of Theorem 2.8) is a direct conse-
quence of the following lemma.
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Lemma 5.8. The functions (�φ0,�ψ0) satisfy that, for z ∈ Rin,+
θ,κ ,

(
�φ0(z)
�ψ0(z)

)
= �e−i z

⎛
⎝−1 + O

(
1
z

)
1 + O

(
1
z

)
⎞
⎠ ,

for some constant � ∈ R.

Proof. We exploit the fact that we already have proven that (�φ0,�ψ0) ∈ Z×,exp.
We obtain the asymptotic formula for each component. From (5.11) and using defini-
tion (5.15) of �, we note that, the second component can be written as

�ψ0(z) = �e−i z + Ǧin
2

[P2[�φ0,�ψ0]](z),
with

Ǧin
2 [h](z) =

∫ z

−i∞
e−i(s−z)h(s)

2i
ds −

∫ z

−i∞
ei(s−z)h(s)

2i
ds.

Since (�φ0,�ψ0) ∈ Z×,exp, estimates (5.7) imply that P2[�φ0,�ψ0] ∈ Z2,exp and
∥∥∥P2[�φ0,�ψ0]

∥∥∥
2,exp

� 1.

Then, it is a straightforward computation to see that �ψ0 −�e−i z ∈ Z1,exp and
∥∥∥�ψ0 −�e−i z

∥∥∥
1,exp

=
∥∥∥Ǧin

2

[P2[�φ0,�ψ0]]∥∥∥
1,exp

� 1.

This completes the proof of the asymptotic formula for �ψ0. Analogous computations
lead to the asymptotic formula for ∂z�ψ0.

Now we prove the asymptotic formula for the first component. To this end, using that
we rewrite the identity (see (5.13) and (5.14))

�φ0(z) = P̃1[��0
0](z) + P̂1[�φ0,�ψ0](z) = −�0e

−i z + P̃1
[
�φ0, P̃2[�φ0,�ψ0]](z)

as

�φ0(z) = −�e−i z + P̃1
[
�φ0, Ǧin

2

[P2[�φ0,�ψ0]]](z),
where we have used

�ψ0(z) = �0e
−i z + P̃2[�φ0,�ψ0](z) = �e−i z + Ǧin

2

[P2[�φ0,�ψ0]](z).
Then, it can be easily seen that

�φ0(z) +�e−i z = P̃1
[
�φ0, Ǧin

2

[P2[�φ0,�ψ0]]] ∈ Z1,exp

and ∥∥∥�φ0 +�e−i z
∥∥∥

1,exp
� 1.

This completes the asymptotic formula for the first component and analogously we have
the one for its derivative.
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It only remains to show that the constant� is real. This is a direct consequence of the
fact that the solutions (φ0,
, ψ0,
), 
 = u, s are real-analytic and satisfy (2.30). Indeed
these two properties imply that, for z ∈ Rin,+

θ,κ (recall that Rin,+
θ,κ ⊂ iR),

�ψ0(z) ∈ R.

This implies that eiz�ψ0(z) ∈ R and therefore � ∈ R since it can be defined as

lim�z→−∞,z∈iR e
iz�ψ0(z).

This completes the proof of Lemma 5.8. 
�
Finally, the fact that� �= 0 if and only if�φ0 does not vanish at one point is a direct

consequence of the asymptotic formula. This proves the third item of Theorem 2.8.

6. Matching Around Singularities

Here we prove Theorem 2.10. We will give the proof only for the − case, being the +
case is analogous. Due to this reason, we omit the sign ± in our notation and we provide
estimates for (ξu, ηu) and (ξ aux, ηaux) around the singularity x−.

It is convenient to work with inner variables, see (2.23) and (2.24), namely,

z = ε−1(x − x−), φ(z) = ε

c−1
ξ(x− + εz), ψ(z) = ε3

c−1
η(x− + εz). (6.1)

We define now the matching domain D−,match
θ1,θ2,ν

by (2.32) in the inner variable. We fix
0 < ν < 1 and 0 < θ2 < θ < θ1 <

π
2 , where θ is the angle introduced in (2.7), and we

define

Dmatch
θ1,θ2,ν

= ̂−iκ, z1, z2,

the open triangle with vertices −iκ, z1, z2, with

z1 = −iκ +
1

ε1−ν e
−iθ1 , z2 = −iκ − 1

ε1−ν e
−iθ2 .

In addition, if we define

û0(z) = u0(x− + εz),

we notice that, if z ∈ Dν,match
θ1,θ2

, then |εz| � εν and therefore

εc−1
−1û0(z) = 1

z
+ ε
∑
k≥0

ck(εz)
k = 1

z
+ O(ε),

εc−1
−1û

′
0(z) = − 1

z2 + O(ε2).

(6.2)

Moreover, defining

φ
(z) = ε

c−1
ξ
(x− + εz), ψ
(z) = ε3

c−1
η
(x− + εz), 
 = u, aux (6.3)
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with (ξu, ηu) and (ξ aux, ηaux), given in Theorems 2.2 and 2.3 respectively, we have that

∣∣φ
(z)∣∣ � 1

|z|3 ,
∣∣∂zφ
(z)∣∣ � 1

|z|4 ,
∣∣ψ
(z)

∣∣ � 1

|z|5 . (6.4)

Now we rephrase Theorem 2.10 in the inner variables as follows.

Theorem 6.1. Let θ > 0, κ0 be fixed as in Theorems 2.2, 2.3 and 2.8. Take 0 < θ2 <

θ < θ1 <
π
2 and ν ∈ (0, 1). We introduce the functions

δφ
(z) = ε

c−1
δξ
−(x− + εz), δψ
(z) = ε3

c−1
δη
−(x− + εz), 
 = u, aux,

with δξ
−, δη
− defined in Theorem 2.10. Then there exist κ1 ≥ κ0 and a constant M > 0
such that for all κ ≥ κ1 and z ∈ Dmatch

θ1,θ2,ν

∣∣δφ
(z)∣∣ ≤ M | log ε|ε
1−ν

|z|2 ,
∣∣∂zδφ
(x)∣∣ ≤ M | log ε|ε

1−ν

|z|3 ,
∣∣δη
(x)∣∣ ≤ M | log ε|ε

1−ν

|z|4 ,
∣∣∂zδη
−(x)∣∣ ≤ M | log ε|ε

1−ν

|z|4 .

Remark 6.2. We emphasize that we already know the existence of δφ
, δψ
 in the match-
ing domain and that, using (6.4) and Theorem 2.8

∣∣δφ
(z)∣∣ ≤ ∣∣φ
(z)∣∣ +
∣∣φ0,
(z)

∣∣ � 1

|z|3 ,
∣∣δψ
(z)

∣∣ ≤ ∣∣φ
(z)∣∣ +
∣∣φ0,
(z)

∣∣ � 1

|z|5 ,

and also
∣∣∂zδφ
∣∣ � |z|−4. However, these estimates do not imply that, when ε = 0,

δφ
, δψ
 = 0.

The remaining part of this section is devoted to prove Theorem 6.1. The prove for

 = u, aux are identical and, therefore, we only present the first one.

6.1. Reformulation of the problem. To prove Theorem 6.1 we look for differential equa-
tions which have (δξu, δηu), as a solutions. To this end, let (ξu, ηu) be the solution of
equation (2.3) provided in Theorem 2.2 and consider the function (φu, ψu) defined
in (6.3). Applying the change of coordinates to equation (2.3) we have that

{Lin
1 [φu] = J match

1 [φu, ψu; ε] := J in
1 [φu, ψu] + A1[φu, ψu; ε],

Lin
2 [ψu] = J match

2 [φu, ψu; ε] := J in
2 [φu, ψu] + A2[φu, ψu; ε],

where Lin
j and J in

j , j = 1, 2 are introduced in (2.26) and (2.27).
We introduce the notation � = (φ,ψ), A[�; ε] = (A1[�; ε],A2[�; ε]),

Lin[�] = (Lin
1 [φ],Lin

2 [ψ]), J in[�] = (J in
1 [�],J in

2 [�]),
and

J match[�; ε] = (J match
1 [�; ε],J match

2 [�; ε]) = J in[�] + A[�; ε].
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Since, by Theorem 2.8,�0,u = (φ0,u, ψ0,u) is a solution of Lin[�0,u] = J in[�0,u] and
�u satisfies Lin[�u] = J in[�u] + A[�u; ε], using the mean value theorem, we have
that δ�u = �u −�0,u satisfies

Lin[δ�u] =Lin[�u](z)− Lin[�0,u](z)

=
∫ 1

0
D�J in[�0,u + λ(�u −�0,u)](z) · (�u(z)−�0,u(z)) dλ + A[�u; ε](z)

+
∫ 1

0
D∂zφJ in[�0,u + λ(�u −�0,u)](z) ·

(
∂zφ

u(z)− ∂zφ
0,u(z)

)
dλ.

We denote

Bu
1(z) =

∫ 1

0
D�J in[�0,u + λ(�u −�0,u)](z) dλ−

(
0 −1
0 0

)
,

Bu
2(z) =

∫ 1

0
D∂zφJ in[�0,u + λ(�u −�0,u)](z) dλ,

B3(z) =
(

0 −1
0 0

)
,

(6.5)

and Au(z) = A[�u; ε](z). We emphasize that Bu
1,Bu

2 and Au are known functions
that depend on the solutions �u = (φu, ψu) and �0,u = (φ0,u, ψ0,u), which have
already been constructed above. We then obtain that δ�u = (δφu, δψu) satisfies the
non-homogeneous linear equation

Lin[δ�u](z) = Bu
1(z)δ�

u(z) + Bu
2(z)∂zδφ

u(z) + B3(z)δ�
u(z) + Au(z). (6.6)

The following lemma characterizes the solutions of Lin[�] = h with given initial
conditions. Its proof is straightforward and is omitted.

Lemma 6.3. Let � be a solution of Lin[�] = h defined in Dmatch
θ1,θ2,ν

. Then, � = (φ,ψ)

is given by

�(z) =
(

z3aφ + 1
z2 bφ

ei(z−z1)aψ + e−i(z−z2)bψ

)
+ Gmatch[h],

where

aφ = 1

5z3
1

(
2δφ(z1) + ∂zδφ(z1)z1

)
, bφ = z2

1

5

(
3δφ(z1)− ∂zδφ(z1)z1

)
,

aψ = 1

2

(
δψ(z1)− i∂zδψ(z1)

)
, bψ = 1

2

(
δψ(z2) + i∂zδψ(z2)

)
,

(6.7)

and Gmatch[h] = (Gmatch
1 [h1],Gmatch

2 [h2]) is the linear operator (compare with (5.3))
defined by

Gmatch
1 [h](z) = z3

5

∫ z

z1

h(s)

s2 ds − 1

5z2

∫ z

z1

s3h(s)ds,

Gmatch
2 [h](z) = 1

2i

∫ z

z1

e−i(s−z)h(s)ds − 1

2i

∫ z

z2

ei(s−z)h(s)ds.

(6.8)
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Since δ�u is a solution of (6.6), Lemma 6.3 implies that δ�u satisfies the following
fixed point (affine) equation

δ�u(z) =
(

z3aφu + 1
z2 bφu

ei(z−z1)aψu + e−i(z−z2)bψu

)
+ Gmatch[Au](z)−

(Gmatch
1 [δψu](z)

0

)

(6.9)

+ Gmatch[Bu
1 · δ�u](z) + Gmatch[Bu

2 · ∂zδ�u](z),
where aφu , bφu , aψu , bψu are defined by (6.7) and we have used definition (6.5) of B3.
To shorten the notation we introduce

δ�u
0(z) =

(
δφu

0(z)
δψu

0 (z)

)
=
(

z3aφu + 1
z2 bφu

ei(z−z1)aψu + e−i(z−z2)bψu

)
+ Gmatch[Au](z),

Fmatch[δ�] =
(Fmatch

1 [δ�]
Fmatch

2 [δ�]
)

= Gmatch[Bu
1 · δ�](z) + Gmatch[Bu

2 · ∂zδ�](z),
(6.10)

after which we rewrite equation (6.9) as

δ�u = δ�u
0 −

(Gmatch
1 [δψu](z)

0

)
+ Fmatch[δ�u]. (6.11)

Using that δ�u is a solution of (6.11), we observe that δ�u must be also a solution of

δ�u = δ̂�u
0 + F̂match[δ�u], (6.12)

with

δ̂�u
0 = δ�u

0 −
(Gmatch

1 [δψu
0 ](z)

0

)
,

F̂match[δ�] = −
(Gmatch

1

[Fmatch
2 [δ�]](z)

0

)
+ Fmatch[δ�].

(6.13)

6.2. The matching error. For fixed � ∈ R, we introduce the norm

‖ f ‖� = sup
z∈Dmatch

θ1,θ2,ν

∣∣∣z� f (z)
∣∣∣

and the Banach spaces

Y� = { f : Dmatch
θ1,θ2,ν

→ C; f is continuous and analytic on Dmatch
θ1,θ2,ν

with ‖ f ‖� < ∞},
DY� = { f : Dmatch

θ1,θ2,ν
→ C; f ∈ Y� with ‖ f ‖� + ‖ f ′‖�+1 < ∞}.

These Banach spaces satisfy the following properties.

Lemma 6.4. Let �1, �2 ∈ R. Then
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(1) If f ∈ Y�1 , then f ∈ Y�2 , for all �2 ∈ R. Moreover for �1 > �2

‖ f ‖�2 � κ�2−�1‖ f ‖�1

and for �1 < �2,
‖ f ‖�2 � ε(�1−�2)(1−ν).

(2) If f ∈ Y�1 and g ∈ Y�2 , then ‖ f g‖�1+�2 ≤ ‖ f ‖�1‖g‖�2 .

We define the product Banach space Y× = DY2 × Y4 endowed with the product
norm

‖(φ,ψ)‖× = max{‖φ‖2 + ‖∂zφ‖3, ‖ψ‖4}. (6.14)

We note that, as claimed in Remark 6.2, δφu ∈ DY3, δψu ∈ Y5 with ‖δφu‖3 +
‖∂zδφu‖4, ‖δψu‖5 � 1 and therefore, by Lemma 6.4,

‖δ�u‖× = max{|δφu‖2 + ‖∂zδφu‖3, ‖δψu‖4} � 1

κ
. (6.15)

We now start estimating all the elements in the fixed point equation (6.11). The
following lemma, whose proof is given in Sect. 6.3, deals with the operators Gmatch and
Fmatch defined in (6.8) and (6.10) respectively.

Lemma 6.5. If κ is big enough, the following statements are satisfied:

(1) If h ∈ Y� with � > 4, then Gmatch
1 [h] ∈ Y�−2 and

‖Gmatch
1 [h]‖�−2 � ‖h‖�, ‖∂zGmatch

1 [h]‖�−1 � ‖h‖�.
(2) If h ∈ Y� with � > 0, then Gmatch

2 [h] ∈ Y� and ‖Gmatch
2 [h]‖� � ‖h‖�.

(3) If h ∈ Y4, then Gmatch
1 [h] ∈ Y2 and ‖Gmatch

1 [h]‖2 � | log ε|‖h‖2.
(4) If h ∈ Y× = DY2 × Y4, then Fmatch[h] = (Fmatch

1 [h],Fmatch
2 [h]) ∈ DY4 × Y6

with
‖Fmatch

1 [h]‖4 + ‖∂z
(Fmatch

1 [h])‖5 + ‖Fmatch
2 [h]‖6 � ‖h‖×.

As a consequence, by definition (6.14) of ‖ · ‖×, we have ‖Gmatch[h]‖× � 1
κ2 ‖h‖×.

We claim now that the operator F̂match : Y× → Y× defined in (6.13) satisfies that,
for κ big enough,

‖F̂match[h]‖× � 1

κ2 ‖h‖×. (6.16)

Indeed, by item (4) in Lemma 6.5, if h ∈ Y×, then Fmatch
2 [h] ∈ Y6. Therefore, by

item (1) in Lemma 6.5, Gmatch
1 [Fmatch

2 [h]] ∈ DY4 and the estimates in item (1) apply.
By Lemma 6.4, we have

‖Gmatch
1 [Fmatch

2 [h]]‖2 + ‖∂zGmatch
1 [Fmatch

2 [h]]‖3 � 1

κ2 ‖h‖×.

Then, the claim follows from item (4) of Lemma 6.5 and definition (6.10) of F̂match.
It follows from (6.12) that

(
Id − F̂match)δ�u = δ̂�u

0.
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Therefore, using that δ�∗ ∈ Y× (see (6.15)) and that, by (6.16), Id−F̂match : Y× → Y×
is invertible, we obtain that

δ�u = (Id − F̂match)−1 [̂δ�u
0] and ‖δ�u‖× � ‖̂δ�u

0‖×.

Theorem 6.1 is then a consequence of the following lemma whose proof is given in
Sect. 6.4.

Lemma 6.6. Let ν ∈ (0, 1). If κ is big enough, then ‖̂δ�u
0‖× � | log ε|ε1−ν .

It remains to prove Lemmas 6.5 and 6.6.

6.3. Proof of Lemma 6.5. The proof of the three first items of Lemma 6.5 can be found
in the proof of Lemma 6.2 in [31] (see also [5]).

Now we prove item (4). We first note that, from definition (2.27) of J in
1 ,J in

2 ,

D�J in[�](z) =
⎛
⎝− 12

z φ − 6φ2 −1

g[�] −6
(

1
z + φ

)2

⎞
⎠ ,

D∂zφJ in[�](z) =
(

0,−24

(
1

z
+ φ

)(
− 1

z2 + ∂zφ

))�
,

where

g[�](z) = −12

(
1

z
+ φ

)(
ψ + 2

(
1

z
+ φ

)3
)

− 36

(
1

z
+ φ

)4

− 12

(
− 1

z2 + ∂zφ

)2

.

Let us denote

P(z) = D�J in[�](z)−
(

0 −1
0 0

)
, Q(z) = D∂zφJ in[�](z).

Then, P = (Pi j )i, j is a 2 × 2 matrix and, for � ∈ Y3 × Y3, its coefficients satisfy

|P11(z)| � 1

|z|4 , P12(z) = 0, |P21(z)| � 1

|z|4 , |P22(z)| � 1

|z|2 ,

whereas Q is a 2-dimensional vector which, for � ∈ Y3 × Y3, satisfies

Q1(z) = 0, |Q2(z)| � 1

|z|3 .

Finally, by definition (6.5) of Bu
1(z),Bu

2(z), if h ∈ DY2 × Y4, then we have

‖Bu
1 · h‖6, ‖Bu

2 · h‖6 � ‖h‖×,

and by item (1) and item (2) of Lemma 6.5, Fmatch[h] ∈ DY4 ×Y6 with bounded norm.
This completes the proof of Lemma 6.5.
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6.4. Proof of Lemma 6.6. We introduce

δ̃φu
0 = z3aφu +

1

z2 bφu , δ̃ψu
0 = ei(z−z1)aψu + e−i(z−z2)bψu ,

where aφu , bφu , aψu and bψu are defined by (6.7) with φ = φu andψ = ψu. From (6.13),

we have that δ̂�u
0 = (δ̂φu

0 , δ̂ψ
u
0

)
is defined by

δ̂φu
0(z) = δφu

0(z)− Gmatch
1 [δψu

0 ] = δ̃φu
0(z) + Gmatch

1 [Au
1](z)− Gmatch

1 [δψu
0 ],

δ̂ψu
0 (z) = δψu

0 (z) = δ̃ψu
0 (z) + Gmatch

2 [Au
2](z),

where Au = (Au
1, A

u
2

)
is defined by

Au(z) = A[�u](z) = J match
1 [�u](z)− J in

1 [�u](z). (6.17)

We recall thatφu ∈ DY3 andψu ∈ Y5, see (6.4). The following lemma estimates δ̃φu
0(z).

Lemma 6.7. Fix ν ∈ (0, 1). If ε > 0 is small enough, then we have for all z ∈ Dmatch
θ1,θ2,ν

,

∣∣z2̃δφu
0(z)

∣∣ +
∣∣z3∂z δ̃φ

u
0(z)

∣∣ +
∣∣z4δ̃ψu

0 (z)
∣∣ � ε1−ν .

Proof. By definition (6.7), we have

|au
φ | � 1

|z1|6 � ε6(1−ν), |bu
φ | � 1

|z1| � ε1−ν, |au
ψ |, |bu

ψ | � ε5(1−ν).

Then, for z ∈ Dν,match
θ1,θ2

, using that |z| � min{|z1|, |z2|} � ε−(1−ν), we obtain

∣∣z2δφu
0(z)

∣∣ = ∣∣∣z5aφ + bφ
∣∣∣ � |z|5ε6(1−ν) + ε1−ν � ε1−ν,∣∣z4δψu

0 (z)
∣∣ � ε5(1−ν)|z|4(e−�(z−z1) + e�(z−z2)

)
� ε1−ν,

where in the last inequality we have used that �z2 > �z > �z1. 
�
Next we analyze Gmatch[Au]. To do so, we look for an explicit expression of J match.

Lemma 6.8. The fixed point equation (2.3) in the inner variables (6.1) can be written
as {Lin

1 φ = J match
1 [φ,ψ; ε],

Lin
2 ψ = J match

2 [φ,ψ; ε],
with {J match

1 [φ,ψ; ε](z) = J in
1 [φ,ψ](z) + A1[φ,ψ; ε](z),

J match
2 [φ,ψ; ε](z) = J in

1 [φ,ψ](z) + A2[φ,ψ; ε](z),
where, for z ∈ Dmatch

θ1,θ2,ν
,

∣∣A1[φu, ψu; ε](z)∣∣ � ε

|z|4 ,
∣∣A2[φu, ψu; ε](z)∣∣ � ε

|z|4 . (6.18)
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Proof. An straightforward computation shows that in the inner variables, the fixed point
equation (2.3) can be expressed as

{Lin
1 φ = J match

1 [φ,ψ; ε],
Lin

2 ψ = J match
2 [φ,ψ; ε],

with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J match
1 [φ,ψ; ε](z) = ε2φ(z)

[−1 + 2u0(x− + εz)
]

+ φ(z)
[
6γ ε2u2

0(x− + εz) + 6
z2

]

+ε3c−1
−1F1[ε−1c−1φ, ε

−3c−1ψ](x− + εz),

J match
2 [φ,ψ; ε](z) = ε5c−1

−1F2[ε−1c−1φ, ε
−3c−1ψ](x− + εz).

Using the expression (2.5) of F = (F1,F2) we obtain

J match
1 [φ,ψ; ε](z) = − ψ − 6

z
φ2 − 2φ3 + A1[φ; ε](z)

=J in
1 [φ,ψ](z) + A1[φ,ψ; ε](z),

with

A1[φ,ψ; ε](z) =ε2φ(z)
[−1 + 2û0(z)

]
+ φ(z)

[
6γ ε2û2

0(z) +
6

z2

]

+

(
c−1ε + 6εγ c−1û0(z) +

6

z

)
φ2.

Analogously, tedious but easy computations lead to

J match
2 [φ,ψ; ε](z) = − 6

(
1

z
+ φ

)2
(
ψ + 2

(
1

z
+ φ

)3
)

− 12

(
1

z
+ φ

)(
− 1

z2 + ∂zφ

)2

− 6

(
1

z
+ φ

)2
C[φ,ψ; ε](z) +

(
ψ + 2

(
1

z
+ φ

)3
)
B[φ; ε](z)

+ B[φ; ε](z) · C[φ,ψ; ε](z) + D[φ,ψ; ε](z)
=J in

2 [φ,ψ](z) + A2[φ,ψ; ε](z)
with

B[φ; ε](z) = − 6

(
εc−1

−1û0 − 1

z

)(
1

z
+ 2φ + εc−1

−1û0

)
+ 2εc−1(εc

−1
−1û0 + φ),

C[φ,ψ; ε](z) =ε2(εc−1
−1û0 + φ)− εc−1(εc

−1
−1û0 + φ)2

+ 2

(
εc−1

−1û0 − 1

z

)[(
εc−1

−1û0 + φ
)2

+
(
εc−1

−1û0 + φ
)(1

z
+ φ

)]

+ 2

(
εc−1

−1û0 − 1

z

)(
1

z
+ φ

)2

,

D[φ,ψ; ε](z) =2c−1ε(εc
−1
−1û

′
0 + ∂zφ)

2 − 12

(
εc−1

−1û0 − 1

z

)(
εc−1

−1û
′
0 + ∂zφ

)2
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− 12

(
1

z
+ φ

)(
εc−1

−1û
′
0 +

1

z2

)(
2∂zφ + εc−1

−1û
′
0 − 1

z2

)
.

To prove the bounds for A1[φu, ψu; ε],A2[φu, ψu; ε], we recall that c−1
−1 = √|γ | with

γ < 0 and take into account (6.2) and (6.4), to obtain∣∣∣∣1z + φu(z)

∣∣∣∣ � 1

|z| ,
∣∣∣∣εc−1

−1û0 − 1

z

∣∣∣∣ � ε,

∣∣∣∣εc−1
−1û

′
0 +

1

z2

∣∣∣∣ � ε2.

The proof of (6.18) follows from these bounds and the explicit expressions of the func-
tions involved. 
�

Lemma 6.8, together with items (1) and (2) of Lemma 6.5, implies that, for all
z ∈ Dmatch

θ1,θ2,ν
, we have∣∣z2Gmatch
1 [Au

1](z)
∣∣ +
∣∣z3∂zGmatch

1 [Au
1](z)

∣∣ + |z4Gmatch
2 [Au

2](z)
∣∣ � ε| log ε|,

where we recall that Au(z) = A[φu, ψu] (see (6.17)). This estimate and Lemma 6.7
imply that for all z ∈ Dmatch

θ1,θ2,ν
, we have∣∣z2δφu

0(z)
∣∣ +
∣∣z3∂zδφ

u
0(z)

∣∣ +
∣∣z4δψu

0 (z)
∣∣ � ε1−ν .

To estimate δ̂φu
0(z), it only remains to analyze Gmatch

1 [δψu
0 ]. To this end, it is enough to

recall that
∣∣z4δψu

0 (z)
∣∣ � ε1−ν and Lemma 6.5 imply∣∣z2Gmatch

1 [δψu
0 ](z)∣∣ � | log ε|ε1−ν .

Therefore, recalling that δ̂ψu
0 = δψu

0 , we conclude that, for all z ∈ Dmatch
θ1,θ2,ν

, we have∣∣z2δ̂φu
0(z)

∣∣ +
∣∣z3∂z δ̂φ

u
0(z)

∣∣ + |z4ψ̂u
0 (z)

∣∣ � ε1−ν | log ε|.
This completes the proof of Lemma 6.6.

7. The Difference Between the Invariant Manifolds

Here we prove Proposition 2.7 for �ηu. The proof for �ηs is analogous. We define first
the following Banach spaces with norms with exponential weights

E� = {h : Eout,u
κ → C; h continuous and real-analytic on Eout,u

κ with ‖h‖�,exp < ∞},
where

‖h‖�,exp = sup
x∈Eout,u

κ

∣∣∣(x − x−)�(x − x+)
�(x − x̄−)�(x − x̄+)

�e
1
ε (π−|�x |)h(x)

∣∣∣ . (7.1)

We also consider the Banach space

E× = {h = (h1, h2) : Eout,u
κ → C

2; h1, h2 ∈ E0,exp with ‖h‖× < ∞},
where

‖h‖× = max
{
ε−1‖h1‖0,exp, ‖h2‖0,exp + ε‖∂xh2‖0,exp

}
. (7.2)

We look for an integral equation in these Banach spaces which has as a unique solution
(�ζ u,�ηu). The following lemma presents suitable inverses of the operators L̂1 and L2
defined by (2.15) and (2.4) respectively. Its proof follows the same lines as the proof of
Lemma 7.1 in [31].
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Lemma 7.1. The operators

Ĝ1[h](x) = u′′
0(x)

∫ x

0

1

u′′
0(s)

h(s)ds

and

Ĝ2[h](x) = − iε

2
eiε

−1x
∫ x

ρ−
e−iε−1sh(s)ds +

iε

2
e−iε−1x

∫ x

ρ−
eiε

−1sh(s)ds

+
iε sin

(
ρ−−x
ε

)

2 sin
(
ρ−−ρ−

ε

)eiε−1ρ−
∫ ρ−

ρ−
e−iε−1sh(s)ds

−
iε sin

(
ρ−−x
ε

)

2 sin
(
ρ−−ρ−

ε

)eiε−1ρ−
∫ ρ−

ρ−
eiε

−1sh(s)ds,

with ρ− = x− − iκε, have the following properties.

• Fix � ∈ R. The operator Ĝ1 is well defined from E� to E� and satisfies∥∥Ĝ1[h]∥∥
�,exp ≤ Mε‖h‖�,exp.

It is also well-defined from E� to E0 and satisfies

∥∥Ĝ1[h]∥∥0,exp ≤ Mε

(κε)�
‖h‖�,exp.

Furthermore, L̂1 ◦ Ĝ1 = Id and, for h ∈ E�,
Ĝ1(h)(0) = 0.

• Fix � > 1. The operator Ĝ2 is well defined from E� to E0 and satisfies

∥∥Ĝ2[h]∥∥0,exp ≤ Mε

(κε)�−1 ‖h‖�,exp,

∥∥∂x Ĝ2[h]∥∥0,exp ≤ M

(κε)�−1 ‖h‖�,exp.

Furthermore, L2 ◦ Ĝ2 = Id and, for h ∈ E�
Ĝ2[h](ρ−) = 0 and Ĝ2[h](ρ−) = 0.

The functions (�ζ u,�ηu) introduced in Lemma 2.6 satisfy equation (2.14). Now,
by the properties of the operators Ĝ1 and Ĝ2 introduced in Lemma 7.1, the functions
(�ζ u,�ηu) must be a fixed point of the operator

P[�ζ,�η](x) =
(

Ĝ1 ◦ N̂1
[
�ζ,�η,�η′](x)

Cu
1e

ix
ε + Cu

2e
− i x

ε + Ĝ2 ◦ N̂2
[
�ζ,�η,�η′](x)

)
(7.3)

for some constants Cu
1 , Cu

2 satisfying (2.20).



On a Countable Sequence of Homoclinic Orbits Arising Near a Saddle Page 53 of 65 215

Note that by Lemma 7.1, the function Ru introduced in Lemma 2.7 is given by

Ru = Ĝ2 ◦ N̂2
[
�ζ u,�ηu, ∂x�η

u]. (7.4)

and it satisfies the properties in (2.21). Therefore, it only remains to obtain the estimates
in (2.22).

To this end, we use a fixed point argument relying on (7.3). However, the operator P
is not contractive and, therefore, proceeding as in Sect. 3, we consider the operator

P̂[�ζ,�η] =
(P1

[
�ζ,P2

[
�ζ,�η

]]
P2
[
�ζ,�η

]
,

)

which has the same fixed points as P and is contractive. Note that both operators P and
P̂ are affine. The following lemma gives the Lipschitz constant of the operator P . Its
proof is a direct consequence of Lemmas 2.6 and 7.1.

Lemma 7.2. There exists M > 0 such that, for any (�ζ1,�η1), (�ζ2,�η2) ∈ E×, the
operator P satisfies∥∥P1

[
�ζ1,�η1

]− P1
[
�ζ2,�η2

]∥∥
0,exp ≤Mε ‖�η1 −�η2‖0,exp

+
Mε

κ
‖(�ζ1,�η1)− (�ζ2,�η2)‖× ,

∥∥P2
[
�ζ1,�η1

]− P2
[
�ζ2,�η2

]∥∥
0,exp ≤M

κ
‖(�ζ1,�η1)− (�ζ2,�η2)‖× ,

∥∥∂xP2
[
�ζ1,�η1

]− ∂xP2
[
�ζ2,�η2

]∥∥
0,exp ≤ M

εκ
‖(�ζ1,�η1)− (�ζ2,�η2)‖× .

Lemma 7.2 implies that P̂ satisfies

∥∥P̂1
[
�ζ1,�η1

]− P̂[�ζ2,�η2
]∥∥× ≤ M

κ
‖(�ζ1,�η1)− (�ζ2,�η2)‖× .

Therefore, taking κ > 0 large enough, P̂ is contractive and has the unique fixed point
(�ζ u,�ηu).

We use P̂ to obtain estimates of the fixed point with respect to the norm introduced
in (7.2). Indeed, since it is a fixed point, it can be written as

(�ζ u,�ηu) = P̂[0, 0] +
[P̂[�ζ u,�ηu]− P̂[0, 0]]

and, therefore,∥∥(�ζ u,�ηu)
∥∥× ≤ ∥∥P̂(0, 0)

∥∥× +
∥∥P̂(�ζ u,�ηu)− P̂(0, 0)

∥∥×

≤ ∥∥P̂(0, 0)
∥∥× +

M

κ

∥∥(�ζ u,�ηu)
∥∥× .

Taking κ large enough implies that∥∥(�ζ u,�ηu)
∥∥× ≤ 2

∥∥P̂(0, 0)
∥∥× .

Therefore, it only remains to estimate

P̂[0, 0](x) =
(P̂1[0, 0](x)
P2[0, 0](x)

)
=
(P1[0,P2[0, 0]](x)

Cu
1e

ix
ε + Cu

2e
− i x

ε

)
,
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where Cu
1 , Cu

2 are constants satisfying (2.20).
By the definition of the norm (7.1), we have

‖P2[0, 0]‖0,exp ≤ (|Cu
1 | + |Cu

2 |) e πε ,
which by Lemma 7.2, implies

‖P1[0,P2[0, 0]]‖0,exp �
(|Cu

1 | + |Cu
2 |) e πε .

Therefore,

∥∥(�ζ u,�ηu)
∥∥× ≤ 2

∥∥P̂[0, 0]∥∥× �
(|Cu

1 | + |Cu
2 |) e πε .

Finally, by definition (7.4) of Ru

Ru = P̂2
[
�ζ u,�ηu]− P̂2[0, 0],

we obtain

∥∥Ru
∥∥

0,exp ≤ M

κ

∥∥(�ζ u,�ηu)
∥∥× � 1

κ

(|Cu
1 | + |Cu

2 |) e πε ,
which concludes the proof of Proposition 2.7.
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Appendix A. Proof of Lemma 2.1

We take β = √
1 + 9γ ∈ (0, 1). It is straightforward to check that u′′

0(x) = 0 if and only
if

β cosh2 x − cosh x − 2β = 0

so that

cosh x = 1

2β

(
1 ±

√
1 + 8β2

)
∈ R.

Writing x = a + ib, we have that

cosh a cos b + i sinh a sin b = 1

2β

(
1 ±

√
1 + 8β2

)
.

Therefore, sinh a sin b = 0. If a = 0, then

cos b = g±(β) := 1

2β

(
1 ±

√
1 + 8β2

)
.

We impose

|1 ±
√

1 + 8β2| ≤ 2β

and obtain the condition

±
√

1 + 8β2 ≤ −1 − 2β2

that it is always true, taking the negative sign and β ∈ (0, 1). This implies that, for
β ∈ (0, 1),

−1 <
1

2β

(
1 ±

√
1 + 8β2

)
< 0

and therefore b = acos(g−β)) ∈ (π2 , π). Then u′′
0(±ib) = 0.

On the other hand, if b = 0, then

cosh a = g±(β) = 1

2β

(
1 ±

√
1 + 8β2

)
.

Since g−(β) < −1, we need to study the zeros of cosh a = g+(β). We notice that, since
β ∈ (0, 1),

cosh a = g+(β) >
1

β
> 1

and that implies that a = acosh(g+(β)) > α and u′′
0(±a) = 0.

Finally, when b = ±iπ , then

cosh a = −g±(β) = 1

2β

(
±
√

1 + 8β2 − 1

)

so that

cosh a = −g+(β) = 1

2β

(√
1 + 8β2 − 1

)
<

1

β
.
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Appendix B. Proof of Proposition 2.9

Here we prove that the constant � is not zero. To this end, it is convenient to work with
just one function instead of two, as in the inner equation (2.25). Indeed, note that it is
easy to check that if one defines

� = 1

z
+ φ,

it satisfies the fourth order equation

∂4
z� + ∂2

z� = 2�3. (B.1)

We have the following lemma.

Lemma B.1. The functions

�
(z) = 1

z
+ φ0,
(z),

where φ0,
 are the functions obtained in Theorem 2.8, are asymptotic to the same series
at z = ∞ (within their domain of definition), which is of the form

�̂(z) =
∑
n≥0

an
z2n+1 ,

with coefficients satisfying that an ∈ R,

an(−1)n > 0 (B.2)

and

|an| ≥ (2n)!. (B.3)

Proof. To prove the lemma, we look for a recurrence to define the coefficients of �.
First note that by Theorem 2.8 it must be of the form

�̂(z) = 1

z
+ O

(
1

z3

)

It is straightforward to see from (B.1) that the series has only odd powers. We obtain
that

an+1 = 1

(2n + 3)(2n + 4)− 6

[
− (2n + 1)(2n + 2)(2n + 3)(2n + 4)an

+ 6
∑

k1,k2≥1
k1+k2=n+1

ak1ak2 + 2
∑

k1,k2,k3≥1
k1+k2+k3=n+1

ak1ak2ak3

]
,

which, by induction, implies an ∈ R and (B.2).
Moreover, for all n ≥ 0,

|an+1| ≥ (2n + 1)(2n + 2)(2n + 3)(2n + 4)

(2n + 3)(2n + 4)− 6
|an|

≥(2n + 1)(2n + 2)|an|,
which implies (B.3). 
�
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The fact that� �= 0 is a direct consequence of Lemma B.1. By the third statement of
Theorem 2.8, it is enough to prove that there exists z0 ∈ Rin

θ,κ such that �φ0(z0) �= 0,
or equivalently

�u(z0)−�s(z0) �= 0.

We argue by contradiction. Assume that �u(z) = �s(z) for all z ∈ Rin
θ,κ . Since, by

Theorem 2.8, �u, �s are real-analytic, they must coincide also in

Rin
θ,κ :=

{
z : z ∈ Rin

θ,κ

}
.

Therefore, the functions �u, �s can be analytically extended to the neighborhood of
infinity |z| ≥ κ and, thus, are analytic at infinity. This contradicts the fact that the
asymptotic series of these functions at infinity have coefficients growing faster than a
factorial.

Appendix C. The Right Inverses of L1

Here we prove Lemmas 3.4, 3.6, 4.3, and 4.4.

C.1. Proof of Lemmas 3.4 and 4.3. We first prove Lemma 3.4 in Section C.1.1. Then,
we prove Lemma 4.3 in Section C.1.2 as an straightforward consequence of Lemma 3.4.

C.1.1. Proof of Lemma 3.4 Let ζ1(x) = u′
0(x). In Dout,u

κ , it only vanishes at x = 0
(see 1.7). We rewrite (3.3) as

(
ζ2

ζ1

)′
= 1

ζ 2
1

,

which is equivalent at the domain Dout,u
κ \{0}. For x ∈ Br ⊂ C, the open ball centered

at the origin of radius r ,

ζ1(x) =
∞∑
k=1

ckx
2k−1, c1 �= 0.

Therefore, writing ζ̂2 = ζ2ζ
−1
1 we have that

ζ̂ ′
2(x) = 1

ζ 2
1 (x)

= 1

c1x2

∞∑
k=0

dkx
2k

which implies that

ζ̂2(x) = − 1

c1x
+ c0 +

∞∑
k=1

dk
2k

x2k−1, x ∈ Br . (C.1)

As a consequence, taking c0 = 0 yields

ζ2(x) = ζ̂2(x)ζ1(x) = −1 +
∑
k=1

ĉk x
2k, x ∈ Br , (C.2)
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which defines an even real analytic function in Br . Notice that ζ2(0) = −1 �= 0. For
x ∈ Dout,u

κ \Br , we define ζ2(x) as

ζ2(x) =

⎧⎪⎪⎨
⎪⎪⎩
ζ1(x)

[
ζ̂2(r) +

∫ x
r

1
ζ 2

1 (s)
ds

]
if �x ≥ 0,

ζ1(x)

[
ζ̂2(−r) +

∫ x
−r

1
ζ 2

1 (s)
ds

]
if �x < 0,

(C.3)

with ζ̂2 defined in (C.1), which is the even analytic extension at Dout,u
κ of ζ2 defined

in (C.2).
We notice that since ζ1 = u′

0 ∈ E1,2, then for x ∈ Dout,u
κ ∩ {�x ≤ −10},

|ζ2(x)| � 1

| cosh x |
[

1 +
∫ −r

�x
cosh2 s ds

]
� cosh �x � | cosh x |,

where we have used cosh �s � | cosh s| � cosh �s.
When x ∈ Dout,u

κ ∩{�x ≥ −10}, |ζ2(x)| � |ζ1(x)| and we conclude that ζ2 ∈ E−1,2.

C.1.2. Proof of Lemma 4.3 On Daux
κ , see (2.10) and Fig. 3, ζ1 has simple zeroes at

0, iπ,−iπ . Then, denoting x0 = 0, iπ,−iπ , one has ζ1(x) = ζ ′
1(x0)(x − x0) + O(x −

x0)
2 with ζ ′

1(x0) �= 0, and, as a consequence, when x goes to x0 in definition (C.3) of
ζ2, we have

lim
x→x0

ζ2(x) = lim
x→x0

ζ1(x)
∫ x

±r

1

ζ 2
1 (s)

ds = − 1

ζ ′
1(x0)

.

In addition, x0 do not belong to the segment between x ∈ Daux
κ and ±r and then we

conclude that ζ2 defined in (C.3) is, in fact, well defined and real analytic also at Daux
κ .

Finally, using that ζ1 = u′
0 ∈ DY1

2 , where DY1
� ) is defined by (4.2), we obtain the

result.

C.2. Fundamental solutions of L1[ζ ] = 0. Here we provide new sets of fundamental
solutions of the linear second order differential equation L1[ζ ] = 0, where L1 is defined
in (2.4). We mainly follow the strategy in [31], being the first result below an adaptation
of Lemma A.1 in [31].

We fix the complex rectangle

R = {x ∈ C : −10 ≤ �x ≤ 0, |�x | ≤ 2π} (C.4)

and we emphasize that, by Lemma 2.1 ζ1 = u′
0 is analytic in R\{x−, x−}.

Lemma C.1. Let

ζ+(x) = ζ1(x)
∫ x

x−

1

ζ 2
1 (s)

ds, ζ−(x) = ζ1(x)
∫ x

x−

1

ζ 2
1 (s)

ds.

Then,

• ζ± are analytic solutions of L1[ζ ] = 0 in the domain R\{x−, x−} satisfying

W (ζ+, ζ−) = ζ+ζ
′− − ζ ′

+ζ− =
∫ x−

x−

1

ζ 2
1 (s)

ds �= 0.
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• They satisfy, for x ∈ R with R defined in (C.4),

ζ+(x) = (x − x−)3

(x − x−)2
ζ̂+(x), ζ−(x) = (x − x−)3

(x − x−)2
ζ̂−(x) (C.5)

where ζ̂± are analytic functions in R and |̂ζ±(x)| ≤ M for some constant M (inde-
pendent on x).
• For some constant c, we have

ζ1(x) = 1

W (ζ+, ζ−)
(
ζ+(x)− ζ−(x)

)
, ζ2(x) = cζ1(x) + ζ−(x). (C.6)

Proof. On the rectangle R in (C.4), the function ζ1(x) = u′
0(x), see (1.7), has simple

zeroes only at x = 0,±iπ,±i2π , that is, writing x0 = 0, iπ,−π , ζ1(x) = ζ ′
1(x0)(x −

x0) + O(x − x0)
2 when x is close to x0. Moreover, for all x ∈ R, the segments x, x−

and x, x− do not cross x0. Then, since ζ ′
1(x0) �= 0,

lim
x→x0

ζ±(x) = − 1

ζ ′
1(x0)

that implies that ζ± are well defined at the set R. In addition, the fact that ζ−2
1 has zeroes

of order 4 at x−, x− and it is uniformly bounded at R, implies that the estimates in (C.5)
follow immediately and hence the second item of Lemma C.1 is already proven.

From the definition of ζ±, one can easily compute W (ζ+, ζ−). We check that it is not
zero. Indeed, we define

ũ0(t) = u0(−α + i t) = 3

cos t + 1 − 3
√|γ |i sin t

and, after some tedious computations, we have that

1

(u′
0(−α + i t))2

= − 1

(̃u′
0(t))

2 = (cos t + 1 − 3
√|γ |i sin t)4

9(sin t + 3
√|γ |i cos t)2

.

Then, again performing some tedious but straightforward computations, we obtain
∫ x−

x−

1

ζ 2
1 (s)

ds = −i
∫ −π

π

1

(̃u0(t))2
dt = 3π i

(
|γ | − 5

9

)
.

This ends the proof of the first item of Lemma C.1.
Finally, we prove the third item of Lemma C.1. By the first item, ζ+, ζ− are inde-

pendent solutions of L1[ζ ] = 0, so that ζ1 = c1ζ− + c2ζ+. Evaluating at x−, x− we
obtain the coefficients c1, c2 and the formula for ζ1. On the other hand, ζ2 is a linear
combination of ζ+, ζ−, which yields (C.6) since W (ζ1, ζ2) �= 0. 
�

Now we study

J±(x) :=
∣∣∣∣ζ±(x)

∫ x

0
ζ∓(s)h(s) ds

∣∣∣∣ , (C.7)

which play a key role when bounding the norm of the linear operators G1, G̃1 defined
in (3.5) and (4.3) respectively. Since these operators are defined over analytic functions
in different domains, we introduce a new class of domains that posses the minimal
properties we need to be able to bound J±.
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Definition C.2. Let D ⊂ R, with R defined in (C.4), be a closed bounded domain
satisfying that

• 0 ∈ int(D), x−, x− /∈ D,
• if x ∈ D, then �x ∈ D and the segments 0, x ∈ D, x,�x ⊂ D,
• there exists a constant ϑ ∈ (0, 1) such that if x ∈ D either |�x | < π , or

|�x + α| ≥ ϑ min{|x − x−|, |x − x−|}.
Remark C.3. Notice that Dout,u

κ ∩ {−10 < � < 0} in (2.7) and Daux
κ in (2.10) satisfy

the conditions in Definition C.2.

Lemma C.4. Let D be a domain satisfying the conditions inDefinition C.2 and fix � ≥ 5.
If h : D → C, then

|J±(x)| � �h��
|x − x−|�−2|x − x−|�−2 , x ∈ D,

where J± has been introduced in (C.7) and

�h�� = sup
x∈D

|h(x)||x − x−|�|x − x−|�.

Proof. We recall that x− = −α + iπ with α > 0. We only provide the details for J+
being the corresponding for J− analogous. When x ∈ D ∩ {x ∈ C : �x ≥ −α

2 }, then,
using the second item in Lemma C.1,

∣∣∣∣ζ+(x)
∫ x

0
ζ−(s)h(s) ds

∣∣∣∣ � |x − x−|3
|x − x−|2

∫ x

0

�h��
|s − x−|�+2|s − x−|�−3

� �h��
|x − x−|�−2|x − x−|�−2 .

Now we deal with x ∈ D ∩ {x ∈ C : �x < −α
2 }. Since, by Lemma C.1, ζ± and h are

analytic functions in D ⊂ R, we write

ζ+(x)
∫ x

0
ζ−(s)h(s) ds = ζ+(x)

[∫
γ1

ζ−(s)h(s) ds +
∫
γ2

ζ−(s)h(s) ds
]

=: G1(x) + G2(x),

with γ1(t) = −t , for t ∈ [0,−�x] and γ2(t) = �x + i t , for t ∈ 0,�x . Notice that, by
Definition C.2 of D, the paths γ1, γ2 ⊂ D. Then, we obtain

|G1(x)| =
∣∣∣∣ζ+(x)

∫
γ1

ζ−(s)h(s) ds
∣∣∣∣ � |x − x−|3

|x − x−|2
∣∣∣∣
∫ |�x |

0

�h��
|t + x−|�+2|t + x−|�−3

∣∣∣∣
� �h��

|x − x−|�−2|x − x−|�−2 ,

where we have used that |t + x−|, |t + x−| ≥ π and that |x | � 1.
With respect to G2, we have that

|G2(x)| � �h�� |x − x−|3
|x − x−|2

∣∣∣∣
∫ �x

0

1

|�x + i t − x−|�+2|�x + i t − x−|�−3 dt

∣∣∣∣ .
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Then, if �x ≥ 0, since |�x + i t − x−| ≥ π , for t ∈ [0,�x], we have that

|G2(x)| � �h�� |x − x−|3
|x − x−|2

∫ �x

0

1(
(�x + α)2 + (t − π)2

) �+2
2

dt.

In the case |�x + α| ≥ ϑ |x − x−|,

|G2(x)| � �h�� |x − x−|3
|x − x−|2

1

|�x + α|�+1

∫ +∞

−∞
1

(1 + t2)
�+2

2

dt

� �h�� 1

|x − x−|2|x − x−|�−2 ,

and the result follows provided � ≥ 5. If |�x + α| ≤ ϑ |x − x−|, then 0 ≤ �x < π and
π − �x ≥ √

1 − ϑ2|x − x−|. We obtain

|G2(x)| � �h�� |x − x−|3
|x − x−|2

∫ �x

0

1

(π − t)�+2 dt � �h�� |x − x−|3
|x − x−|2(π − �x)�+1 ,

and the result follows trivially also in this case.
The details in the case �x ≤ 0 are left to the reader. 
�

C.3. Proof of Lemma 3.6. The result related to G2 defined in (3.6) is a straightforward
consequence of Lemma 5.5 in [33].

We focus now on proving the results related to G1. To do so we follow the main
ingredients in the proof of Proposition 4.3 in [31]. When x ∈ Dout,u

κ ∩ {�x ≤ −10},
by Lemma 3.4, |ζ2(x)| � | cosh x |. From here, using also that |ζ1(x)| � | cosh x |−1 and
following exactly the same steps as the ones in [31], we prove that

| cosh x |m∣∣G1[h](x)∣∣ � ‖h‖m,�, x ∈ Dout,u
κ ∩ {�x ≤ −10}.

The case x ∈ Dout,u
κ ∩ {�x ≥ −10} is more involved. Indeed, the main obstacle to

overcome is that ζ1, ζ2 have poles of order 2 at x = x−, x−. Following [31] we rewrite
G1 in (3.5) in terms of ζ+, ζ− in Lemma C.1. Using the third item of this result, we obtain
that

G1[h](x) = 1

W (ζ+, ζ−)

[
ζ+(x)

∫ x

0
ζ−(s)h(s) ds − ζ−(x)

∫ x

0
ζ+(s)h(s) ds

]

− ζ2(x)
∫ 0

−∞
ζ1(s)h(s) ds.

By Remark C.3, we can use the results in Lemma C.4 to bound the two first integrals
defining G1[h]. To bound the third integral, we claim that is a convergent real integral
and that ‖ζ2‖−1,2 � 1. Then,

∣∣∣∣ζ2(x)
∫ 0

−∞
ζ1(s)h(s) ds

∣∣∣∣ � |ζ2(x)| ‖h‖m,� � ‖h‖m,�
|x − x−|2|x − x−|2 .
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Again, using that � ≥ 5, the first bound in Lemma 3.6 is proven. To prove ‖∂xG1[h]‖1,�−1
we proceed analogously. Indeed, we have that

∂xG1[h](x) = 1

W (ζ+, ζ−)

[
ζ ′

+(x)
∫ x

0
ζ−(s)h(s) ds − ζ ′−(x)

∫ x

0
ζ+(s)h(s) ds

]

− ζ ′
2(x)

∫ 0

−∞
ζ1(s)h(s) ds,

where

ζ ′
+(x) = (x − x−)2

(x − x−)3
ζ̃+(x), ζ ′−(x) = (x − x−)2

(x − x−)3
ζ̃−(x)

for ζ̃± are analytic functions uniformly bounded at R.
To complete the proof of Lemma 3.6, we just recall that, by Lemma 3.4, ζ2 is an even

function.

C.4. Proof of Lemma 4.4. We first notice that using relations (C.6) between ζ1, ζ2 and
ζ+, ζ− we have that

G̃1[h](x) = 1

W (ζ+, ζ−)

(
ζ+(x)

∫ x

0
ζ−(s)h(s) ds − ζ−(x)

∫ x

0
ζ+(x)h(s) ds

)
(C.8)

and that by Remark C.3, we can apply the results in Lemma C.1 for x ∈ Daux
κ ∩ {x ∈

C : �x ≤ 0}. Then, we have

|G̃1[h](x)| � ‖h‖�
|x − x−|�−2|x − x−|�−2 ,

so that, since 1 � |x − x+|, |x − x+|, for x ∈ Daux
κ ∩ {x ∈ C : �x ≤ 0}, we obtain

|G̃1[h](x)||x − x−|�−2|x − x−|�−2|x−x+|�−2|x − x+|�−2 � ‖h‖�. (C.9)

When x ∈ Daux
κ ∩{x ∈ C : �x ≥ 0}, we only need to define the new set of fundamental

solutions of L1[h] given by

ζ̃+(x) = ζ1(x)
∫ x

x+

1

ζ 2
1 (s)

ds, ζ̃−(x) = ζ1(x)
∫ x

x+

1

ζ 2
1 (s)

ds

and proceeding in an analogous way as for x ∈ Daux
κ ∩ {x ∈ C : �x ≤ 0} to obtain the

bound (C.9) for x ∈ Daux
κ . By definition (4.1) of the norm, ‖G̃1[h]‖�−2 � ‖h‖�.

Differentiating (C.8) with respect to x and performing similar bounds as the previous
one, we prove the result for ∂xG1[h].

For the operator G̃2 in (4.3), we take x ∈ Daux
κ be such that �x ≤ 0 since the case

�x ≥ 0 is analogous. In this case 1 � |x − x+|, |x − x+| and hence we have to prove

|G2(x)| � ε2 ‖h‖�
|x − x−|�|x − x−|� .
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By definition (4.3) of G2 it is enough to prove that for �x ≤ 0,∣∣∣∣e±iε−1x
∫ x

∓iρ
e∓iε−1sh(s) ds

∣∣∣∣ � ε
‖h‖�

|x − x−|�|x − x−|� . (C.10)

We deal with the bound for the integral from −iρ. To prove the second one is analogous.
We write

eiε
−1x
∫ x

−iρ
e−iε−1sh(s) ds = eiε

−1x
∫
γ1

e−iε−1sh(s) ds + eiε
−1x
∫
γ2

e−iε−1sh(s) ds

=: G1(x) + G2(x),

where the paths γ1, γ2 are defined by

γ1(t) = x + te−iϑ , t ∈ 0,−secϑ �x, γ2(t) = i t, t ∈ tan ϑ �x,−ρ
with ϑ > 0 such that γ1(t) ∈ Daux

κ . We recall that �x ≤ 0 and hence 1 � |x − x+|, |x −
x+|. Therefore,

|G1(x)| � ‖h‖�
∫ secϑ |�x |

0

e−ε−1t sin ϑ

|x − x− + te−iϑ |�|x − x− + te−iϑ |� dt.

The geometry of the set Daux
κ implies that

|x − x− + te−ıϑ | � |x − x−|, |x − x− + te−ıϑ | � |x − x−|,
hence

|G1(x)| � ‖h‖�
|x − x−|�|x − x−|�

∫ ∞

0
e−ε−1t sin ϑ dt � ε

‖h‖�
|x − x−|�|x − x−|� .

The bound for G2 follows using the same arguments. It is clear that |x − x− + i t | �
|x − x−| and |x − x−| � |x − x−|. Hence,

|G2(x)| � ‖h‖�
∫ − tan ϑ |�x |

−ρ
eε

−1t

|x − x− + i t |�|x − x− + i t |� dt

� ‖h‖�
|x − x−|�|x − x−|�

∫ 0

−∞
eε

−1t dt � ε
‖h‖�

|x − x−|�|x − x−|� .

As a consequence, (C.10) is proven.
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