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Abstract: Exponential small splitting of separatrices in the singular perturbation theory
leads generally to nonvanishing oscillations near a saddle—center point and to nonexis-
tence of a true homoclinic orbit. It was conjectured long ago that the oscillations may
vanish at a countable set of small parameter values if there exist a quadruplet of singu-
larities in the complex analytic extension of the limiting homoclinic orbit. The present
paper gives a rigorous proof of this conjecture for a particular fourth-order equation
relevant to the traveling wave reduction of the modified Korteweg—de Vries equation
with the fifth-order dispersion term.
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1. Introduction

Homoclinic orbits arise in dynamical systems at the intersections of stable and unstable
manifolds (also known as the separatrices) associated to a saddle equilibrium point.
They represent spatial profiles of traveling solitary waves in nonlinear dispersive wave
equations from which spatial dynamical systems are obtained in the traveling reference
frame. Existence of ahomoclinic orbit connected at a saddle point is a generic phenomena
in a planar Hamiltonian system if there exists a center point near the saddle point.

The phase space of many spatial dynamical systems has the dimension higher than
two, in which case the equilibrium point may admit a center manifold in addition to the
stable and unstable manifolds. For such a saddle-center point, intersection of the sepa-
ratrices is not generic and homoclinic orbits do not generally exist. The corresponding
traveling solitary waves are not fully decaying since their spatial profiles approach the
oscillatory tails spanned by orbits along the center manifold.

It is rather common in analysis of solitary waves to consider an asymptotic limit
when a higher-dimensional spatial dynamical system with a saddle-center point formally
reduces to the planar Hamiltonian dynamical system with a homoclinic orbit. This leads
to the main question of the singular perturbation theory if the homoclinic orbit persists
under the perturbation. The standard answer to this question is negative because the
exponentially small splitting of the separatrices generally occurs due to the singular
perturbations.

First examples of the exponentially small (beyond-all-order) phenomena and the rel-
evant asymptotic analysis can be found in [13,16,26,32,36,48]. Rigorous mathematical
analysis and the proof of the existence of oscillatory tails near the saddle-center point in
four-dimensional spatial dynamical systems was later developed in [40,51]. The oscil-
latory tails are present if a certain constant (called the Stokes constant) is nonzero, the
proof of which usually relies on numerical computations. The numerical data in [52] for
a particular model of the fifth-order Korteweg—de Vries (KdV) equation suggest that the
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Stokes constant is generally nonzero but may vanish along bifurcations of co-dimension
one if another parameter is present in the spatial dynamical system.

Compared to the standard setting of the non-vanishing oscillatory tails in the beyond-
all-order expansions, a rather novel mechanism of obtaining a countable number of true
homoclinic orbits was proposed in [3]. The mechanism is related to the location of
singularities of the truncated homoclinic orbit in a complex plane. If there is only one
symmetric pair of singularities in the complex plane nearest to the real line, then the
Stokes constant is generally nonzero and no true homoclinic orbit persists in the singular
perturbation theory. However, if there exist a quadruplet with two symmetric pairs of
singularities at the same distance from the real line, then the singular perturbation theory
exhibits a countable set of true homoclinic orbits as the small parameter goes to zero.

The theory from [3] was illustrated on a number of other mathematical models involv-
ing nonlocal integral equations [2], lattice advance-delay equations [1,45], and differ-
ential advance-delay equations for traveling waves in lattices [19,20,41,42]. The spatial
profiles of solitary waves in such models must generally exhibit oscillatory tails (in which
case, they are usually called generalized solitary waves or nanoptera), see analysis in
[21,23] and numerical results in [22,42,54]. However, the tails miraculously vanish
along a countable set of bifurcation points if the singular limit admits a real analytic
solution with a quadruplet of complex singularities nearest to the real line. A similar
idea for homoclinic orbits in symplectic discrete maps has been discussed in [27] some
time before [3], see also analysis of splitting of separatrices in the presence of several
singularities in [38] and in [29].

Despite a number of examples supporting the conjecture from [3], no mathematically
rigorous proof was developed in the literature. The purpose of this paper is to give a
proof of this conjecture for the simplest four-dimensional dynamical system with a
saddle-center equilibrium point.

1.1. Main model. Let y, e € R be parameters and consider the fourth-order equation
for some u € C*°(R, R),

"+ (1 — " —u+u®+2yu’ =0. (1.1)
If ¢ is a small parameter, then the formal limit ¢ — 0 yields the second-order equation
W —u+ut+2yu =0 (1.2)
with (0, 0) being a saddle point of the planar Hamiltonian system
u =w,
{w’:u—uz—Zyu3. (1.3

The second-order equation (1.2) appears in the traveling wave reduction of the mod-
ified Korteweg—de Vries (KdV) equation

o . 3 200 3y

— +2n—+6fn"— + — =0, 1.4

o0 T TP o (14
where n = n(x, t) is real and B is a parameter. Traveling waves of the modified KdV
equation (1.4) correspond to the form 7 (x, t) = n.(x — ct) with the wave speed ¢ and

the wave profile 1. found from the third-order equation

"

0y (x) = enlu(x) + 2nen).(x) + 6800 (x) = 0. (1.5)
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Fig. 1. Phase portraits of (1.3) for y = 1 (left) and y = —0.1 (right)

If ¢ > 0, the scaling transformation n.(x) = cu(/cx) and integration of (1.5) with zero
integration constant for solitary wave solutions yields equation (1.2) with y := fBc.

If y > 0, there exist two families of periodic solutions and two solitary wave solutions
of equation (1.2), see, e.g., [14,39]. If y < 0, there exists only one family of periodic
solutions and only one solitary wave solution of equation (1.2), see, e.g., [46]. This also
follows from the phase portraits for the dynamical system (1.3) on the phase plane (u, w)
shown in Fig. 1 for y = 1 (left) and y = —0.1 (right).

The fourth-order equation (1.1) is the traveling wave reduction of the modified KdV
equation with the fifth-order dispersion term, also known as the Kawahara equation [35],
an 507 3n 31
” +2nax +68n o +8x3 +a8x5 =0, (1.6)
where « is another parameter. Traveling waves of the form n(x, ) = n.(x — ct) satisfy
the fifth-order equation, which can be integrated once with the zero integration constant.
The scaling transformation 7. (x) = cu(y/c(1 — £2)x) yields (1.1) with y = Bc and &2
found from the equation

an

g2

(1—¢e2)?%
This is always possible for small ¢ if «ec is small.

For B = 0, the Kawahara equation (1.6) has been one of the main toy model of the
shallow water wave theory to study periodic oscillations arising at the exponential tails
of the solitary wave profiles, see recent works [15,34,50]. Since the true homoclinic
orbits are known not to exist for § = 0 [32,48], the main motivation for our study is to
show the existence of a sequence of true homoclinic orbits in the modified Kawahara
equation for 8 # 0.

The homoclinic orbit of the second-order system (1.3) with y = 0 is known in the
exact analytical form:

uop(x) = %sech2 (%) .

The profile of uo has double poles on the imaginary axis with the nearest singularities
atx = +imw. If y # 0, the double poles split into pairs of simple poles and the splitting
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is different for y > 0 and y < 0. The homoclinic orbit for y = 0 is continued in the
exact analytical form for every 1 +9y > 0 as

3
VT+9y cosh(x) +1°

For y > 0, the poles of uo nearest to the real axis split along the imaginary axis as
simple poles at

uo(x) = (1.7)

1
= *4im +iarccos | — ),

with four independent choices of signs. For y € (—%, 0) the poles of ug split off the
imaginary axis as simple poles at

1
x = +im +cosh™! —— (1.8)

VI+9y’

again with four independent choices of signs. This is precisely the case which fits the
theory from [3] and coincides with Example 1 in [3]. The numerical data on Figure 1
in [3] already provide a convining evidence of the existence of a countable sequence
{en(¥)}nen forevery y € (—é, 0) such that ,(y) — 0asn — oo with the homoclinic
orbits persisting in the full equation (1.1) for ¢ = ¢,(y) and with u(x) being close to
uo(x) in (1.7).

Hence, in what follows we are only interested in the case y € (— é , 0), when the only
homoclinic orbit with the profile u is available in the form (1.7). For completeness, we
mention that another homoclinic orbit exists for y > 0, see the left panel of Fig. 1, and
its (negative) profile is given by

3
/149y cosh(x) — 1

The simple poles of i are located at the imaginary axis at

uo(x) = —

x = =i arccos ( +2mwin, n € Z.

75)

For y <0, iig is singular on real line and hence is neglected.

1.2. Main result and the method of proof. The main result of this paper is the following.

Theorem 1.1. For any y € (—%, 0), there exists No € N large enough and a sequence
{en}n=nN, of the form

1 1
&n = £ |:1 + —O( )] , where o« = cosh™!

nmw n logn

1

such that equation (1.1) with ¢ = €, has a homoclinic orbit to the origin in R*.
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We prove this result by analyzing the stable and unstable invariant manifolds of the
origin in R* and measuring their distance at a suitable cross-section of R*. To this end, we
rewrite the fourth-order equation (1.1) as two second-order equations. By introducing

f@) :=u?+2yu® and v:i=u" —u+ fQ), (1.10)
equation (1.1) becomes the system

{u”:u+v—f(u)

U// = —8%U+f’(u)(u+v _ f(u))+f”(u)(u’)2. (111)

The phase space of system (1.11) is written in the variables (u, u’, v, v') € R*. Moreover,
this system has the first integral

"2 2
(”2) - ”7 + F(u)

+e? |:u’(v’ +u' — f ) —

Gu,u',v,v) =(1 —&?)

(u+v—f(u))2] (12

2
with
3

F(u) = f " v =2
0 3

4
+
2

We notice that the origin in R* is a saddle-center equilibrium point of the second-
order system (1.11) with associated eigenvalues { —1,1,ie72, —is‘z} which are of
different scales. Therefore, the stable and unstable manifold associated to the origin
have dimension one and, thus, they are just trajectories in R4,

Since system (1.11) is autonomous, in order to find homoclinic connections, it is
necessary that there exists a time parameterization of the stable and unstable invariant
manifolds, denoted by

(* (), ) (), v*(x), (") (0)), *=u,s
(which also depend on the parameters ¢ and y ), such that
(1" (0), (") (0), v"(0), ) (0)) = («*(0), (u*)'(0), v*(0), (v*)'(0)).

In a general setting two curves do not intersect in a four dimensional space, however
system (1.11) is reversible with respect to the involution

W (u,u,v,0) = (u, —u', v, =) (1.13)
whose symmetry plane is
O={uu,v,v)eR*: =0, v =0 (1.14)

In other words, if (u(x), u’(x), v(x), v'(x)) is a solution of system (1.11), then the
function defined by W (u(—x), u’(—x), v(—x), v'(—x)) is also a solution. In particular

w(x) =u"(=x), v'(x)=v"(—x)

and therefore u*(0) = " (0) and v®(0) = v"(0).
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As a consequence, a homoclinic orbit exists if the unstable curve to (0, 0, 0, 0) as
x — —oo intersects the symmetry plane I1. Indeed, if such intersection occurs, then
the unstable curve to (0, 0, 0, 0) as x — —oo is reflected by the involution to the stable
curve to (0, 0,0, 0) as x — +o0.

It can be seen that the perturbed invariant manifolds can be approximated by the
homoclinic orbit for the unperturbed problem (1.2),

(u(x), u'(x), v(x), v"(x)) = (uo(x), ug(x), 0, 0)
with uq given in (1.7). Then, we define the section
Y ={u,u,v,v)eR: W =0} (1.15)

We observe that the homoclinic orbit (u(x), u/(x)) = (ug(x), 0) of the second-order
system (1.2) with uo computed in (1.7), satisfies u6(0) = 0 and it intersects transversally
the section ¥ with (v, v’) = (0, 0).

Next theorem gives an asymptotic formula for the distance between the stable and
unstable manifolds of the origin in R* at %.

Theorem 1.2. There exist two unique solutions (u", v") and (u®, v®) of system (1.11)
such that (u")' (0) = (u®)’(0) = 0 and

lim (u"(x), v"(x)) =0, lim (u®(x), v®(x)) = 0.
xX——00 X—>+00
Moreover, there exists a constant ® € R, ® # 0, such that

u"(0) —u(0) =0
v(0) — v3(0) = 0

. . 40 2 ([ qa !
( )(0)—(v)(0)=—me ’ (Sm<2>+o<llog8|>>'

Theorem 1.1 is a direct consequence of Theorem 1.2.

Proof of Theorem 1.1. Since the system (1.11) is reversible it is enough to obtain a point
in the unstable manifold which intersects the symmetry plane IT in (1.14). Since

@"(0), ")'(0), v"(0), (v")'(0)) € =

it is enough to look for values of ¢ such that (v")’'(0) = 0.
By reversibility,

" (0), (") (0), v"(0), ") (0)) = (*(0), —(*)(0), v*(0), —(v*)'(0)).

and therefore

— e o 40 _z (. s« 1
2610 = (00 = () 0) = == ze <sm <§)+O<|1ogs|>>'

Since ® # 0, the values of ¢, are found from roots of

sin(%)+(’)(|lolg£|> —0

which yields (1.9). |

The main steps in the proof of Theorem 1.2 are explained in Sect. 2. The proof of
each step is deferred to Sects. 3—7 and Appendices A—C.
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1.3. Exponentially small splitting of separatrices. Theorem 1.2 fits into what is usu-
ally called exponentially small splitting of separatrices. This phenomenon occurs in
dynamical systems which have a hyperbolic behavior whose invariant manifolds are
exponentially close with respect to a small parameter of the system. Here we review the
literature on the topic and explain the main tools to deal with the exponentially small
phenomenon.

The exponentially small splitting of separatrices was first pointed out by Poincaré
(see [47]) and nowadays it is well known that appear in many analytic models with
multiple time scales and a conservative structure (Hamiltonian, volume preserving) or
reversibility. The first rigorous analysis of this phenomenon was not achieved until the
1980’s in the seminal work by Lazutkin on the standard map [37], who proposed a
scheme to prove the exponentially small transversality of the invariant manifolds of the
saddle equilibrium point this map possesses. A full proof of this fact was obtained in
1999 by Gelfreich [24].

The approach proposed by Lazutkin (detailed below in this section) has been imple-
mented in multiple settings in the past decades such as area preserving maps [17,43,44]
and integrable Hamiltonian systems with a fast periodic or quasiperiodic forcing [8,18,
25,49]. Note that the approach is extremely sensitive on the analyticity properties of the
model and therefore “implementing” it in different settings is, by no means, straight-
forward. Strongly related to the present paper are those dealing with volume preserving
or Hamiltonian Hopf-zero bifurcations. This was first addressed in [5-7,11,12] and
in [28], and has later been applied to the breakdown of breathers in the Klein-Gordon
equation (which can be seen as an infinite dimensional Hopf-zero bifurcation) [30] and
in the invariant manifolds of L3 in the restricted planar 3 body problem [9, 10]. Note that
the exponentially small splitting of separatrices phenomena can be analyzed by other
methods such as the so-called continuous averaging method [53].

Let us explain the main steps of the approach proposed by Lazutkin applied to Hopft-
zero bifurcations. Note first that the unperturbed separatrix is analytic in a complex strip
centered at the real line. Then, in all the mentioned works and in the approach explained
below, one makes the strong assumption that, at each of the boundary lines of the strip,
the separatrix has only one singularity. Then, an asymptotic formula for the distance
between the perturbed invariant manifolds can be obtained following these steps.

(1) Choose coordinates which capture the slow-fast dynamics of the model so that it
becomes a (fast) oscillator weakly coupled to an integrable system with a saddle
point and a separatrix associated to it.

(2) Prove the existence of the analytic continuation of suitable parametrizations of the
perturbed invariant manifolds in appropriate complex domains. These domains con-
tain a segment of the real line and intersect a neighborhood sufficiently close to the
singularities of the separatrix.

(3) Derive the inner equation, which gives the first order of the original system close to
the singularities of the separatrix. This equation is independent of the perturbation
parameter.

(4) Study two special solutions of the inner equation which are approximations of the
perturbed invariant manifolds near the singularities and provide an asymptotic for-
mula for the difference between these two solutions of the inner equation.

(5) By using complex matching techniques, compare the solutions of the inner equation
with the parametrizations of the perturbed invariant manifolds.

(6) Finally, prove that the dominant term of the difference between manifolds is given
by the term obtained from the difference of the solutions of the inner equation.
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This approach and all the aforementioned references rely on several hypotheses one
has to assume on the model. In particular, as already said, one must assume that, at each
of the boundary lines of its analyticity strip, the time-parameterization of the unperturbed
separatrix has only one singularity. This assumption is rather strong and it is known to
be non-generic (see [3,27]). In particular, the model (1.1) with y € (— %, 0) we consider
in this paper does not satisfy this hypothesis since two singularities exist at each of these
lines.

As far as the authors know, no proof of exponentially small splitting of separatrices
for separatrices with multiple singularities with the same imaginary part existed until
now. The reason is that to analytically extend the invariant manifolds to complex do-
mains one needs to estimate quite sharply certain oscillatory integrals and this is not so
straightforward when one has several singularities with the same imaginary part. In the
present paper we propose a new approach which relies on considering “auxiliary orbits”
of the model. The approach is rather flexible and we expect to be applicable to a wide
set of models admitting any number of singularities with the same imaginary part (see
Sect. 1.4 below).

Let us explain the main steps in the proof of Theorem 1.2, comparing them with
the classical Lazutkin’s approach explained above. The singularities of the unperturbed
separatrix closest to the real axis are those given in (1.8).

(1) Choose coordinates which capture the slow-fast dynamics of the model. In the
present paper the coordinates in (1.11) suffice. Note that this system possesses a
first integral (see (1.12)).

(2) Prove the existence of the analytic continuation of the time-parametrization of the
perturbed unstable invariant manifolds in an appropriate complex domain (see (2.7)).
This domain contains a segment of the real line and intersects a neighborhood suffi-
ciently close to the singularities of the separatrix with negative real part (see (1.8)).
Analogously, extend the perturbed stable invariant manifold up to the singularities
with positive real part. This is done in Theorem 2.2.

(3) Consider an auxiliary solution of (1.11) which belongs to the same level of the first
integral and that can be defined in a lozenge shaped complex domain which contains
a segment of the real line and domains e-close to all four singularities of the unper-
turbed separatrix (see (2.10)). This is done in Theorem 2.3. Note that this solution
does not belong to neither the stable nor the unstable invariant manifold. Instead
of measuring the distance between the stable and unstable invariant manifolds at a
given section, we will measure the distance between the unstable manifold and the
auxiliary solution and between the auxiliary solution and the stable manifold.

(4) Derive the inner equation (see (2.25)), which gives the first order of the original
system close to the singularities of the separatrix. Note that the same inner equation
appears close to all four singularities in (1.8).

(5) Study two special solutions of the inner equation and provide an asymptotic formula
for the difference between these two solutions of the inner equation. This is done in
Theorem 2.8.

(6) Close to the singularities with negative real part, by using complex matching tech-
niques, compare the solutions of the inner equation with the parametrization of
the perturbed unstable invariant manifold and the auxiliary solution (analogously
close to the singularities with positive real part and the auxiliary solution and the
parameterization of the stable invariant manifold). This is done in Theorem 2.10.

(7) Prove that the dominant term of the difference between the unstable manifold and the
auxiliary solution is given by the term obtained from the difference of the solutions of
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the inner equation close to the singularities with negative real part (analogously for
the stable manifold and the auxiliary solution close to the rightmost singularities).
This is done in Propositions 2.7 and 2.11. Joining the two asymptotic formulas
provides the difference between the stable and unstable invariant manifolds.

1.4. Further directions and applications. Although we have addressed a very particular
model, the fourth-order equation (1.1), which is relevant for traveling waves of the
modified Kawahara equation (1.6), the statement and proof of Theorem 1.2 can be
extended to other dynamical systems with the saddle-center points.

One example where a sequence of homoclinic orbits appears in the singular pertur-
bation theory was considered in [1]. The limiting second-order equation is given by

ul

" —u+ =0, 1.16
e 1 +yu? (1.16)

with a parameter y > 0 and it appears as the standing wave reduction of the focusing
nonlinear Schrodinger (NLS) equation with a saturation term. If y = 0, the homo-
clinic orbit is given by uo(x) = ~/2sech(x) with the simple pole singularities along the
imaginary axis at

in(2n+1)

= € Z.
X 5 n

However, for every y > 0 it was proven in [1, Theorem 2.2] that the nearest singulari-
ties to the real line appear as a quadruplet in the complex plane. Hence, the numerical
approximations in [1, Section 3] showed the existence of a countable sequence of true
homoclinic orbits in the dynamical system in R*, where the limiting second-order equa-
tion (1.16) is perturbed by the fourth-order derivative term.

This example is rather striking since the term u3/(1 + yu?) with y > 0 does not
change the number and types of the critical points in the dynamical system on the real
line, but only change the number and types of singularities in the complex plane.

Another example appears in the cubic—quintic NLS equation

W —u+ud(1+3yu®) =0 (1.17)
with another parameter y € R. The homoclinic orbit is given by

2
V1+ T+ 16y cosh(2x)

The simple pole singularity for y = 0 at x = % splits vertically along the imaginary
axis for y > 0 and horizontally for y < 0 with a pair of the square root branch point
singularities. In the latter case, we have a quadruplet of square root singularities in the
complex plane which lead to a sequence of homoclinic orbit in the dynamical system in
R*, where the second-order equation (1.17) is perturbed by the fourth-order derivative
term.

For both models (1.16) and (1.17), the singularities in the complex plane are more
complicated than poles and involve branching points, see [1].

The analytical proof of Theorem 1.2 can be extended from fourth-order dynamical
systems to other finite-dimensional dynamical systems. It is nevertheless an open di-
rection to extend the analysis to the infinite-dimensional dynamical systems such as

up(x) =




On a Countable Sequence of Homoclinic Orbits Arising Near a Saddle Page 11 of 65 215

the differential advance-delay equations. Such situations with the saddle-center points
and the quadruplets of singularities in the complex plane are well-known in the context
of traveling solitary waves in diatomic Fermi—Pasta—Ulam (FPU) systems [19,41]. If
the center manifold is still two-dimensional and the stable and unstable manifolds are
infinite-dimensional, we conjecture that a similar sequence of true homoclinic orbits
exist in the singular limit of the diatomic FPU system, in agreement with the numerical
results in [22,42,54]. However, the proof of this conjecture is left for further studies.

2. Details of the Proof

We devote this section to prove Theorem 1.2. First in Sect. 2.1 we provide analytic
properties of the unperturbed solution (1.7). Then, in Sect. 2.2 we study the analytic
continuation of the perturbed solutions in suitable complex domains and we also analyze
the auxiliary solution. In Sect. 2.3 we give exponential upper bounds for the difference
between two solutions for the stable and unstable invariant manifolds at a given transverse
cross-section. To provide an asymptotic formula for this difference we analyze the first
order of the perturbed solutions close to the singularities of the unperturbed solution.
This is done in Sect. 2.4 by means of an inner equation and complex matching techniques.
Finally, in Sect. 2.5 we obtain the asymptotic formula for the difference between two
solutions for the stable and unstable invariant manifolds.

We will use the notation ” and 9, to indicate the derivative with respect to x. In
addition, when defining functional operators, we usually omit the dependence of some
known functions such as uq on x.

2.1. Properties of the unperturbed solution. The first step in the proof of Theorem 1.2
is to analyze the analytic properties of the unperturbed solution u( introduced in (1.7).
This is contained in the following lemma, the proof of which can be found in Appendix
A.

Lemma 2.1. For y € (—%, 0), the function ug in (1.7) has the following properties:

o At the line Ix = m ug has exactly two singularities at

1

X4+ = to + i, a=cosh™ !l —— 2.1
+ JTsoy @D
and at Ix = —x ug has singularities at the conjugate points X1
e uq is real analytic in C\{xx + i2kmw, xx — i2km }jeN.
e In a neighborhood of x4, uq satisfies
C+1
up(x) = +0(1) as x — x4,
X —
with
1
(2.2)

C+l = F—F=-
vz
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e The second derivative of ug has exactly eight zeros, xj-t, j=1,2,3,4with |Sx]j-t| <

7 of the form

xf::l:ib, x2i=:l:a, x3i=:l:a+in, xf::l:a—iﬂ

with
b4
be(—,n), a>a, ac(0,a).

2.2. The outer scale. The second step in the proof of Theorem 1.2 is to look for pa-
rameterizations of the one-dimensional stable and unstable invariant manifolds in the
system (1.11). We parameterize them as solutions of equation (1.11) by fixing the initial

condition at X defined in (1.15).

We analyze the invariant manifolds by a perturbative approach close to (u(, 0) where
ug is the solution of (1.2) introduced in (1.7) that satisfies u6(0) = 0. To this end, we

write
u=uyg+& v=mn,
which yields the following system

L& = Fi1l&,nl,
Lon = F[&, 1],

where the linear operators are defined by

L1=—32+1—2up(x) — 6yu3(x),
Ly = 3)% + Slz,

and

{ﬂ[g, nl = —n+ (1 +6yug)&> +2y&>,
Folénl= fluo+E) (uo+&+n— fluo+8&)+ f"(uo +&)(uy +&"2,

with f defined in (1.10). Now, since
n/ — u/// _ u/ + f/(l/t)u/,
the first integral (1.12) becomes

1
2

+ 82[ (uhy+&") (n +up+& — £/ (o +E)uh +&")

~ 1 I
&6 non' ) =51 = &)) [wp)? + 2upe + €7

S ug € — o +£)°]

which is constant along solutions of (2.3).

(2.3)

(2.4)

(2.5)

(4§ = 2u0¢ — 2] + Fluo +)

(2.6)

The following theorem, whose proof is given in Sect. 3, provides two solutions of (2.3)
which decay exponentially as ix — +oo and fix — —oo respectively. They correspond
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[ Y

Fig. 2. The outer domain D,((’m’u introduced in (2.7)

to the parameterizations of the invariant manifolds. Moreover, we prove that they can
be analytically extended to the so-called outer domains defined as

DM = {x e C: |Im(x)| < —tand Re(x — x_) +Imx_ — ke}, 2.7)
D" ={xeC: [Im(x)|<tan6Re(x —x;)+Imx, —ke}, .

where 0 < 6 < atan (3”—0[), with « defined in (2.1), is a fixed angle independent of ¢ and
k > 1 (see Fig. 2). Observe that D,‘j“‘**, * = U, s, reach domains at a xk e—distance of the
singularities x = x_ and x = x4 of ug respectively.

Theorem 2.2. Fix 0 < 6 < atan (%) There exists ko, g > 0, such that, if ¢ € (0, &9)
and k > ko, then there exist real-analytic functions (§*, n*), x = u, s, defined in the
domain D"* which are solutions of (2.3) satisfying

lim (&% n") = (0,0), lim (&%, 7%) = (0,0)
NRx——o00 Rx—o00

and
0E*0) =0, G(E*, 0", 1%, 0™, x) =0,

where G is the first integral introduced in (2.6).
Moreover, there exists M| > 0, depending only on 0, kg, €9, such that £€* and n*,
* = U, s, satisfy the following estimates.

e Forx e D,?Ut’* N{|Re(y)| > 2a},
1E5(x)| < Mie2e ™ Inf(x)] < Myele Ml
and

|8x%~*(x)| < Mlgze—mi.ﬂ’ |3x77*(x)| < M1826—|.‘)€x|.
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o For x € D"* N {|Re(y)| < 20,

M182
£ (x)| < _ —
3 3 3 3
b —x_Plx —x_Plx — x: Plx — x4
M182
n*(x)] < _ —
I —x_Plx —X_Plx — x5 5x — x4
M1£2
10,6 (x)] < _ —
e —x_ [l —x_[*x — xa[Hx — 3.2
Mg
10,7* ()] < :

T =Pl =X Plx — xp Plx = X3
Finally,
Ex)=&"-x), () =n"(—x)

or, in other words, the unstable curve is reflected by the involution WV in (1.13) to the
stable one.

To prove Theorem 1.2, we analyze the difference
A= (A A =(E" =& n" —n). (2.8)

However, since its difference is exponentially small, to obtain an asymptotic formula, we
would need to analyze this difference in e-neighborhoods of the singularities x = x4.
Note that Theorem 2.2 does not provide the analytic continuation of (£%, n®) to points
ke-close to x_ (and same happens for (¢, n") and x;).

Instead of performing the analytic extension of the invariant manifolds in the xe-
neighborhood of the points x4, we rely on auxiliary functions (§2**, n*"*). These func-
tions will be solutions of the same equation (2.3) and will also belong to the same energy
level with respect to G as (§™5, 9,&™5, n-5, 9, n"™%). Then, the analysis of the difference
(2.8) will be deduced by the differences

Au — (A%‘u, Anu) — (%-u _ Eaux, nu _ nauX),

2.9
AS — (Ass, Ang) — (gaux _ ES’ naux _ nS) ( )

The following theorem, whose proof is given in Sect. 4, provides the existence of the
functions (£, n®*) in the domain

D ={x e C: |Im(x)|<tan@Re(x —x_) +7 — K&}

2.10
N{xeC: |Im(x)|<—tanfRe(x —x;)+7m —ke} ( )
with «, 8 > 0. The domain is shown in Fig. 3.

Theorem 2.3. Let 0 < 6 < arctan (Z). There exists ko, €9 > 0, such that, if ¢ € (0, &)
and Kk > ko, then there exist real-analytic functions (§*"*, n®*) defined in the domain
D™ which are a solution of (2.3) and satisfy

LESO) =0 and  GE™ 06, n", 0™, x) =0

where G is the first integral introduced in (2.6).
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- g aux
[ ] ]
", e
L L]
T Ty

Fig. 3. The auxiliary domain D&"* introduced in (2.10)

Moreover; there exists M, depending on 6, ko, o such that, for x € D",

2
aux Mae
% (1) < M
[x —x_Plx = X_Px — xq |7 |x — X4
M282
o)l < L —
|x = x_[Plx = X_Px — x4 2 |x — X4
M282
—x M = X — x|t — x4
Msye
—x_Plx = X_Plx —xyPlx =X

10,6 (x)| <
|x

3™ ()| <
|x

In addition (§*™*(x), n™™ (x)) = (" (—x), n*™™ (—x).

2.3. Exponentially small estimates. The next step in the proof of Theorem 1.2 is to
analyze the differences A", A® defined in (2.9). Since (§*, n*), x = u, s, aux are all
solutions of (2.3), we can conclude in the following lemma that the differences A* are
solutions of a linear system in the following domains

EU = {(x eC: |Im(x)| < —tanf Re(x — x_) +Imx_ — e, Rx>Rx_}, @.11)

E'S = {x e C: |Im(x)| <tanf Re(x — x4) + Im x4 — kg, Rr<MRx_},
(see Fig. 4). Note that these domains, with 6 such that 0 < 6§ < atan (%), satisfy
EU* C DU* N DAY x = u, 8.

Lemma 2.4. The functions A* = (AE*, An*), x = u,s, in (2.9) are defined in the
domains EX"* in (2.11) and are solutions of the linear system

{LlA%‘ = NMilAg, An], (2.12)

LoAn = No[AE, AE', An],
where

NiI[AE, Anl(x) = —An(x) + a(x) A&(x), 2.13)
No[AE, AE', Anl(x) = b(x)AE(x) + c(x)AE" +d(x)An(x), '
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Ly
[ ]

xT_
[ ]
\ E‘Out,u
K

/

2. ®
T_ xTi

Fig. 4. The intersection domain E,?m’u introduced in (2.11)

. . . out,
for some functions a, b, ¢ and d, which satisfy that, for x € EQ""*,

()] < Mse?
alx p— p— )
B P g e i b P A Pl
M3
b < U N
[x —x_|%|x — X_|*[x — x4 |%]x — X4
Mj;
()] < S .
[x —x_[Px = X_]°|x — x4 7 |x — X4
M;
|d(x)] <

v —x—2x = X2 — xe e — %42

for some constant M5 independent of € and k.

To obtain the exponentially small estimates for the differences A* (x = u, s), we use
the existence of the first integral G(&, &', n, n’, x). The first integral gives us an extra
relation for the components of the difference A*, which allows us to get rid of analyzing
AE*.

The following lemma is straightforward taking into account Lemma 2.1 and Theorems
2.2 and 2.3.

Lemma 2.5. The functions A* = (AE*, An*), x = u, s, defined in (2.9) satisfy

(—ug(x) + m(x)) A& + (ug(x) +n(x)) AE" + p(x)An+q(x)An" =0
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: . : out,*
for some functions m, n, p and q, which satisfy that, for x € E2"",

m(x)] < e Rk
Ix = x_lx = X_3|x — x4 PP |x = %43
M 2
e i o
M 2
[p(x)| < |x_x_|3|x_f_|jrx—x+|3|x—f+|3’
M 2
ol = —)_c_|;fx —xi Pl = X

with My > 0 a constant independent of ¢ and k.

By using Lemma 2.5, we reduce the system of two second-order equations (2.12)
to a third-order system imposed on A = Ag’, An and An’. The following lemma is

obtained directly from Lemmas 2.4 and 2.5.

Lemma 2.6. The functions A* = 3, AE*, An*, x = u, s, are defined in E°"* in (2.11)

and are solutions of the linear equation

{ElAc = Nilaz, Ay, An'],
LoAn = Nao[AE, An, An'],

where

and
NIAL, Ay, Ayl = —An +F(x) AL +5(x) Ay +1(x) A1,
NolAL, Ay, Ayl = Tx) AL +d(x)An +e(x)Ar,

for some functionsT,’s, 1, ¢, d and’e, which satisfy that, for x € EX"“*,

Pl < Mse?
rx — — 3
= Pl — 3Pl — 1, Plx — T
F)| < Mse?
SX p— — 3
= Pl — 3Pl — xe Plx — X
~ M582
0] < = .
X — 2 [[x — X_[[x — xsllx — %ol
— Ms
o) < — —
=2 Pl —T_Plx — Pl — 5]
~ Ms
d)| < - S
=2 Px — % Plx — s [2)x — %4
o) < Mse?
ex — — .
= Pl — 3Pl — 1, Plx — T

with Ms a constant independent of € and k.

(2.14)

(2.15)
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By using Lemma 2.6, we provide an asymptotic formula for A* at x = 0. Note that,
by Theorem 2.2 and 2.3, A¢*(0) = 9, A&*(0) = 0 (and that A&(0) can be obtained by
Lemma 2.5 once the other components are known). Therefore, in order to prove Theorem
1.2, it is sufficient to look for an asymptotic formula for An*(0) and 3, An*(0).

Assume for a moment that An* satisfy

LoAn =0
(that is, assume that ¢ = d=2¢= 0). Then, An* would be of the form
A*(x) = Cle® +Cle™ . (2.16)
We introduce
p— =x_—ike and py = x4 —iKe 2.17)
with x4 = o + i and « defined in Lemma 2.1. We observe that, by Theorems 2.2 and

Theorem 2.3, An" is defined at p_, p— and An is deﬁned at oy, Pt. Evaluatmg An"

in(2.16) atx = p_ and x = p_, using thate = and e~ & are of size e~ ¢ , one obtains
that C} and C; must satisfy

CY = Ap*(p0)e” = +hot. and CY=An"(p_)e = +hot. (2.18)

An analogous formula follows for C} , changing p— by p.

Now, the equatlon for An*, *x = u,s, in (2.12) has a right hand side (2.13) with
nonzero ¢, d, ¢ and therefore one has to proceed more carefully than in the arguments
above. The following proposition gives the needed result.

Proposition 2.7. The functions An*, x = u, s, introduced in (2.9) are defined in E°"t*
given by (2.11) and are of the form
An*(x) = Cle +Cle™ % +R*(x) (2.19)
where
e The constants C} and C5 satisfy

An'(p_) = Cle's +Cle &
i ip=

Ant(p2) =Cle s +Che &

(=) =€ 2 (2.20)

ip+

An®(ps) = Cfei’% +Che” ¢
A @) = Cle'™ + Cse™F.
o The functions R* satisfy that
RY(p-)=0, R (p-) =0, R(ps)=0, R(ps)=0, (221

and that, for x € EQ"“*,

R* ()| < %e%‘“' (1C¥] +1¢3)

|9, R* ()| < 26,11
EK

(2.22)
(et +1c3)),

for some constant independent Mg > 0 independent of € and k.
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Note that the properties of C; are a direct consequence of evaluating (2.19) atx = p*

and x = p* and the properties of R*. That is, to prove Proposition 2.7 boils down to
prove the properties stated for the functions R*. This is done in Sect. 7.

By Proposition 2.7, proceeding as for (2.16), we have that indeed, C' , is of the form
in (2.18) and analogous formula are also true for CY ,. As a consequence, of this analysis
and using also that, by Theorems 2.2 and 2.3

_ 1
|An*(p)l, |AN" (o) = M ——,
K~ €&~
we have that |
ICYol < M8—3e—%.

However, in order to prove the asymptotic formula in Theorem 1.2, we need to perform
a more accurate analysis of the functions n* (and £*) around the points p+ and px. This
is done in the following subsections by means of the inner equation (Theorem 2.8) and
complex matching techniques (Theorem 2.10).

2.4. The inner scale. We perform the change of coordinates to the inner variables. We
consider the new variables

z=¢ "x —xyp) (2.23)

and, recalling the definition of ¢4 in (2.2), we define the functions

3

e e
$(2) = —&E(xs+ez),  Y(2) = —nlrs +e2). (2.24)
C+1 C+l
Recall that y < 0 and therefore ci (¥ = —1. Applying the change of coordinates to
equation (2.3) and letting ¢ — 0 we obtain the limiting inner equation,
LP¢ = T, v,
1 1. 2.25
{Lg’w = TP, v, (229
with
£ =-92+ 8,
] z 2.26
{ LN =092 +1, (220
and
T, vl =—y — 8¢? — 293,
. 2 3 2
TiNg, v =—6 (% +¢) (yf +2(% +¢) ) —12 (% +¢>) (—zi2 +az¢) .
(2.27)

This equation is reversible with respect to the symmetry

@, V) = (=, —¥), z— —z. (2.28)
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Fig. 5. The inner domain Dgll(n introduced in (2.29)

We analyze this equation in the inner domains (see Fig. 5)

Dy —{zeC: |3()] > anR(2) +«},
’ (2.29)

s,in . ,in
Dyl ={zeC: —zeDyl},

for0 <0 <m/2and x > 0.
The following theorem, which is proved in Sect. 5, provides an asymptotic formula
for the difference between the two solutions of the inner equation.

Theorem 2.8. Let 0 < 6 < 7 be fixed. There exists ko > 1 big enough such that, for

each k > K,

(1) Equation (2.25) has two real-analytic solutions (¢0'*, 1//0’*) : D(;:j(n — C%Z x=u,s,
which, for every z € Dy, satisfy

M7 M7
‘d)o’*(z)‘ < W7 ‘Wo’*(z)‘ =< ﬁ’

. . u,in
for some M7 > 0 independent of k. Moreover, they satisfy that, for z € Dy’ ",

@ (@), ¥ (@) = (=" (—2), =¥ (—2)). (2.30)
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(2) The differences Ag°(z) = ¢*¥(2) — ¢*5(2), Ay (z) = vV (2) — ¥5(2) are given
by
AP°(2) = Be ™ (=1 + x1(2))
AYO(z) = @™ (1 + x2(2))
3. A¢%(2) = —i®e ™ (=1 + X1(2)
3. AY0(z) = —i@e ™ (1 + 72(2))

2.31)

orz € R =D N DM N (7 iR, Iz < 0}, where ® € R is a constant, and
0,k 0,k 0,k
X1> X2, X1, X2 are analytic in 7 and satisfy that, for z € Rie‘fk,

My Mg Mg My
i@l = @l =— X@l=-— k@l =-—,
[4 |z |z ||
for some Mg > 0 independent of k. _
(3) The constant © satisfies ® # 0 if and only if there exists zo € ng such that

AP (z0) # 0.

Theorem 2.8 does not ensure that the first-order constant ® is non-zero. This is stated
in the next proposition, whose proof is deferred to Appendix B.

Proposition 2.9. The constant © € R introduced in Theorem 2.8 satisfies ® # 0.

Once we have obtained the solutions of the inner equation and analyzed their differ-
ence, the next step is to “measure” how well they approximate the functions obtained
in Theorems 2.2 and 2.3. This is done through what is usually called complex matching
techniques.

We first define the matching domains where these differences are analyzed. Let
O<v<land0 < 6 <0 < 0] < %, where 6 is the angle introduced in (2.7).
We denote

P = —ike+Xx_, X, = —ike — Vel +x_, X, = —ike+ gVl 4 x_.
and
P+ = —ike+xp. x| = —ike+ Ve 4 x,, Xy = —ike — Ve 4 x,.
Notice that p, = —p_,x] = —x, , X3 = —x, , where we have denoted by 7 the complex
conjugate of z. We define the matching domains as
D—,match _ - _D+,match T i o+ (2.32)
01,600 — P—2 X1 2 Xy 01,000 = P+s X1 0% :
. —,match . . - = . —,match . .
that is, D9|,92,v as the triangle with vertexs p—, x|, x, while D@]ﬁz,v is the triangle

with vertexs —p4, x7, x5 (see Fig. 6).
‘We also introduce

20 (x) = cg;l¢o’“(s*] (x —x_)), > (x) = %wo’“(e”(x —x_)),
(2.33)
95(x) = Cg—ltﬁo’s(s_l(x —x4)), %S (x) = Z—;l/fo’s(a_l(x —x4))
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—,match e =% . s
zy N < S
01 ,92,1/ \ N S

,match

Fig. 6. The matching domain D(77 o introduced in (2.32)

and
sg,aux(x) — %¢O’S(871(X _ x_))’ n(iauX(x) — %1//0'5(871()( _ x_))7

i - 1 -
S = e e ) e = Y (e ).
(2.34)
The following theorem, which is proved in Sect. 6, provides estimates between

(Ei ni *) and (£*, n*) with » = u, s, aux in the corresponding matching domains.

Theorem 2.10. Let 6 > 0, kg be fixed as in Theorems 2.8, 2.3 and 6 as in Theorem 2.2.
Take 0 < 6, < 6 < 04 <atan( )andv € (0, 1).
We introduce the functions

(85", on") = (8" — &4 " n‘“),
(853, 8m8) = (8% — &0%, n* — %),
(5§aux duX) _ (sdux _ 50 aux X ng:aux)'

Then there exist k1 > ko and a constant Mg > 0 such that for all k > k| and x €
Di,mateh
01,02,v

&8 (x)| < Mol log e

|x Xilz’
2—v

lx — xsf3
2—v

. 0588 (x)| < Mo loge|

S0 (x)| < Mol log e

[x — x4
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1—v

Ix — x|+

100, |9:8n8* (1) < Mo log e

2.5. The asymptotic formula. Now, to prove Theorem 1.2 it only remains to provide an

asymptotic formula for the constants C7 and C3. This is done in the following proposition,

which is proved in Sect. 2.6. From now on we take
k = c|loge| (2.35)
for some suitable constant ¢ > 0 to be chosen later.

Proposition 2.11. The constants C and C} introduced in Proposition 2.7 satisfy

1 ix— 1
o PR = <®+0< ))
LT VIyle |loge|
1 1
L5 (@ +O ( ))
lyle [log &
1 i 1
=L (ovo (1))
lyle [log e|

C5= - . e”e*(®+(9< ! ))
SV/IPS |loge|))

Evaluating at x = 0O the formula for A* in (2.19) together with Propositions 2.7
and 2.11 lead to the asymptotic formulas

1 T o 1
u —_ 7% _
AR (0) = ¢ <2®cos<£)+(’)<|10g£|>>

AP0 = — e F (205 =)
A0 = T ’(_ sin () + <|logs|))
1

N <2®°°S <|1ogs|>>

&

1 T o
(205 0 ,
N ( sin () + <|logs|))

where « is the constant introduced in (2.1).

To complete the proof of Theorem 1.2 we recall that An = An" + An® and that
by the symmetry properties in Theorem 2.2 and 2.3 of 1", *, n®™* one has that, for
x e DM™NR

)
V)=

Ap*(0) = —

axAn°(0) =

An'(x) = n"(x) = ™ (x) = n°(=x) = " (=x) = —An*(=x)
and therefore An"(0) = —An*(0). This completes the proof of Theorem 1.2.

Remark 2.12. Notice that we could argue by symmetry that An*(x) = —An"(—x) and
skip the constants C7 , of our analysis. However we have preferred to keep all constants
in order to emphasize that the method does not depend on the symmetries of the system.
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2.6. Proof of Proposition 2.11. To prove Proposition 2.11, the first step is to provide an
asymptotic formula for An"(p-), An"(p=) and AnS(ps), An®(oy).

Lemma 2.13. Let v € (0, 1) and consider the points x = p_ and x = p_ introduced
in (2.17) with k asin (2.35) and c € (0,1 —v).
Then, the functions An", An® in (2.9) satisfy

c_1 _ 1
An'(p-) = 8—31e « (®+O <|log8|>>

. c-1 _ 1
M) = e (®+O<|logs|>>’

1
Ao = e (040
& | log €|
1
AP = e (®+o< ))
& | log €|

where cy1 and © are the constants introduced in (2.2) and Theorem 2.8 respectively.

and

Proof. We provide the proof for An"(p_). The other formula can be proven analogously.
Note that An" can be written as

Antx) = () — 2" @) + 72 0 = %M ) + % () — ™ (x)

-1 ofX — X u aux
= —AY +8n (x) — 7™ (x)
& &€

where n(i’*, * = U, aux are defined in (2.33), (2.34), Awo is the function analyzed in
Theorem 2.8 (recall the inner change of variables (2.23)) and §n* , §n*"X are the functions

introduced in Theorem 2.10. Then, it is enough to use the asymptotic formula (2.31) and
the estimates in Theorem 2.10. Indeed, using that p_ — x_ = —ik e, we obtain

" cq e ) slfv
Ant(p) = - (@e (1+ x(—=ik))+O (Ilogel3>>

_ 1 gl—v
= Qe”‘ O+0 —— |+ O ——
g3 |log &| |log &|?
and therefore, from ¢ = ¢ < ¢"~!, we obtain the result. Notice that

An*(x) = n*(x) — 2™ () + 720 0) — 125 () + S () — P (x)

= Ay’ (x ;“) 80 () — Bn3(x)

so the result for An® follows analogously as the one for An". O
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To complete the proof of Proposition 2.11, it suffices to solve the linear system (2.20).
Indeed, we have that, the linear system for C ‘1]’2 can be rewritten as

1 e (v ~7E At (o=
1o (C%‘> _ (e ")
e s 1 2 e e An'(p-)
Thus, using that e ~'i(o_ — p—) = —e 127, that p_ = x_ — ixe and Lemma 2.13
_ iX— 1
="l (040
g3 |log e|
1 ix— 1
Cy = e (e+o .
&3 [log ¢
Proceeding analogously for Cf‘z we obtain
i 1
=T (0+0
g3 |log &|
ixy 1
=L (0+0 .
g3 |log e

Since cx1 = £(J/|y D~!is givenin (2.2), this completes the proof of Proposition 2.11.

2.7. Notation and preliminaries. The rest of the paper is devoted to prove the inter-
mediate results in the previous sections. In order to do so, here, we set some standard
notations used in our work and to provide (and prove) a general result improving the
classical fixed point theorem. We will use the following notation and conventions:

e For g,h : Q C C — C, a function defined in a complex set €2, we will say that
lg(x)| < |h(x)]if there exists a constant M such thatforall x € @, |g(x)| < M|h(x)].

e Let X be a Banach space endowed with the norm || - || x. We will use the notation
B(o) C X for the closed ball of radius o centered at the origin of X, namely

B(o) =1{xe€ X :[x|x <o}

e From now on, «g, & > 0 will be fixed; kg is as large and we need and gy > 0 is as
small as necessary. All the constants appearing in the results are uniform with respect
to e € (0, go] and k > K. Moreover, when we say in the statement of a result, that
¢ is small enough (resp. « is big enough) we mean that we are choosing g9 > 0
small enough (resp. ko big enough) such that the statement hold for ¢ € (0, gg] (resp.
K > Ko). o

e We will denote by D the closure of a set D.

We present now a result which is a consequence of the Banach fixed point theorem.
We will use it several times along the work.

Theorem 2.14. Let (X ||-||x), (Y, ||-1ly) be Banach spaces and take any (Xo, yo) € X xY.
Consider F : X x Y — X x Y an operator, ¥ = (Fy, Fy), satisfying that, there exist
positive constants ¢,

0 = 3(c+ Dmax{||[Fx[xo, yol — Xollx, [IFy[x0, Yol — yo)lly},
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Ly, Ly and L3 such that

IFx[x,y] — Fx[X, ¥lllx <ely—¥lly + Lilx —X|Ix

~ ~ ~ - (2.36)
IFy[x,y] — Fy[X,¥llly < L2llx —X|lx + Lally — ¥y
for any (x — X0,y — yo), X —X0,¥ — Yo) € B(0) x B(0) C X x Y. Then, if
1
Li+ce(la+L3), Lo+ L3 < 3 (2.37)

the fixed point equation (X, y) = F[X, y] restricted to B(0) X B(0) has a unique solution.

Proof. We endow X x Y with the norm ||(X, y)||x = max{||x]x, [|ylly}. We notice that
B(o) x B(p) C X x Y isindeed the ball of radius o centered at the origin.
We first claim that, if (x — xg,y — ¥yo) € B(o) C X x Y, then

(x —xo, Fy[x,y] —yo) € Ble) C X x Y.
Indeed, it is clear that

IFy[x,y] —yolly < IFy[x,y] — Fy[xo, yollly + IIFy[X0, Yol — yolly

1
< Lr+L <
_Q<2+ 3+3(c+])>_0

where we have used that Ly + L3 < %
Consider the operator

Fx,yl = (Fx(x, Fy[x, y]), Fy[x, y]),

which has the same fixed points that F, and we compute the Lipschitz constant of the
operator F. By hypothesis we have that

IFx[x, y] — Fx[X, ¥llx < clFylx,y] — Fy[X, ¥y + L1lIx — X[ x
<cLslly =¥y + (L1 +eLo)|x — X[ x.

Then, denoting L = max{L| +cLy +c¢L3, Ly + L3}
IF[x, y] — FIX, Flllx < LIIX, ¥)lx

and hence, the Lipschitz constant of FisL < % by hypothesis.
In addition, for (x —Xg,y —Yyo) € B(o) C X x Y,

IFIx, y] — (x0. Yo) I x <IFIx, y] — Flxo, yolllx + [Flxo, Yol — (X0, ¥0)lIx
<L||(x,y) — (X0, Y0)lIx + [IF[x0, Yol — F[Xo, yolllx
+ IF[x0, Yol — (X0, y0) Il x

<Lo + ||[Fx[xo, Fy[Xo, yoll — Fx[x0, yolllx +

1 c
=e (“ 3+ ) +3(c+1)> =e

Therefore, the map F is a contraction from B(p) C X x Y toitself and the fixed point
theorem implies the existence of an unique fixed point belonging to B(p) C X x Y. O

_°
3(c+1)
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3. The Invariant Manifolds in the Outer Domain

Here we prove Theorem 2.2 with a fixed point argument. Then the first step of the proof,
done in Sect. 3.1, is to reformulate Theorem 2.2 as a fixed point problem. In Sect. 3.2 we
prove that the fixed point operator is a contraction in a suitable closed ball of a Banach
space.

We prove Theorem 2.2 for the unstable manifold and we obtain the corresponding
result for the stable manifold taking advantage of the symmetries of the system. Indeed,
by definition (2.7) of D2"*, x € D" if and only if —x € DZ"“" and using that the
system is reversible with respect to the involution W in (1.13), we deduce that, if (§", n")
satisfy the conditions in Theorem 2.2, then

() =8"=x), () :=n"(-x)

satisfy the corresponding properties.

3.1. The fixed point approach. For given x > 0 and 6 € (0, arctan (3-)) we recall
definition (2.7) (see also Fig. 2) of the complex domains D2"""'. From now on we fix 0
and we do not write explicitly the dependence of the domains on 6. The role of «, as we
will see, is completely different.

We introduce, for a real-analytic function 4 : D,‘(‘*"ut — C, which extends continu-
ously to the boundary, the norm

17llm,e = sup | coshx|™|h(x)]
xeDEO" NN (x)<—2a}

+ sup e —x_[“Jx = X_[“|h(x)]|
xeDE NN (x)>—2a}

with £, m € R. Then, we define the associated Banach space

Eme=1{h: W — C continuous and real-analytic on D}"°" with ||/, ¢ < 00},
DEpe = {h: DI = C. h € Epg with [[hll.g + | et < 00},
and the product Banach space
Ex =DE 13 x &5,
with the product norm

(1, ko)l = max{[|k1ll13 + [A]1l14, [h2llis)

We have the following lemma, whose proof is straightforward.

Lemma 3.1. There exists M > 0 depending only on 0, such that, for any k > 0 and
g, h: D" — C, it holds

(1) If €5 = £1 = 0, then

1llm.e, < M|Rllm,e, and |hlim.e; <

< < oyt e
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@) If b1, €2 = 0 and [1gllmy.e1 > 1hllmy.e, < 0O, then

||gh||m1+m2,€1+52 E ||g”m|,K1 ”h”mz,ly

(3) Ifmy > my, £ > 0 and ||gllm,,e < 00 then

gllmie = MIIglms,e-

In this functional setting, Theorem 2.2 (for the unstable solution) is a straightforward
consequence of the following result.

Proposition 3.2. Consider the system (2.3), that is

L& =FilEnl, Lon = Falé, ] (3.1

with L1, Ly and F = (Fy, F) defined in (2.4) and (2.5) respectively. There exists kg, &
and a constant My such that for ¢ € (0, &9) and k > ko, system (3.1) has solutions
(&%, n") € Ex satisfying ||(EY, n")||x < Mie? and 3:£"(0) = 0.

Remark 3.3. By definition of the Banach space £, since (§", n") € £, it satisfies the
boundary conditions

lim (£"(x), n"(x)) = (0, 0). (3.2)
NRx——00

Therefore, by Cauchy’s theorem, it is also true for x on R that
lim (3" (x), dxn"(x)) = (0,0).

X—>—00
Then,
lim G(EH(X)’ axgu(x), nu('x)v axnu(x)7 x) = 5(09 0’ 07 0) = 05
xX——00

with G the first integral defined in (2.6), and therefore, for x € D,‘j‘“’“,

G(E"(x), 0.:£"(x), n"(x), By (x), x) = 0.

In addition, for x € DE“t'“, we have |x — x|, |[x —X;| = M for some constant M > 0 and
hence the estimates in Theorem 2.2 in the domain D" N {fRx > —2«} hold trivially.

The remaining part of this section is devoted to prove Proposition 3.2. In order to do
so0, we seek a fixed point formulation of (3.1) in a suitable ball of £ . Therefore, the next
step in our analysis is to look for suitable right inverses of the operators £ and L».

We start with £;. The homogeneous equation £1£ = 0 has two linearly independent
solutions ¢1 and &2, where the odd function 1 (x) = ug(x) is a solution due to the trans-
lation symmetry and the even function &, (x) is uniquely defined by the normalization

GG = Hx) =1, xeR, (3.3)

which follows from the Wronskian identity. The following lemma gives the second
solution &, and it is proved in Appendix C.

Lemma 3.4. For a given k > 0, there exists a unique real analytic even function ¢ :
D"V — C satisfying (3.3). In addition, {>(0) # 0 and ||{2]|—12 + 1551-13 < M for
some constant independent of k > 1.
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Remark 3.5. We notice that {1 = u, € D& ».

The classical theory of second-order differential equations implies that we can con-
struct right inverses of the operator £; as

L) = (v [Cl +/ Cz(s)h(s)ds] +8(x) |:C2 —/ g1 (S)h(S)dS} (3.4)
X1 X2

for any given xq, xo, C1, C» € R. However, we are interested in solutions (£“, n")
satisfying the boundary conditions 9, & (0) = 0 and the decay behavior (3.2). Therefore,
we impose the same conditions on the solutions of £1&§ = h and we easily obtain that
the right inverse is formally given by

GO R](x) = ¢1(x) /O &()h(s)ds — & (x) / {1 ($)h(s)ds (3.5)

where the (complex) integration path is, in the first integral, the segment between 0 and
x and, in the second integral, corresponds to the path parameterized by s = x + ¢, with
t € (—o0,0].

In addition, it is straightforward to check that a right inverse of the operator £, can
be formally expressed as

] P x PR— / PR— X PRp—
G [h] = _%ew 1*/ eie lsh(s)ds+%e_’5 'X/ ¢ Shis)ds, (3.6)
—00 —00

where the integration path is the horizontal line s = x + ¢, t € (—o0, 0].

The following lemma describes how the operators GP™ and G9"' act on functions
belonging to D& 3 and & 5 respectively. Its proof follows the same lines as the ones of
Proposition 4.3 in [31] and we sketch the main steps of the proof in Appendix C.

Lemma 3.6. The operators g;““ and Qg“t introduced in (3.5) and (3.6) have the following
properties.

(1) g;““ oL;=L;o g;““ = Id.
(2) For any m > 1 and € > 5, there exists a constant M > 0 independent of ¢ and k
such that, for every h € &, ¢,

1211y oy < MllBllme — and 8.6, ,_y < Mllln,c
and
0.9 [h1(0) = 0.

In addition, if h is real analytic, then G1[h] is also real analytic.
(3) Foranym > 1, £ > 0, there exists M > O such that for h € &y ¢,

|5"h1],, , < ME*1lm.c

Moreover, when h is real analytic, gg‘“ [h] is also real analytic.

In order to prove Proposition 3.2, we use Lemma 3.6 and look for solutions of (3.1)
belonging to £, satisfying 9,£(0) = 0 as fixed points of the operator

FoU = (G 0 F1, G 0 ) (3.7)

where F; are the operators defined in (2.5).
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3.2. The contraction mapping. We prove Proposition 3.2 using Theorem 2.14. To do
so, we study F°"[0, 0] (Lemma 3.7) and the Lipschitz constant of F°" in a suitable
ball B(Re?) C £, (Lemma 3.8).

Lemma 3.7. There exists a constant by > 0 independent of ¢ and k such that
172410, 01l < bre”.
Proof. From definition (2.5) of F,
F10.0] = (0, f'(uo)(uo — f (o)) + £ (o) (g)?).

Sinceug € &1.1,see(1.7) and Lemma 2.1, and f (1) = w2 +2yud, F[0,0] € Ers5CE1s
with || F2[0, 01|15 < 1 and from Lemma 3.6 the result holds true. O

Lemma 3.8. There exists C1 > 0 such that for all R > 0, if (¢, n), (E, 7 € B(Re?) C
Ey, then the operator F° in (3.7) satisfies

~ - C ~
[ 718 1 = FPE D] 5 = Crlln=TTls + 116 m) = € Dl
~ - C ~
|0: 7718, m = 0. FPE | 4 = Crlln =il + 16 m) — € D«

~ C -
[ 7518, n1 = F3ME A 5 < S1E ) — E Dl

for some constant C = C(R) > 0 independent of ¢ and k.

Proof. Let (§,n), 6, 7) € B(Rs?). We define &, = (&1, m) = € M) + (& n) —
(£,7)). Then, using the mean value theorem

1
Filg, nl(x) — Filg, 7l(x) = /0 DF[§) () (§(x) — E(x), n(x) — ﬁ(X))Td?»
with
DFI[5](x) = (0 F1[01(x), 3, F1181(x)) = (12yu0(x)E (x) + 28, (x) + 6y 7 (x), —1)
and satisfying
2 82 4

e e 1
e F S—+—+ S =
los Filsadllie S 2 T Tt N

where we have used Lemma 3.1, that « is big enough and that ¢ is small enough. Then
by the second item in Lemma 3.6 and recalling that F{"' = G o F;

IFPNE, 7] — FYUE, Fllls < MIFILE, n] — FilE, Tls
~ C ~
<M|n—nlis+ Ellé —&l3

where M is the constant provided in item (2) of Lemma 3.6, which is independent on
R. In addition, using again item (2) in Lemma 3.6

~ - C ~
9 FYUE, ] — 0x FPUE, Alllia < MIT —nlls + K—ZIIS — &3
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With respect to the second component, we define

MIE, 0, &= f'(uo+&) (o +&+n — fluo+8)+ [ (o +E)(ug + &)

which satisfies M[&, 1, &'] = F2[&, n]. We note that [lug + & |l1,1, llug + & 12 S 1.
Then, computing

e MI&, i, §.1=21"(uo + &) (uy + &),

we have that

/ / < .
|0 MIEx, mas &1l S e)?

In addition

1 /
10, MIEx, i, Ex 11120 S wor 10 M[&x, m, € 1122 S

(ke)?
Then, using the mean’s value theorem as Lemma 3.1, we obtain

~ 1 ~
17208, 01 = P2l s S — 116G m) — €. Dlx,

(ke)?

from which the last bound in Lemma 3.8 follows by recalling that 75" = G9"' o F and
applying the third item of Lemma 3.6. O

End of the proof of Proposition 3.2. We apply now Theorem 2.14 to the operator F°Ut,
Indeed, using Lemmas 3.7 and 3.8, we take (with the notation in Theorem 2.14) (Xo, yo) =
0,0),c=Cy,

0 =3(Cy + bie? > 3(Cy + D[ F0, 0]«

and L1 =L, = L3 = K% Hence the conditions (2.36) and (2.37) in Theorem 2.14 are

trivially satisfied taking « big enough. Therefore, F°" has a unique fixed point which
belongs to B(3(Cy + 1)b1£?). This completes the proof of Proposition 3.2.

4. An Auxiliary Solution

Here we prove Theorem 2.3 by constructing a real-analytic solution (§*"*, n®*) of
equation (2.3) defined in the domain D2", see (2.10) and Fig. 3. As we have done in
Sect. 3, we fix 6 € (O, arctan (%)) and we omit the dependence on it along the proof.
We will run the fixed point argument similar to that of Sect. 3. Note however that we
have to modify some arguments in a suitable way so that

e The integrals defining the right inverse of the linear operators L1, £, have to be
over paths within the new domain D2"*, see (3.5) and (3.6).

e _We have to ensure that the solutions belongs to the 0 level curve of the first integral
G given by (2.6).
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4.1. The fixed point approach. We first define the Banach space where the fixed point
argument is carried out. Given k > 0, we define for a real-analytic function /2 : D3"* —
C which extends continuously to the boundary, the norm

Ihlle = sup [(x —x2) (x — %) (x —x) (x — X)) h(x)], (4.1)

aux
xeDg

with the associated Banach spaces

= {h : D®* — C continuous and real-analytic on D2"* with ||A]l; < o0},
Dyg {h: DX — C, h € Yy with ||hll¢ + |7 [le+1 < oo}, 4.2)
DY? = {h: D — C, h € Yy with k]| + ][]l < oo).

Then, we define the product Banach space

= DY) x DY?

with the norm

1E, Wllx = max {113 + 18" ll4, Inlls +ellnlls}.

The counterpart of Lemma 3.1 for the Banach spaces ) is the following result whose
proof is left to the reader.

Lemma 4.1. There exists M > 0, such that, for any k > 0 and g, h : D2** — C, it
holds that

() If €y > £y > 0, then

M
Ihlle, = Mlihlle, and |lhlle, < = kol I7lle,-

) Ifty, €2 = 0and |1glle;, l1hlle, < 00, then

lghlle;+e, < liglle, IAlle,-
We rephrase Theorem 2.3 as the following proposition.

Proposition 4.2. There exist ko, 0 > 0 and My > 0, such that, if ¢ € (0, &y) and
K > Ko, the system (2.3) has real-analytic solutions (§™*, n*™*) € Yy satisfying

G(EMX, 9™, ™ 9.™™ x) =0,  9,£*(0) =0

where G is thefirst integral introduced in (2.6), and || (E2%, n?)|| x < M2g?. Inaddition,
§4%(x) = §"(=x) and ™ (x) = " (=x).

To prove Proposition 4.2, we recall that system (2.3) is

L& =Fils,nl,  Lon= P2l nl

with L1, £, and F = (F;, F>) defined in (2.4) and (2.5) respectively. Therefore, in
order to set up the fixed point equation, we first introduce the suitable right inverses of
the linear operators L1, £>. We use the fundamental set of solutions {; = u6 and the
analytic continuation of ¢, (see Lemma 3.4). The following lemma specifies another
suitable property for ¢, and it is proved in Appendix C.
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Lemma 4.3. The even function ¢, in Lemma 3.4 has an even analytic continuation to
DX, In addition, ¢, € DY).

We define now the linear operators

G [h1(x) = 1 (x) / ()h(s)ds — 62(x) f (1 ()h(s)ds,
0 0
. X 4.3)
Iy ie .1 i
e '? Sh(s)ds + —e ' 7 e'® Sh(s)ds,
2 ip

GE 1) = el /

—ip

where p = p(0) = a4 tan6 + w — ke with o, = Nx,, the superior vertex of DX,
The following lemma gives estimates for the linear operators G§**, G§**. Its proof
follows the same lines as the one of Lemma 3.6 and it is deferred to Appendix C.

Lemma 4.4. The operators Gi'* and G3** introduced in (4.3) have the following prop-
erties.

(D) Li o G [E] = 6.
(2) For any £ > 5, there exists a constant M > 0 independent of € and « such that, for
everyh € )y,

|GI™h1,_, < Mlklle  and |G [h]],_, < M]hle.

In addition, if h is real analytic, G**[h] is real analytic.
(3) For any £ > 0, there exists M > 0 such that for every h € Y,

1G5 [h1], < Me*||hlle, |0:G5" (1|, < Mellhll
aux

When h is real analytic, G3"*[h] is also real analytic.

Now, to set up the fixed point argument we proceed in two steps so that we fix the G
level curve. For the  component, we just impose that it satisfies

n=G5" o Fol&, nl.
Note that, then in particular,
n(0) = G3" o F2[&, n1(0).
We use this equality to fix G at x = 0. Indeed, as we claimed in (3.4), L1 in (2.4) has

several right inverses

£ = a1 [Cl " fo Cz(S)h(S)dS} — o [Cz . fo 0 (s)h(s)ds} .

The condition &'(0) = 0 implies that one has to impose C; = 0 (recall that ¢ is an even
function, see Lemma 3.4). We choose a suitable C, so that the solution lies in G = 0.
Indeed, we have

G (~22(0)C2, 0, 7(0), 7' (0), 0) = 0.

The following lemma ensures that, for a given 1 and £ in a suitable Banach space,
there exists a unique C; satisfying this equality.
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Lemma 4.5. Fix R > 0. There exists gy such that for ¢ € (0, g9), there is a function
T :B(Re?) C Dy52 — C such that, for any n € B(Re?),
G (=22(0)Z[n], 0, n(0), n'(0),0) =0 4.4)

and
Zn)| < &%
Moreover, for any n, 7 € B(Rsz) C Dyg,

Z0n1 — Z[311 < €21 — Alls.

Proof. The proof follows by an implicit function theorem. Take n € B(Re?) C Vs
and denote n9 = n(0) which satisfies |ng] < 2. Then, since uy(0) = 0, see (1.7),
equation (4.4) is equivalent
2
e ~
0 = G(&o, &5 no) = —ug(0)&o — 7(7)0 +u0(0) + 0 — f(uo(0) + o) + G(50)

with |€}($0)| < |€0|?. Tt is clear that G(0, 0; ) = 0, then, recalling that u(j(0) # (see
Lemma 2.1), the implicit function theorem assures, for € small enough, the existence of
£ = &o(e; no), satisfying || < &*. In addition, since |d,,&0(e; no)| < &%, [&o(e; no) —

Eo(e: 1) < €%[no — 7ol for any [nol. |7o| < &2. Taking Z[n] = —&o(e:; n(0))(£2(0) 7",
the result follows provided |7(0)| < [In]ls. O

Based on the results of Lemmas 4.4 and 4.5, we look for the functions (§2"%, n?'*)
in Proposition 4.2 as fixed points of the operator

wne 1= (G _ (—62 T+ G o il )
d E’“‘(f;“*[s,n])—( G3™ o ol ] ) @

with G{**, G3"* defined in (4.3), ¢ defined by Lemma 4.3 and F = (F1, F) is given
in (2.5).

4.2. The contraction mapping. The following two lemmas analyze the operator F*"*
defined in (4.5).

Lemma 4.6. There exists a constant by > 0 independent of € and « such that
|70, 011 < bae®.

Lemma 4.7. There exists Co such that for all R > 0, if (&, n), (E, m) € B(Rez) C Yy,
the operator F*™* in (4.5) satisfies

~ - C ~
| Fi1E, 01 = FI™IE M5 < Calln = ills + 16 ) = E Dl
~ - C ~
| FRE, n = 0 FINE M, < Calln = Tls + S 16 m) = G Dl
~ o~ C ~
| 751 m = F3E s = 1 E m = E Dl

~ C ~
[0: 7318, 1 = 9 73 5 = —5 1 Em = € Dl

for some constant C = C(R) > 0 independent of ¢ and k.
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The proofs of Lemmas 4.6 and 4.7, using Lemmas 4.4 and 4.5 follow exactly the
same lines as Lemma 3.7 and 3.8 and are left to the reader.

As in Sect. 3, the Lipschitz constant for 72"* obtained in Lemma 4.7 is not smaller
than one. To overcome this problem we use Theorem 2.14 to establish that 7*"* has a
unique fixed point (§***, n*"*) belonging to the ball B(3(C> + Dbye?).

Let & gaux 7" be such that

EWN(x) = EMN(—x),  T(x) = 7™ (—x).

It is clear that (EW, 7% € B(3(Ca + 1)bre?) provided the auxiliary domain D™ is
symmetric with respect to {9ix = 0} and {Ix = 0}. Therefore, by uniqueness of the
solution of the fixed point equation (&, n) = F*"*[£, n], in the ball B(3(C; + Dbre?),
in order to finish the proof of Proposition 4.2, we only need to argue that (Eaux | qpauxy jg
also a solution of this fixed point equation. For that we emphasize that

flaux['gaux ’ﬁaux](x) :];-Iaux[g:aux naux](_x).
Indeed, from definition (2.5),
FUE™ T (x) = FE™, p™ 1(—x),  FalE™ 7™ ](x) = Fol™, n™](—x)

and from definition (4.3) of Gi"*, G3"* and Lemma 4.3, denoting E(x) = h(—x), we
easily prove that

G [R](x) = G [h)(—x),  G™[R](x) = G [h](—x).

In addition, it follows from definition (2.6) of G and Lemma 4.5 that 7 [72Y%] = Z[n*"X]
provided

G (&, 0, 1o, 1o, 0) = G (£, 0, 10, —10,0),  Véo,m0,m9 € R.

This completes the proof of Proposition 4.2.

5. The Inner Equation

Here we prove Theorem 2.8 with item (1) proved in Sect. 5.1 and item (2) proved in
Sect. 5.2.

5.1. The solutions of the inner equation. Given £ > 0 and an analytic function f :
D; I‘(n — C, which extends continuously to the boundary and where Dy’ ,lcn is given

in (2.29), consider the norm

Iflle = sup 2°f (), (5.1)

um
ZED(_) p

and the Banach spaces

Xo={f: D;‘L“ — C; f is continuous and real-analytic on Dy’ ,l(n with || f]l¢ < oo},

Dxy={f: ng,i(n = C; feXywith || flle+11f llext < 00}
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We also define the product space
X x = DX:; X XS
endowed with the norm

(@, ¥)lix = max{lpllz + 164, l¥lls}-

The proof of the following lemma can be found in [4].

Lemma 5.1. Given analytic functions g, h : D;:,i(n — C, the following statements hold

for some constant M > 0 depending only on 0,
(1) If €1 = €2 > 0, then
M
1Alle,—e, < K72||h||@1

() If L1, €2 = 0, and |1glle;, Ihlle, < 00, then

lghlle;+e, < Nglle lIAlle,.
) If h € Xy (with respect to the inner domain D;”,i(n), then d;h € X1 (With respect to

the inner domain D;’;ﬁﬁk ), and
0zhlles1 < MllRlle.
The first item in Theorem 2.8 is now rewritten as the following proposition.

Proposition 5.2. Consider system (2.25), namely
Lpl = T, vl LYY= T g, v (5.2)

with /Jiln, Eizn defined in (2.26) and 7, in j2i“ in (2.27). There exists ko big enough and a
constant M7 > 0 such that for k > ko, equations (5.2) have solutions (¢*4, YO € Xy
with ||(¢%*, O | x < M7,

As in Sects. 3 and 4, the suitable right inverse of the linear operators £, £ are
given by the linear operators

. 3 rz 1 z
grine =5 [ "Pas— o [ s
5 /-0 S 52 J s
(5.3)

. 1 z . 1 < .
Gy'[hl(z) = 2—/ e =D p(s)ds — 2—/ eI h(s)ds.
i iJ oo

—00

The following lemma provides bounds for the linear operator gilsz. Its proof is straight-
forward from Proposition 5.2 in [31] (see also [4,9,12]).

Lemma 5.3. Consider k > 1 big enough. Given £ > 2, the operators g}“ Xy —> A
and G : Xy — X are well defined and the following statements hold.

() GMo LN[h] = LMo GN[A] =h, i = 1,2.
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(2) For any £ > 4, there exists a constant M > 0 independent of k such that, for every
he Xg,

0.G7Mn| < Mkl

Grm|, < Minle,

(3) For any £ > 1, there exists a constant M > 0 independent of k such that, for every
h e Xg,

We use the integral operators in (5.3) in order to obtain solutions of (5.2) with certain

decay as |z] — oo (within D}",", * = u, s). Indeed, such solutions must be fixed points
of the operator

gizn[h]Hl < Mlihl..

fin — (glln ° lin’ gin ° jzin)’ (5.4)
where the operators 7", Jzi“ are those introduced in (2.27).
The following two lemmas give properties of the operator F" when analyzed in the

Banach space X = DX’3 x As5. The proofs of these two lemmas are straightforward
using the definition of 7" and J," in (2.27), see (5.4), and Lemmas 5.3 and 5.1.

Lemma 5.4. There exists a constant b3 > 0 independent of k such that
1710, 011 < b3.

Lemma 5.5. There exists C3 > 0 such that for all R > 0, if (¢, ¥), (¢, ¥) € B(R) C
Xy, the operator F™ in (5.4) satisfies

. o~ o~ C ~ ~
|71, w1 = 7P = Gl = W ls + 516 ) = @)

. o~ o~ C ~ ~
0.F 19, ¥ — 0 F P3|, = Callw =¥ ls + 16 9) = @ Dl

|71, v1 - 789, < %n(cp, ) = @ Dl

for some constant C = C(R) > 0 independent of k.

~ We use again Theorem 2.14 to conclude the existence of a fixed point of (¢, V) =
F™[¢p, ¥r] belonging to B(3(C3 + 1)b3) C X«. This fixed point is the function given in
item (1) of Theorem 2.8. Moreover, by construction it satisfies the stated estimates and
they are real analytic functions. The symmetry is a consequence of the reversibility of
equation (2.25) with respect to (2.28)
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5.2. The difference between the solutions of the inner equation. To complete the proof
of Theorem 2.8, we analyze the differences

ApP(2) = ") — ™), AP = v" (@) — v (@),
for z € Ry with

Ry =Dy N DY" N {z € iR and 3(2) < 0}

. . . in,+
Given a continuous function f : ngn .. — C, we define the norm

I flleexp = sup |z f(2)

in,+
2€Rg

and the Banach spaces

Zyexp = {f : Ry — C; continuous with || fl¢,exp < oo} ,
in,+ . . .
DZpexp = Hf LRI C; continuous with || fllg.exp + I/ lle.exp < oo} :

We will consider the product Banach space
Zx,exp = DZO,exp X ZO,exp

and denote by || - || x exp the associated norm:

@, ¥)lix,e = max{l|¢llo,exp + 1 l0,exps 1% ll0,exp}-

It can be easily seen that, if f € & and g € Zy, exp, then fg € Zg 44, exp and

||fg||€1+ﬁz,exp = ||f||£1 ||8||Z2,exp~
The second item in Theorem 2.8 can be rewritten as the following proposition, which

will be proved in the rest of this section.

Proposition 5.6. There exist © € R and ko, Mg > 0 such that for k > ko, A¢°, Ay° e
DZp,exp and they satisfy

[AG° + @e™ |11 exp + 19 A0° — i®e ™1 exp < M3| O,
[AY? — @™y exp + 13 AP +i@e ™11 exp < M3|O.

Since both the stable and unstable solutions satisfy equation (5.2), applying the mean
value theorem, one can see that the functions A¢°, Ay¥ satisfy a linear homogeneous
equation of the form

Ain A 40 _ 0 0
{.cl A" =Pi[A¢°, AY°], 5.5)

LAY = Par[Ag0, AyO],
where Z‘I“ = —83, 12“ is the operator introduced in (2.26) and Py, P, are defined by

PiLAYY, AYC1(2) = a1 (2) A0 (2) — Ay (2),

(5.6)
PalA?, AYC1(2) = a1 (2) AP (2) + a2 () AYO(2) + a23(2)9, A°(2),
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where, introducing ®%* = (¢**, ¥%*), = u, s and defining N as the functional such
that the operator 73" [¢, ¥] in (2.27) can be written as

T, ¥l = Nig, ¥, 3,61,

a;,j is defined as
6 1 .
an@=- 5+ / D1 T [0(2) + (0% (2) — % (2))1do,
0

1
a2j(2) = / D;N[®"(2) + 0 ("' (2) — **(2)),
0
3:0%%(2) + 0 (0,9™"(2) — 9:0*%(2))]do.
Using the norm introduced in (5.1), these functions satisfy

laiill2 S 1, lla2illa S 1, llaxnl2 S1, laxsls S 1. (5.7

We now write equation (5.5) as an integral fixed point equation. On the one hand,
Z
0:06°0) = €1 — [ PiLag., av 10)ds
21

with C1 = 3, A¢"(z1). Since lims,_. oo 3. A¢"(z) = 0, we conclude that
2
0.0¢°) =— [ PilAg°, Ay l(s)ds
—10
and as a consequence, reasoning analogously,
Z S
A¢'(2) :f PilA°, Ay )(0)do. (5.8)
—ioo J—ioo

On the other hand, recalling that £i2n[A1/f0] = B?Aijfo + Ay0, we have
. 1 z . . z .
AYO(z) = €7 (C1 +— / e_”h(s)ds) +e 2 <02 - / e”h(s)ds)
2i Jy, 22

2ie'C = iAY () + 9. A¢ (z1),  2ie7ICh = iAY(z2) — 3. A (22),

with

Using (5.7), taking zo = —ik and imposing that limg;—, _ s Awo(z) = 0, we obtain

z —i(s—2) .
AYO(z) = / o S PaAAg?, Ay I(s)ds + Be ™
—100

(5.9)

T pils—2) 0 0
— [ SPaag avtias

with

1 K (= 0 . 0 .
®p = Op(k) = Ze (tAlﬁ (—ik) — 0, AY (—lK)). (5.10)
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We emphasize that, from item (1) of Theorem 2.8, |A¢®(2)| < 12172, [AY ()| < |27
uniformly on the domain Rgf . and hence, using also bounds (5.7) of g;;, the improper

integrals in (5.8) and (5.9) are well defined. Therefore, (A@°, AyY) satisfies the fixed
point equation

{A¢0(z) " o P1[AG°. Ay°1(2), 5.11)
AVO(E) = Goei< + G o PLAGY, AY01(2). ‘

where the constant ®¢ = O («) is defined in (5.10), P in (5.6) and Gin — (Qm g ) is

the integral linear operator defined on functions 7 : ngn,:'

h](z) / / h(o)do ds,
- z —i(s—2)p, z L=y
G IRI(2) = / ey - / S IOPN

—ioco 2i —iKk 2i

— C, as

Denoting APY = (Aq)o Alﬁo) equation (5.11) can be rewritten as
0 0, Br a0 0 0
ADY = Ady+P[ADT], ADy(z) = @< )’

where P is the linear operator defined by
P=(P.P) = (G oP1,Gl o P,). (5.12)

N otlce that, if the operator Id — P were invertible, then we could write A®® = (Id -
) [A@O] and study A®° through P and ADO.

The following lemma specifies properties of the linear operator P.1Its proofis straight-
forward using the estimates in (5.7) and the definition of the operators in (5.12), where
we also recall that Ry’ is a subset of iR.

Lemma 5.7. The linear operator P Zy exp —> Zx,exp &iven in (5.12), is well defined.
Moreover, there exists a constant M such that for each k > 1,

(1) The linear operators ’51, 81731 D Zxexp —> 20,exp Satisfy

A

~ M
IP1IAGY, AYl0.exp < —5 18¢° [l0,exp + M I AP [0,exp-
K

A

~ M
19:P1TAGY, Ay N0 .exp < —5 186 l0.exp + M1 AV |0, exp-
K

(2) The linear operator ﬁz D Zx.exp = 20.exp Satisfy

~ M
IP2[AG%, AY Tllo,exp < 7||(A¢>0, AV 10,exp-
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This result of Lemma 5.7 does not lead to check that P has small norm so that Id — P
is invertible. Hence we proceed in a similar way as in the proof of Theorem 2.14. We
emphasize that A® is also a solution of

—_— —~ —_— S O
ADY = A®) + P[ADY],  AD)(z) = ADY(z) + (P‘[ﬁq’0]> . (5.13)

where P is the linear operator defined by

PiIAgY, AYO0) = Pi[A¢0, Pr[ag?, AyOT],
PalAd?, AYO] = Pa[Ag AyO].
Lemma 5.7 implies that P satisfies

[Prag®, avt] <1 ]ag®, ay?

X ,exp X,exp

Then we conclude that, taking « big enough, Id — P is invertible in Z x,exp- On the other
hand, using that Ag(z) = (0, ©ge?) T, formula (5.6) of P; and that P; = g}“ oP1, we
obtain that

0 PilA®Y —@pe 2
ADY(2) = (7’1([%6 B]Z(Z)) = ( @O(;e_,.z ) € Zy exp- (5.14)

As a consequence, it follows from equation (5.13) that (Id — 7/5)A<1>0 = Afbg € Zx exp
and we conclude

A®® = (1d—P)~" [ACD]ezxexp

1I'l+

In addition, this implies that, for z € Re o

0 1 1
(A¢0(z)) _ O ( +<9(1K))
AYP(2) O(y)
Note that this asymptotic formula is not the one given in Proposition 5.6. Indeed, the
asymptotics here is given with respect to k ! whereas the one in Proposition 5.6 is given
in terms of z~!. To improve the asymptotics, we need to define a new constant ® which

is k! close to ©y.
‘We define the constant

—ioco iz 0 0
®:®0_/ oA, AYI@)

- (5.15)
iK 2i

Note that the fact that ( A¢0, Awo) € Zy exp implies that the integral is convergent and
the constant ® is well-defined.

Proposition 5.6 (and hence the second statement of Theorem 2.8) is a direct conse-
quence of the following lemma.
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Lemma 5.8. The functions (A¢°, Ay) satisfy that, for z € ’Rign”:,

<A¢O(Z)> ot —-1+0 (%)

AYO()) T 1+0(1)

Proof. We exploit the fact that we already have proven that (A¢°?, Ay?) € Zx exp-
We obtain the asymptotic formula for each component. From (5.11) and using defini-
tion (5.15) of ®, we note that, the second component can be written as

for some constant ® € R.

AP (z) = @7 + GN[Pa[AGY, AY°T1](2),

with

.. z —i(s—z) z is=2)p
Ginhlz) = / e / Ry,

—ioo 2i —ico 2i

Since (A@°, AY®) € Z, exp, estimates (5.7) imply that P2[A@°, AYO] € 25 exp and
[Patag®, avtl| <1
2,exp
Then, it is a straightforward computation to see that Awo = Z1 exp and

[av®— @i

Gr[Paag®, avtl]| st

1,exp - ’ 1,exp

This completes the proof of the asymptotic formula for Ay°. Analogous computations
lead to the asymptotic formula for 9, Ay°.

Now we prove the asymptotic formula for the first component. To this end, using that
we rewrite the identity (see (5.13) and (5.14))

AP0 (2) = PiIA®JI(2) + Pi[A¢", Ay )(2) = —Bpe % + Pi[Ag°, PaAa¢”, Ay 1](2)
as
Ag°(2) = =B + P [Ag", GR[Palag’, Ay1]](2).
where we have used
AYo(z) = Ope = + Po[AG%, AY1(2) = O 7 + G [Pa[Aag”, Ay 1] (2).
Then, it can be easily seen that
Ag’(2) + O™ = P1[A¢", G [P2[AGY, Ay 1]] € 2 exp
and

H A + @ei <1

1,exp ~

This completes the asymptotic formula for the first component and analogously we have
the one for its derivative.
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It only remains to show that the constant ® is real. This is a direct consequence of the
fact that the solutions (q‘)o’*, wo’*), * = U, s are real-analytic and satisfy (2.30). Indeed

these two properties imply that, for z € Rlen,;:r (recall that Rgf;: C iR),

AYOz) € R.
This implies that ¢“Ay0(z) € R and therefore ® € R since it can be defined as

lim 2 Ay().

Jz——00,z€iR
This completes the proof of Lemma 5.8. O

Finally, the fact that © # 0 if and only if A¢° does not vanish at one point is a direct
consequence of the asymptotic formula. This proves the third item of Theorem 2.8.

6. Matching Around Singularities

Here we prove Theorem 2.10. We will give the proof only for the — case, being the +
case is analogous. Due to this reason, we omit the sign =+ in our notation and we provide
estimates for (§%, n*) and (£2"%, »®"*) around the singularity x_.

It is convenient to work with inner variables, see (2.23) and (2.24), namely,

3
=l —xl), ¢(z)=ci$(x7+8z), 1/f(z)=:—77(x7+8z)- ©.1)

We define now the matching domain Dy, g’zatfh by (2.32) in the inner variable. We fix

O<v<land0 <6 <0 <6 < %, where 6 is the angle introduced in (2.7), and we
define

match —

Dgl’f)z’y = _iK7 21, 22,

the open triangle with vertices —i«, z1, 72, with

1 e, . i
et=v eV

71 = —ik +
In addition, if we define
o (z) = uo(x— +ez),

we notice that, if z € Dgl’nggwh, then |ez| < ¢V and therefore

1 1
ecTjiio() = —+e ) ex(ed) = —+0),

k20 (6.2)
sc:{%(z) = —Ziz +0O(e?).
Moreover, defining
¢ (2) = CS—IS*(x_ +ez), Y= %n*(x_ +¢ez), *=u,aux (6.3)



215 Page 44 of 65 I. Baldomd, M. Guardia, D. E. Pelinovsky

with (§%, n") and (£%"%, n®"%), given in Theorems 2.2 and 2.3 respectively, we have that

1 1
|"’*(Z)|5W’ 0:6%(2)| < |4, |‘/’*(Z)|§W' (6.4)

Now we rephrase Theorem 2.10 in the inner variables as follows.

Theorem 6.1. Let 6 > 0, kg be fixed as in Theorems 2.2, 2.3 and 2.8. Take 0 < 0, <

0 <6 < % and v € (0, 1). We introduce the functions

3
€ €
8¢*(Z) = C_(Ssi(x* + 8Z)a 51//*(2) = C_Srli (X7 + SZ), * = U, aux,
—1 _
with 8§* , 8n* defined in Theorem 2.10. Then there exist k| > ko and a constant M > 0
such that for all k > k| and z € Dg:f‘g;‘jv

—v lfv
69" (z)|<M|logs|| wa |9:86* ()| < M|loge|— R
1 v l—v

|87 (x)| < M|log8| |0:8n* (x)| < M|10g8|

lzI*”

|z|*

Remark 6.2. We emphasize that we already know the existence of §¢*, §1* in the match-
ing domain and that, using (6.4) and Theorem 2.8

89*(2)] < |¢*@)| + [ ()] S |3, 89 (2)] < [¢* @] +[6"* ()] S |5’
and also }828¢*| < |z|_4. However, these estimates do not imply that, when ¢ = 0,
8¢*, 8y* = 0.

The remaining part of this section is devoted to prove Theorem 6.1. The prove for
* = U, aux are identical and, therefore, we only present the first one.

6.1. Reformulation of the problem. To prove Theorem 6.1 we look for differential equa-
tions which have (8&", §n"), as a solutions. To this end, let (¢, n*) be the solution of
equation (2.3) provided in Theorem 2.2 and consider the function (¢", ¢¥") defined
in (6.3). Applying the change of coordinates to equation (2.3) we have that

LYPY] = TRt v el 1= T 0%, vi] + Ailgt, vt e]
[:m[l/fu match ¢u I/,ll ] = 2in[¢u’1//u]+_/42[¢u’l/fu;8]

where Eij“ and jji.“, j =1, 2 are introduced in (2.26) and (2.27).
We introduce the notation ® = (¢, V), A[D; e] = (A[D; €], A2[D; €]),

Lo = (/3 [#], /3 WD, J"@]=(J; el J [<I>])
and

T™ND; ¢] = (TP D; €], TP D; e]) = T[@] + A[D; ¢].
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Since, by Theorem 2.8, CDOj“ = (%", ¥ is a solution of £M[®*¥] = 71 [POY] and
® satisfies LM[DY] = JT[DY] + A[DY; ¢], using the mean value theorem, we have
that §®" = d" — OO satisfies

L3 =L [P"](2) — L7[0V](2)

1 .
= /0 Do I [@%Y + A" — @¥U)](2) - (@%(2) — DOV(2)) di + A[DY; £](2)

1 .
+/0 Dy T [0%" + 1 (0" — @0)](z) - (3z¢>”(1) - 3z¢>0’”(Z)) dh.

We denote
! ~ 0—1
1) = / Do J"[@%" + A(P" — @*)](2) dA — (0 0 )
0

1
BS(z) = f Di.p TP [@% + A(@" — OM)](2) da, (6.5)
0

Bs) = (8 _01>,

and A%(z) = A[®"; £](z). We emphasize that B}, BS and A" are known functions
that depend on the solutions ®* = (¢, ¥") and & = (¢*!, 1), which have
already been constructed above. We then obtain that §®" = (§¢", §¥") satisfies the
non-homogeneous linear equation

L8P (2) = BY(2)8D"(2) + BS(2)0.60" () + B3(2)8 D" (2) + A%(z).  (6.6)

The following lemma characterizes the solutions of L[ ®] = h with given initial
conditions. Its proof is straightforward and is omitted.

Lemma 6.3. Let ® be a solution of L[®] = h defined in Dlerllf‘gczl}v. Then, ® = (¢, V)
is given by
d(z) = Z3a¢ + ZLZb¢ i gmatch[h]
DTN eiemgy, 4 ei2p, ’

where

| 2
ag = —5(28¢(z1) + 3.3 (z1)z1), by = Z§1(35¢(21) — 8.8 (z1)21),
Sz 6.7)

1 1
ay = E(tW(Zl) — 9,89 (21)), by = E((W(zz) +i0,8Y(22)),

and gmatch[p] = (ggna‘ch[hl], ggla‘ch[hz]) is the linear operator (compare with (5.3))
defined by

3 rzp 1 <
g{natch[h](z) — Z_/ %ds - = s3h(s)dS,

5/ s 27 Jz (6.8)
, Lt L[, '
géndtch[h](z) — _/ e—l(S—Z)h(S)ds — —/ el(S—Z)h(S)dS'

21 2i 22

21
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Since §P" is a solution of (6.6), Lemma 6.3 implies that §®" satisfies the following
fixed point (affine) equation

3 l u matc u
8(1)”(2) =< Z age + Zzb¢ ) +gmatch[Au](Z) _ (gl th[gw ](Z))

ei(Z_ZI)awu + e4i(z—z2)bwu
(6.9)
+ gmatch[B? . (S(Du](z) + gmatch[Bg 3 BZ(SCDU](Z)’

where agu, bgu, ayu, by are defined by (6.7) and we have used definition (6.5) of Bs.
To shorten the notation we introduce

u _ 5¢8(Z) _ 13a¢u + L2b<f>“ matchy 4u
3@y (2) = (81&6‘(1) o ei(z—m)awu +ez—i(Z—Z2)bwu +g A ](Z)’(6 10)
atch ’
fmatch[gq)] — ﬂ;atch[qu] — gmatch[B? . SCD](Z) + gmatch[Bg . BZSCD](Z),
Fmachis ]
after which we rewrite equation (6.9) as
match u
Scbu — SCDB _ (gl [gw ](Z)) +f-match[8q>u]_ (611)

Using that §®" is a solution of (6.11), we observe that §®" must be also a solution of
O = 508 + Fch[s U, (6.12)
with
o — gmatch [8wu](Z)

g{natch [ﬂnatch [8 d)]] (2)
0

(6.13)

fmatch[&b] — _ ( ) +fmatch[8q)].

6.2. The matching error. For fixed £ € R, we introduce the norm

Ifle=sw ['f@)]

match
2€Dg 550

and the Banach spaces

Ve={f: Dgl‘i“gcz]}v — C; fis continuous and analytic on Dgf};g*}v with || f|l¢ < o0},
DYy ={f : Dy, — C; f € Ve with || flle + [ £ lex1 < 00}.
These Banach spaces satisfy the following properties.

Lemma 6.4. Let £1, 4> € R. Then
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) If f € Ve, then f € Vy,, for all £5 € R. Moreover for £1 > {3

lr—t
I lley S 277 L f ey

and for {1 < {3,
”f”@z < 8((31*32)(1*”)'

Q) If f € Ve, and g € Ve,, then | fglle+e, = I flle lIglles-

We define the product Banach space Vx = D)» x Vs endowed with the product
norm

(@, ¥)lIx = max{[¢ll2 + 1003, 1P ]l4}. (6.14)
We note that, as claimed in Remark 6.2, §¢" € D)Ys, S¥" € Vs with [[§¢" |3 +
10:8¢" |4, I8¢ |I5 < 1 and therefore, by Lemma 6.4,
1
6" x = max{|6¢" |2 + [10:68" I3, 6v " lla} < P (6.15)

We now start estimating all the elements in the fixed point equation (6.11). The
following lemma, whose proof is given in Sect. 6.3, deals with the operators G™M and
Fmach defined in (6.8) and (6.10) respectively.

Lemma 6.5. If « is big enough, the following statements are satisfied:
() Ifh € Yy with € > 4, then G [h] € Vo5 and
G Allle—2 S N1klle. 0GP [Alle—1 S IRl

Q) If h € Yy with € > 0, then GPM[h] € Yy and |G h]lle < (1A lle.
() Ifh € V4, then G [h] € Yy and |G [A]|l» < |loge|||hl2.
W) Ifh € Yx = DYy x Va, then F™h[p] = (Frachip), Frachip)) ¢ DYy x Vo
with
IFPAR Rl + 110, (FP AT |15 + 175 Alle < 1A«

As a consequence, by definition (6.14) of || - || x, we have |G™*N[h]|, < Kl—2||h||x.

We claim now that the operator Fmatch Yy — Yy defined in (6.13) satisfies that,
for « big enough,

~ 1
7R S 5l (6.16)
Indeed, by item (4) in Lemma 6.5, if & € )y, then fénamh[h] € Ye. Therefore, by

item (1) in Lemma 6.5, gi“"‘mh [fé“amh [#]] € DYy and the estimates in item (1) apply.
By Lemma 6.4, we have

. ) 1
G FPAD [R5 + (|8, G P FPAR A |15 < el LIPS

Then, the claim follows from item (4) of Lemma 6.5 and definition (6.10) of Fmatch
It follows from (6.12) that

(Id — Feh) 5t = 5.
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Therefore, using that §®* € )y (see (6.15)) and that, by (6.16), Id — Fmatch . Vi — Vi
is invertible, we obtain that

U = (Id — F™ M) 7' [5o] and (80" < ISDY .

Theorem 6.1 is then a consequence of the following lemma whose proof is given in
Sect. 6.4.

Lemma 6.6. Let v € (0, 1). If k is big enough, then |50« < |logele!~".

It remains to prove Lemmas 6.5 and 6.6.

6.3. Proof of Lemma 6.5. The proof of the three first items of Lemma 6.5 can be found
in the proof of Lemma 6.2 in [31] (see also [5]). _ )
Now we prove item (4). We first note that, from definition (2.27) of 7", 75",

—L2y 692 —1

Do J"[®@1(2) = a[®] 6 <%+¢)2 ,

4 1 T
Dy T [®](z) = (0 —24 ( ¢>) (—2—2 + 3z¢>> ,
where

1 3 4 1 2
g[®](z)=—12(z+¢)) (1//+2< d)) )—36( ¢> —12<—Z—2+3Z¢> .
Let us denote
P(2) = Do [@1(2) (8 _01) L 0G) = Dag TR,
Then, P = (Pi;);.j is a2 x 2 matrix and, for ® € Y3 x Vi, its coefficients satisfy

1 1
PH@IS T Pr@ =0, IPAQ@IS g 1P2@I S T

whereas Q is a 2-dimensional vector which, for ® € )3 x )%, satisfies

1
012 =0, Q@3 PR

Finally, by definition (6.5) of B} (z), B} (2), if h € DY, x V4, then we have
1B - hlls, 1B - hlle S 172 x,

and by item (1) and item (2) of Lemma 6.5, F™2h[;1] € D))y x Vg with bounded norm.
This completes the proof of Lemma 6.5.
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6.4. Proof of Lemma 6.6. We introduce
Spy = z3a¢u + Z—zbd,u, Yy = el(zizl)clwu + eil(lizz)bwU,

where agu, byu, ayue and by are defined by (6.7) with ¢ = ¢" and ¥ = ¢"'. From (6.13),
we have that@ = (87;3,8/1//@ is defined by

&78(2) = 8¢3(2) — G5yl = 5¢0 (2) + G AL (2) — G sy,

SYS (@) = 898 (2) = 89 (2) + GIP[AY] (),

where A" = (A‘ll, A‘zl) is defined by

A'2) = A[@"](2) = TP [@"](2) — J{"[@"](2). (6.17)
We recall that p" € DYz and " € Vs, see (6.4). The following lemma estimates rﬁ%(z).

Lemma 6.7. Fix v € (0, 1). If ¢ > 0 is small enough, then we have for all 7 € D(Iarll?é?,lw

|22/5;5E(Z)| + |z3828¢(‘)’(z)| + |z481ﬂ(‘)‘(z)| <elv,
Proof. By definition (6.7), we have

| u|<L<86(1—\)) |bu|<L§

1—v u u 5(1—v)
agl < < , < e " layl byl Se .
(] |Zl|6 ] 121 ¥ ¥

Then, for z € Dy “;;”c}l using that |z| < min{|z1], |z2]} < &=, we obtain

22898 (2)| = ‘z5a¢ +b¢‘ < 2P0 gl < gl

|Z45¢3(Z)| < Es(l—u)|z|4(ef%(zfz|) +e~3(1712)) < g1V
where in the last inequality we have used that Iz, > Jz > Jz;. O
Next we analyze G™“"[ A"]. To do so, we look for an explicit expression of J™mah,

Lemma 6.8. The fixed point equation (2.3) in the inner variables (6.1) can be written
as

{£1n¢ jmatch (9, V; €],
£1nl/f jmatch[¢’ s el,

with
{ TP g s el(z) = T, 1) + Ailg, ¥ €l(2),
Tty s el(z) = T, ¥1(2) + A, ¥; €l(2),

match
where, for z € Dglg™

A" v el S g0 [ alg® v el)] S — (6.18)
| |
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Proof. An straightforward computation shows that in the inner variables, the fixed point
equation (2.3) can be expressed as

Litg = Jmaehg 6],
{Dz“w = T Mg. v el.
with
TN G s e](2) = e2¢(2) [—1 + 2uo(v— +£2)] + B (2) [675214%(367 +ez)+ z%]
+e3c T File~eo1¢, e e 191 (x + £2),
Tmateh o v e](z) = ¢ Fale le1¢p, e e 1 (x- + €2).
Using the expression (2.5) of F = (Fj, F2) we obtain
TNy Y e)(x) = — ¢ — §¢2 —2¢° + Ailg; €1(z)
=T"¢, ¥1(2) + Ail, ¥ €](2),
with

6
Ailg, ¥ el(2) =e*¢(2) [—1 +2d0(2)] + ¢ (2) [6yezﬁo(z) + Z—z}

. 6\ »
+ | co18+6syc_yiio(z) +— ) ¢~
z

Analogously, tedious but easy computations lead to

match 1 1 3 1 1 z
/] [¢,W:8](Z)=—6(g+¢> w+2( <l>) _12<2+¢> <—;2+3z¢>
1 3
-6 (; +¢) Clg, ¥ el(z) + (1/' +2< ¢) ) Bl#; €1(2)

+ B[¢; el(z) - Clo, ¥; €l(z) + DI, ¥; €](z)
=T, ¥1(2) + A2, ¥: €](2)

with
—1A 1 1 —1A 1A
Blg; el(z) =— 6 ec_jup — - —+2¢ +ec_jug | +2ec_1(ec_jup + ),
z z

Clp, ¥ £1(2) =& (ec [t + @) — sc—1(ec il +¢)”
1 2 1
+2 (scjﬁo — Z) [(ec:{fm +¢) + (SC:}”A‘O +¢) <Z +¢>]
1\ (1 2
+2<ec 1u0— —) <—+¢) ,
Zz Z

2
D[¢, ¥; €l(z) =2c¢— 18(8c:1126 + 3z¢) - 12 (sc o — i) (sc_iﬁo + 3z¢>
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—12 (1 +¢) (sc:{ﬁg + i) <2az¢ +ecT iy — i) :
z 22 22

To prove the bounds for Aj[¢", ¥"; €], A2[¢", ¥"; €], we recall that c:% = /]y| with
y < 0 and take into account (6.2) and (6.4), to obtain

1
—1.A 2
56,]”0_2 ) 55 .

—1 Ar
ec_ gy +

1
‘—+¢“(z)
Z

<o

2]
The proof of (6.18) follows from these bounds and the explicit expressions of the func-
tions involved. |

<e =

Lemma 6.8, together with items (1) and (2) of Lemma 6.5, implies that, for all

ze€ Dgl‘agczhv, we have

}ZzginatCh[Alll](Z” + |Z3azgllﬂatch[Alil](Z)| + |Z4g£natch[Al21](Z)| S €| ]0g8|’
where we recall that A"(z) = A[¢", Y] (see (6.17)). This estimate and Lemma 6.7

imply that for all z € Dg,‘;agczhv, we have

|128¢8(Z)} + |z3318¢>8(z)| + |z481p(‘)‘(z)| <elv,

To estimate 5/¢\8(z), it only remains to analyze Qi“atCh[(S ¥y 1. To this end, it is enough to
recall that |z481//(‘)1 (z)| < ¢!~V and Lemma 6.5 imply

|22GPH N[5y 1(2)| < |logele! .
Therefore, recalling thatS/IﬂE = 8y, we conclude that, for all z € Dgﬁ;}?w we have

122808 (2)| + |220,808 ()| + 12493 (2)| S &'l logel.

This completes the proof of Lemma 6.6.

7. The Difference Between the Invariant Manifolds

Here we prove Proposition 2.7 for An". The proof for An® is analogous. We define first
the following Banach spaces with norms with exponential weights

& = {h: E" — C; h continuous and real-analytic on E2""" with [|A]|¢,exp < 00},
where

— - Loy
Ihlleexp = sup [(x —x)'(x —x)'(x — %) (x — £)fer T DRy | (7.0)

re R

We also consider the Banach space

Ex = {h = (h1,h) : EQ™" — C% hy, hy € Eyexp With |1« < 00},
where
2]l x = max{e ™" 1n1llo.exps 1A2110.exp + €lldx/2ll0.exp - (7.2)

We look for an integral equation in these Banach spaces which has as a unique solution
(AZY, An"). The following lemma presents suitable inverses of the operators £ and £,
defined by (2.15) and (2.4) respectively. Its proof follows the same lines as the proof of
Lemma 7.1 in [31].
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Lemma 7.1. The operators

Gilh1(x) = uf(x) / h(s)ds

and
~ ie .. -1 X ie _.-1 Yo
G [h](x) = — —¢'° x/ e ' Shis)ds+ —e 't e'® *h(s)ds
2 P 2 o
iesin ('0’8_"> T
+— p— et P / e ' Sh(s)ds
231n< - ) -
iesin (’T‘; ) . o—
- et p‘/ e'® Sh(s)ds,
2 sin (p‘ep‘) =
with p— = x_ — ike, have the following properties.

e Fix £ € R. The operator G is well defined from & to & and satisfies

“gl MS”hHg exp-

”Z ,eXp —

It is also well-defined from & to &y and satisfies

Me
Hg] HOCXP —_ ( )g ||h||@ exp-
Furthermore, El o @ =1Id and, for h € &,

G1(h)(0) = 0.

e Fix £ > 1. The operator 52 is well defined from &y to &y and satisfies
~ Me
||gz[h]H0’exp < Wllhlle,exp,
~ M
[ 8xg2[h]HO,exp =< W”h”&exp-

Furthermore, L5 o é\z =1Id and, forh € &
Galh1(p-) =0 and Galhl(p=) = 0.
The functions (A¢", An") introduced in Lemma 2.6 satisfy equation (2.14). Now,

by the properties of the operators G; and G, introduced in Lemma 7.1, the functions
(AZ", An") must be a fixed point of the operator

( GioMi[Az An Ay
Plag, anjeo = (c;*e’é‘ +Cle™ % 4Gy o No[AL, An, An](x) 7-3)

for some constants C}, C} satisfying (2.20).
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Note that by Lemma 7.1, the function R" introduced in Lemma 2.7 is given by
RY = Go o NO[ALY, A, 8, An"]. (7.4)

and it satisfies the properties in (2.21). Therefore, it only remains to obtain the estimates
in (2.22).

To this end, we use a fixed point argument relying on (7.3). However, the operator P
is not contractive and, therefore, proceeding as in Sect. 3, we consider the operator

Plac, an] = (7’1 [?f;’[i}?@i{;{f”ﬂ)

which has the same fixed points as /P and is contractive. Note that both operators 7 and
‘P are affine. The following lemma gives the Lipschitz constant of the operator P. Its
proof is a direct consequence of Lemmas 2.6 and 7.1.

Lemma 7.2. There exists M > 0 such that, for any (A1, Any), (AL, Anp) € Ex, the
operator P satisfies

|Pi[Ac1, Ani] — Pi[Ag, Ana] <Mze [[Ani — An2llg.exp

||0,exp

Me

- I(AS1, An1) — (AL, Amp)ll«
M

|P2[Ag1, A ] = P2[ AL, Az ] ||0,exp = I(AS1, Ani) — (AL, Am2)l«
M

[o:Pa[Act, Ani] = 0:Pa[ A2, Ama][lg oy, == (AL AnD) = (AG2, Am) s
Lemma 7.2 implies that P satisfies
~ ~ M
|Pi[AC, A ] = P[AL, Anp]|, < " I(AS1, Ani) — (AL, Amo) |« -

Therefore, taking « > 0 large enough, P is contractive and has the unique fixed point
(AZY, AnY).

We use P to obtain estimates of the fixed point with respect to the norm introduced
in (7.2). Indeed, since it is a fixed point, it can be written as

(AZY, An%) = P[0, 0] + [P[ACY, An“] - Pl0, 01]
and, therefore,
lact, an||, <|P©.0)], +|Pact, ang®) —P©,0)],
~ M
=[PO.0), +—[a¢" any], .

Taking « large enough implies that
[zt an], <2]PO.0), .

Therefore, it only remains to estimate

5 _(P110,01(x)\ _ (P10, P2[0, 01](x)
P10, 01(x) = (7?2[0, 0](x)> - ( Ci’lg% +c;e—’% ’
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where C}, C5 are constants satisfying (2.20).
By the definition of the norm (7.1), we have

IP200, Olllg.exp < (IC}1 +1C31) €*,

which by Lemma 7.2, implies

s
£

17110, P210, 011llg.exp < (ICY]+1C31) e

Therefore,

A
B

lact, anh|, <2|Plo.01], < (ICH+IC5) e
Finally, by definition (7.4) of R"
RY = Po[Ac", An'] = P[0, 0],
we obtain

T
B

(ICTI+1C5]) e,

R M
K

u u 1
“O,exp = |(A§ » An )Hx < P

which concludes the proof of Proposition 2.7.
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Appendix A. Proof of Lemma 2.1
We take B = /1 + 9y € (0, 1). It is straightforward to check that ug (x) = 0if and only
if

,3cosh2x —coshx —28 =0

1
coshx = 25 (1 j:,/1+8,32> e R.

Writing x = a + ib, we have that

1
coshacosb +isinhasinb = 25 <1 j:,/1+8,32> )

Therefore, sinha sinb = 0. If a = 0, then

cosh = gi(B) = ﬁ (1 +,/1 +8/32> .

so that

We impose

I14+./1+882 <28

+./1+882<—1-28%

that it is always true, taking the negative sign and 8 € (0, 1). This implies that, for

B €, 1),
-1< $<li,/l+8ﬂ2> <0

and therefore b = acos(g_p)) € (% n). Then ug(:I:ib) =0.
On the other hand, if b = 0, then

cosha = g+ (B) = ﬁ <1 +.,/1 +8,32) .

Since g_(B) < —1, we need to study the zeros of cosha = g, (). We notice that, since

B €0, 1),

and obtain the condition

cosha = g+(B) > % > 1

and that implies that a = acosh(g4+(f)) > « and ug(j:a) =0.
Finally, when b = =i, then

cosha = —g+(B) = % <j:,/ 1+8p2 — 1)
cosha = —g.(B) = % (,/1+8/82 - 1) < é

so that
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Appendix B. Proof of Proposition 2.9

Here we prove that the constant ® is not zero. To this end, it is convenient to work with
just one function instead of two, as in the inner equation (2.25). Indeed, note that it is
easy to check that if one defines

P =-+¢,
Z

it satisfies the fourth order equation
4 2 3
0, P+, =20, (B.1)
We have the following lemma.
Lemma B.1. The functions

* 1 0,%
[ (Z)=E+¢ ’ (Z)9

where ¢** are the functions obtained in Theorem 2.8, are asymptotic to the same series
at 7 = oo (within their domain of definition), which is of the form

~ a
Q@ =2 St
n>0
with coefficients satisfying that a,, € R,
ap(—1)" >0 (B.2)
and
lan| = (2n)!. (B.3)

Proof. To prove the lemma, we look for a recurrence to define the coefficients of ®.
First note that by Theorem 2.8 it must be of the form

d(z) = Lo (13)
Z Z

It is straightforward to see from (B.1) that the series has only odd powers. We obtain
that

1
TQn+3)2n+4) —6

+6 Z g, iy +2 Z aklakzak3:|v

ki,ka>1 ki,ko,k3>1
ki+ko=n+1 k|+k2+k3=n+1

an+1

[ — Qn+1)2n+2)(2n +3)2n +day

which, by induction, implies a, € R and (B.2).
Moreover, for all n > 0,

Cn+1)2n+2)2n+3)2n +4)
lans1] = an|

2n+3)2n+4)—6
>Q2n+1)2n +2)|ay],

which implies (B.3). O
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The fact that ® # 0 is a direct consequence of Lemma B.1. By the third statement of
Theorem 2.8, it is enough to prove that there exists zg € R‘e‘f . such that Ad)o(zO) %0,
or equivalently

D" (z0) — P3(z0) # 0.

We argue by contradiction. Assume that ®%(z) = ®3(z) for all z € Rg{x. Since, by
Theorem 2.8, ®", ®F are real-analytic, they must coincide also in

ﬁ;,( = {z 17 € ‘9“,(} .
Therefore, the functions ®", ®° can be analytically extended to the neighborhood of
infinity |z] > « and, thus, are analytic at infinity. This contradicts the fact that the

asymptotic series of these functions at infinity have coefficients growing faster than a
factorial.

Appendix C. The Right Inverses of £
Here we prove Lemmas 3.4, 3.6, 4.3, and 4.4.

C.1. Proof of Lemmas 3.4 and 4.3. We first prove Lemma 3.4 in Section C.1.1. Then,
we prove Lemma 4.3 in Section C.1.2 as an straightforward consequence of Lemma 3.4.

C.1.1. Proof of Lemma 3.4 Let £1(x) = uy(x). In DQ""", it only vanishes at x = 0
(see 1.7). We rewrite (3.3) as
32
| ¢

which is equivalent at the domain D"“"\{0}. For x € B, C C, the open ball centered
at the origin of radius r,

oo
@) =Y ax® o £0.
k=1

Therefore, writing 2\2 = Q{l_l we have that

which implies that
= 1 ZOO Ak or—1
{2(x)=—q—x+co+ —X s X € B,. (C.1)

As a consequence, taking co = 0 yields

0@ =W =1+ &x™,  xeB, (C2)
k=1
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which defines an even real analytic function in B,. Notice that £,(0) = —1 # 0. For
x € DU\ B,, we define {»(x) as

0@ | o)+ [ = ()ds] if %x > 0,
H(x) = (C.3)

0 [ Q=)+ [, 7 ()ds] if fx < 0,

with 2‘\2 defined in (C.1), which is the even analytic extension at D" of ¢, defined
in (C.2).
We notice that since ¢ = u;, € &2, then for x € DUt N {Rx < —10},

1
1
| cosh x| [

where we have used cosh s < |coshs| < cosh Ns.
Whenx € DN {fRx > —10}, |£2(x)| S [£1(x)| and we conclude that £, € E_ 5.

120 <

—r
+/ coshzsds] < coshfx < |cosh x|,
¢

Nx

C.1.2. Proof of Lemma 4.3 On D2, see (2.10) and Fig. 3, {1 has simple zeroes at
0, im, —im. Then, denoting xg = 0, iw, —im, one has ¢ (x) = ;{(xo)(x —x0)+O0(x —
x0)? with ;1’ (x0) # 0, and, as a consequence, when x goes to xg in definition (C.3) of
£», we have

1
ds = ——.
o (s) ¢{ (x0)
In addition, xo do not belong to the segment between x € D2"* and +r and then we
conclude that ¢, defined in (C.3) is, in fact, well defined and real analytic also at D2"*.

Finally, using that {; = u6 € Dyzl, where Dyl}) is defined by (4.2), we obtain the
result.

hm f(x) = llm El(X)f

C.2. Fundamental solutions of L1[¢] = 0. Here we provide new sets of fundamental
solutions of the linear second order differential equation £[¢] = 0, where L is defined
in (2.4). We mainly follow the strategy in [31], being the first result below an adaptation
of Lemma A.1in [31].

We fix the complex rectangle

={xeC: —-10<Nx <0, [Jx| <27} (C4)
and we emphasize that, by Lemma 2.1 {1 = u is analytic in R\{x_, x_}.

Lemma C.1. Let

) = 41 (o) /

1
o) ds, (-(x)=

Then,

e {1 are analytic solutions of L1[¢] = 0 in the domain R\{x_, X_} satisfying

b =
W, ) =808 — 60 = /L %ds #0.
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o They satisfy, for x € R with R defined in (C.4),

(x —x_)3A (x —f)3,~
{+(x) = mﬁ(x), {-(x) = mé’—(ﬂ (C5)
where Z'\i are analytic functions in R and @E (x)| < M for some constant M (inde-
pendent on x).
e For some constant ¢, we have

Q(x) = (+(0) =), @ =ca@) +i-(x). (C.6)

1
W(§+7 ;—)
Proof. On the rectangle R in (C.4), the function ¢1(x) = uy(x), see (1.7), has simple
zeroes only at x = 0, i, +i2m, that is, writing xo = 0, iw, —m, {1 (x) = ;{(xo)(x —
x0) + O(x — xo)2 when x is close to xg. Moreover, for all x € R, the segments X, x_
and x, x_ do not cross xq. Then, since ;‘1’ (xg) # 0,

, 1
xlgnxo {+(x) = — )

that implies that ¢+ are well defined at the set R. In addition, the fact that |~ 2 has zeroes
of order 4 at x_, x_ and it is uniformly bounded at R, implies that the estimates in (C.5)
follow immediately and hence the second item of Lemma C.1 is already proven.

From the definition of ¢4, one can easily compute W (¢4, ¢—). We check that it is not
zero. Indeed, we define

3
cost+ 1 —3/|ylisint

uo(t) = up(—a +it) =

and, after some tedious computations, we have that

1 1 (cost+1—3[ylisint)?

wy(—a+i0)2 — (@y1)> ~ 9(sint +3/[yli cost)?

Then, again performing some tedious but straightforward computations, we obtain

/x 1 ds——i/_n;dz—&n’(I |—§)
s e @@ T riTg )

This ends the proof of the first item of Lemma C.1.

Finally, we prove the third item of Lemma C.1. By the first item, ¢y, {_ are inde-
pendent solutions of £1[¢{] = 0, so that {1 = ¢ + ¢2¢4. Evaluating at x_, X~ we
obtain the coefficients ¢y, ¢; and the formula for ;. On the other hand, ¢> is a linear
combination of ¢, ¢—, which yields (C.6) since W ({1, ¢&2) # 0. O

Now we study

Ji(x) = , (C.7)

£4(x) /0 Co()h(s) ds

which play a key role when bounding the norm of the linear operators G, G1 defined
in (3.5) and (4.3) respectively. Since these operators are defined over analytic functions
in different domains, we introduce a new class of domains that posses the minimal
properties we need to be able to bound J.
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Definition C.2. Let D C R, with R defined in (C.4), be a closed bounded domain
satisfying that

e 0 eint(D),x_,x_ ¢ D, L

e if x € D, then Nx € D and the segments 0, x € D, x, Rx C D,

e there exists a constant ¢ € (0, 1) such that if x € D either |Jx| < 7, or

[Mx + | > ¥ min{|x —x_|, [x — X_|}.

Remark C.3. Notice that D2""" N {—10 < R < 0} in (2.7) and D™ in (2.10) satisfy
the conditions in Definition C.2.

Lemma C.4. Let D be a domain satisfying the conditions in Definition C.2 and fix ¢ > 5.
Ifh : D — C, then

Lh]e

RENEOIS —
lx — x,|e*2|x —x,|Z*2

xeD,

where Ji has been introduced in (C.7) and

Lh]e = sup [(x)|]x — x_|“|x — x|
xeD

Proof. We recall that x_ = —a + i with @ > 0. We only provide the details for J,
being the corresponding for J_ analogous. When x € D N {x € C: %ix > —75}, then,
using the second item in Lemma C.1,

< l—x P / Lh]e

Nl =322 Jo ls — x| — X0
< Lh]e

~x _x_|€72|x _E|672'

§+(X)/0 {—(s)h(s)ds

Now we deal with x € D N {x € C: %ix < —3}. Since, by Lemma C.1, ¢4 and h are
analytic functions in D C R, we write

£ () /0 ¢ (s)h(s) ds {_($)h(s) ds + /

Y2

¢4 (x) [ ¢ (s)h(s) dS}
Vi
=: G1(x) + G2(x),

with y1(t) = —t, for t € [0, —9x] and y»(¢) = Nx +ir, for t € 0, Ix. Notice that, by
Definition C.2 of D, the paths y1, y» C D. Then, we obtain

y
/"‘x L)
0o ltHx_ |2 r+x|3

< Lhle
~x — x| 2 — x|

< |[x —x_

~ |

1G1(0)] =

Le(x) | - (s)h(s)ds

Y1

where we have used that |f + x_|, |t + x_| > 7 and that |x| < 1.
With respect to G», we have that

Ix —x_|3

1G2(x)| < Lhle

X l
— — dt
lx —x_)2 [0 [Rx +it — x_ |2 Nx +it — x_|¢3
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Then, if Ix > 0, since |Nx +it —x_| > m, for ¢t € [0, Ix], we have that

X —x_ 3 Sx 1
G2 () < Lhle ! __'2/ .
=0 (a4 —m)2) 2

In the case |Nx + | > ¥|x — x_|,

ooyl < (g el ! /m S—
201 S 0 p— - "
=X x| o (142 F

1
lx — X2 |x —x_|¢2°

Ny

and the result follows provided € > 5. If |9ix + | < ¥ |x — x_|, then 0 < Jx < 7 and
7 —3x > +/1—92|x — x_|. We obtain

3 Sx 3
X —x_ X —x_
| —|2/ w4t S Lhle —|2 |~ e+
lx —xZ1* Jo (@ —0° |x —X_|%(r — Jx)*

1G2(0)] < Lhle

and the result follows trivially also in this case.
The details in the case Ix < 0 are left to the reader. O

C.3. Proof of Lemma 3.6. The result related to G, defined in (3.6) is a straightforward
consequence of Lemma 5.5 in [33].

We focus now on proving the results related to G;. To do so we follow the main
ingredients in the proof of Proposition 4.3 in [31]. When x € D""" N {fx < —10},
by Lemma 3.4, |£3(x)| < | cosh x|. From here, using also that |¢1 (x)| < | coshx|~! and
following exactly the same steps as the ones in [31], we prove that

|coshx|"|Gi[R1(X)| S I1hllme,  x € D" N {9%x < 10}

The case x € D,‘(’”t'u N {Mx > —10} is more involved. Indeed, the main obstacle to
overcome is that ¢1, ¢» have poles of order 2 at x = x_, Xx_. Following [31] we rewrite
Gy in (3.5) in terms of ¢, ¢— in Lemma C.1. Using the third item of this result, we obtain
that

Gilh(x) = £ () /O ¢ (s)h(s)ds — ¢ (x) /O c+<s>h<s>ds}

;[

W(Cr 5-)
0

—§2(X)/ S1($)h(s) ds.

By Remark C.3, we can use the results in Lemma C.4 to bound the two first integrals
defining G;[h]. To bound the third integral, we claim that is a convergent real integral
and that ||£2]|—1.2 < 1. Then,

7 llm.e
|x —x_|2|x —x_|%°

0
Cz(X)/ s1(h(s)ds| S 1020 17llme S




215 Page 62 of 65 I. Baldomd, M. Guardia, D. E. Pelinovsky

Again, using that £ > 5, the first bound in Lemma 3.6 is proven. To prove [|0,G1[2]]]1,¢—1
we proceed analogously. Indeed, we have that

8, G lh](x) =m [d(x) /0 (i) ds — £ () /0 ) ¢+<s>h(s)ds}
0
—é“é(x)/ s1($)h(s) ds,
where
Lo (e—x)?e N S L
{i(x) = ﬁﬁ(x): (Z(x) = m{—(x)

for Z:I: are analytic functions uniformly bounded at R.
To complete the proof of Lemma 3.6, we just recall that, by Lemma 3.4, {5 is an even
function.

C.4. Proof of Lemma 4.4. We first notice that using relations (C.6) between ¢;, {» and
Z+, {— we have that

Gilh](x) = §+(X)/0 {—(s)h(s)ds —€—(X)/O §+(X)h(S)dS> (C.8)

ol
W(gs, &)

and that by Remark C.3, we can apply the results in Lemma C.1 for x € D?** N {x €
C : Rx < 0}. Then, we have

7l

lx — x_|2|x — xZ|¢2°

[AAENES

so that, since 1 < |x — x4, [x —x4|, forx € D2 N {x € C: Rx < 0}, we obtain
3 -2 — =2 -2 — =2
1G1TA1CONx — x| 2 — X2 2 v |2 = 3572 S e (C.9)

When x € D N{x e C: Rx > 0}, we only need to define the new set of fundamental
solutions of £[4] given by

1
O]

1
O]

Ch(x) = ¢1(x) / ds, ()= /f ds

and proceeding in an analogous way as for x € D2"* N {x € C : %x < 0} to obtain the
bound (C.9) for x € DZ"*. By definition (4.1) of the norm, ||§1 [Allle—2 < |1h]le.
Differentiating (C.8) with respect to x and performing similar bounds as the previous
one, we prove the result for 0 G1[h].
For the operator G, in (4.3), we take x € D2" be such that fix < 0 since the case
Nx > 0 is analogous. In this case 1 < |x — x4|, |[x — x| and hence we have to prove

Al
lx —x_|¢x —x_|¢°

G2 (x)| < &2
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By definition (4.3) of G, it is enough to prove that for iix < 0,

Al
lx —x_|¢lx —x2)¢°

<e (C.10)

X

. .

etie x/ e Sh(s)ds
Fip

We deal with the bound for the integral from —ip. To prove the second one is analogous.
We write

X
eisflx/ e S h(s) ds e"sflx/ eiisilsh(s)ds+ei€71x/ e S n(s) ds
V1 2

=:G1(x) + Gz (x),

where the paths y, y» are defined by

vi®) =x+te’, €0, —secO Nx, (t) =it, t€tan?d Rx, —p

with ¥ > O such that y; (r) € D2**. We recall that ix < O and hence 1 < |x —xy|, [x —
X+|. Therefore,

sect) | Mx| e—a_]tsinﬂ
Gi(x) 5 h g/ - - dt.
| S Il 0 |x —x_ +te V|l x —X_ +te V|t

The geometry of the set D"* implies that

x—x_ 4+t > x —x_|, |x—xX_+te > |x =3,
hence
hle R B hlle
|G1(x)| 5 ||€|| _6/ e_g [Slnﬁdtss ||€|| —.
lx —x—[“lx =X=1° Jo [x —x—["]x — x|

The bound for G, follows using the same arguments. It is clear that |[x — x_ +if| 2
|x —x_] and |x —X_| = |x — X_|. Hence,

— tan & |Nx| P
1G2(x)] < IIhllzf —7 ——dt
—p |x —x_ +it|%|x —x— +it|
- I ]le /0 g < I72]le
~ox —x_fx =328 ~ U x —x_fx = x|

As a consequence, (C.10) is proven.
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