
Journal of Nonlinear Science           (2023) 33:28 
https://doi.org/10.1007/s00332-022-09882-x

Breakdown of Heteroclinic Connections in the Analytic
Hopf-Zero Singularity: Rigorous Computation of the Stokes
Constant

Inmaculada Baldomá1,2,3 ·Maciej J. Capiński4 ·Marcel Guardia3,5 ·
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Abstract
Consider analytic generic unfoldings of the three- dimensional conservativeHopf-zero
singularity. Under open conditions on the parameters determining the singularity, the
unfolding possesses two saddle-foci when the unfolding parameter is small enough.
One of them has one-dimensional stable manifold and two-dimensional unstable
manifold, whereas the other one has one- dimensional unstable manifold and two-
dimensional stable manifold. Baldomá et al. (J Dyn Differ Equ 25(2):335–392, 2013)
gave an asymptotic formula for the distance between the one-dimensional invariant
manifolds in a suitable transverse section. This distance is exponentially small with
respect to the perturbative parameter, and it depends on what is usually called a Stokes
constant. Thenonvanishingof this constant implies that the distancebetween the invari-
ant manifolds at the section is not zero. However, up to now there do not exist analytic
techniques to check that condition. In this paper we provide a method for obtaining
accurate rigorous computer-assisted bounds for the Stokes constant. We apply it to
two concrete unfoldings of the Hopf-zero singularity, obtaining a computer-assisted
proof that the constant is nonzero.
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1 Introduction

One of the fundamental questions in dynamical systems is to assess whether a given
model possesses chaotic dynamics or not. In particular, onewould like to provewhether
the model has a hyperbolic invariant set whose dynamics is conjugated to the sym-
bolic dynamics of the usual Bernouilli shift by means of the construction of a Smale
horseshoe. Since the pioneering works by Smale and Shilnikov, it is well known that
the construction of such invariant sets may be attained by analyzing the stable and
unstable invariant manifolds of hyperbolic invariant objects (critical points, periodic
orbits, invariant tori) and their intersections.

Such analysis can be done by classical perturbative techniques such as (suitable
versions of)Melnikov theory (Melnikov1963) or bymeans of computer assisted proofs
(Capiński and Zgliczyński 2017, 2018). However, there are settings where Melnikov
theory nor “direct” computer-assisted proofs (that is, rigorous computation of the
invariant manifolds) cannot be applied. For instance, in the so-called exponentially
small splitting of separatrices setting. That is, on models which depend on a small
parameter and where the distance between the stable and unstable invariant manifolds
is exponentially small with respect to this parameter.

This phenomenon of exponentially small splitting of separatrices often appears
in analytic systems with different time scales, which couple fast rotation with slow
hyperbolic motion. Example of such settings is nearly integrable Hamiltonian systems
at resonances, near the identity area preserving maps or local bifurcations in Hamil-
tonian, reversible or volume-preserving settings. In such settings, one needs more
sophisticated techniques rather than Melnikov theory to analyze the distance between
the stable and unstable invariant manifolds. Most of the results in the area follow the
seminal approach proposed by in Lazutkin (2003) (there are though other approaches
such as Treschev (1997)). Using these techniques, one can provide an asymptotic for-
mula for the distance between the invariant manifolds, with respect to the perturbation
parameter. If we denote by ε the small parameter, the distance is usually of the form

d = d(ε) ∼ �εαe
a
εβ as ε → 0

for some constants �, α, a and β. In most of the settings, the constants α, a and β

have explicit formulas and can be “easily” computed for given models. However, the
constant � is of radically different nature and much harder to compute. Indeed, the
constants α, a and β depend on certain first-order terms of the model, whereas �,
which we refer to as the Stokes constant, depends in a nontrivial way on the “whole
jet” of the considered model. Note that it is crucial to know whether � vanishes or
not, since its vanishing makes the whole first order between the invariant manifolds
vanish and, consequently, chaos cannot be guaranteed in the system.

The purpose of this paper is to provide (computer-assisted) methods to check, in
givenmodels, that the Stokes constant does not vanish.Moreover, ourmethod provides
a rigorous accurate computation of this constant. To show themain ideas of themethod
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and avoid technicalities, we focus on the simplest setting where this method can be
implemented: the breakdown of a one-dimensional heteroclinic connection for generic
analytic unfoldings of the volume-preserving Hopf-zero singularity.

This problem was analyzed in Baldomá and Seara (2008); Baldomá et al. (2013).
In these papers and the companions (Baldomá et al. 2018a, b, 2020), the authors
prove that, in generic unfoldings of an open set of Hopf-zero singularities, one can
encounter Shilnikov chaos Sil’nikov (1970). The fundamental difficulty in these mod-
els is to prove that the one-dimensional and two-dimensional heteroclinic manifolds
connecting two saddle-foci in a suitable truncated normal form of the unfolding, break
down when one considers the whole vector field. These breakdowns, which are expo-
nentially small, plus some additional generic conditions lead to existence of chaotic
motions.

Remark 1.1 A bifurcation with very similar behavior to that of the conservative Hopf-
zero singularity is the Hamiltonian Hopf-zero singularity where a critical point of a 2
degree of freedom Hamiltonian system has a pair of elliptic eigenvalues and a pair of
0 eigenvalues forming a Jordan block [see for instance Gelfreich and Lerman 2014].
In generic unfoldings, the 0 eigenvalues become a pair of small real eigenvalues and
therefore the critical point becomes a saddle-center. In this setting, one can analyze
the one-dimensional invariant manifolds of the critical point and obtain an asymp-
totic formula for their distance (in a suitable section). This distance is exponentially
with respect to the perturbative parameter. Then, to prove that they indeed do not
intersect, one has to show that a certain Stokes constant is not zero as in the Hopf-
zero conservative singularity. The methods presented in this paper can be adapted
to this other setting. The Hamiltonian Hopf-zero singularity appears in many physi-
cal models, for instance in the Restricted Planar 3 Body Problem [see Baldomá et al.
2021a, b]. It also plays an important role in the breakdown of small amplitude breathers
for the Klein–Gordon equation (albeit in an infinite-dimensional setting), see Segur
and Kruskal (1987); Gomide et al. (2021). We plan to provide a computer-assisted
proof of the Stokes constant to guarantee the nonexistence of small breathers in given
Klein–Gordon equations in a future work.

In this paper, we provide a method to compute the Stokes constant associated to
the breakdown of the one-dimensional heteroclinic connection in analytic unfoldings
of the conservative Hopf-zero singularity.

Let us first explain the Hopf-zero singularity and state the main results about the
breakdown of its one-dimensional heteroclinic connection obtained in Baldomá and
Seara (2008); Baldomá et al. (2013).

1.1 Hopf-Zero Singularity and Its Unfoldings

The Hopf-zero singularity takes place on a vector field X∗ : R3 → R
3, which has

the origin as a critical point, and such that the eigenvalues of the linear part at this
point are 0, ±iα∗, for some α∗ �= 0. Hence, after a linear change of variables, we can
assume that the linear part of this vector field at the origin is
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DX∗(0, 0, 0) =
⎛
⎝

0 α∗ 0
−α∗ 0 0
0 0 0

⎞
⎠ .

We assume that X∗ is analytic. Since DX∗(0, 0, 0) has zero trace, it is reasonable
to study it in the context of analytic conservative vector fields (see Broer and Vegter
1984 for the analysis of this singularity in the C∞ class). In this case, the generic
singularity can be met by a generic linear family depending on one parameter, and so
it has codimension one.

We study generic analytic families Xμ of conservative vector fields onR3 depending
on a parameter μ ∈ R, such that X0 = X∗, the vector field described above.

FollowingGuckenheimer (1981) andGuckenheimer andHolmes (1990), after some
changes of variables, we can write Xμ in its normal form up to order two, namely

dx̄

dt̄
= −β1 x̄ z̄ + ȳ

(
α∗ + α2μ + α3 z̄

) + O3(x̄, ȳ, z̄, μ),

d ȳ

dt̄
= −x̄

(
α∗ + α2μ + α3 z̄

) − β1 ȳ z̄ + O3(x̄, ȳ, z̄, μ), (1)

dz̄

dt
= −γ0μ + β1 z̄

2 + γ2(x̄
2 + ȳ2) + γ3μ

2 + O3(x̄, ȳ, z̄, μ).

Note that the coefficients β1, γ2 and α3 depend exclusively on the vector field X∗.
From now on, we will assume that X∗ and its unfolding Xμ satisfy the following

generic conditions:

β1 �= 0, γ0 �= 0. (2)

Depending on the other coefficients αi and γi , one obtains different qualitative behav-
iors for the orbits of the vector field Xμ. We consider μ satisfying

β1γ0μ > 0. (3)

In fact, redefining the parameters μ and the variable z̄, one can achieve

β1 > 0, γ0 = 1, (4)

and consequently the open set defined by (3) is now

μ > 0. (5)

Moreover, dividing the variables x̄, ȳ and z̄ by
√

β1, and scaling time by
√

β1,
redefining the coefficients and denoting α0 = α∗/

√
β1, we can assume that β1 = 1,

and therefore system (1) becomes

dx̄

dt̄
= −x̄ z̄ + ȳ (α0 + α2μ + α3 z̄) + O3(x̄, ȳ, z̄, μ),

d ȳ

dt̄
= −x̄ (α0 + α2μ + α3 z̄) − ȳ z̄ + O3(x̄, ȳ, z̄, μ), (6)
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dz̄

dt
= −μ + z̄2 + γ2(x̄

2 + ȳ2) + γ3μ
2 + O3(x̄, ȳ, z̄, μ).

We denote by X2
μ, usually called the normal form of second order, the vector field

obtained considering the terms of (6) up to order two. Therefore, one has

Xμ = X2
μ + F2

μ, where F2
μ(x̄, ȳ, z̄) = O3(x̄, ȳ, z̄, μ).

It can be easily seen that system (6) has two critical points at distance O(
√

μ) to the
origin. Therefore, we scale the variables and parameters so that the critical points are
O(1) and not O(

√
μ). That is, we define the new parameter δ = √

μ, and the new
variables x = δ−1 x̄ , y = δ−1 ȳ, z = δ−1 z̄ and t = δt̄ . Then, renaming the coefficients
b = γ2, c = α3, system (6) becomes

dx

dt
= −xz +

(
α(δ2)

δ
+ cz

)
y + δ−2 f (δx, δy, δz, δ),

dy

dt
= −

(
α(δ2)

δ
+ cz

)
x − yz + δ−2g(δx, δy, δz, δ),

dz

dt
= −1 + b(x2 + y2) + z2 + δ−2h(δx, δy, δz, δ),

(7)

where f , g and h are real analytic functions of order three in all their variables, δ > 0
is a small parameter and α(δ2) = α0 + α2δ

2.

Remark 1.2 Without loss of generality, we can assume that α0 and c are both positive
constants. In particular, for δ small enough, α(δ2) will be also positive.

Observe that if we do not consider the higher-order terms (that is, f = g = h = 0),
we obtain the unperturbed system

dx

dt
= −xz +

(
α(δ2)

δ
+ cz

)
y,

dy

dt
= −

(
α(δ2)

δ
+ cz

)
x − yz,

dz

dt
= −1 + b(x2 + y2) + z2.

(8)

The next lemma gives the main properties of this system.

Lemma 1.3 (Baldomá et al. (2013)) For any value of δ > 0, the unperturbed system
(8) has the following properties:

1. It possesses two hyperbolic fixed points S0± = (0, 0,±1)which are of saddle-focus
type with eigenvalues ∓1 + |α

δ
± c|i , ∓1 − |α

δ
± c|i , and ±2.

2. The one-dimensional unstable manifold of S0+ and the one-dimensional stable
manifold of S0− coincide along the heteroclinic connection {(0, 0, z) : −1 < z <
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1}. The time parameterization of this heteroclinic connection is given by

ϒ0(t) = (0, 0, z0(t)) = (0, 0,− tanh t),

if we require ϒ0(0) = (0, 0, 0).

Their 2-dimensional stable/unstable manifolds also coincide, but we will not deal with
this problem in this paper.

The critical points given in Lemma 1.3 are persistent for system (7) for small values
of δ > 0. Below we summarize some properties of system (7).

Lemma 1.4 (Baldomá et al. (2013)) If δ > 0 is small enough, system (7) has two fixed
points S±(δ) of saddle-focus type,

S±(δ) = (x±(δ), y±(δ), z±(δ)),

with

x±(δ) = O(δ2), y±(δ) = O(δ2), z±(δ) = ±1 + O(δ).

The point S+(δ) has a one-dimensional unstable manifold and a two-dimensional
stable one. Conversely, S−(δ) has a one-dimensional stable manifold and a two-
dimensional unstable one.

Moreover, there are no other fixed points of (7) in the closed ball B(δ−1/3).

The theorem proven in Baldomá et al. (2013) is the following.

Theorem 1.5 (Baldomá et al. (2013)) Consider system (7), with δ > 0 small enough.
Then, there exists a constant C∗, such that the distance du,s between the one-
dimensional stable manifold of S−(δ) and the one-dimensional unstable manifold
of S+(δ), when they meet the plane z = 0, is given by

du,s = δ−2e− α0π

2δ e
π
2 (α0h0+c)

(
C∗ + O

(
1

log(1/δ)

))
,

where α0 = α(0), and h0 = − limz→0 z−3h(0, 0, z, 0, 0).

In Baldomá et al. (2013), it was proven that the constant C∗ comes from the so-
called inner equation and that, generically, it does not vanish. However, for a given
model is usually very hard to prove analytically whether the associatedC∗ vanishes or
not. In this paper, we provide a rigorous (computer-assisted) method to check whether
it vanishes and to compute its value.

1.2 The Inner Equation

One of the key parts of the proof of Theorem 1.5 is to analyze an inner equation.
This equation provides the Stokes constant C∗, and it was obtained and analyzed in
Baldomá and Seara (2008). To obtain it,
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we perform the change of coordinates (φ, ϕ, η) = Cδ(x, y, z) given by

φ = δ(x + iy), ϕ = δ(x − iy), η = δz, τ = t − iπ/2

δ
. (9)

Applying this change to system (7), one obtains

dφ

dτ
= ( − αi − η

)
φ + F̃1(φ, ϕ, η, δ),

dϕ

dτ
= (

αi − η
)
ϕ + F̃2(φ, ϕ, η, δ), (10)

dη

dτ
= −δ2 + bφϕ + η2 + H̃(φ, ϕ, η, δ),

where

F̃1(φ, ϕ, η, δ) = f (C−1
δ (φ, ϕ, η), δ) + ig(C−1

δ (φ, ϕ, η), δ),

F̃2(φ, ϕ, η, δ) = f (C−1
δ (φ, ϕ, η), δ) − ig(C−1

δ (φ, ϕ, η), δ),

H̃(φ, ϕ, η, δ) = h(C−1
δ (φ, ϕ, η), δ).

The inner equation comes from (10) taking δ = 0. Defining Fi (φ, ϕ, η) =
F̃i (φ, ϕ, η, 0) and H(φ, ϕ, η) = H̃(φ, ϕ, η, 0) and, for technical reasons, performing
the change η = −s−1, we get

dφ

dτ
= −

(
αi − 1

s

)
+ F1

(
φ, ϕ,−s−1

)
,

dϕ

dτ
=

(
αi + 1

s

)
+ F2

(
φ, ϕ,−s−1

)
, (11)

ds

dτ
= 1 + s2

(
bφϕ + H

(
φ, ϕ,−s−1

))
.

Remark 1.6 Even if the purpose of this paper is not the proof of Theorem 1.5, let us
explain why the inner equation plays a fundamental role in the study of the differ-
ence between the stable and unstable manifolds of the points S±(δ). One of the key
points in the study of exponentially small splitting is to obtain good parameterizations
(xu,s(t), yu,s(t), zu,s(t)) of these manifolds. As system (7) is a small perturbation
of system (8) and for this system the points S±(0) = (0, 0,±1) have an heteroclinic
connection given by (0, 0,− tanh t), it is natural to look for thesemanifolds as a pertur-
bation of it. However, to detect the exponentially small splitting, the proof in Baldomá
et al. (2013) requires to obtain these parameterizations in a complex domain which
reaches a neighborhood of order δ of the singularities t = ±i π

2 of the unperturbed
heteroclinic connection, that is when t ∓ iπ

2 = O(δ). Roughly speaking, in Baldomá
et al. (2013), it is shown that

xu,s(t), yu,s(t) 
 δ2

(t − iπ
2 )3

, zu,s(t) 
 δ

(t − iπ
2 )2

,
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and observed that, for t ∓ iπ
2 ∼ δ, one has:

xu,s(t), yu,s(t) 
 1

δ
, zu,s(t) 
 1

δ
.

Therefore, these parameterizations are not close to the unperturbed heteroclinic con-
nection anymore, which behaves as

(0, 0, tanh t) ∼
(
0, 0,

1

δ

)
.

To obtain a new approximation of the invariant manifolds near the singularities one
performs the change of variables τ = δ1(t − iπ

2 ) and, to work with bounded solutions,
one also scales the functions by δ. This is the reason of the change of variables (9) and
the inner equation (11) is set to give the first order of the invariant manifolds in these
new variables.

We reparameterize time so that Eq. (11) becomes a nonautonomous two-dimensional
equation with time s,

φ′ = − (
αi − 1

s

)
φ + F1(φ, ϕ,−s−1)

1 + s2(bφϕ + H(φ, ϕ,−s−1))
,

ϕ′ =
(
αi + 1

s

)
ϕ + F2(φ, ϕ,−s−1)

1 + s2(bφϕ + H(φ, ϕ,−s−1))
,

(12)

with ′ = d
ds .

To analyze this system, we separate its linear terms from the nonlinear ones. Indeed,
defining

A(s) =
(−iα + 1

s 0
0 iα + 1

s

)
, (13)

and

S(φ, ϕ, s) =⎛
⎜⎜⎝

(
αi − 1

s

)
φs2

(
bφϕ + H(φ, ϕ,−s−1)

) + F1(φ, ϕ,−s−1)

1 + s2(bφϕ + H(φ, ϕ,−s−1))
− (

αi + 1
s

)
ϕs2

(
bφϕ + H(φ, ϕ,−s−1)

) + F2(φ, ϕ,−s−1)

1 + s2(bφϕ + H(φ, ϕ,−s−1))

⎞
⎟⎟⎠ , (14)

Equation (12) can be expressed as

(
dφ
ds
dϕ
ds

)
= A(s)

(
φ

ϕ

)
+ S(φ, ϕ, s). (15)

From now on, we will refer to (15) as the inner equation.
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For s ∈ C, we shall write �s and 
s for its real and imaginary part, respectively.
Following (Baldomá and Seara 2008), we define the inner domains as

D−
ρ = {s ∈ C : |
s| ≥ − tan β�s − ρ, �s ≤ 0} , D+

ρ = {s : −s ∈ D−} (16)

for some ρ > 0.

Theorem 1.7 (Baldomá and Seara (2008)) If ρ is big enough, the inner equation has
two solutions ψ± = (φ±, ϕ±) defined in D±

ρ satisfying the asymptotic condition

lim�s→±∞ ψ±(s) = 0. (17)

Moreover its difference satisfies that, for s ∈ D+
ρ ∩ D−

ρ ∩ {
s < 0}

�ψ(s) = ψ+(s) − ψ−(s) = se−iα(s−h0 log s)
[(

�

0

)
+ O

(
1

|s|
)]

. (18)

In addition � �= 0 if and only if �ψ �≡ 0.

Note that the Stokes constant � ∈ C can be defined as

� = lim
s→−∞ s−1eiα(s−h0 log s)�φ(s). (19)

Later, in Baldomá et al. (2013) the authors prove that, if C∗ is the constant introduced
in Theorem 1.5, then

C∗ = |�|.

However there is no closed formula for�, which depends on the full jet of the nonlinear
terms in (15). Our strategy to compute � is to perform a computer-assisted proof.

2 Rigorous Computation of the Stokes Constant

Wepropose amethod to compute the Stokes constant� relying on rigorous, computer-
assisted, interval arithmetic-based validation. The method takes advantage from the
constructive method for proving Theorem 1.7 based on fixed point arguments, and we
strongly believe that it can be applied to other settings as, for instance, the classical
rapidly forced pendulum and close to the identity area preserving maps.

The method we propose to compute the Stokes constant� is divided into two parts.

• Part 1: We provide an algorithm to give an explicit ρ∗ > 0 such that the existence
of the solutions ψ± of the inner equation, in the domain {�s = 0, 
s ≤ −ρ∗} is
guaranteed.
The algorithm is based in giving explicit bounds (which depend on the nonlinear
terms S of the inner equation, see (14)) of all the constants involved in the fixed
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point argument.Webelieve that this algorithmcanbegeneralized to other situations
where theproof of the existenceof the corresponding solutions of the inner equation
relies on fixed point arguments.
In the case of the Hopf-zero singularity, by Theorem 1.7, if one can check (using
rigorous computer computations) that�ψ(−iρ∗) = ψ+(−iρ∗)−ψ−(−iρ∗) �= 0
one can ensure that � �= 0.

• Part 2: Using that �ψ(s) is defined for s ∈ {�s = 0, 
s ≤ −ρ∗} with ρ∗ given
in Part 1, we give a method which provides rigorous accurate estimates for �.
We give an algorithm to compute ρ0 ≥ ρ∗ such that, for all ρ ≥ ρ0, the Stokes
constant and �φ(−iρ) satisfies the relation

� = iρ−1�φ(−iρ)eα(ρ−ih0 log ρ−h0
π
2 )(1 + g(ρ)), (20)

with |g(ρ)| < 1. By (18), we know that |g(ρ)| is of order O(ρ−1). We provide
explicit upper bounds for it.
Part 2 also relies on evaluating �ψ(−iρ) but takes more advantage on the fixed
point argument techniques used to prove formula (18) in Theorem 1.7.
A similar formula to (20) for� can be deduced in other settings such as the rapidly
forced pendulum and close to the identity area preserving maps.
We should be able to adapt our method to a plethora of different situations.

In Sect. 2.1, we show the theoretical framework we use to design the method. In
particular, the functional setting needed for the fixed point argument. It is divided in
Sects. 2.1.1 and 2.1.2 which deal with Part 1 and Part 2, respectively. In Sect. 2.2,
we follow the theoretical approach given in the previous sections and compute all the
necessary constants to implement the method. After that, in Sect. 2.3 we write the
precise algorithm, pointing out all the constants that need to be computed to find�. In
Sect. 3, we apply our method to two examples. Finally, in Sect. 4, we explain how to
improve the accuracy in the computation of the Stokes constant in one of the examples
considered in Sect. 3.

2.1 Scheme of theMethod: Theoretical Approach

2.1.1 Existence Domain of the Solutions of the Inner Equation

We analyze the solutions ψ± = (φ±, ϕ±) of Eq. (15) in the inner domains D±
ρ

introduced in (16). To prove the existence of the solutions ψ±, we set up a fixed point
argument. From now on, we use subindices 1 and 2 to denote the two components of
all vectors and operators.

Note that the right hand side of Eq. (15) has a linear part plus higher-order terms
(which will be treated as perturbation). We consider a fundamental matrix M(s) asso-
ciated to the matrix A in (13) given by

123



Journal of Nonlinear Science            (2023) 33:28 Page 11 of 47    28 

M(s) = s

(
e−iαs 0
0 eiαs

)
, (21)

and we define also the integral operators

B±(h) =
(
B±
1 (h)

B±
2 (h)

)
= M(s)

∫ 0

±∞
M(s + t)−1h(s + t)dt . (22)

Then, the solutions ψ± of Eq. (15) satisfying the asymptotic conditions (17) must be
also solutions of the integral equation

ψ± = B±(S(ψ, s)).

Therefore, we look for fixed points of the operators

F±(ψ) = B±(S(ψ, s)). (23)

We define the Banach spaces

X±
ν = {

h : D±
ρ → C : analytic, ‖h‖ν < ∞} ‖h‖ν = sup

s∈D±
ρ

|sνh(s)|.

(24)

Then, we obtain fixed points of the operators F± in the Banach spaces Xν ×Xν with
the norm

‖(φ, ϕ)‖ν = max{‖φ‖ν, ‖ϕ‖ν},

for some ν to be chosen.
In Baldomá and Seara (2008), it is proven that the operators F± are contractive

operators in some ball ofX3×X3 if ρ ≥ ρ∗ is big enough. Consequently the existence
of solutions ψ± of Eq. (15) in the domains D±

ρ is guaranteed. However, we want to
be explicit in the estimates to compute the smallest ρ∗ such that one can prove that
F± are contractive operators.

To this end, we need to control the dependence on ρ of the Lipschitz constant of
the operators F±. Let us explain briefly the procedure, which is performed only for
the − case being the + case analogous.

• In Sect. 2.2.1, we provide explicit bounds for the norm of the linear operator B−
in (22).

• In Sect. 2.2.2, we define a set of constants depending on the nonlinear terms S
(see (14)) of the inner equation.

• We deal with the bounds of the first iteration, F+(0) in Sect. 2.2.3. We conclude
that it belongs to a closed ball ofX3 ×X3 if ρ ≥ ρ1∗ where ρ1∗ is determined by the
constants in the previous step. The radius of the ball M0(ρ)/2 is fully determined
also by the previous constants.
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• In Sect. 2.2.4, we provide explicit bounds of the derivative of the nonlinear operator
S and consequently of its Lipschitz constant, which depends on ρ. These com-
putations hold true for values of ρ ≥ ρ2∗ ≥ ρ∗

1 with ρ2∗ satisfying some explicit
conditions.

• In Sect. 2.2.5, for ρ ≥ ρ2∗ , we compute the Lipschitz constant L(ρ) of F− in the
closed ball of X3 × X3 of radius M0(ρ).

• In Sect. 2.2.6, we set ρ∗ ≥ ρ2∗ for the existence result. We choose ρ∗ such that
L(ρ∗) ≤ 1

2 . Then, since

‖ψ−‖3 ≤ ‖F−(0)‖3 + ‖F−(ψ−) − F−(0)‖3 ≤ M0(ρ)

2
+ L(ρ)‖ψ−‖3 ≤ M0(ρ),

the fixed point theorem ensures the existence of a fixed point ψ− satisfying
‖ψ−‖3 ≤ M0(ρ) for ρ ≥ ρ∗.

• Finally, we compute �φ(−iρ∗) by computed-assisted proofs techniques. This
completes the Part 1 of the algorithm since �φ(−iρ∗) �= 0 implies � �= 0.

All the steps described above are written with all the detailed constants in Sect. 2.3.

2.1.2 Rigourous Computation of the Stokes Constant

In this section we describe a method to compute rigorously the Stokes constant �

defined in (19) (Part 2 of the algorithm). Themethod is based in the alternative formula
for � proposed in (20):

� = i
eα(ρ−ih0 log ρ−h0

π
2 )�φ(−iρ)

ρ
(1 + g(ρ)), lim

ρ→∞ g(ρ) = 0. (25)

Let us to explain how this formula is derived. The key point is to analyze the difference

�ψ(s) = ψ+(s) − ψ−(s)

as a solution of a linear equation on the vertical axis 
s ∈ (−∞,−ρ∗) where ρ∗ is
provided by the method explained in Sect. 2.1.1. Indeed �ψ = (�φ,�ϕ) satisfies
the equation

(
�φ′
�ϕ′

)
= (A(s) + K(s))

(
�φ

�ϕ

)
,

where

K(s) =
∫ 1

0
DS

(
ψ−(s) + t(ψ+(s) − ψ−(s)), s

)
dt, (26)
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and S is given in (14). We look for the linear terms of lower order in s−1 of S. Indeed,
we have that

S(ψ, s) = 1

s

(−αih0φ
αih0ϕ

)
+ S̃(ψ, s),

with S̃(ψ, s) = O(|s|−2) when ψ ∈ X3 (see (24)). Then, �ψ satisfies the equation

(
�φ′
�ϕ′

)
= (

Ã(s) + K̃(s)
) (�φ

�ϕ

)
, (27)

where

Ã(s) =
(−iα + 1

s − iα h0
s 0

0 iα + 1
s + iα h0

s

)
, (28)

and

K̃(s) =
∫ 1

0
DS̃

(
ψ−(s) + t(ψ+(s) − ψ−(s)), s

)
dt . (29)

A fundamental matrix for the linear system z′ = Ã(s)z is

(
se−iα(s+h0 log s) 0

0 seiα(s+h0 log s)

)
.

Therefore, any solution of system (27) can be expressed as

(
�φ

�ϕ

)
=

⎛
⎜⎜⎜⎜⎝

se−iα(s+h0 log s)

[
κ0 +

∫ s

−iρ

eiα(t+h0 log t)

t

(
K̃11�φ + K̃12�ϕ

)
dt

]

seiα(s+h0 log s)

[
κ1 +

∫ s

−iρ

e−iα(t+h0 log t)

t

(
K̃21�φ + K̃22�ϕ

)
dt

]

⎞
⎟⎟⎟⎟⎠

,

with κ0, κ1 two constants.
Since |ψ±| ≤ M0(ρ)|s|−3, �ψ goes to 0 as 
s → −∞ and, therefore,

κ1 = −
∫ −i∞

−iρ

e−iα(t+h0 log t)

t

(
K̃21�φ + K̃22�ϕ

)
dt .

Then, we deduce that the difference �ψ(s) is a fixed point of the equation

�ψ(s) = �ψ0(s) + G(�ψ)(s), where

�ψ0(s) =
(
se−iα(s+h0 log s)κ0

0

)
,

(30)
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with κ0 a constant depending on ρ and G is the linear operator

G(�ψ) =

⎛
⎜⎜⎝
se−iα(s+h0 log s)

∫ s

−iρ

eiα(t+h0 log t)

t

(
K̃11�φ + K̃12�ϕ

)
dt

seiα(s+h0 log s)
∫ s

−i∞
e−iα(t+h0 log t)

t

(
K̃21�φ + K̃22�ϕ

)
dt

⎞
⎟⎟⎠ . (31)

By construction, κ0 is defined as

κ0 = κ0(ρ) = i
eα(ρ−ih0 log ρ−h0

π
2 )�φ(−iρ)

ρ
. (32)

Using (19) and (30), we have

� = lim
s→−∞ s−1eiα(s+h0 log s)�φ(s)

= κ0

(
1 + κ−1

0 lim
s→−∞ s−1eiα(s+h0 log s)G1 (�ψ(s))

)
.

(33)

We use equality (33) to obtain formula (25) of �. To bound |g(ρ)| in formula (25),
we need to control the linear operator s−1eiα(s+h0 log s)G1. To this end, we consider a
norm with exponential weights,

‖ψ‖ = max
{
maxs∈E

∣∣∣s−1eiα(s+h0 log s)φ

∣∣∣ ,maxs∈E
∣∣∣eiα(s+h0 log s)ϕ

∣∣∣
}

, (34)

with E = {�s = 0, 
s ∈ (−ρ∗,−∞)}.
Observe that (30) can be rewritten

(Id − G)(�ψ) = �ψ0.

Nowwe see that Id−G is an invertible operator. Indeed, in Baldomá and Seara (2008),
it was proven that for ρ big enough

‖G1(�)‖ ≤ A1(ρ)‖�‖, ‖G2(�)‖ ≤ A2(ρ)‖�‖, (35)

with 0 < A(ρ) := max{A1(ρ), A2(ρ)} < 1. Moreover, Baldomá and Seara (2008)
also shows that

lim
ρ→∞ A(ρ) = 0.

These estimates imply that, if ρ is big enough, Id − G is invertible and therefore
�ψ = (Id − G)−1(�ψ0). Moreover,

‖�ψ‖ ≤ 1

1 − A(ρ)
‖�ψ0‖ = |κ0(ρ)|

1 − A(ρ)
, (36)
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and this inequality directly gives

∣∣∣∣ lim
s→−∞ s−1eiα(s+h0 log s)G1(�ψ(s))

∣∣∣∣ ≤ A1(ρ)
|κ0(ρ)|
1 − A(ρ)

.

Therefore, from (33),we can conclude that theStokes constant�,which is independent
of ρ, can be computed as

� = κ0(ρ)(1 + g(ρ)),

for any ρ big enough, where κ0 is given in (32) and g satisfies

|g(ρ)| ≤ M(ρ) := A1(ρ)

1 − A(ρ)
. (37)

Since A(ρ), A1(ρ) go to zero as ρ → ∞, the same happens for M(ρ). Then (25) is
proven.

Notice that the relative error to approximate � by κ0 is

|� − κ0(ρ)|
|κ0(ρ)| ≤ M(ρ).

As a consequence,

|�| ∈ [|κ0(ρ)|(1 − M(ρ)), |κ0(ρ)|(1 + M(ρ))
]
.

In Sect. 2.2, the procedure described above is implemented:

• Following the fixed point argument in Baldomá and Seara (2008), in Sect. 2.2.7
we give a explicit formula for A(ρ) = max{A1(ρ), A2(ρ)} in (35) for ρ ≥ ρ∗,
where ρ∗ is the constant given by Part 1.

• In Sect. 2.2.8, we set ρ0 ≥ ρ∗ such that M(ρ) < 1 for ρ ≥ ρ0.

2.2 Computing the Stokes Constant: Method

In this section we are going to give explicit expressions for all the constant involved
in the method explained in the previous section.

2.2.1 The Linear OperatorB−

Lemma 2.1 Consider the linear operator B− defined in (22).

1. When ν > 1, the linear operator B− : Xν × Xν → Xν−1 × Xν−1 is continuous
and

‖B−(ψ)‖ν−1 ≤ Bν+1‖ψ‖ν,
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where

Bm = π

2

(m − 3))!!
(m − 2)!! if m is even,

Bm = (m − 3)!!
(m − 2)!! if m is odd.

(38)

2. When ν > 0, the linear operator B− : Xν × Xν → Xν × Xν is continuous and,
for all 0 < γ ≤ β (see (16)),

‖B−(ψ)‖ν ≤ 1

α sin γ (cos γ )ν+1 ‖ψ‖ν .

Define γ∗ ∈ (0, π
2 ) such that sin2 γ∗ = 1

ν+2 . If γ∗ ≤ β,

‖B−(ψ)‖ν ≤ Cν‖ψ‖ν where Cν = (ν + 2)
ν+2
2

α(ν + 1)
ν+1
2

. (39)

This lemma is proven in “Appendix A”.
From now on we choose β, the angle in the definition (16) of D−

ρ , be such that
6 sin β2 = 1. Then for all ν ≥ 4, the optimal value γ∗ in second item of Lemma 2.1
satisfies that γ∗ ≤ β and the optimal bound (39) will be used throughout the paper.

We emphasize that, if s ∈ D−
ρ , one has that |s| ≥ ρ. Recall that we are looking

for ρ∗ the minimum value for ρ to ensure that the inner equation has a solution ψ−
defined in D−

ρ . Since we need ρ−1∗ to be small, we start by assuming that ρ∗ ≥ 2. We
will change this value along the proof.

2.2.2 Explicit Constants for the Inner Equation

We consider the max norm |(x, y, z)| = max{|x |, |y|, |z|}. Let a3 = limz→0 z−3F1(0,

0, z), h0 = limz→0 z−3H(0, 0, z) and C0
F ,C0

H ,C
0
H be such that for |z| ≤ 1

2 ,

|�F1(z)| =
∣∣∣F1(0, 0, z) + a3z

3
∣∣∣ ≤ C0

F |z|4,
|�F2(z)| =

∣∣∣F2(0, 0, z) + a3z
3
∣∣∣ ≤ C0

F |z|4,
|�H(z)| =

∣∣∣H(0, 0, z) + h0z
3
∣∣∣ ≤ C0

H |z|4,
|H(0, 0, z)| ≤ C

0
H |z|3.

(40)
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We also introduce CF ,Cφ,ϕ
F , CH ,Cφ,ϕ

H such that, for |(x, y)| ≤ |z|,

|H(x, y, z)| ≤ CH |(x, y, z)|3 ≤ CH |z|3∣∣F1,2(x, y, z)
∣∣ ≤ CF |(x, y, z)|3 ≤ CF |z|3,

∣∣∂x F1,2(x, y, z)
∣∣ ≤ Cφ

F |(x, y, z)|2 ≤ Cφ
F |z|2,∣∣∂y F1,2(x, y, z)

∣∣ ≤ Cϕ
F |(x, y, z)|2 ≤ Cϕ

F |z|2,
|∂x H(x, y, z)| ≤ Cφ

H |(x, y, z)|2 ≤ Cφ
H |z|2,∣∣∂y H(x, y, z)

∣∣ ≤ Cϕ
H |(x, y, z)|2 ≤ Cϕ

H |z|2.

(41)

As a consequence, setting

CH = Cφ
H + Cϕ

H and CF = Cφ
F + Cϕ

F , (42)

we have

∣∣∣H(x, y, z) + h0z
3
∣∣∣ ≤ C0

H |z|4 + CH |(x, y)||z|2,
∣∣∣F1(x, y, z) + a3z

3
∣∣∣ ≤ C0

F |z|4 + CF |(x, y)||z|2,
∣∣∣F2(x, y, z) + a3z

3
∣∣∣ ≤ C0

F |z|4 + CF |(x, y)||z|2.

2.2.3 Bounds for the Norm of the First Iteration

The second step in the proof consists on studying F−(0)(s) = B−(S(0, s)), where
F− is the operator introduced in (23).

Lemma 2.2 Chose any ρ1∗ > max{2,C0
H }, take ρ ≥ ρ1∗ and define

C0(ρ) = C0
F + |a3|C0

H

1 − |C0
H |

ρ

.

Then F−(0) ∈ X3 × X3 and

‖F−(0)‖3 ≤ 11|a3|
3α

+ B5C0(ρ).

Proof By (14), it is clear that

S1(0, s) − a3
s3

= F1(0, 0,−s−1)

1 + s2H(0, 0,−s−1)
− a3

s3
= �F1(−s−1) − a3H(0,0,−s−1)

s

1 + s2H(0, 0,−s−1)
,

123



   28 Page 18 of 47 Journal of Nonlinear Science            (2023) 33:28 

and therefore

∣∣∣S1(0, s) − a3
s3

∣∣∣ ≤ 1

|s|4
C0
F + |a3|C0

H

1 − C
0
H

ρ

.

An analogous bound works for S2(0, s) and therefore

‖S(0, s) − s−3(a3, a3)‖4 ≤ C0
F + |a3|C0

H

1 − |C0
H |

ρ

= C0(ρ). (43)

We introduce S0(s) = s−3(a3, a3). We have that

B−
1 (S0(s)) = a3s

∫ 0

−∞
eiαt

(s + t)4
dt = a3

iαs3
+ 4sa3

iα

∫ 0

−∞
eiαt

(s + t)5
dt . (44)

Notice that, for s ∈ D−
ρ and t ∈ R, |s + t |2 ≥ |s|2 + t2. Then, using also Lemma A.1

(see “Appendix A”),

∣∣∣∣s
∫ 0

−∞
eiαt

(s + t)5
dt

∣∣∣∣ ≤ 1

|s|3
∫ 0

−∞
1(

t2 + 1
)5/2 = 2

3|s|3 .

Using this last bound and formula (44), we obtain

∣∣B−
1 (S0(s))

∣∣ ≤ 1

|s|3
( |a3|

α
+ 8|a3|

3α

)
≤ 11|a3|

3α|s|3 .

To finish we notice that, from (43) and the first item of Corollary 2.1,

∥∥F−
1 (0)‖3 ≤ ‖B−

1 (S0)
∥∥
3 + ∥∥B−

1 (S(0, ·) − S0)
∥∥
3 ≤ 11|a3|

3α
+ C0(ρ)B5.

Analogous computations lead to the same estimate for ‖F−
2 (0)‖3.

��

2.2.4 The Lipschitz Constant ofS

Let

M0(ρ) = 22|a3|
3α

+ 2B5C0(ρ), (45)

in such a way that 2‖F−(0)‖3 ≤ M0(ρ).
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Lemma 2.3 Assume that ‖φ‖3, ‖ϕ‖3 ≤ M0(ρ) and take ρ ≥ ρ2∗ being ρ2∗ ≥ ρ1∗ such
that

min

{
1 − bM2

0 (ρ2∗)

(ρ2∗)4
− CH

(ρ2∗)
, 1 − M0(ρ

2∗)

(ρ2∗)2

}
> 0. (46)

Then

∣∣∂φS1(ψ, s)
∣∣, ∣∣∂ϕS2(ψ, s)

∣∣ ≤ M1
11(ρ)

|s| + M2
11(ρ)

|s|2 + M3
11(ρ)

|s|3 + M4
11(ρ)

|s|4 ,

∣∣∂ϕS1(ψ, s)|, |∂φS2(ψ, s)
∣∣ ≤ M2

12(ρ)

|s|2 + M3
12(ρ)

|s|3 + M4
12(ρ)

|s|4 ,

with

M1
11(ρ) = α|h0|

1 − bM2
0

ρ4 − CH
ρ

,

M2
11(ρ) = |h0| + αC0

H + Cφ
F

1 − bM2
0

ρ4 − CH
ρ

,

M3
11(ρ) = 1(

1 − bM2
0

ρ4 − CH
ρ

)2

[
M0αC

φ
H + CFC

φ
H +

(
αCHM0 + C0

H

)

(
1 − bM2

0

ρ4 − CH

ρ

)]
,

M4
11(ρ) = M0(

1 − bM2
0

ρ4 − CH
ρ

)2

·
[
b(CF + αM0) + Cφ

H +
(

αbM0 + CH + bM0

ρ

)

(
1 − bM2

0

ρ4 − CH

ρ

)
+ bM0

ρ

]

M2
12(ρ) = Cϕ

F

1 − bM2
0

ρ4 − CH
ρ

,

M3
12(ρ) = M0αC

ϕ
H + CFC

ϕ
H(

1 − bM2
0

ρ4 − CH
ρ

)2 ,
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M4
12(ρ) = M0(

1 − bM2
0

ρ4 − CH
ρ

)2

(
b(CF + αM0) + Cϕ

H + bM0

ρ

)
. (47)

Proof Notice that ρ2∗ ≥ ρ1∗ and therefore, Lemma 2.2 can be applied for ρ ≥ ρ2∗ .
Moreover, if s ∈ D−

ρ ,

|ψ(s)| ≤ M0(ρ)

|s|3 ≤ 1

|s| ,

so that the bounds in (41) can also be used.
We start with ∂φS. We introduce

S1(ψ, s) = ∂φF1(ψ, −s−1)

1 + s2
(
bφϕ + H(ψ,−s−1)

) + F1(ψ,−s−1)s2
(
bϕ + ∂φH(ψ,−s−1)

)
(
1 + s2

(
bφϕ + H(ψ,−s−1)

))2 ,

S2(ψ, s) =
(
αi − 1

s

)
s2
(
bφϕ + H(ψ,−s−1)

)

1 + s2
(
bφϕ + H(ψ,−s−1)

) −
(
αi − 1

s

)
φs2

(
bϕ + ∂φH(ψ,−s−1)

)
(
1 + s2

(
bφϕ + H(ψ,−s−1)

))2 .

Straightforward computations lead us to

∂φS1 = S1 + S2.

When ‖φ‖3, ‖ϕ‖3 ≤ M0(ρ),

|S1(ψ, s)| ≤ 1

|s|2
Cφ
F

1 − bM2
0

ρ4 − CH
ρ

+ 1

|s|3
CF

(
Cφ
H + b M0|s|

)

(
1 − bM2

0
ρ4 − CH

ρ

)2

≤ 1

|s|2
Cφ
F

1 − bM2
0

ρ4 − CH
ρ

+ 1

|s|3
CFC

φ
H(

1 − bM2
0

ρ4 − CH
ρ

)2

+ 1

|s|4
bM0CF(

1 − bM2
0

ρ4 − CH
ρ

)2 ,

|S2(ψ, s)| ≤ 1

|s|

(
α + 1

|s|
)(

|h0| + C0
H|s| + CH M0

|s|2 + b
M2

0
|s|3

)

1 − bM2
0

ρ4 − CH
ρ

+M0

|s|

(
α + 1

|s|
)(

Cφ
H

|s|2 + bM0
|s|3

)

(
1 − bM2

0
ρ4 − CH

ρ

)2
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= 1

1 − bM2
0

ρ4 − CH
ρ

(
α|h0|
|s| + |h0| + αC0

H

|s|2 + αCHM0 + C0
H

|s|3

+αbM2
0 + CHM0

|s|4 + bM2
0

|s|5
)

+ 1(
1 − bM2

0
ρ4 − CH

ρ

)2

(
M0αC

φ
H

|s|3 + αbM2
0 + M0C

φ
H

|s|4 + bM2
0

|s|5
)

.

Therefore we have that

∣∣∂φS1(ψ, s)
∣∣ ≤ M1

11(ρ)

|s| + M2
11(ρ)

|s|2 + M3
11(ρ)

|s|3 + M4
11(ρ)

|s|4 ,

where Mk
11 are the constants introduced in the lemma.

We now compute a bound for ∂ϕS. As for ∂φS, we define

S1(ψ, s) = ∂ϕF1(ψ,−s−1)

1 + s2
(
bφϕ + H(ψ,−s−1)

) + F1(ψ,−s−1)s2
(
bφ + ∂ϕH(ψ,−s−1)

)
(
1 + s2

(
bφϕ + H(ψ,−s−1)

))2 ,

S2(ψ, s) = −
(
αi − 1

s

)
φs2

(
bφ + ∂ϕH(ψ,−s−1)

)
(
1 + s2

(
bφϕ + H(ψ,−s−1)

))2 .

and we notice that

∂ϕS1 = S1 + S2.

We have that, if ‖φ‖3, ‖ϕ‖3 ≤ M0(ρ),

|S1(ψ, s)| ≤ 1

|s|2
Cϕ
F

1 − bM2
0

ρ4 − CH
ρ

+ 1

|s|3
CFC

ϕ
H(

1 − bM2
0

ρ4 − CH
ρ

)2

+ 1

|s|4
bM0CF(

1 − bM2
0

ρ4 − CH
ρ

)2 ,

|S2(ψ, s)| ≤ 1(
1 − bM2

0
ρ4 − CH

ρ

)2

(
M0αC

ϕ
H

|s|3 + αbM2
0 + M0C

ϕ
H

|s|4 + bM2
0

|s|5
)

.

Then

∣∣∂ϕS1(ψ, s)
∣∣ ≤ M2

12(ρ)

|s|2 + M3
12(ρ)

|s|3 + M4
12(ρ)

|s|4 ,
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with the constants Mk
12 defined in the lemma.

Since the bounds for F1, ∂φF1, ∂ϕF1 are the same as for F2, ∂φF2, ∂ϕF2 and using
the symmetry in the definition of S, we have that

|∂φS2(ψ, s)| ≤ M2
12(ρ)

|s|2 + M3
12(ρ)

|s|3 + M4
12(ρ)

|s|4 ,

∣∣∂ϕS2(ψ, s)
∣∣ ≤ M1

11(ρ)

|s| + M2
11(ρ)

|s|2 + M3
11(ρ)

|s|3 + M4
11(ρ)

|s|4 .

��
As a corollary, we obtain the following.

Corollary 2.4 If ψ,ψ ′ ∈ B(M0(ρ)) with ρ ≥ ρ2∗ as in Lemma 2.3. Then, there exist
functions �S j , j = 1 . . . 4, such that

S(ψ, s) − S(ψ ′, s) =
4∑
j=1

�S j (ψ, s) − �S j (ψ
′, s),

and

‖�S1(ψ, s) − �S1(ψ
′, s)‖4 ≤ M1

11(ρ)‖ψ − ψ ′‖3,
‖�S j (ψ, s) − �S j (ψ

′, s)‖3+ j ≤ (M j
11(ρ) + M j

12(ρ))‖ψ − ψ ′‖3.

As a consequence

|S(ψ, s) − S(ψ ′, s)| ≤|ψ(s) − ψ ′(s)|
(
M1

11(ρ)

|s| + M2
11(ρ) + M2

12(ρ)

|s|2

+ M3
11(ρ) + M3

12(ρ)

|s|3 + M4
11(ρ) + M4

12(ρ)

|s|4
)

.

Proof Indeed:

S1(ψ, s) − S1(ψ
′, s) =(φ − φ′)

∫ 1

0
∂φS1(ψ

′ + λ(ψ − ψ ′)) dλ

+ (ϕ − ϕ′)
∫ 1

0
∂ϕS1(ψ

′ + λ(ψ − ψ ′)) dλ

=(φ − φ′)(Sφ
1 + Sφ

2 + Sφ
3 + Sφ

4 ) + (ϕ − ϕ′)(Sϕ
2 + Sϕ

3 + Sϕ
4 ),

with Sφ,ϕ
j ∈ X j and

‖Sφ
j ‖ j ≤ M j

11(ρ), ‖Sϕ
j ‖ j ≤ M j

12(ρ).
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In analogous way, we decompose S2(ψ) − S2(ψ
′), and by symmetry, we obtain that

S(ψ, s) − S(ψ ′, s) =
(
S11(s) S12(s)
S21(s) S22(s)

)(
φ − φ′
ϕ − ϕ′

)
, (48)

with

|S11(s)|, |S22(s)| ≤ M1
11(ρ)

|s| + M2
11(ρ)

|s|2 + M3
11(ρ)

|s|3 + M4
11(ρ)

|s|4 ,

|S12(s)|, |S21(s)| ≤ M2
12(ρ)

|s|2 + M3
12(ρ)

|s|3 + M4
12(ρ)

|s|4 .

Namely, Si j can be decomposed as a sum of functions belonging to the adequate Xk .
Therefore, taking the supremmum norm in (48), we get the result. ��

Remark 2.5 Notice that, for some concrete functions F1,2 and H the general bounds
in that we have used for them and their derivatives (see (41)) may not be sharp. To
improve the estimates for |∂φ,ϕS| in Lemma 2.3, we need to track some terms of the
functions F12, H . Indeed, instead of (41) we can use bounds of the derivatives of the
form

∣∣∂x F1,2(x, y, z)
∣∣ ≤ cφ

F |z|2 + K φ
F |(x, y)||z|,∣∣∂y F1,2(x, y, z)

∣∣ ≤ cϕ
F |z|2 + K ϕ

F |(x, y)||z|,
∣∣∂x H(x, y, z)

∣∣ ≤ cφ
H |z|2 + K φ

H |(x, y)||z|,∣∣∂y H(x, y, z)
∣∣ ≤ cϕ

H |z|2 + K ϕ
H |(x, y)||z|,

which, together with (40), imply

∣∣F1,2(x, y, z) + a3z
3
∣∣ ≤ C0

F |z|4 + C̄F |(x, y)||z|2 + K̄F |(x, y)|2|z|,∣∣H(x, y, z) + h0z
3
∣∣ ≤ C0

H |z|4 + C̄H |(x, y)||z|2 + K̄H |(x, y)|2|z|,

with C̄F = cφ
F +cϕ

F , C̄H = cφ
H +cϕ

H , K̄F = K φ
F +K ϕ

F , K̄H = K φ
H +K ϕ

H . If necessary,
since |(x, y)| ≤ |z|, we can also use

∣∣F1,2(x, y, z) + a3z
3
∣∣ ≤ C0

F |z|4 + C̃F |(x, y)||z|2,∣∣H(x, y, z) + h0z
3 + a4z

4 + a5z
5
∣∣ ≤ c̄0H |z|6 + C̃H |(x, y)||z|2.

where

C̃F = C̄F + K̄F , C̃H = C̄H + K̄H .
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It is clear that, taking

CF = |a3| + C0
F

ρ
+ C̃FM0

ρ2 , Cφ,ϕ
F = cφ,ϕ

F + K φ,ϕ
F M0

ρ2 ,

CH = |a4| + |a5|
ρ

+ c̄0H
ρ2 + C̃H M0

ρ
, Cφ,ϕ

H = cφ,ϕ
H + K φ,ϕ

H M0

ρ2 ,

we can get a more accurate bound for |∂φ,ϕS|. In fact, we can just change the definition
of Mk

i j by changing the value of CF ,Cφ,ϕ
F ,Cφ,ϕ

H by their new value.

2.2.5 The Lipschitz Constant ofF−

Now we are going to compute the Lipschitz constant of the operator F− in (23).

Lemma 2.6 Take ρ ≥ ρ2∗ as in Lemma 2.3. The operator F : B(M0) → X3 × X3 is
Lipschitz with Lipschitz constant L(ρ) = min{L1(ρ), L2(ρ)} with

L1(ρ) =C4
M1

11(ρ)

ρ
+ B6

M2
11(ρ) + M2

12(ρ)

ρ
+ B7

M3
11(ρ) + M3

12(ρ)

ρ2

+ B8
M4

11(ρ) + M4
12(ρ)

ρ3 ,

L2(ρ) =C4
M1

11(ρ)

ρ
+ C5

M2
11(ρ) + M2

12(ρ)

ρ2 + C6
M3

11(ρ) + M3
12(ρ)

ρ3

+ C7
M4

11(ρ) + M4
12(ρ)

ρ4 .

(49)

where Bν and Cν are the constants introduced in (38) and (39), respectively.

Proof We apply the second item of Lemma 2.1 to �S1(ψ, s) − �S1(ψ
′, s) and we

obtain that

‖B−(�S1(ψ, s) − �S1(ψ
′, s))‖4 ≤

C4M
1
11(ρ)‖φ − φ′‖3. (50)

Now we apply the first item of Lemma 2.1 to �S j (ψ, s)−�S j (ψ
′, s) and we obtain

‖B− (
�S j (ψ, s) − �S j (ψ

′, s)
) ‖2+ j

≤ Bj+4(M
j
11(ρ) + M j

12(ρ))‖φ − φ′‖3. (51)

Then, we get L1(ρ) adding the results in (50) and (51). Furthermore, applying the
second item of Corollary 2.1, we obtain L2(ρ) using that

‖B− (
�S j (ψ, s) − �S j (ψ

′, s)
) ‖3+ j ≤ C j+2(M

j
11(ρ) + M j

12(ρ))‖φ − φ′‖3,

��
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Remark 2.7 Notice that Bm is decreasing with respect to m, but Cm is increasing. It
is not difficult to check that when ρ ≥ C7/B8 ≥ 39 · 32/(212 · 5π) ∼ 9.7895 then
L1(ρ) ≥ L2(ρ). This fact will be used in Sect. 3.1 and 3.2.

2.2.6 Setting�∗ for the Existence Result

We choose ρ∗ ≥ ρ2∗ satisfying

L(ρ∗) ≤ 1

2
,

so that Lemma 2.3 can be applied for ρ ≥ ρ∗. Then, the operator F− : B(M0) →
B(M0) is contractive. Indeed,

‖F−(ψ)‖3 ≤ ‖F−(0)‖3 + ‖F−(ψ) − F−(0)‖3 = M0

2
+ LM0 ≤ M0,

provided L ≤ 1
2 . Therefore, the operator has a fixed point ψ− defined in D−

ρ∗ (see
(16)) and therefore satisfies

|φ−(s)|, |ϕ−(s)| ≤ M0

|s|3 . (52)

2.2.7 Explicit Bounds for the Norm of the Linear OperatorG

The next lemma gives estimates for the linear operator G defined in (31) with respect
to the norm introduced in (34).

Lemma 2.8 Take ρ ≥ ρ∗ and let

A1(ρ) = M2
11

ρ
+ M3

11 + M2
12

2ρ2 + M4
11 + M3

12

3ρ3 + M4
12

4ρ4 ,

A2(ρ) = M2
12

2αρ2 + M2
11 + M3

12

2αρ3 + M3
11 + M4

12

2αρ4 + M4
11

2αρ5
,

(53)

where Mi j = Mi j (ρ) are the constants introduced in (47). Then, we have that, for s
with �s = 0 and 
s ≤ −ρ,

∣∣∣s−1eiα(s+h0 log s)G1(�ψ)

∣∣∣ ≤A1(ρ)‖�ψ‖,
∣∣∣eiα(s+h0 log s)G2(�ψ)

∣∣∣ ≤A2(ρ)‖�ψ‖.
(54)

In particular,

‖G(�ψ)‖ ≤ A(ρ)‖�ψ‖, (55)
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with

A = A(ρ) = max {A1(ρ), A2(ρ)} . (56)

Proof In this proof we omit the dependence on ρ of Mk
i, j . We use Lemma 2.3 to bound

K̃i j , the components of the matrix K̃ in (29). By construction, if ψ ∈ B(M0),

∣∣K̃11(ψ, s)
∣∣ , ∣∣K̃22(ψ, s)

∣∣ ≤ M2
11

|s|2 + M3
11

|s|3 + M4
11

|s|4 ,

∣∣K̃12(ψ, s)
∣∣ , ∣∣K̃21(ψ, s)

∣∣ ≤ M2
12

|s|2 + M3
12

|s|3 + M4
12

|s|4 .

Then, for the first component,

∣∣∣s−1eiα(s+h0 log s)G1(�ψ)

∣∣∣ ≤
∣∣∣∣∣
∫ s

−iρ

eiα(t+h0 log t)

t

(
K̃11�φ + K̃12�ϕ

)
dt

∣∣∣∣∣

≤
∫ s

−iρ

(
M2

11

|t |2 + M3
11

|t |3 + M4
11

|t |4
)

‖�φ‖ dt

+
∫ s

−iρ

(
M2

12

|t |3 + M3
12

|t |4 + M4
12

|t |5
)

‖�ϕ‖dt

≤
[
M2

11

ρ
+ M3

11

2ρ2 + M4
11

3ρ3

]
‖�φ‖

+
[
M2

12

2ρ2 + M3
12

3ρ3 + M4
12

4ρ4

]
‖�ϕ

≤
(
M2

11

ρ
+ M3

11 + M2
12

2ρ2 + M4
11 + M3

12

3ρ3 + M4
12

4ρ4

)
‖�ψ‖.

(57)

For the second component, using that
∣∣eiαh0 log t ∣∣ = eαh0π/2,

∣∣∣eiα(s+h0 log s)G2(�ψ)

∣∣∣ ≤
∣∣∣∣∣se

2iα(s+h0 log s)
∫ s

−∞
e−iα(t+h0 log t)

t

(K̃21�φ + K̃22�ϕ
)
dt

∣∣∣∣∣

≤ |s| e−2α
s
∫ s

−∞
e2α
t

([
M2

12

|t |2 + M3
12

|t |3 + M4
12

|t |4
]

‖�φ‖
)

dt

+|s|e−2α
s
∫ s

−∞
e2α
t

(
M2

11

|t |3 + M3
11

|t |4 + M4
11

|t |5 ‖�ϕ‖
)

dt

≤
[
M2

12

2αρ2 + M3
12

2αρ3 + M4
12

2αρ4

]
‖�φ‖
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+
[
M2

11

2αρ3 + M3
11

2αρ4 + M4
11

2αρ5

]
‖�ϕ‖

≤
(

M2
12

2αρ2 + M2
11 + M3

12

2αρ3 + M3
11 + M4

12

2αρ4 + M4
11

2αρ5

)
‖�ψ‖.

and the result is proven. ��

2.2.8 Computation of the Stokes Constant

Using the estimates of the operator G given in (55), we can provide a rigorous com-
putation of the Stokes constant.

Let ρ0 ≥ ρ∗ be such that

A(ρ0) <
1

2
.

Then, the constant M(ρ0) defined in (37) satisfies

M(ρ0) = A1(ρ0)

1 − A(ρ0)
<

A(ρ0)

1 − A(ρ0)
< 1, (58)

and, as a consequence,

� ∈ [
κ0(ρ0)(1 − M(ρ0)), κ0(ρ0)(1 + M(ρ0))

]
.

In the next section we give the precise algorithm which allows, by means of com-
puter rigorous computations, to compute � with a previous known accuracy. This
algorithm is applied to two concrete examples in Sects. 3.1 and 3.2.

2.3 Computing the Stokes Constant: Algorithm

We describe the steps needed to obtain the values of ρ∗ and ρ0 which guarantees that
ψ+, ψ− are defined for s ∈ (−iρ∗,−i∞) and a good accuracy of �.

• Step 1: Compute the constants a3, h0 and C0
F ,C0

H ,C
0
H , C

φ,ϕ
F , Cφ,ϕ

H which satisfy
(40) and (41) and CH , CF given in (42).

• Step 2: Take ρ1∗ ≥ max{2,C0
H } and compute, for ρ ≥ ρ1∗ , the constants C0(ρ)

given in Lemma 2.2 and M0(ρ) defined in (45).
• Step 3: Choose ρ2∗ ≥ ρ1∗ such that (46) is satisfied. Compute also the constants

M j
11(ρ), j = 1, 2, 3, 4 and M j

12(ρ), j = 2, 3, 4, in (47), for ρ ≥ ρ2∗ .
• Step 4: Compute the constants L1(ρ) and L2(ρ) in (49) for ρ ≥ ρ2∗ .
• Step 5: Choose ρ∗ ≥ ρ2∗ satisfying

L(ρ∗) = min{L1(ρ∗), L2(ρ∗)} ≤ 1

2
.
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• Step 6: Take ρ∗ and check that the difference

ψ+(−iρ∗) − ψ−(−iρ∗) �= 0.

• Step 7: For ρ ≥ ρ∗, compute the constants A1(ρ) and A2(ρ) in (53) and A(ρ) in
(56).

• Step 8: Compute ρ0 ≥ ρ∗ such that A(ρ0) ≤ 1/2. Then, compute κ0(ρ0) in (32)
and M(ρ0) in (58).

Therefore, the Stokes constant satisfies

� ∈ [
κ0(ρ0)(1 − M(ρ0)), κ0(ρ0)(1 + M(ρ0))

]
. (59)

Remark 2.9 By Theorem 1.7, the first 6 steps allows us to check whether � �= 0 or
not.

3 Examples

To illustrate the algorithm, we consider two concrete examples of analytic unfoldings
of aHopf-zero singularity (7)whose corresponding inner equation canbe found in (10).
In both cases, we prove that the associated constants� do not vanish and give rigorous
estimates for them.

3.1 The First Example

As first example, we take

α = 1, b = 1, g = h = 0 and f (X ,Y , Z , δ) = Z3. (60)

This corresponds to F1(φ, ϕ, s) = −s−3, F2 = F1 and H = 0. The inner equation
(15) associated to this model is the following

(
dφ
ds
dϕ
ds

)
= A(s)

(
φ

ϕ

)
+ S(φ, ϕ, s), (61)

with

S(φ, ϕ, s) =
(
S1(φ, ϕ, s)
S2(φ, ϕ, s)

)
=

⎛
⎜⎜⎜⎝

(
i − 1

s

)
ϕφ2s2 − 1

s3

1 + ϕφs2(
i + 1

s

)
ϕ2φs2 − 1

s3

1 + ϕφs2

⎞
⎟⎟⎟⎠ . (62)

Now we follow the steps of the algorithm in Sect. 2.3.
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Step 1. In this case, h0 = 0, and moreover, among all the constants defined in Step 1,
the only one that is different form 0 is a3 = 1.
Step 2. In this case, we have that ρ1∗ = 2 and C0 = 0 so that M0 = 22

3 is independent
on ρ.
Step 3. We have that ρ2∗ has to be such that

√
M0 =

√
22

3
< ρ2∗ .

In addition M1,2,3
i j = 0 and

M4
11(ρ) = M0(

1 − M2
0

ρ4

)2

(
1 + M0 +

(
M0 + M0

ρ

)(
1 − M2

0

ρ4

)
+ M0

ρ

)

= M0(
1 − M2

0
ρ4

)2

(
1 + M0

(
1 + 1

ρ

)(
2 − M2

0

ρ4

))
,

M4
12(ρ) = M0(

1 − M2
0

ρ4

)2

(
1 + M0

(
1 + 1

ρ

))
.

Step 4 and Step 5. One can check that

L1(ρ) = B8
M4

11(ρ) + M4
12(ρ)

ρ3 ≤ 1

2
,

for ρ ≥ ρ∗ = 9.7895. Under this condition, as we claimed in Remark 2.7,

L(ρ) ≤ 1

2
.

Therefore we can guarantee the existence of ψ± for ρ ≥ ρ∗ = 9.7895.
Step 6. Now it only remains to compute

ψ+(−iρ∗) − ψ−(−iρ∗) �= 0.

By means of rigorous computer computations, which are discussed in more detail in
“Appendix B,” we obtain that there exists a

ρ∗ ∈ [15.99999965, 16.00000035], (63)

for which

ψ+ (−iρ∗) − ψ− (−iρ∗) (64)
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=
(

�φ (−iρ∗)
�ϕ (−iρ∗)

)

∈
( [ − 4.50096 · 10−10, 4.50096 · 10−10] − [1.88812 · 10−6, 1.88897 · 10−6]i

[ − 3.85539 · 10−10, 3.85539 · 10−10] + [−4.01544 · 10−10, 3.4832 · 10−10]i
)

.

Therefore, the Stokes constant associated to the first example (60) does not vanish.
Now we follow Step 7. and Step 8. to provide rigorous accurate estimates for it.

Step 7. The constants A1 and A2 in (53) are

A1(ρ) = M4
11(ρ)

3ρ3 + M4
12(ρ)

4ρ4 , A2(ρ) = M4
12(ρ)

2ρ4 + M4
11(ρ)

2ρ5
, (65)

which give the constant A(ρ) = max{A1(ρ), A2(ρ)} in (56). We obtain

A1(ρ∗) ∈ [0.010155523, 0.010155525],
A2(ρ∗) ∈ [0.0009597786, 0.0009597788],
A(ρ∗) = A1(ρ∗) < 1/2.

Step 8. One can choose ρ0 = ρ∗. Then, by (32), (58) and (59), one obtains

� ∈ [1.0378681, 1.0598665] + [−0.000253, 0.000253]i . (66)

We can see that the accuracy of the computation is roughly 2 · 10−2.

Remark 3.1 The computation suggests that theStokes constant� ∈ R. Indeed, this fact
can be proved for this example by considering ψ̂±(r) = (φ̂±(r), ϕ̂±(r)) = ψ±(ir),
r ∈ (−∞,−ρ0] that satisfies the real differential equation

d

dr
ψ̂ =

(−1 + 1
r 0

0 1 + 1
r

)
ψ̂ +

⎛
⎜⎜⎜⎝

−
(
1 − 1

r

)
ϕ̂φ̂2r2 − 1

r3

1 − ϕ̂φ̂r2

−
(
1 + 1

r

)
ϕ̂2φ̂r2 − 1

r3

1 − ϕ̂φ̂r2

⎞
⎟⎟⎟⎠

along with the real boundary conditions limr→−∞ ψ̂±(r) = 0. Therefore ψ̂± are real
functions and so their difference is.

As we will see in the next example, the fact that � ∈ R is not generic and depends
strongly on the symmetries of the inner equation.

3.2 The Second Example

The second example breaks the reversibility. It consists in taking α = b = 1, g = h =
0 and f (X ,Y , Z , δ) = Z3 + 2XY Z which corresponds to

F1(φ, ϕ, s) = F2(φ, ϕ, s) = − 1

s3
+ i

s
(φ2 − ϕ2), H = 0,
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and then, the inner equation associated to this unfolding is:

(
dφ
ds
dϕ
ds

)
= A(s)

(
φ

ϕ

)
+ S(φ, ϕ, s), (67)

with S defined as

S(φ, ϕ, s) =
(
S1(φ, ϕ, s)
S2(φ, ϕ, s)

)
=

⎛
⎜⎜⎜⎝

(
i − 1

s

)
ϕφ2s2 − 1

s3
+ i

2s (φ
2 − ϕ2)

1 + ϕφs2(
i + 1

s

)
ϕ2φs2 − 1

s3
+ i

2s (φ
2 − ϕ2)

1 + ϕφs2

⎞
⎟⎟⎟⎠ .

Step 1.We have that all the constants are zero except a3 = 1,CF = 2,Cφ
F = Cϕ

F = 1.
Step 2. As for the first example ρ1∗ = 2 and C0 = 0 so that M0 = 22

3 .
Step 3. We have that ρ2∗ has to be such that

√
M0 =

√
22

3
< ρ2∗ .

In addition M1,3
i j (ρ) = 0 being

M2
11(ρ) = M2

12(ρ) = 2

1 − M2
0

ρ4

M4
11(ρ) = M0(

1 − M2
0

ρ4

)2

(
2 + M0 +

(
M0 + M0

ρ

)(
1 − M2

0

ρ4

)
+ M0

ρ

)

= M0(
1 − M2

0
ρ4

)2

(
2 + M0

(
1 + 1

ρ

)(
2 − M2

0

ρ4

))

M4
12(ρ) = M0(

1 − M2
0

ρ4

)2

(
2 + M0

(
1 + 1

ρ

))
.

Step 4 and Step 5. One can check that

L1(ρ) = B6
M2

11(ρ) + M2
12(ρ)

ρ
+ B8

M4
11(ρ) + M4

12(ρ)

ρ3 ≤ 1

2

for ρ ≥ ρ∗ ≥ 9.7895. Therefore, under this condition, using Remark 2.7 as for
Example 1, we can guarantee that L(ρ) ≥ 1/2 and, then, the existence of ψ±.
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Remark 3.2 For Example 2, we can obtain more accurate estimates by computing
directly the derivatives ∂φ,ϕS. Indeed, performing straightforward computations, we
obtain that M1

i j (ρ) = M2
i j (ρ) = M3

i j (ρ) = 0 and

M4
11(ρ) = M0(

1 − M2
0

ρ4

)2

(
3 + M0

(
1 + 1

ρ

)(
2 − M2

0

ρ4

))

M4
12(ρ) = M0(

1 − M2
0

ρ4

)2

(
3 + M0

(
1 + 1

ρ

))
.

(68)

Therefore

L1(ρ) = B8
M4

11(ρ) + M4
12(ρ)

ρ3 = 5π

32

M4
11(ρ) + M4

12(ρ)

ρ3 .

Since we need to be as precise as possible, we use the constants Mk
i j (ρ) defined in

Remark 3.2 instead of the constants provided by the general method.
Step 6. We compute ψ+(−iρ∗) − ψ−(−iρ∗). By means of rigorous computer com-
putations, we obtain that there exists a ρ∗

ρ∗ ∈ [15.99999965, 16.00000035], (69)

for which

ψ+ (−iρ∗) − ψ− (−iρ∗)

=
(

�φ (−iρ∗)
�ϕ (−iρ∗)

)
(70)

∈
( [8.63066 · 10−9, 9.53086 · 10−9] − [1.88812 · 10−6, 1.88897 · 10−6]i

[ − 4.20777 · 10−10, 3.50313 · 10−10] + [−4.01721 · 10−10, 3.48156 · 10−10]i
)

.

This implies that � �= 0. Now we perform the last two steps in the algorithm.
Step 7. For Example 2, we have that

A1(ρ) = M4
11(ρ)

3ρ3 + M4
12(ρ)

4ρ4 , A2(ρ) = M4
12(ρ)

2ρ4 + M4
11(ρ)

2ρ5
,

and A(ρ) = max {A1(ρ), A2(ρ)}, with M4
11(ρ), M4

12(ρ) defined in (68). We obtain

A1(ρ∗) ∈ [0.0114071016, 0.0114071033],
A2(ρ∗) ∈ [0.00066984056, 0.00066984069],
A(ρ∗) = A1(ρ∗) < 1/2.
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Step 8. By means of rigorous computer validation, for ρ0 = ρ∗ using (32), (58) and
(59) we obtain

� ∈ [1.036525, 1.0612062] + [0.004738, 0.005355]i .

We can see that the accuracy of the computation is roughly 2.5 · 10−1. Note that
Step 8 implies that the Stokes constant has both nonzero real and imaginary part (see
Remark 3.1).

4 Improving the Computation of the Stokes Constant

In this section, we give an improvement of the Steps 7 and 8 in Sect. 2.3 to obtain
accurate estimates for the Stokes constant �. We explain this improvement for the
Example 1 given in Sect. 3.1 but the method we present is general and can be applied
to any system.

Recall that, using (19) and (30),

� = lim
s→−∞ s−1eiαs�φ(s) = κ0 + lim
s→−∞ s−1eiαsG1 (�ψ(s))

= κ0 + lim
s→−∞ s−1eiαsG1 (�ψ0(s)) + lim
s→−∞ s−1eiαsG1 (G(�ψ)(s)) .

Therefore, by (54), (55) and (36), the remainder

E� = � − κ0 − lim
s→−∞ s−1eiαsG1 (�ψ0(s)) ,

satisfies

|E�| ≤ sup
s

∣∣∣s−1eiαsG1 (G(�ψ)(s))
∣∣∣ ≤ A1‖G(�ψ)‖ ≤ A1A‖�ψ‖

≤ A1A
|κ0|
1 − A

.

where A = A(ρ) = max{A1, A2} and A1, A2 are given in (65).
Using (31) and the fact that in Example 1, h0 = 0 and therefore K̃ = K,

lim
s→−∞ s−1eiαsG1 (�ψ0(s)) = −κ0

∫ iρ

−i∞
K11(t)dt

= −iκ0

∫ ρ

−∞
K11(i r)dr , (71)

which implies

� = κ0 − iκ0

∫ ρ

−∞
K11(i r)dr + E�. (72)
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To obtain this integral, we need an approximation of the coefficient K11.

Lemma 4.1 The function K11 introduced in (26) associated to Eq. (61) satisfies

K11(s) = iβ1

s4
+ β2

s5
+ i β3

s6
+ β4

s7
+ EKT 11,

β1 = 3, β2 = −6, β3 = −68, β4 = 48,
(73)

and EKT 11 satisfies

|EKT 11| ≤ BR
|s|7 + B11 + B12 + B13 + B14

|s|8 , (74)

where

B = 5π

32

(
M4

11(ρ) + M4
12(ρ)

)
M0 + 225π

2
,

R =
1 + 4M0(1 + 1

ρ
) + 3

M2
0

ρ4

(
1 − M2

0
ρ4

)3 ,

B11 = M4∗ (1 + 1
ρ
)

(
1 − M2∗

ρ4

)2 ,

B12 = M5∗
(2M∗(1 + 1

ρ
) + 1)(3 + 2M2∗

ρ4 )

ρ4
(
1 − M2∗

ρ4

)2 ,

B13 = 2M3∗
(
2M∗

(
1 + 1

ρ

)
+ 1

)
,

B14 = 800

(
1 − 1

ρ

)
,

and

M∗(ρ) = 1 + 4

ρ
+ 20

ρ2 + 120

ρ3 .

This lemma is proven in Sect. 4.1.
Now take ρ� be such that M∗(ρ) ≤ M0(ρ) for ρ ≥ ρ�. Using the expression ofK11

given in (73) to compute (71) and using the remainder estimates in (74) we obtain:

−iκ0

∫ ρ

−∞
K11(i r)dr = κ0

∫ ρ

−∞
β1

r4
− β2

r5
− β3

r6
+ β4

r7
dr + ES

= κ0

(
− β1

3ρ3 + β2

4ρ4 − β3

5ρ5
− β4

6ρ6

)
+ ES,

(75)
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and

|ES| = |ES(ρ)| ≤ κ0

∫ ∞

ρ

BR
r7

+ B11 + B12 + B13 + B14

r8

= BR
6ρ6 + B11 + B12 + B13 + B14

7ρ7 .

Finally, using the expression (72) for � we obtain

� = κ0

(
1 − β1

3ρ3 + β2

4ρ4 − β3

5ρ5
− β4

6ρ6

)
+ ET ,

ET = ET (ρ) = ES + E�.

As we know the constants βi , one can use this formula to improve the computation of
�.

Indeed, using the above approach one obtains

� ∈ [1.047906, 1.049289] + [−0.00070294, 0.00070294]i . (76)

We can see that the accuracy of the computation is roughly 10−3, which is an improve-
ment when compared to the accuracy 2 · 10−1 from (66). (For (76) we have used the
same ρ∗ and the computed value of �ψ(−iρ∗) as for (66).)

4.1 Proof of Lemma 4.1

Lets call Ki j (s) the 4 elements of the matrix K. To obtain expansions for these coef-
ficients we compute first an expansion for ψ± associated to Example 1 in (60).

Lemma 4.2 The functions ψ± can be written as

ψ± = ψ∗ + E±,

where ψ∗ = (φ∗, ϕ∗) with

φ∗ = − i

s3
− 4

s4
+ 20i

s5
+ 120

s6
,

ϕ∗ = i

s3
− 4

s4
− 20i

s5
+ 120

s6
,

which satisfy

|φ∗(s)|, |ϕ∗(s)| ≤ M∗(ρ)

|s|3 , (77)
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for

M∗(ρ) = 1 + 4

ρ
+ 20

ρ2 + 120

ρ3 , (78)

and the remainders E± = (E±
φ , E±

ϕ ) satisfy

|E±
φ |, |E±

ϕ | ≤ B

|s|6 . (79)

with

B = 5π

32

(
M4

11(ρ) + M4
12(ρ)

)
M0 + 225π

2
.

Proof By (62), the first iterationF−(0) analyzed in Lemma 2.2 for Example 1 is given
by

F−
1 (0) = s

∫ 0

−∞
1

(s + t)4
eit dt,

F−
2 (0) = s

∫ 0

−∞
1

(s + t)4
e−i t dt .

Integrating by parts, we obtain

F−
1 (0) = − i

s3
+ 4s

i

∫ 0

−∞
1

(s + t)5
eit dt

= − i

s3
− 4

s4
+ 20i

s5
+ 120

s6
+ E−

1 (s) = φ∗(s) + E−
1 (s),

where

|E−
1 (s)| =

∣∣∣∣720s
∫ 0

−∞
1

(s + t)8
eit dt

∣∣∣∣ ≤ 720

|s|6
∫ ∞

0

1

(t2 + 1)4
dr = 720

|s|6
5π

32
= 225π

2|s|6 .

Analogously, for the second component

F−
2 (0) = i

s3
− 4

s4
+ 20i

s5
+ 120

s6
+ E−

2 (s) = ϕ∗(s) + E−
2 (s),

where E−
2 has the same bounds as E−

1 :

|E−
2 (s)| ≤ 225π

2|s|6 .
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Let us call ψ∗ = (φ∗, ϕ∗) and E− = (
E−
1 , E−

2

)
. Observe that by Lemma 2.1 and

Corollary 2.4 and recalling that, for Example 1, one has M j
11 = M j

12 = 0 for j =
1, 2, 3,

∥∥F−(ψ) − F−(0)
∥∥
6 ≤ 5π

32
‖S(ψ, s) − S(0, s)‖7

≤ 5π

32

(
M4

11(ρ) + M4
12

)
‖ψ‖3 .

Now we use that ψ− is a fixed point of operator F− and therefore

∥∥ψ− − ψ∗
∥∥
6 ≤ ∥∥ψ− − F−(0)

∥∥
6 + ∥∥E−(0)

∥∥
6

≤ 5π

32

(
M4

11(ρ) + M4
12(ρ)

)
M0 + 225π

2
= B.

We conclude

∣∣∣∣φ− −
(

− i

s3
− 4

s4
− 20i

s5
+ 120

s6

)∣∣∣∣ ≤ B

|s|6 ,

∣∣∣∣ϕ− −
(

i

s3
− 4

s4
+ 20i

s5
+ 120

s6

)∣∣∣∣ ≤ B

|s|6 .

��

Using the previous result, we can compute a better asymptotic expansion of K11.
We rely on the expression

K11(s) =
∫ 1

0
∂φS1(ψ

−(s) + t(ψ+(s) − ψ−(s))dt .

Note that, for Example 1,

∂φS1 = 2Aϕφ + Bϕ2φ2 + Cϕ

(1 + Dϕφ)2
,

where

A =
(
i − 1

s

)
s2, B = s4

(
i − 1

s

)
, C = 1

s
, D = s2.

We define the function

g(r) = ∂φS1
(
ψ∗(s) + r

(
E−(s) + t

(
E+(s) − E−(s)

)))
,
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and using the fundamental theorem of calculus, g(1) = g(0) + ∫ 1
0 g′(r)dr , we have

that

∂φS1(ψ
−(s) + t(ψ+(s) − ψ−(s)) = ∂φS1(ψ∗(s))

+
(
E−

φ (s) + t(E+
φ (s) − E−

φ (s)
) ∫ 1

0
∂φφS1

(
ψ∗(s) + r

(E−(s) + t(E+(s) − E−(s)
))

dr

+ (E−
ϕ (s) + t(E+

ϕ (s) − E−
ϕ (s)

) ∫ 1

0
∂φϕS1

(
ψ∗(s) + r

(E−(s) + t(E+(s) − E−(s)
))

dr .

Therefore,

K11 = ∂φS1(ψ∗(s))

+
∫ 1

0

[(
E−

φ (s) + t(E+
φ (s) − E−

φ (s)
) ∫ 1

0
∂φφS1 (ψ∗(s)

+r
(
E−(s) + t(E+(s) − E−(s)

))
dr

]
dt

+
∫ 1

0

[(
E−

ϕ (s) + t(E+
ϕ (s) − E−

ϕ (s)
) ∫ 1

0
∂φϕS1 (ψ∗(s)

+r
(
E−(s) + t(E+(s) − E−(s)

))
dr

]
dt .

(80)

One can easily check that

∂φφS1(ψ) = 2Aϕ − 2DCϕ2

(1 + Dϕφ)3
, ∂φϕS1(ψ) = C + 2Aφ − DCϕφ

(1 + Dϕφ)3
.

Moreover, by (52) and (77), we know that

|ψ∗(s) + r(E−(s) + t(E+(s) − E−(s)))| ≤ M0

|s|3 .

Then, taking into account the definitions of A,C,D, one can obtain the following
bounds for |s| ≥ ρ,

|∂φφS1(ψ)| ≤ 1

s

2M0(1 + 1
ρ
) + 2

M2
0

ρ4

(
1 − M2

0
ρ4

)3 ,

|∂φϕS1(ψ)| ≤ 1

s

1 + 2M0(1 + 1
ρ
) + M2

0
ρ4

(
1 − M2

0
ρ4

)3 .

Using (80) and the bounds (79), we obtain that K11 satisfies

K11(s) = ∂φS1(ψ∗(s)) + EK11, (81)
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with

|EK11| ≤ B

|s|7R, where R =
1 + 4M0(1 + 1

ρ
) + 3

M2
0

ρ4

(
1 − M2

0
ρ4

)3 . (82)

Last step is to compute ∂φS1(ψ∗) using the formula of ψ∗ in Lemma 4.2. We recall
that

∂φS1(ψ∗) = ϕ∗φ∗s2
(
i − 1

s

) (
2 + ϕ∗φ∗s2

) + 1
s ϕ∗(

1 + ϕ∗φ∗s2
)2 ,

and we write

∂φS1(ψ∗) = 2ϕ∗φ∗s2
(
i − 1

s

) + 1
s ϕ∗(

1 + ϕ∗φ∗s2
)2 + ER1,

with

|ER1| =
∣∣∣∣∣
ϕ∗φ∗s2

(
i − 1

s

)
ϕ∗φ∗s2(

1 + ϕ∗φ∗s2
)2

∣∣∣∣∣ ≤ M4∗ (1 + 1
ρ
)

(
1 − M2∗

ρ4

)2
1

|s|8 = B11

|s|8 . (83)

Now, using that

1

(1 + x)2
= 1 − 2x + x2(3 + 2x)

1 + x2
,

we write

∂φS1(ψ∗) =
(
2ϕ∗φ∗s2

(
i − 1

s

)
+ 1

s
ϕ∗

)(
1 − 2ϕ∗φ∗s2

)
+ ER1 + ER2

= 2ϕ∗φ∗s2
(
i − 1

s

)
+ 1

s
ϕ∗ + ER1 + ER2 + ER3,

with

|ER2| =
∣∣∣∣2ϕ∗φ∗s2

(
i − 1

s

)
+ 1

s
ϕ∗

∣∣∣∣
∣∣∣∣∣
ϕ2∗φ2∗s4

(
3 + 2ϕ∗φ∗s2

)
(
1 + ϕ∗φ∗s2

)2
∣∣∣∣∣

≤ M5∗
|s|12

(2M∗(1 + 1
ρ
) + 1)(3 + 2M2∗

ρ4 )

(
1 − M2∗

ρ4

)2
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≤ M5∗
|s|8

(2M∗(1 + 1
ρ
) + 1)(3 + 2M2∗

ρ4 )

ρ4
(
1 − M2∗

ρ4

)2 = B12

|s|8 ,

|ER3| =
∣∣∣∣
(
2ϕ∗φ∗s2

(
i − 1

s

)
+ 1

s
ϕ∗

)(
−2ϕ∗φ∗s2

)∣∣∣∣

≤ 2M3∗
|s|8

(
2M∗

(
1 + 1

ρ

)
+ 1

)
= B13

|s|8 . (84)

We now substitute the expressions ψ∗ in Lemma 4.2 which give

φ∗ϕ∗ = 1

s6
− 24

s8
+ 400

s10
,

2ϕ∗φ∗s2
(
i − 1

s

)
+ 1

s
ϕ∗ = 3i

s4
− 6

s5
− 68i

s6
+ 48

s7
+ 800i

s8
− 800

s9
,

which gives

∂φS1(ψ∗) = 3i

s4
− 6

s5
− 68i

s6
+ 48

s7

+ ER1 + ER2 + ER3 + ER4,

and

|ER4| ≤ 800

|s|8
(
1 − 1

ρ

)
= B14

|s|8 . (85)

Using these approximations in (81), we obtain the statement of the lemma taking

EKT 11 = EK11 + ER1 + ER2 + ER3 + ER4.

Using the bounds (82), (83), (84), (85), we get

|EKT 11| ≤ BR
|s|7 + B11 + B12 + B13 + B14

|s|8 . (86)

.
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Appendix A: Proof of Lemma 2.1

To prove Lemma 2.1, we need first the following lemma.

Lemma A.1 If m is even

∫ 0

−∞
1

(t2 + 1)m/2 dt = π

2

(m − 3))!!
(m − 2)!! =: Bm,

and, for m odd

∫ 0

−∞
1

(t2 + 1)m/2 dt = (m − 3)!!
(m − 2)!! =: Bm .

Proof Integrating by parts,

Ik : =
∫ 0

−∞
1

(t2 + 1)k/2
dt = k

∫ 0

−∞
t2

(t2 + 1)
k
2+1

= k Ik − k Ik+2.

Therefore Ik+2 = k−1
k Ik which implies Ik = k−3

k−2 Ik−2 and therefore

Ik = (k − 3)!!
(k − 2)!! J ,

with J = I3 if k is odd and J = I2 if k is even. Since I3 = 1 and I2 = π
2 we are done.

��
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We use this lemma to prove Lemma 2.1.

Proof of Lemma 2.1 Let ψ = (φ, ϕ) ∈ Xν The first component of B−(ψ) is

B−
1 (ψ) = s

∫ 0

−∞
eiαt

s + t
φ(s + t) dt . (87)

We first prove the first item. Indeed, using that |s + t |2 ≥ |s|2 + t2 for s ∈ D−
ρ , one

can prove that

∣∣B−
1 (ψ)

∣∣ ≤ |s|‖φ‖ν

∫ 0

−∞
1

|s + t |ν+1 dt ≤ ‖φ‖ν

|s|ν−1

∫ 0

−∞
1

(
t2 + 1

) ν+1
2

= Bν+1
‖φ‖ν

|s|ν−1 .

Analogously we deal with B−
2 (ψ) and we obtain the result in the first item, taking into

account that the product norm is the supremum norm.
Nowwe deal with the second item. By the geometry ofD−

ρ , and using the Cauchy’s
theorem, we can change the path of integration in the integral (87) defining B−

1 (ψ)

to teiγ , t ∈ (−∞, 0], with 0 ≤ γ ≤ β. We obtain then

B−
1 (ψ)(s) = s

∫ 0

−∞
eiαte

iγ

s + teiγ
φ(s + teiγ )eiγ dt .

Notice that s + teiγ ∈ D−
ρ and

|s + teiγ | ≥ |s| sin
(π

2
− γ

)
= |s| cos γ.

Therefore

∣∣B−
1 (ψ)

∣∣ ≤ ‖φ‖ν

|s|ν( cos γ
)ν+1

∫ 0

−∞
eα sin γ t dt = ‖φ‖ν

|s|να( cos γ
)ν+1 sin γ

.

The function
(
cos γ

)ν+1 sin γ has only a maximum in
(
0, π

2

)
in γ∗ such that (ν +

1) sin2 γ∗ = 1.
As in the first item, B−

2 (ψ) can be treated in the same way, changing here the
integration path to te−iγ . ��

Appendix B: Computing the bound on 1Ã (−i�∗)

Here we provide an explicit rigorous estimate, using interval arithmetic bounds, for
the distance between ψ+ (−iρ) and ψ− (−iρ) for a given ρ > 0 which we have used
for our Examples 1 and 2 (discussed in Sects. 3.1, 3.2 and 4).

We start with Example 1. We work with the system (11) with F1 = −s−3, F2 = 0,
H = 0.
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By writing

φ = x1 + iy1, ϕ = x2 + iy2, s = s1 + is2,

we can rewrite (11) as

x ′
1 =

(
1 + s2

s21 + s22

)
y1 + s1x1

s21 + s22
− s31 − 3s1s22(

s21 + s22
)3 ,

y′
1 = −

(
1 + s2

s21 + s22

)
x1 + s1y1

s21 + s22
− s32 − 3s21s2(

s21 + s22
)3 ,

x ′
2 = −

(
1 − s2

s21 + s22

)
y2 + s1x2

s21 + s22
− s31 − 3s1s22(

s21 + s22
)3 ,

y′
2 =

(
1 − s2

s21 + s22

)
x2 + s1y2

s21 + s22
− s32 − 3s21s2(

s21 + s22
)3 ,

s′
1 = −2s1s2 (x1y2 + x2y1) + (x1x2 − y1y2)

(
s21 − s22

)
+ 1,

s′
2 = 2s1s2 (x1x2 − y1y2) + (x1y2 + x2y1)

(
s21 − s22

)
. (88)

This is an ODE in R
6, with real time τ . We shall write �τ for the flow induced by

(88).
Note that (s1, s2) = (0,−ρ) corresponds to the complex s = −iρ.
For x ∈ R

6, we shall write

τ+ (x) = sup
{
τ < 0 : πs1�τ (x) = 0

}
,

τ− (x) = inf
{
τ > 0 : πs1�τ (x) = 0

}
,

and define

P+,P− : R6 → {s1 = 0} ,

P+ (x) := �τ+(x)(x),

P− (x) := �τ−(x)(x).

We do not assume that P+ and P− are globally defined. Whenever we write P+ (x)
or P− (x), we will always validate that the considered point x lies in the domain of
the map.

We know that the two solutions ψ± of (12) (with F1 = −s−3, F2 = 0, H = 0)
satisfy

∥∥ψ−(s)
∥∥ ≤ |s|−3 M0 ≤ |�s|−3 M0 for �s < 0, (89)∥∥ψ+(s)
∥∥ ≤ |s|−3 M0 ≤ |�s|−3 M0 for �s > 0. (90)
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Fig. 1 Illustration for Lemma B.1. Here we depict the projection of the flow onto the s = (s1, s2) coor-
dinates. The sets P+(p+) and P−(p−) which lead to the bound (92) for �ψ lie on the section {s1 = 0}

Lemma B.1 Consider s−, s+
l , s+

u ∈ R
2 of the form s− = (s−

1 , s−
2 ), s+

l = (s+
1 , s+

2,l),

s+
u = (s+

1 , s+
2,u), where s

−
1 < 0 < s+

1 and s+
2,l < s+

2,u. (The subscripts l and u stand

for ‘lower’ and ‘upper’; see Fig. 1.) Let s+ ⊂ R
2 be the vertical interval joining s+

l
and s+

u and let

p− :=
{
p ∈ R

6 : πs p = s−,
∥∥πx,y p

∥∥ ≤ ∣∣s−
1

∣∣−3
M0

}
,

p+ :=
{
p ∈ R

6 : πs p ∈ s+,
∥∥πx,y p

∥∥ ≤ ∣∣s+
1

∣∣−3
M0

}
,

p+
u :=

{
p ∈ R

6 : πs p = s+
u ,

∥∥πx,y p
∥∥ ≤ ∣∣s+

1

∣∣−3
M0

}
,

p+
l :=

{
p ∈ R

6 : πs p = s+
l ,

∥∥πx,y p
∥∥ ≤ ∣∣s+

1

∣∣−3
M0

}
.

If

πs2P+ (
p+
l

)
< πs2P− (

p−) < πs2P+ (
p+
u

)
< 0, (91)

then there exists a ρ∗ ∈ −πs2P− (
p−) such that

�ψ
(−iρ∗) = ψ+ (−iρ∗) − ψ− (−iρ∗) ∈ πx,y

(
P+ (

p+) − P− (
p−)) . (92)

Proof From (89–90) we see that

ψ− (
s−) ∈ πx,yp−,

ψ+ (
s+

) ⊂ πx,yp+.

By the Bolzano theorem applied to

s+ � s+ �→ πs2

(
P+ (

ψ− (
s+) , s+) − P− (

ψ− (
s−) , s−)) ,

from (91), we see that there there exists a s+∗ ∈ s+ such that

P+ (
ψ− (

s+∗
)
, s+∗

) = P− (
ψ− (

s−) , s−) .
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By definition of P± we know that πsP± (q) ∈ {0} × R, so

πsP+ (
ψ− (

s+∗
)
, s+∗

) = πsP− (
ψ− (

s−) , s−) = (
0,−ρ∗) ,

for some ρ∗ > 0 (the sign follows from (91)) and hence

ψ− (−iρ∗) = πx,yP− (
ψ− (

s−) , s−) ∈ πx,yP− (
p−) ,

ψ+ (−iρ∗) = πx,yP− (
ψ− (

s−∗
)
, s−∗

) ∈ πx,yP+ (
p+) ,

which implies (92), as required. ��
In our computer-assisted proof, we have taken ρ̄ := 16.00008679 and

s− =
(
−103,−ρ̄

)
, (93)

s+
u =

(
103,−ρ̄ + 10−6

)
, (94)

s+
l =

(
103,−ρ̄ − 10−6

)
. (95)

(the choice of ρ̄ is dictated by the fact that then ρ∗ ≈ 16; see (63)). Then, we have
validated that, with such choice of s−, s+

u , s+
l , Lemma B.1 leads to the bound (64).

The computation of P+ (
p+) ,P− (

p−) required a long integration time, due to the
number 103 in our choice of s−

1 , s+
1 . The benefit of such large value in �s is that then

|�s|−3 is a very small number, leading to small sets p±,p+
l ,p+

u . This results in good
bounds on �ψ . Such choice of �s was reached by trial and error.

The computer-assisted validation of (64) took under 20 seconds, running on a single
thread of a standard laptop.

The computation of �ψ in the second example also follows from Lemma B.1. The
only difference is the formula for the vector field, which is

x ′
1 = s1

s21 + s22
x1 +

(
α + s2

s21 + s22

)
y1 − s31 − 3s1s22(

s21 + s22
)3

+ 1

s21 + s22

(
s2

(
x21 − y21 − x22 + y22

)
+ 2s1 (x2y2 − x1y1)

)
,

y′
1 = −

(
α + s2

s21 + s22

)
x1 + s1

s21 + s22
y1 − s32 − 3s21s2(

s21 + s22
)3

+ 1

s21 + s22

(
s1

(
x21 − x22 − y21 + y22

)
+ 2s2 (x1y1 − x2y2)

)
,

x ′
2 = s1

s21 + s22
x2 −

(
α − s2

s21 + s22

)
y2 − s31 − 3s1s22(

s21 + s22
)3

+ 1

s21 + s22

(
s2

(
x21 − y21 − x22 + y22

)
+ 2s1 (x2y2 − x1y1)

)
,
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y′
2 =

(
α − s2

s21 + s22

)
x2 + s1

s21 + s22
y2 − s32 − 3s21s2(

s21 + s22
)3

+ 1

s21 + s22

(
s1

(
x21 − x22 − y21 + y22

)
+ 2s2 (x1y1 − x2y2)

)
,

s′
1 = 1 − 2bs1s2 (x1y2 + x2y1) + b

(
s21 − s22

)
(x1x2 − y1y2) ,

s′
2 = 2bs1s2 (x1x2 − y1y2) + b

(
s21 − s22

)
(x1y2 + x2y1) .

We take the same s−, s+
l , s+

u as in (93 –95) which, with the aid of Lemma B.1 and
interval arithmetic integration, leads to the bounds (69 –70).

The computer-assisted validation of (70) took under 25 seconds, running on a single
thread of a standard laptop.
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