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Abstract

There are many interesting dynamical systems in which degenerate invariant
tori appear. We give conditions under which these degenerate tori have stable and
unstable invariant manifolds, with stable and unstable directions having arbitrary
finite dimension. The setting in which the dimension is larger than one was not
previously considered and is technically more involved because in such case the
invariant manifolds do not have, in general, polynomial approximations. As an
example, we apply our theorem to prove that there are motions in the (n + 2)-body
problem in which the distances among the first n bodies remain bounded for all
time, while the relative distances between the first n-bodies and the last two and
the distances between the last bodies tend to infinity, when time goes to infinity.
Moreover, we prove that the final motion of the first n bodies corresponds to a KAM
torus of the n-body problem.
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1. Introduction

1.1. Parabolic Invariant Tori with Stable and Unstable Invariant Manifolds

Consider, as a motivating example, the analytic local system of ordinary differ-
ential equations

X=f(x,y) (Asx + X(x,9,0)),
y=fx,y Ay +Y(x, y,0)), (1.1
0=w-+ Ox,y,0),

where (x, y) € B C R” x R™, B is a ball around the origin, 8 € T¢ = (R/277Z)?,
the matrices A; and A, satisfy Spec A;, Spec(—A,) C {z € C| Imz < 0},
o € R? is a Diophantine frequency vector, X, Y are of order greater or equal than 2
with respect (x, y), and ® of order greater or equal than 1. Assume that f has order
N in (x, y), with N = 0. Under these hypotheses, the set 7 = {x =0, y = 0} is
an invariant torus of the system and the flow on 7" is a rigid rotation with frequency
vector .
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If f = 1, it is well known that 7 is an invariant hyperbolic torus with stable
and unstable invariant manifolds, which are analytic graphs over (x, 6) and (y, 6),
respectively.

Assume that N 2 1. Then, the set 7, although still invariant, is no longer
hyperbolic but degenerate. We will say that 7 is a parabolic torus, as opposed to
hyperbolic and elliptic. In this case, it is a non-trivial matter to establish the local
behaviour of the system around 7. For instance, if d = 0, that is, if (1.1) does not
depend on the angles 6, the system, provided f(x, y) # 0, is equivalent to a system
with a hyperbolic fixed point (by means of the rescaling of time ds/dt = f(x, y))
and, hence, it possesses formal stable and unstable invariant manifolds, y = y*(x)
and x = y"(y), in the sense that y** are formal series which are invariant by (1.1).
However, if d =2 1, n 2 2, and f is not a function depending only on x, it is not
difficult to see that, in general, there is no formal stable manifold because, if one
tries to find y = y*(x, 0) as a series in x with coefficients depending on 6 invariant
by (1.1), formal obstructions appear. On the contrary, it is not difficult to see that,
if n = 1 or f only depends on x, there is always a series representing the stable
manifold, regardless of the dimension of the angles.

Of course, the existence of a formal stable invariant manifold of 7~ does not
imply the existence of a true invariant one nor the formal obstructions necessarily
prevent the existence of a true invariant manifold. These questions, that is, if 7~
in (1.1) possesses stable or unstable invariant manifolds and, in the case it does,
what kind of regularity these manifolds have, were posed by Sim¢ in his 10th
problem [1], were he remarked the formal obstructions that appear in the case
d=>1landn = 2.

In the present work we will consider a more general situation, namely, vector
fields of the form

NGy, 0,0 4+ 031, IV
X(x,y,0) = g"x,y,0,0) + 0, M |, (1.2)
a)-l-th(x,y,G,k)

where fV, g™, and h” are functions of orders N, M, and P in (x, y), respectively.
Here, the set 7™ is also invariant by the flow of X. We will provide a set of assump-
tions under which 7~ has a stable invariant manifold. For the unstable manifold one
simply has to consider the reversed time vector field. Observe that equation (1.1)
is a particular case of this type of vector fields.

It is important to remark that equation (1.1), although degenerate, appears in
many interesting problems. The fact that in many cases 7~ possesses stable and
unstable invariant manifolds, has important consequences in the global dynam-
ics of the corresponding systems. Actually, we will deal, more generally, with a
quasiperiodic non-autonomous version of (1.2).

One of the first important examples is the Sitnikov problem [2,3], a particular
instance of the restricted 3-body problem. In some special coordinates, the Sitnikov
problem can be written in the form (1.1) withn = 1,d = 1,and f(x,y) = (x +y)3.
McGehee [4] proved an existence result of analytic (out of the fixed point) stable
manifolds for two dimensional maps which implies the existence of an analytic
stable manifold for 7". A generalization of this statement for C¥ maps providing one



52 Page4of 94 Arch. Rational Mech. Anal. (2024) 248:52

dimensional stable manifolds in arbitrary dimension was carried outin [5], using the
parametrization method. Besides the Sitnikov problem, the restricted planar 3-body
problem, either circular or elliptic [6-9], or the planar 3-body problem [10] can be
written in the form (1.1) withn = 1, d = 1, and f(x) = (x + y)3, with important
dynamical consequences. Indeed, in all these works, devoted to show the existence
of either chaotic and oscillatory motions or diffusion phenomena, one of the key
ingredients of the proof is the existence of invariant manifolds of certain parabolic
fixed points or periodic orbits at infinity and their analytic dependence with respect
to several parameters. See also [11] for a different approach to parabolic tori in
celestial mechanics. Parabolic points with invariant manifolds can also be found in
problems in economics (see [12,13]). In this lastcase,n = 1,d = 0,and f(x) = x.

The approaches in [4,5] required that n» = 1 and d = 1; that is, they only work
if the stable invariant manifold for the stroboscopic return map is one dimensional.
The generalization for d = 2 but keeping n = 1 was carried out in [14], with
implications in the general n-body problem, which, in certain parts of the phase
space, can be written in the form (1.1) withn = 1,d = 2n+2,and f(x) = x3.In
this case, 7~ in (1.1) admits a formal stable invariant manifold as a power series in
x with coefficients depending on 6, which is used as a seed in the parametrization
method.

Studying parabolic fixed points with stable invariant manifolds of dimension
larger than one with the parametrization method is more involved. The reason
is that, unlike the previous cases, if the dimension of the invariant manifolds is
larger than one, in general they do not admit a Taylor expansion at the fixed point.
To overcome this difficulty, it was shown in [15,16] that, for vector fields of the
form (1.2) with d = 0, under suitable hypotheses, they admit expansions as sums
of homogeneous functions of increasing order. Having in mind some applications
to celestial mechanics (see Section 1.3), in the present work we extend the results
in [15,16] to parabolic tori.

1.2. Degenerate Tori and Homogeneous Functions

The purpose of the present paper is twofold. On the one hand, we present a gen-
eral theorem which, under suitable conditions, provides the existence of invariant
manifolds of the invariant torus 7 for vector fields of the form (1.2) (and for maps
with equivalent conditions). On the other, we show the existence of new type of
orbits in the N-body problem, defined for all time either in the future or in the past,
with a prescribed final behaviour. We call these orbits double parabolic orbits to
infinity. See Section 1.3 for an accurate description of these motions.

The conditions we impose on the vector field (1.2) are placed in Section 2.2.1
(they are completely analogous for maps and for flows). Of course, since the lin-
earization of the vector field at 7~ vanishes identically, they have to involve several
terms of the jet of the vector field at the torus. In fact, they only involve the first
non-vanishing terms of the jet of the (x, y)-components of the vector field at the
torus, plus a very mild condition on the angular directions. In particular, they imply
the existence of a weak contraction in the x-direction and a weak expansion in the
y-direction, but some other requirements are also needed.
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We apply the parametrization method [17-19] to find the invariant manifolds of
7 in (1.2). The main differences among the results in the present paper and those
in [15,16] are the following.

First, instead of considering parabolic fixed points, here we consider parabolic
tori. This is a non-trivial extension that widens the field of application of the re-
sults. We are interested in particular in the case where the dynamics on the manifold
synchronizes with the one on 7. This fact, that always happens in the hyperbolic
case, may not occur in the parabolic one. Our theorem is also valid even when
this synchronization does not take place, and we give conditions under which it
happens. In this sense, we improve the results in [14], where only the cases where
the synchronization occurs where considered. One of the consequences of synchro-
nization is that then the invariant manifolds are foliated by the stable leaves of the
points in the torus and this foliation is regular in the base.

Second, we do not require the vector field to be defined in a whole neighborhood
of the torus, not even at a formal level. We only require some kind of regularity in
sectorial domains with the torus at their vertex, expressed in terms of homogeneous
functions. We do require the leading terms to be defined and regular around the
torus, although we believe that this requirement may be relaxed and we impose it
for convenience, since it holds in the examples we consider.

Third, we consider only the analytic case. The only reason is to simplify the
proof. We believe that the arguments in [15,16] to deal with the C* case can be
adapted here, but they are rather cumbersome and the applications we consider are
analytic.

The existence of the manifolds is formulated as an a posteriori result, that
is, in Theorem 2.7, for maps, or Theorem 2.14, for flows, we show that, if the
invariance equation (2.7), in the case of maps, or (2.23), in the case of flows,
admits an approximate solution as sum of homogeneous functions of increasing
order up to some specified order, then it has a true analytic solution. Separately,
Theorem 2.8 (Theorem 2.16, in the case of flows) provides such approximation.
We emphasize that, in general, there is no polynomial approximate solution of the
invariance equations (2.7) or (2.23) since formal obstructions appear. Obtaining this
approximate solution is a non-trivial task. Finally, Theorems 2.9 and 2.16 simply
join the a posteriori and the approximation results into an existence result, to ease
their application in practice.

Theorems 2.7 and 2.8 apply in the case the involved maps have the form

X x4+ fZV(x,v,60,1)

Fly]l=| y+eMx, 0,0
0 >p

0+w+h=f(x,y,0,))

We add Corollary 2.11, which applies to maps of the form
Ax+ f2V(x,y,0,2)
Gu(x,y,0) = By—i—g;M(x,y,@,)») ,
0+w+hZF(x,y,0,1)

Spec A, SpecB C U{Z eC| =1
keZ
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These kind of maps appear in [12,13], where a certain economic model based on
critical values is considered.

1.3. Double Parabolic Orbits to Infinity in the (n + 2)-Body Problem

We present an application of Theorem 2.16 to celestial mechanics, more con-
cretely, to obtain new types of solutions of the full planar N-body problem. In the
present paper, by direct application of Theorem 2.16, we show that the set of dou-
ble parabolic orbits to infinity contains manifolds of certain dimension. As far as
we know, these solutions have not been previously found. They are defined either
for all future or all past time, avoiding collision and non-collision singularities.
Further analysis, completely beyond the scope of the present paper, could lead to
the existence of solutions that combine both of them, from the past to the future.
The existence of solutions of the n-body problem combining prescribed final mo-
tions in the past and the future is an important question that has been addressed
with different techniques in different instances of the problem (see, amongst others,
[2,3,8,10,20-23]).

In a precise way, here double parabolic orbits to infinity means the following.
Consider the planar (n + 2)-body problem, with n = 1. Denote by Qg the cluster
of the first n masses and by gq the position of their center of mass in some inertial
system of reference. Let g, and ¢,,1 be the positions of the last two bodies. Let po,
pn and p, 41 be their corresponding momenta. Denote by dj the distance between
qo and gk, k = n,n + 1, and by dy, the distance between p, and p;,1. Assume,
for the moment, that these three distances are infinite, while their momenta py =
Pn = pn+1 = 0. We prove that, in some coordinates, the vector field describing
the (n + 2)-body problem is regular around this configuration. We remark that, in
this configuration, the relative positions of g, g1, and ¢» are not free. They are
described in this section, below. When the three clusters are at infinity with zero
momenta, the motion of the bodies in Qy is described by an n-body problem. It is
well known that KAM tori exist in the n-body problem [24-26]. We choose any
of those KAM tori. In these regularized variables, the configuration in which the
chosen KAM tori and the other two masses are at infinity is a regular invariant
torus with dynamics conjugated to a Diophantine rotation. The vector field has the
form (1.2). Our aim is to find invariant manifolds of solutions that tend either in
the past or in the future to this invariant torus.

It is well known, however, that any solution of the (n 4 2)-body problem in
which the three clusters arrive to infinity with parabolic velocity must tend to a
central configuration of the 3-body problem for qg, g1 and g» [27] (see also [28—
30]), that is, either the relative positions of the three clusters tend to an equilateral
triangle or to a collinear configuration, which only depends on the masses of the
bodies. See Fig. 1. This is not the case when the limit velocities are hyperbolic [31].

Letmyo, ..., m,+1 be the (non-zero) masses of the planar (n+2)-body problem.
Letm;,0 < j < n—1,be fixed and assume that m,,, m, 1 are small enough.

We recall that the planar (n + 2)-body problem admits a Hamiltonian formula-
tion (see (5.1) for the Hamiltonian formulation and, in general, Section 5.1 for the
actual description of the problem and the coordinates we use). It has three classical
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Fig. 1. Tending to collinear and equilateral configurations

first integrals, besides the energy, namely, two corresponding to the total linear
momentum and one to the total angular momentum. Fix any fixed value of the total
linear momentum (that can be assumed to be 0), any value of the total angular
momentum, and reduce the problem by these integrals. The reduced problem has
2n + 1 degrees of freedom. In the reduced system, we consider three clusters of
masses: the first one, containing masses m to m,_1, and the second and third ones,
containing the masses m, and m, 1, respectively.

Consider the following “central configurations” of the planar 3-body problem:

(E) an equilateral triangle, with a cluster in each vertex,
(C) a collinear configuration, where the first, more massive, cluster lies between
the two lighter ones.

In the case of the first cluster, which involves several bodies, to be on a vertex
means that the center of mass of the cluster lies on the vertex. In the case (E), there
is only one of such configurations, modulo permutation of the vertices. The case
(C), modulo permutation of the lighter bodies, there is also a single one.

Both in the cases (E) and (C), when the mutual distances of the clusters are
infinite and the momenta of each cluster are 0, the motion of the bodies in the
first cluster is described by a n-body problem after reduction of the total linear
momentum. Let 7~ be a KAM torus of this n-body problem, with Diophantine
frequency w. It has dimension 2(n — 1). Observe that 7~ does not depend on the
masses m,, my+1. We call T and 7¢ the invariant torus of the (n + 2)-body
problem where the first cluster evolves in 7-, while the three clusters are in either
(E) or (C) configuration, at infinity with zero momentum.

Theorem 1.1. If m,, and m, 1 are small enough but both different from 0, with the
smallness condition only depending on My = ZZ;(I) my, the following holds.

o T possesses 3+2(n—1) dimensional stable and unstable manifolds, W'° that
can be parametrized by some variables (u, ¢) € V x T?"=D < R3 x T2¢=D,
V being some sectorial domain in R® with the origin in its vertex, and such that
the @-dynamics is given by ¢ = w.

o T ¢ possesses 2+2(n—1) dimensional stable and unstable manifolds, W'*, that
can be parametrized by some variables (u, ¢) € V x T>"=D < R? x T?=D
and such that the p-dynamics is given by ¢ = w.
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Theorem 5.2 is a rewording of Theorem 1.1, expressed in appropriate coordi-
nates, after the explicit reduction by the total linear momentum and the total angular
momentum of the system is done. This reduction is performed in Section 5.1. Later
on, in Section 5.2, we introduce the quasiperiodic solutions, which correspond to
trajectories on invariant tori of the n-body problem.

Theorem 1.1 assumes that the masses of the last two bodies are small, but dif-
ferent from 0. It provides the existence of an invariant manifold of solutions tending
to parabolic motions in a collinear configuration where the cluster of more massive
bodies is between the last two, and to an equilateral configuration, respectively.
There is still another possible final configuration, the remaining collinear case, in
which the cluster of more massive bodies moves to infinity in one direction while
the last ones go to infinity in the other one. Our current proof does not cover this
case, although we believe it could be extended, with additional effort, to include it.

We assume that the masses of the last two bodies are small. In doing so, roughly
speaking, the problem becomes perturbative, since the interaction between the large
cluster with each of the small masses is O(m,,, m,41) while the interaction between
the last masses themselves is O(m,m,+1). However, the coupling between the
small masses is crucial and the existence of the manifolds strongly depends on
the non-vanishing of a coefficient of the perturbation. If the masses are small,
this non-degeneracy can be easily checked. The sign of the coefficient is different
for 7 and 7, the two configurations we consider, which is the reason why the
corresponding invariant manifolds have different dimension. If the masses are taken
larger, bifurcations may occur (as happens, for instance, for the Lagrange points
L4 and L5 of the restricted 3-body problem). We have not pursued in this direction,
but we believe that Theorems 2.14 and 2.15 can be applied even if the masses m,,
and m,,1 are not small. This seems feasible because there are only three clusters
and the number of central configurations in the 3-body problem is well established.
One could also consider the problem of more than two masses going to infinity in
a parabolic fashion.

It is also worth remarking that, since the existence of Wg’s and Wg’S is a conse-
quence of Theorems 2.14 and 2.15, parametrizations of them can be approximated
by sums of analytic homogeneous functions of increasing order. In some instances
of the 3-body problem (see [15]), these homogeneous functions are indeed homoge-
neous polynomials. Then, the question of the Gevrey regularity of these expansions
makes sense. This was studied in a lower dimensional problem in [32]. We con-
jecture that the invariant manifolds in the present setting also admit polynomial
approximations which are Gevrey of a certain class.

Finally we remark that, in the case of the planar 3-body problem, thatis, n = 1
in our setting, 7 is a single parabolic point and the configurations 7 g and 7¢ are
the well known central configurations of the problem. After the reductions, the
planar 3-body problem is a 3-degrees of freedom Hamiltonian. Then, our theorem
implies that 7 possesses 3-dimensional stable and unstable manifolds, which
both lie in the same 5-dimensional energy level. These manifolds intersect at least
along a homoclinic orbit provided by the homographic solution given by the central
configuration.
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1.4. Structure of the Paper

In Section 2 we introduce the notations and definitions we will use along the
paper, as well as the statements of the general theorems. We provide different
statements for maps and flows to ease their application, although the claims for
flows are deduced from the ones for maps.

Section 3 is devoted to the proof of the a posteriori claims, that is, assuming that
a suitable approximate solution of some invariance equation is known, we prove
the existence of a true solution. The statements are proven through a fixed point
scheme.

Section 4 contains the construction of the approximate solutions of the corre-
sponding invariance equation. As we have already mentioned, these solutions are
not polynomial but sums of homogeneous functions of increasing order in certain
variables. Notwithstanding, the solutions are given through explicit formulas.

Section 5 contains the proof of the existence of double parabolic motions to
infinity in the (n 4+ 2)-body problem. It is done by finding suitable coordinates,
which include a normal form procedure and blown-up, in which the general theorem
applies.

2. Invariant Manifolds of Normally Parabolic Invariant Tori

The first goal of this section is to introduce the main notation and conventions
we use along the work. This is done in Section 2.1.1. In Section 2.1.2 we enunciate
the small divisors lemma we extensively use along the paper.

The remaining sections are devoted to state the main results of this work. Sec-
tion 2.2 deals with the case of the existence of local stable manifolds associated to
invariant normally parabolic tori for analytic maps and Section 2.4 is devoted to
the case of analytic vector fields depending quasiperiodically on time also having
an invariant normally parabolic tori.

In both settings we present four types of results: the so-called a posteriori result
(Theorems 2.7 and 2.14), an approximation result (Theorems 2.8 and 2.15), an exis-
tence result of local stable manifolds, which is a direct consequence of the previous
ones (Theorems 2.9 and 2.16) and finally a conjugation result, Corollaries 2.10
and 2.17.

2.1. Notation and a Small Divisors Lemma

2.1.1. Notation In this section we introduce the notations and conventions we
will use without explicit mention along the paper. Most of them are widely used
in the literature and were already used in the previous works [15,16,32]. However,
for the convenience of the reader, we reproduce them here.

The general notation about the sets we will use is:

e We denote B, the open ball of a Banach space E of radius r centered at the
origin. We will write B, C E to indicate that B, is a ball in the space E. Given
aset U C E, we denote U its closure.
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When we write R” x R, and we have norms in R” and R"”, we consider the
product norm in it, namely ||(x, y)|| = max{|x||, ||¥||}. This determines the
operator norms for linear maps in these spaces. All these norms will be denoted
by || - I

Real and complex d-torus: we represent the real torus by T = (R \ Z) . Given
o > 0, a complex extension is

T¢ = {9:(91,...,9,1) e (C\2)" | [Imo,] <a,Vj}.

e Given an open set U C R¥, we denote by Uc an open complex extension of it.
e Given a function f : U ¢ R¥ — R/ and x € U, Df (x) denotes its derivative

(or differential) and, for a function f(x, y), f : U C R¥ xRK — R/ 9, f(x, y)
or D, f(x, y) denote its partial derivative with respect to the variable x € RX,
etc.

With respect to averages, we introduce the following notation:

For a function f : U x T¢ ¢ R¥ x T? — R/, we denote by f its average with
respect to 6§ € T¢ and f = f — f its oscillatory (mean free) part. In Section 5
we will also use the notation [f] = f.

We say that a function f(x, 0, 1), f : U x T¢ x R — R/ is quasiperiodic with
respect to ¢ € R if there exists a function f : U x T4 x T¢ — R/, for some
d’ and a vector v € Rd,, such that

f(z,0,1) = f(z,0,vt). 2.1)

We say that v is the time frequency of f.

If f is a quasiperiodic function, and f satisfies (2.1), the average of f, denoted
by f, is the average of f (z,0,6' ') with respect to (0, 0') € T¢ x T4, In the
same way, the oscillatory part is f f—7.

e We say that a quasiperiodic function f is analytic if fis.
e We will use the analogous definitions if the functions depend on parameters,

considering the corresponding functions defined on U x T x A or U x T? x
T x A, with A C RP.

Also, we will use the analogous definitions for the complex extensions of the
involved functions.

Next, we enumerate some general conventions we will use:

We will denote M > 0 a generic constant, that can take different values at
different places.

We will omit the dependence of the functions on some of the variables whenever
there is no danger of confusion, mainly the dependence on parameters.

Given f : U x T¢ x A C RF x T? x R? — R! we will denote by f® its
k-Fourier coefficient, namely

f@0.0)=>" O™ k0=koi+ - +kaba.
kezd
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e Given f(z,w), f: U X W — R!, 0 € U, where W is some set, we will write
fz,w) =0zl1%), f = O(z||*) or simply f = Oy if and only if there exists
a constant M such that | f (z, w)|| £ M||z||¥ forall w € W and z € U N By.

e For functions f(z,0,1),z € Rk, 9 € TY, » € R”, we use the convention that
the superscript in the function, f!, indicates that f' is a homogeneous function
of degree [ with respect to z. We will write f =T f 2l = 0.

o If(x,y,2) € RF x R! x R™ and f is a function taking values on RF x R! x R™,
we will denote by fy, fy, f; the corresponding projections over the subspaces
generated by the variables x, y, z, respectively. We will also use the notation
fx,y = (fx, fy) and the analogous notation for other combinations of the
variables.

e When X is a parameter and the composition f(z,A) = h(g(z, A), A) makes
sense, we will write f = h o g. When dealing with time dependent vector
fields, for notational purposes, the time ¢ will be considered as a parameter.

e We will denote ®z(¢; 19, z, 1) the solution of the differential equation z =
Z(z,t, 7).

2.1.2. Diophantine Vectors and Small Divisors Lemmas We recall the defini-
tion of Diophantine vector and the so-called small divisors equation in both the
map and the differential equation contexts.

In the map setting, » € R? is Diophantine if there exist ¢ > 0 and T > d such
that for all k € Z4\{0} and [ € 7Z

lw -k —1] 2 clk]™",

where |k| = |k1| + - - - + |kq| and w - k denotes the Euclidean scalar product.
In the differential equations setting, w € R¢ is Diophantine if there exist ¢ > 0
and T > d + 1 such that for all k € Z%\ {0}

lo - k| = clk| .

GivenU C R*", ACRPandh : U x T x A — R™, the small divisors equation
for maps is

o, 0 +w,A) —oW,0,1) =hu,0,1) (2.2)
and the corresponding small divisors equation for differential equations is
Y W,0,)) -w=nhu,0,xr). (2.3)

The following version of the small divisors lemma, depending on # € C" and
on A € C? can be readily adapted from the one in [33].

Theorem 2.1. Tuke U € C",0 € U, A C CPando > 0.Leth : UxT¢x A — C*
be real analytic with zero average and let @ € R? be a Diophantine vector.

Then, there exist unique solutions @, : U X Tg x A — CFof(2.2) and (2.3),
respectively, real analytic, with zero average, such that, for (u, 1) € U x A,

M
sup llo(u, 8, M, sup [y, 0,0 = 37 Sup IA(u,6, M, 0<d<o.

T
d d d
0Ty _s 0Ty _s 0eTs
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Moreover, if h is a homogeneous function of degree k with respect to u, then ¢, Y
also are homogeneous functions of degree k with respect to u. If h = O(||u|"),
r 2 1 then also ¢, ¥ = O(||lu|").

We will denote by D[h] the unique solution with zero average of either (2.2)
or (2.3). We note that, since

auw(u, 9 + w, )") - au(p(u’ 97 )\') = auh(u’ 97 )\')7
if 9,h = O(||u||"~"), then 3,9 = O(l|u|"™").

2.2. Results for Maps

This section is devoted to state the claims concerning with the existence of
invariant manifolds of tori for families of maps with an invariant torus whose
transversal dynamics is tangent to the identity. In Section 2.2.1 we describe the maps
under consideration and the general conditions we need to guarantee the existence
of these invariant manifolds. Afterwards, in Section 2.2.2 we state the main results.
In the statements of the results, some extra conditions will be introduced.

2.2.1. Set Up and Hypotheses Let 2/ C R” x R” be an open set such that 0 € U
and A be an open subset of R”. We consider families of maps Fj : U x T¢ —
R"” x R™ x T4, A € A, of the form

x x+ 2N, .6, 1)
Ely|l=| v+eMx,y.0,0) (2.4)
0 0+w+hZF(x,y,0,))

with @ € RY and fZN = O(l|(x. »)IY). 2" = O(l|(x. y)|*) and =P =
O(l(x, MI*yfor N,M > 2and P > 1.
For such maps, the torus

T ={(0,0,0) € R" x R™ x T%)

is invariant and normally parabolic, that is, the dynamics in the transversal direc-
tions to the torus is parabolic.

We are interested in describing the stable and unstable sets of a torus related to
a given open set A C R” x R™ x T such that 7~ € A. Hence, we introduce the
stable set

Wi ={(x.y.0) € A| F{(x,y,0) € A,k 20,

. 25
Jim (Ff)xy(x, y,6) = (0,0} 23

and the unstable one:
WY ={(x,y,0) € A| F,*(x,y,0) € A, ¥k 20,
lim (F, %), y(x, y,8) = (0, 0)}.
k— 00
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Their local versions are defined changing A by A, = {§ € A | dist(§,7) < p}.
We will see that these sets are manifolds.

More concretely, we look for invariant manifolds tangent to the x-subspace.
Therefore, we consider sets V. C R”, 0 € V and their local versions Vo =VNB,,
where B, is the ball of radius p in R" x R™. Moreover, for 8 > 0, we define the
sets

Vop =1, y) € V, x R™ | Iyl S Blxll},  App=VppxT (26)

The set A, g will play the role of the set A in (2.5). In this paper, we concentrate on
the study of the stable manifold associated to a set of the form A, g = V, g x T¢.
The unstable one can be obtained considering F, " I

We will provide conditions for the existence of the invariant manifolds using the
parametrization method, see [17-19,34] for a general presentation of the method
and [5, 14—16] for the specific application of the method to parabolic objects. Sum-
marizing, this method consists in looking for functions K (u, 6, 1) and R(u, 6, A)
satisfying the invariance condition

F(Ku,0,A) = K(R(u,06,x), 1), 2.7)

with K(0,60,1) = 0, R(0, 60, A) = 0 together with extra conditions to have the
manifold tangent at 7 to be a suitable subspace.
We assume the following general conditions on F) and the domain U:

(i) U is an open set that contains a set of the form V,, g, C R" x R™ for some
positive pg and By (see (2.6)), where V is a cone-like domain, namely 0 € 9V
and forall x € Vand s > 0, sx € V. We remark that the origin does not
necessarily belong to U.

Gi) f ZN , gzM and hZF can be expressed as sums of analytic functions, homoge-
neous with respect to (x, y) € U of integer positive degree up to some order

q — 1 = N. More precisely, there exists ¢ € N, ¢ > N and

g—1
FEN Gy 0.0 = Y Iy, 0.0 + 29, .0, ),
j=N
q—1
g=M (3.0, =Y gl (x.y.0.0) +859(x,y.0.1),  (28)
=M
g—1
REP(xy, 0,0 = > W (x, y,6,0) + hZ9(x, v, 6. 1),
j=P

where f 7, gj ' are analytic functions, homogeneous of degree j in (x, y) €

U, and the remainders fzq, giq, hZ4 are analytic and of order O(]|(x, y)||%).

Moreover, we ask that Biyfiq, Biyy,giq, Biyhzq = Oq_j for j =1, 2.
Note that for homogeneous functions in (x, y) this property is automatically satis-
fied and when we take derivatives with respect to 6 we do not lose order. Note that
the functions f7, g/, h/ can be extended by homogeneity to the set T¢ x T x A
where U¢ = {(x,y) € R* x R™ | 3t € (0, 1] such that t (x, y) € U}.
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.. e —N .
Next, we assume three conditions, (iii), (iv) and (v) below, on f and gM . First,
given p > 0, we define the constant

—N
lx+ f (x, 0, )] — |lx]l

2.9
x€V,, €A [lx ¥

ar-=-—
(iii) Let pp be the radius introduced in (i). The constant a f with p = pg satisfies the
weak contraction condition

ay > 0.

Note that this implies

—N
Ix+ 7, 0,00 < lxll —aglxllV,  x€Vy, AreA.
(iv) We assume
¢M(x,0,6,%) =0.

Moreover, we ask TN (x,0, ) and 3y§M (x, 0, 1) to be defined and analytic in
U* x A, where U* in an open set of R” containing 0. Note that, by the homo-
geneity property, the domain of 7N (x,0, 1) and Bng (x, 0, A) with respect to
x can be extended to R".

(v) We assume that there exists a positive constant ay > 0 such that

distCr + 77 (r, 0,0, VE) Zay x|V, x € Vy, reA,

where Vs the complementary set of V,, C R". As a consequence V), is an

invariant set for the map x — x + 7N (x,0, ).

Remark 2.2. It is important to emphasize that, if ¢/ is an open set that contains the
origin, then condition (ii) is automatically satisfied; the expansions in (2.8) are the
standard Taylor expansions with respect to (x, y) € U.

For the sake of completeness and applicability we have preferred to allow the
more general situation when the origin is not contained in the regularity domain of
F.. In this context we work with decompositions as sums of homogeneous functions
instead of the classical Taylor expansion.

Remark 2.3. The hypotheses are chosen to obtain local invariant manifolds tangent
to the subspace {y = 0}. When the invariant manifold we are looking for is not
going to be tangent to {y = 0} but of the form y = Lx + O(||x||*) we can perform
the linear change u = x, v = y — Lx and look for the invariant manifold tangent
toy =0.

Remark 2.4. Let 75, : U x T¢ — R x T4, 1 € A, be a map satisfying (i)-(iii)
with N, M = 2 and P 2 1 having an invariant manifold associated to the origin
tangentto {y = 0}. Thatis, assume that the manifold can be represented as the graph,
y = K(x, 0, 1), with K analytic, C' at 0, K(0, 6, 1) = 0 and 3,%(0, 6, ») = 0.
Then, after a close to the identity change of variables, ¥, has to satisfy that M < N
and g™ (x, 0,0, 1) = 0. We prove this remark in Appendix A.
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Remark 2.5. We notice that we are not assuming any condition on i” . Therefore,
we can always assume that P < N since the case h” = 0 is allowed.

To finish this section, given p > 0 we define the auxiliary constants related to
—N

f
—N —N
boe i ILf (0, D] [Id+Dy f (x,0, M)|I-1
f=inf sup ——————, Af=— sup N_1 ,
heA xev, llx]] xeV,, heA llx]
N (2.10)
[Id—Dy f (x,0,M)|[—1
Dy=— sup

xeV,. reA N1

and B, related to g

I1d — Dyg™(x, 0, 1)l — 1

@2.11)
[lx (M1

B, =— sup
xeV,, LeA

. .. . =N,
‘We notice that the constant b s is independent on p since f  is a homogeneous
function of degree N.

Remark 2.6. Notice that, if p; < p, then the corresponding constants a}’2, b}’z,

A;’z, Djlc’z, and Bé’z, associated to p; and po, respectively, defined in (2.9), (2.10)

and (2.11) satisfy a} > a%, b; = b?, A; > A?, D; > D§ and By > By. See
Lemma 3.7 in [16]. We also have ay < by.
This remark will allow us to take p as small as we need. We will use this fact

throughout the paper without mention it.
2.2.2. Main Results Let

£ {max{—Bg, =Dy, 0},if M =N, (2.12)

max{— By, 0}, if M <N.

Denoting [-] the integer part of a real number, we introduce the required minimum
order g:

* ON—-P2N—-M+1,N—1+ N-1 B (2.13)
= | max - P, — SN — B —— i
1 N —5/3 ay

and the index
_Dr]
= [ “f]’lf Dy<0. (2.14)
1, if ngo.

The first result we state is an a posteriori result. Roughly speaking, it says that,
if we know a good enough approximate solution of the invariance equation (2.7),
then there is a true solution of this equation close to it.
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Theorem 2.7. (A posteriori result) Let F)_be of the form (2.4) satisfying conditions
(i) — (v) with g Z g*. Assume w is Diophantine and Ay > bymax{l, N — P}.

Moreover, assume there exist analytic maps K< Vo X T x A — R" x R™ x
T and R : Voo X T x A — Voo X T4, being sums of homogeneous functions
with respect to u, of the form

< 2 <
Koy, ®,0) — @, 0) =0(ull?), K@, 0,1 —06=0(ul),

Ry, ©.2) — (u+ 7" (u,0, 1)) = O(lu| N+,
Ro(, ©,1) — © — w = O(Jlull)

such that

=

ES = F oKS —KSoR=0(u|?. 2.15)

Then, there exist 0 < p < pg and a unique analytic function
A:Vpx']deA—>R"+mx’]I‘d
satisfying Ay y = O(lu[| 7N 1), Ag = O(|Jul|4=>N TP+ and
Fio(KE4+A) — (KE+A)oR=0. (2.16)

Moreover, the map A is real analytic in a complex extension of V,, x T x A.
Let K = K=+ A. For p, B small enough, K(V,xT?, ) C WA ,with A, g

defined in (2.6), and, when the constant By > 0, for some slightly smaller cone set
V}

K(V, x T 1) = Wi App=V,p5xT (2.17)

Theorem 2.7 is proven in Section 3. The next result gives conditions that guar-
antee the existence of approximations that fit the hypotheses of Theorem 2.7. Later
on, in Section 4, we provide a concrete algorithm to compute the approximations
as sums of homogeneous functions of the variable u, depending on the angles and
parameters.

Theorem 2.8. (Construction of the approximations) Assume that the map F), is of
the form (2.4) satisfying conditions (i) — (v) and q 2 q*. Furthermore, assume
is Diophantine, Ay > by and

DyEM(x, 0, 1) isinvertible for all (x, L) € V,, x A, if M <N,
B

24+ £ >0, if M=N.
af

Then, there exists 0 < p < po such that for any j é q — N, there exist analytic
maps KU : V, x T x A — R" ™ x T4 and RV - Vy x T x A — V, x T,
such that

EV = F oKV — KW o RV = O(JJul /™). (2.18)
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Moreover, K and R can be represented as sums of analytic homogeneous
functions, of the form

J J
K, 0.0) =u+ Y Ko+ Y KN 1w, 0, 1),
=2 =1

‘ JHN—-M 1 JHN—M
K wo.n= 3 Kwn+ Y KM wen,
=2 =2

j+N—P j+N—P

K won=0+ Y K+ Y Ko
=1 =1

and
_ . ii
RO . 0. 0) =u+7" 0.0+ Y RN w, ),
=2

j
RY . ©,0)=0+w+ > RSP 2w, 1)
=2

for j > j¥. Furthermore, if P = N, we obtain Rg)(u, O,1) =0+ ow.

2.3. Consequences of Theorems 2.7 and 2.8 for Maps
Combining Theorems 2.7 and 2.8, we have the following claim:

Theorem 2.9. (Existence of the stable manifold) Let F; be a map of the form (2.4)
satisfying conditions (i) — (v) with ¢ = q*, where q* was introduced in (2.13).
Assume that w is Diophantine, Ay > by max{1, N — P} and

Dng(x, 0, A) isinvertible for all (x, 1) € Vp, X A, if M <N,

B, .
24+ —= >0, if M=N.
ar
Then, there exists 0 < p < pg such that the invariance equation

F,oK=KoR

has analytic solutions K : 'V, x TYxA— UxTYR: V, x T¢ x A — Vp x T
satisfying that, for B > 0 small enough and . € A

KV, xT\ 0 CcW . (2.19)

where A, g defined in (2.6) and ng 5 is the stable set of F),_ (see (2.5)).

If we further assume that, if M = N, Bg > O then, for some slightly smaller
cone set'V,

%2 d s N —k /{7 d
KV, xT0)=Ww; =~ and Wi = () F* (Vop x 9. (220)
k=0
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2.3.1. A Conjugation Result for Attracting Parabolic Tori A direct conse-
quence of the previous results is that if the transversal dynamics to the torus is
parabolic and (weak) attracting for x belonging to a cone set V), then it is conju-
gate to a map that can be expressed as a finite sum of homogeneous functions in
x € V,, depending trivially on the angles.

Corollary 2.10. Let F) be a family of maps of the form (2.4) independent of the
y-variable, namely

F(x,0) = (x + fZV(x,6,1),0 + o+ h="(x,6, 2)).
Assume that = ZN ,h= 2P satisfy the corresponding conditions in (i)-(v) for some
q1 2 q* wis Dlophannne and Ay > bymax{l, N — P}. Then, the map Fj is
conjugate to a map R of the form

Jn q1—N
Rw,0,0) = [u+TF" @, A)+ZRZ+N ", 0+0+ Y REFPTPw@ |
=2 =2

with (u,0,1) € V, x T x A, for some 0 < p < po and j is defined in (2.14). Let
H be the conjugation. Then, H and R are real analytic in a complex extension of
V, x T x A.

2.3.2. The Case When All Eigenvalues of the Linearization of the Transversal
Dynamics to the Torus are Roots of 1 In this section we explain how to apply
the previous results to maps, G, satisfying that for some £ € N, F) = Gﬁ has the
form (2.4). Namely we assume that

Ax + f= N(x v,60,})

Gr(x,y.0)=| By+g="(x,y,0,0) |,
0+a)+hfp(xa y’er)") (221)
Spec A, SpecB C U{z eC| =1}
keZ

We notice that in this case the torus 7 = {(0,0,0) € R" x R™ x Td} is also
invariant and normally parabolic. We define, W3, the stable set of G, associated to
the parabolic torus 7~ as in (2.5), simply by changing Fj by G;.

We have the following result.

Corollary 2.11. Let G, be of the form (2.21) and £ € N be the minimum integer
such that F) .= Gﬁ satisfies that DF; (0) = 1d

Assume that F)_is under the conditions in Theorem 2.9. Denote by V a cone,
0, B > 0 constants and K, R functions satisfying the conclusions of Theorem 2.9,
that is K (V, x T¢, 1) C Wg (F;L) with Ay, g =V, g X T being the set defined
in (2.6) and WA (F)) the stable set of F;, assoczated toT.
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Then,
-1 =
W= G (KW, xT.n) cWg . with Byp=|J G0
j=0 j=0

and W]];p 5 being the stable set defined in (2.5) with respect to G .

Assuming further th/a\t By > 0 (the constant defined in (2.11) for F) = Gﬁ),

we have that W% = W, where the notation”™ means that the sets are related to
p.B

a slightly smaller cone Vcv.

Roughly speaking, this result asserts that the stable set of G, is composed by
¢ different branches, each of them being the image by some iterate of G, of the
stable set of F), = Gﬁ. The proof of this claim is postponed to Appendix B.

Remark 2.12. The maps considered in Corollary 2.11 appear in [12,13] when a
certain economic model based on critical values is considered.

2.4. Results for Differential Equations

Now we consider parametric families of non autonomous vector fields, depend-
ing quasi periodically on time, of the form

X(x,9,0,6,0) =(FZ(x, y,6,6,1), 8= (x, v, 6,1, 1),

2.22

a)—l—th(x,y,@,t,)»)), (222
with (x,y,0,t, 1) € UXxTIXxRx A C R xTIxRxR”,0 € U, w € RY and
satisfying /=N = O(|l(x. V), e2M = O(lI(x. »IM), RZP = O(l|(x, )IT)
forsome2 <M < Nand1 < P < N.

As in the case of maps, for any fixed value of the parameter, the torus 7 =
{(0,0,0) | & € TY} is invariant by the flow having all transversal directions
parabolic. We consider the following local stable manifold, which depends on a set
A C R™™ x T T e A, which is defined by

Wi ={ (. 0.6.10) € AXR| Ox(rit0.x,7,6,0) € A, Vi 2 1o,
Tim (Dx).,(1310,.x, 7,6, 1) = (0,0),
— 00

where, according to the notation in Section 2.1, ®x (¢; t9, x, y, 6, 1) is the flow
of the differential equation associated to (2.22). The sets A will be of the form
Ay p =V, p x T introduced in (2.6) or containing it.

We want to provide conditions that guarantee the existence and regularity of
the local stable manifold. We will use the parametrization method. In the case of
differential equations consists in solving the invariance equation

Dx(t;s, K(u,0,s,1),A) = K(W(t;5,u,0,1),t, 1)
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for K and W, where W is the solution of the equation restricted to the stable manifold
(which is also unknown). The equivalent infinitesimal version of the invariance
equation is

X(K(M, evts )")7t9 )V) - au,eK(M, eaty )\,)Y(M, e,t,)\-)

(2.23)
—3,K(u,0,t,1) =0,

where Y is the vector field associated to the flow W which describes the dynamics
on Wi e

By the definition of quas1 periodicity X (x, y,0,t, 1) = X(x v, 0,vt, L) for
some X : U x T? x T? x A — R*™™ x R (see (2.1) in Section 2.1.1) and
some v € RY independent on A that we call the time frequency of X. We introduce
XU x T x A — R x T4 x T4 by

)‘E(x’y,ﬁ’k):<X(x,)"},l9,)»)>7 ﬁz(e,f)eRd+d/’
and the extended frequency
o= (w, V).

The following elementary lemma allows us to relate the results for vector fields
with the ones for maps.

Lemma2.13. Let F, : U x T¢ x T — R 5 T x T pe the time 1 map
of )? ie. Fp(x,y,0) = <I>;((1; X, y,0,1). We have that if sz, gzM, h=P
in (2.22) satisfy hypotheses (i)-(v) and @ Diophantine, then the map F, has the
form (2.4) with slightly different ng, gzM, hZF but with the same constants
ar,by, Ay, Dy, Bg, ay.

The proof of this lemma is straightforward from Theorem 2.1, performing a
finite averaging procedure, Gronwall’s lemma and easy estimates, see [14] for the
casen = 1, N = M = P. We skip the details of the proof.

Theorem 2.14. (A posterioriresultfor flows) Let X be a vector field of the form (2.22)
with sz, gzM, hZP satisfying conditions (i) — (v) for some q = q* with q* given
in (2.13). Assume that & = (w, v) is Diophantine and Ay > bymax{l, N — P}.
Assume further that there exist analytic maps K s Voo X TdxRx A — UxTI
andY : Vy, x Td x R x A — R" x R? quasiperiodic with respect to t with time
frequency v, which are sums of homogeneous functions with respect to u, of the
form

< <
K;y(uv ev t, )") - (I/l, 0) = O(”“”z)a ng(uv 65 t, )\') -0= O(”M”),
Yo, 0,1, 2) — 7 (u,0,2) = O(lu|N+1), Yo(u,0,1,2) —w=0(ul)
such that

X(KE@,0,6,0),1,0) —0,0K=(u, 0,1, )Y (u,0,1,2)
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—K=(u,0,t,2) = O(|ull9).

Yan, writing ® = (0, 1), the parametrization IZ%(u, O,)) = (f(‘é (u,®, 1), 1)
and R(u, ©, 1) = ©;(1; u, ®, A), thetime 1-map of Y (u, ®, 1) = (?(u, O, 1), v),
satlsjj)allthe hypotheses inTheorem 2.7 forthemap Fy (x,y,0) = ®5(1;x,y,0, ).

Let A : V, x T¢H s A — R x T4+ pe the analytic functzon provided
by Theorem 2.7. Then, the quasiperiodic function A(u,9,t) = Ax,yﬁ (u, 9, vt)
satisfies the invariance equation

Xo(KE4+A) —3,.0KE+A)Y —3(KE+A)=0.

If p, B are small enough, K := KS+A satisfies that K (V,, x T xR, 1) C
ng 5 and, when Bg > 0, for some slightly smaller cone set 'V,

K(V, xT¢ xR, 1) =

Theorem 2.14 can be proven from Theorem 2.7 and Lemma 2.13 following
exactly the same lines as the ones showed in Section 5 in [14] (see also [15]). The
details are left to the reader.

Concerning the approximate solution, we have the analogous result to Theo-
rem 2.8. Even that, using Lemma 2.13 we could compute the approximate solution
by means of the approximate solution given by Theorem 2.8 for the time 1-map
of the vector field X, in Section 4.3 we provide an algorithm to compute K /) and
YY) directly from the vector field X itself.

Theorem 2.15. (Approximation result for flows) Assume that X is an analytic
vector field of the form (2.22), satisfying conditions (i) — (v) with ¢ 2 q* and q*
defined in (2.13), that & = (w, v) is Diophantine and

Dng(x, 0, 1) isinvertible for all (x, ) € Vyy x A, if M <N,
B, .
24— >0, if M=N.
afr
Then, there exists 0 < p < po such that for any j < g — N, there exist an
analytic map KO Vy x T x R x A — R" x T and an analytic vector field
Y. V, X T? x R x A — R" x R?, depending quasiperiodically on t with time
frequency v, such that
ED =X (K (u,0,1,1),1,2) — 0, 0KV (u, 0,1, )Y (u, 0,1, 1)
— KD (u,0,t,1) (2.24)
=0(lul).

In addition, K9 and Y can be expressed as sum of homogeneous functions of
the form

j j
KW, 0,0, =u+ Y Ky )+ > KV, 0,1,0),
=2 =1
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_ JHN-M 1 JHN-M
K w.0.0.0= > Ko+ Y KM w 000,
=2 =1
' j+N—P l j+N=P
K w8, =0+ Y Ky wry+ Y Ky 2we.02)
=2 =1

and, for j > j¥ (see (2.14) for the precise value of j),

Ji
Y w, 0,00 = 7Y @, 0,0 + 3 YN, ),
=2

j
e 0.1, =0+ Y Ve 2, ).
=2

Moreover, if P = N, we obtain Yéj)(u, 0,1,1) =w.

As a consequence of these results we obtain the existence theorem, Theo-
rem 2.16 and a conjugation result, Corollary 2.17.

Theorem 2.16. (Existence of the stable manifold for flows) Let X be an analytic
vector field of the form (2.22) satisfying conditions (i) — (v) with q = q*. Assume
that & = (w, v) is Diophantine, Ay > by max{l, N — P} and

DyEM(x, 0, 1) isinvertible for all (x, ) € V,, x A, if M <N,
B, .

24+ —= >0, if M=N.
af

Then, there exists 0 < p < po such that the invariance equation (2.23) has
analytic solutions K : 'V, x TIXxRxA—>UxTand Y : Vo x A = R" x R4,
If p, B are small enough, K satisfies that K (V,, x Td xR, 1) C ng 5 Moreover,

if B¢ > 0, for A € A and for some slightly smaller cone set 2
d
K(V, xT xR, 1) = Wipﬁ.
The conjugation result, analogous to Corollary 2.10, is:

Corollary 2.17. Let X be an analytic vector field of the form (2.22) without the y-
component and independent of the y-variable. Assume that f ZN and hZP satisfy
the corresponding conditions in (i)-(v) withq = q*. We also assume that o = (w, v)
is Diophantine and Ay > by max{1, N — P}. Then, there exists 0 < p < pg such
that the vector field X restricted to 'V, g x T x R is conjugate to

i q—N
—N _ _
Yu, )= |7 (u,x)+§ YN, ), a)+§ YN 2w, a)
1=2 =2

Moreover, both the conjugation and the vector field Y are real analytic in a complex
extension of V,, x T x R x A.
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3. Proof of the a Posteriori Result for Maps

We start by explaining the strategy we use to prove Theorem 2.7. First, in
Section 3.1 we prove that, using Theorem 2.1 in an appropriate way, we can remove
the dependence on the angle up to order ¢ — 1 in all the functions involved in
equation (2.15). Second, in Section 3.2 we provide the operator we will deal with
to prove the result, solving a related fixed point equation. This is done using the
Fourier expansion (with respect to 6) of the involved functions. In Section 3.3,
extending the technology developed in [14, 15], we prove that the above mentioned
fixed point operator is a contraction. Finally, in Section 3.4 we prove (2.17).

Along this section we will omit the dependence on the parameter A in the
notation.

We assume that the family of maps F satisfy conditions (i)-(v) with ¢ = ¢*,
where g™ is defined in (2.13).

3.1. Preliminaries

The purpose of this section is to rewrite Theorem 2.7 in a more suitable form to
apply functional analysis techniques. Actually, Theorem 2.7 will be a consequence
of Proposition 3.4 below which will be proved in Sections 3.2-3.3.

In this section, to be able to apply Theorem 2.1, taking into account that F is
analytic, we will consider its extension to a complex domain Uc x Ty X Ac.

Proposition 3.1. Assume we are under the hypotheses of Theorem 2.7. Then, there
existachange of variables C(§, n, ¢) = (x, y, 0) and a reparametrization P (v, ) =
(u, ®) such that equation (2.16) becomes

Fo(KE+A) —(KE+A)oR=0 (3.1)

with

and
< _  pS S 5= —1 < S_ 5 B —1
K==(Kg. Ky . Kg)=C" oK=0P, R=(Ry,Ry)=% oRoP
satisfying the corresponding conditions in Theorem 2.7 and
=< _ 7. %< < = _ q
E=(v,¥) :=FoK=(,¥) — K=o R, ¥)=0(v|). (3.2)
Moreover,
0 Fiys 9y Fp —1d = O, mII)

and

~

< =< -~ ~
a,/,KE_’n, 0y Ky —1d, 9y Ry, Bwa—Idz()(Hqu).
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The main part of this section is devoted to prove this proposition. After the
proof is complete we state Proposition 3.4 and deduce Theorem 2.7 from it. First,
we perform several steps of averaging to remove the dependence of F on the angles
up to order g — 1.

Lemma 3.2. Let F be a map of the form (2.4) satisfying conditions (i)-(v), with
w Diophantine. Then, there exists a near to the identity change of variables C :
U x T — U x T, where U is a domain slightly smaller than U such that

— . .
0 € U, which transforms F into

~ E+T Em 2 e
FEnp=| n+g¥E& n+22ME ) | +F=1E 9
o+o+h &) +hZPHE )

with F24 &, n,9) =O0I(E, )1). The change has the form

(x,y,0) =C(E,1,9) = (€, 1, 9) +CE, 1, )

with
=1 g=1 g=1
CEme) =Y ClEne. Y ClE e, Y CiEn g
j=N j=M j=P

and the terms C/ are homogeneous functions of degree j in the (£, n)-variables.
Moreover, C and F are analytic.

Proof. If M < N, first we perform a change of variables of the form
(x,y,0) =& n+CYE . 9).9),

where C;‘,’I is a homogeneous function of degree M in (&, n) to be determined.

The transformed map, denoted by F M, keeps the same form as F for the x, 6
components since

NEn+CYEn 0.0 = FYEn @) +0d1E IV

= NE ) +OxUIE IV,
hP & n+CYE n.9).0) =h"E n.0) +O(IE | "~1Y)
=hP &, 0) +0xIE MITT.

With respect to the n component we obtain

FV =n+ClEneo)—ClEne+w) +2"E 0
+gM (&, n, 0) +OUIE, WM.

We consider the equation
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and, by Theorem 2.1, we take C{V’ = D[2M] to have

—_ ~>
FV =n+3"En+2="" ¢ n. 0.

Then, FO still satisfies conditions (i)-(v). In particular, now conditions (iii), (v)
only depend on 7N (&, 0) which remains unchanged. Clearly, condition (iv) is sat-
isfied by g¥ (£, 0). We repeat this procedure (N — M)-times to get a new map
(renaming the variables by (x, y, #) and the map by F) such that

N-1

Fy,y.0)=y+ > gy +g="x.y.0),
j=M

where gj are homogeneous functions of degree j, gzN = O(J|(x, y)||N) and F
satisfies conditions (i)-(Vv).

Now, if P < N, we deal with the & component and we consider a change of
coordinates

(x,3,0) =& 0,0 +ClE n, ),

where Cg’ is a homogeneous function of degree P in (€, n). The components (&, 1)
of the transformed map, denoted again by F1, satisfy conditions (i)-(ii) and

FV =&+ N E 0 9) +031E IV,
N-—1

—j ~>
FV=n+ > g n+2="En9).
j=M

FO =g +o+ClE e —ClEng+o)+1 €
+ 1P &m0 +O0E mITT.

Therefore, choosing Cé’ = Z)[ZP ], we have that
—P
FO =g +o+R" En+0a3E nIFh.
Repeating this procedure (N — P)-times we obtain a map G (x, y, @) such that
9G¥ —1d = O(|(x. ).
Next, we look for a change of variables of the form
— N N N
(3,0 =6E+C, & n9)n+CyE.n,9),9+Cy &, 0 ¢),

where Civ , C/yV and Cg’ are homogeneous functions with respect to &, n of degree
N, to transform G to GV, We impose the conditions

CNE o) —CVEne+o) +F E M+ FNE 1 0 =0E DIV,
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N

CYEme) —CYEne+o)+ Y FEN+VE 10 =03E nI"h,
j=M

N . N
ChE @) —ChEn e+ + Y B &+ E ¢ =00E M.
j=P

As before, taking CY = D[], CY = D[gN] and C) = D[AN] which are
analytic and have the right order, we obtain

9,G) = ol MM, 8,6 —1d = o€, IV

Since G is a sum of homogeneous functions up to degree ¢ — 1 plus a remainder
of order ¢, we can repeat this procedure (¢ — N)-times obtaining that F := G@—N)
satisfies

dyFey =O(IGE. M. 8,F, —1d = O(|(E, n)]).

The change C in the statement is the composition of all previous changes. Since C
is close to the identity, it sends U’ x ’]I‘d , to U x Td where U’ is a slightly smaller
domain than Y and o’ < o. o

In the following lemma, which is a straightforward consequence of Lemma 3.2,
we make a better choice of the parameters (¢, ®) which will allow us to find a new
reparametrization R such that its terms of order less than g do not depend on the
angular variables.

Lemma 3.3. Assume that R is analytic and satisfies the conditions for F in Theo-
rem 2.7 f0r some ,0() > 0. Then, there exist p > 0 and an analytic change of param-
eters P : V / XT — Voo XT of the form (u, ®) = P(v, ) = (v, ¥)+P(v, ¥)
with

Puv.¥) =D Piw.¥).  Pov. )= 27’ v, 9),

where V,y is a slightly smaller cone, ¢’ < o and PJ are homogeneous functions of
degree j, with respect to v, such that

R, y) =P o RoP.¥) = R(v.¥) +O(|lv]|)
with
R ¥) ==+ Ry(v). ¥ + © + Ry (v))
= @+ 7" @0 +O0(I" ). ¥ + o+ O] 7).

In addition, both R and R are analytic and R is a sum of homogeneous functions
in v up to order q — 1.
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Proof. The claim follows applying Lemma 3.2 to R instead of F, taking into
account that R is a map independent of y and that does not have y-component (that
is, m = 0). O

Now we apply Lemmas 3.2 and 3.3 to prove Proposition 3.1.

Proof of Proposition 3.1. Weset F', K Sand R satisfying all the conditions of The-
orem 2.7. Let C and F those provided by Lemma 3.2. We notice that, since

CoFoC'oKS—KSoR=ES
we have that
FoClokS=C N KSEoR+ED.

Then, KS = Clok < satisfies the conditions in Theorem 2.7

- < ) - <

K, u,©) =, 0) =0(lull”), K¢ u,® —6=0(ul))
and, by the mean value theorem, the new remainder
ES:=FoKS—KSoR=C'o(KSoR+ES)—C ' oKS o R=0(ul),

(see (2.15)).
Next, we consider the close to the identity change of parameters in Lemma 3.3,
(u, ®) = P(v, ¥). We have that

S

o RP(,¥)) = EX(P, ¥)).
We define K= = K= o P and E= = E= o P. Then, the above equality reads

FoKE®Pw,v)) — K

FoKS _KSoR=ES (3.3)

with R = P~'oRoP definedinLemma3.3and ES = O(||v||7). We emphasize that
K= also satisfies the conditions in Theorem 2.7, namely it is a sum of homogeneous
functions in v and

=< =<
Kg, (v, 9) —(v,0) =0(Ivl». Ky @.¥)—v =0(vl). (3.4)
. < ~<
It only remains to check that 8,/,Kgn = O(|lv[|?) and 3y, K5 —Id = O(||v||9).
To do so we write F = F=4~! 4+ FZ4 and then (3.3) becomes
FS0-1oKS _KSoR=ES_F29oK=. (3.5)

Since by Lemma 3.3, R = R + O(J|v[|9) and by Lemma 3.2, F=4=! — (0, 0, ¢)
does not depend on the angle ¢, equation (3.5) can be written as:

FSI-N(RE, 0, 9). Ko (0, 9) = RE 0 R, p) = O(u9),  (3.6)

where R(v, ¥) = (v + Ry(v), ¥ + @ + Ry (v)).
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Now, taking the derivative with respect to i in both sides of (3.6), using that
DF=1=" = 1d+O(|[v|I¥=), O™, O(lv||”~")) and that 3y, R = (0, Id),
we obtain

0y K=, ) — 8y K=(R(v. ¥))
=<
O(llvll) +0(|Iv||N_1||31/ng,7(v, (121}
— q M~—1 Aé 3.7
= | OUl?) + O™ oy K, (v, Y1) | - (3.7
=<
O(lvl19) +odlvll”~ dy K¢, (v, ¥)1)

On the other hand, using the properties of K< in (3.4) and the ones of R in
Lemma 3.3, by Taylor’s theorem we have that

8¢I/(\§(v +R,(v), ¥ +w+ Ry(v) = 8wll(\§(v, v + o)
O IV 182, RE (v, v)I) + Ol P 182, RE w, vl
A< P
+ | odwlIMI3y K o, ) 1D + Ol P 185, , Ky (v, )1
A< A<
ORI 182, K5 (0. )l + Ol P 182, , K (v, )1

(3.8)

Notice that, using N =2 P 2 1, N 2 M = 2, properties (3.4) of K, that R, =
O(lu||V) and Ry, = O(||v||?), at least, we obtain that

dy K=, ¥) — 0y K= (v, ¥ + w) = (0w, OlvI1?), O(lv[1?).

Here, to estimate the orders of the first and second derivatives of K< we have
used that K= satisfies C o K= = K= with C, K= being sums of homogeneous
functions with respect to (&, ) and u, respectively, and that all of them are analytic
in U x T¢ for some U and o > 0.

Therefore, since 9y, K S%n and 9y K, (pg — Id have zero average, by Theorem 2.1,
8y K=, %) = (0,0,1d) = (OUII*), O I1*), OClIv|1%)).
Assume by induction that
0, K=(v, ¥) = (0,0,1d) = (O(lIv 1), O(llvl), O(lvl' ™)
forl =2,...,q — 1. Then, using (3.7) and (3.8) we have that

K=, ¥) — 0y K=(v, ¥ + )

O([vl|7) + Ol |V =) + O(Jlv || P+
= O(vl?) + O(lv|M~+) + O(|lv]| P+
O(lv[|9) + Ol P~y + Oo(|lv || P+

Now, using Theorem 2.1 and that N =2 M =2, N 2 P = 1, we conclude that

3y K=, ¥) — (0,0,1d) = (O(Jv["*1), o], O(lIv]|)).
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Therefore, when ! = g — 1,
3w1?§(v, ¥) —(0,0,1d) = (O(IIvllq),O(IIUIIq),O(IIUIIq*I))

To ﬁnish we notice that, applying once more (3.7) and (3.8), we obtain that in fact,

8¢K (v, ¥) —1d = O(J|lv[|7).

By construction of F and Remark 2.6 the constants @ 1 A f and b rof F for o <
p satisfy condition (iii) and Af > Ay >bymax{l, N—- P} = bf max{l, N — P}.
Now, Proposition 3.1 follows from Lemmas 3.2 and 3.3. O

We state an intermediate result, whose technical proof is postposed to Sec-
tions 3.2 and 3.3, that implies the existence part of Theorem 2.7 as a corollary.
Indeed, formula (3.6) suggests that we can use a simpler R to prove the result.

Proposition 3.4. Let \1}: . K and R satisfy the conditions on Proposition 3.1. Let
R(w,¥) = (Ry(), Ry (v, ¥)) = (v + Ry(v), ¥ + @ + Ry (v)), introduced in
Lemma 3.3, that satisfies

R, ¥) = R(w, ) = O(llv]19).
Then, the invariance equation
Fo(KE4+A)—(KE+A)oR=0 (3.9)
has an analytic solution A such that Eé»n = O(|lv|a~ N+, &p = O(||v||22N+P+],

Proof of the claim on the existence of the parametrization in Theorem 2.7. from
Proposition 3.4 We first note that, by Proposition 3.1, to prove Theorem 2.7 we
only need to solve the invariance equation (3.1). We note that the difference be-
tween the invariance equation (3.9) in Proposition 3.4 and (3.1) is just the dy-
namics on the invariant manifold, namely in the latter is k while in the former
is R. To overcome this issue we apply Proposition 3.4 to R(v ¥) considered as
amap U x T ¢ R* x T — R" x T¢ 1nstead0fthemapF U x T C
R” x R" x T¢ — R" x R™ x T? taking K= =1d. Then, R satisfies the hypothe-
ses of Proposmon 3.1 withm = 0. Note thatin partlcular R,(v) = f (u, 0). Indeed,
since R(v, v) — R(v, ¥) = O(||v||?), we have that Rold—1Ido R = O(|[v]|9).
Then, there exists A such that

Ro(d+ Ag)— (Id+ Ag)oR =0
and
Ar(, ) = (O] N+, O(|lv)|4= 2N TP HD).

We define ¥ = Id ‘tAR and we have that Ro W = W o E, so that R and R are
conjugate. Now, let A be a solution of (3.9). We introduce

Z:k\go\IJ_l—I/(\§+Zo\IJ_l
= (O, o9, O(flu||a 2N P,
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Then,

o (KE+ AN oW ! —(KE+A)oRow™!

=
Il
“11)

—Fo(KS+ AoV —(KE4+AN)oWw'oR
—Fo(KE+A)—(KS+A)oR.

This implies the existence result in Theorem 2.7, since all changes of variables and
parameters are analytic. O

Remark 3.5. We postpose the proof of the characterization of the local stable in-
variant manifold ng 5 in (2.17) to Section 3.4.

3.2. The Functional Equation for K

We will prove Proposition 3.4 solving a fixed point equation derived from (3.1).
The first (non-trivial) step is to find the appropriate fixed point equation. As we
did previously, we decompose F = FSa-1 4 F24 with F=9-! —1d independent
on ¢. Denoting ¢ = (€, n), DF=4-! has the form
DF=171(¢)

W+ 07" (0) +0: FZV4@) 0,7 (@) + 8, FZV(@) 0
= ang@) +9:3=M () 1d+ angM(o + 9,821 () 0
dh' () + dhZPH(0) an () + 0,2+ () 1

Therefore, we can write

syt {14+ C©) 0 00
pF= @) =M 8@ = (O )+ ()0) 10

Notice that (3.10) defines implicitly M(¢), N(¢), C(¢) and ¢(¢). We also decom-
pose

K=.y) =K', 9) + K29, 9). K290, %) = O(|lv]19)
with I?gq—l(v, ) of degree ¢ — 1 with respect to v gnd KSa-! w,¥)—(v,0,v)

independent of ¥y. We decompose the condition for A as

0=Fo(KS+A) —(KE+A)oR

—F=

-1 o RS _KSoR

+ F29(K= + A)

F P o(KE+ A) —F=7 16K
+ DFST Y KSA - M(K=4"HA

+M(KS9"HA — AoR.

S _DFEIY(KSHA
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We introduce the operators
LIA] =M(KS9"HYA — Ao R,
NI[A]=F=4' o KE — K=o R+ F290 (K= + A)
+ DFSI-YKRSHA - M(KS4—HA
L FSI o (KS + A) = FS171 o KS - DFSTYKSHA, (3.11)

and we rewrite the condition for A as
LIA] = —NI[A]. (3.12)

In order to express the above equation as a fixed point equation we need to invert
the linear operator £ in an appropriate Banach space. Actually, we will find a right
inverse of it. In this section we proceed formally. In the next one we provide the
necessary estimates. We have to solve the equation

LAl =T (3.13)
with T in some functional space. First, we expand A and T in Fourier series:

E(v’ Y) = Z A(k)(v)eZnik-llf’ T, ¥) = Z T(k)(v)ez’”k"/’,

keZd kezd

We recall that F=9-1 —1d does not depend on ¢ (Lemma 3.2) and that K=a-1 (v, ¥)—
(v, 0, ¥) does not depend on ¥ (Proposition 3.1). The block structure of the matrix
M permits to uncouple equation (3.13) into two equations, one for the (&, n)-
components, Zg,,,, T% 5, and the other for the ¢-components, Zw’ T,. Therefore,
we have to solve

d+ C(RE!1Rey — Reyo R =T,
Ap—Ay,0R=T,.

For the Fourier coefficients, since E(v, ¥) = (v+ Ry(v), ¥ + w+ Ry (v)), we
have

A<y . o
[+ CRTHal) - rikerkina®) o g, =10 kezd, (314

AL — miketRy AL o g =70 kezd (3.15)

We denote £{) [A{)] and £3”[Ay"] the left hand sides of (3.14) and (3.15),
respectively. The corresponding (formal) inverses Sékzl and Sg(ok) are
o0 J

SO0 @) = Z [T(ad+coR o /)™

ezmk(jw+z-,’:‘0' Rwok{,)Ts(k) o R
1 ’
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e j— =4 ~ -
SO[TH]w) = Zeznik(jw+2{=01 RwoRi)Ték) o Rl
Jj=0

where ﬁé = Ev o.Do Ev. Let

S(")[T(")] — (S(k) [T(k)],S((pk)[T(/gk)]).

Enlt&n
Then, the operator £ has a formal right inverse given by
SITIw. y) = Y " VSOT®](w) (3.16)
kezd
00 J <o . = j—1 5
=Y | ] (Riw)))) T(R«g W), jo+v+ Y Rv,(Rf)(v)))
j=0 | 1=0 1=0
or equivalently
2| >5g-1 51 —1 5
SITIw ) =Y | [TMEZT ®wm) ™ [ToR @ y). (.17
j=0 | I=0

Having defined S, we can consider the equation
A =F[A] := —So NI[A] (3.18)

Clearly, if A is solution of (3.18), it is also solution of (3.12).

3.3. Solution of the Fixed Point Equation

To prove that the fixed point equation (3.18) has a solution in a suitable Banach
space we need to study both the linear operator S, defined in (3.16), and the non-
linear operator N, defined in (3.11). This will be done in Sections 3.3.1 and 3.3.2,
respectively.

We recall that the operator S depends on

R(v,¥) = (Ry(v, ¥), Ry (v, ¥)) = (v + Ry(v), ¥ + @+ Ry (1), (3.19)
where
Ryw) = F (0,00 + wZ¥* (), with  wZNH () = O V),

and Ry (v) = O(|lv|| P are sums of homogeneous functions in v of degree at most

q— 1.
For positive p, y and o we define the sets

Q,(y)=fv e C" | v=(Rev,Imv) e R" xR", Rev € V,, [Imv|| < y|Rev||}

and

Tp(y.0) ={ W, ¥) € 2,(y) x TS | [Imyr]| + Y IIm Ry (RL)|| < o ¢ .
=0
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From now on we fix constants a, b and A, B, D such that

O<a<ay, b>by, B<Bg, D<Dy, A<Ay,
A > bmax{l, N — P} (3.20)

and, if E/ > E > max{—B, —D, E*},

o N4

< P (3.21)
N —5/3

withayr, by, Ay, Dy, By, E* definedin (2.9),(2.10) (2.11) and (2.12), respectively.

Taking the norm ||z|| = max{||Re z||, ||Im z||} in C", we have that if A is a complex

nxnmatrixand A = A|+iA; with A, A, real matrices, then [|[A|| < ||A;||+] Az
By definition (2.10) of D, for ¢ € V, g we have that

1= (Df— B+ pMEIN!
1-D|g¥! (3.22)

H (Id + D$7N(C) + DgfiNH(g))—l H

A

A

and, by definition (2.11) of By,

|4+ D7 @) + D@2+ )| < 1d - D" @)1+ Mg
< |1d — D,gY (€, 0| + MBIIEIIM !
+ Ml (3:23)
S 1—(Bg—(B+pM)EIM!
<1-BlgIM "
Moreover, | D, (¢) + D,g=M (@)l < pMIEIM.

Then, by definition (3.10) of M, and bounds (3.22) and (3.23), we obtain that,
if p, B are small enough (depending on B and D),

I(ME ) IS 1+ EIEINTY 6 € Vo,

Also, a computation shows that if £ € Q,(y), Inll < Bl and y is small we
—1 _ -1
have [Re (M(€,m) || < 1+ (E +O@)IEIN" and [[Im (ME, )™ || <
—1
My|Re (M(§, ) —1d|.
Therefore

IME ) IS+ ENEINT e, Il S BlENL. (B.24)

The next result is the key to control the iterates of R. Its proof is deferred to
Appendix C.

Lemma 3.6. Assume Ay > by. Let R be as (3.19) and a, b, A be constants satis-
fying (3.20) with A > b. Fix constants a* < a(N — 1) and b* > b(N — 1). Then,
there exist positive p, y small enough such that
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(1) The set 2, (I") is invariant by ﬁv, that is

Ry(2,(y)) C 2,(»).
(2) Fork 2 0and v € Q,(y):
vl

—— S IR = . (3.25)
[1+ kb* o] V1]V [1 + ka*[[uV-1]7

[[v]

(3) If A/b > max{l, N — P}, then there exists some constant M > 0 such that

Z IIm Ry (R (v))]] < M”” ||N”|L, ve Q). (3.26)

=0
(4) If A/b > max{l, N — P}, then there exists o > 0 such that

R(T,(y,0)) CT,y(y,0). (3.27)

Remark 3.7. We notice that if Ay > by, then we can always take A < Ay and
b > by satisfying A > b.

We emphasize that whenn = 1, Ay = Nby > by (this does not happen, in
general, when n > 1, see [15,16] for examples). Then, (3.26) and (3.27) always
hold true in the one dimensional case, since we can choose the values of A and b
satisfying the hypotheses of Lemma 3.6.

Remark 3.8.1f P 2 N — 1, the set I',(y, o) contains Q,(y’) x Tg, for some
y'<yando’' Lo

When1 < P < N — 1, the set I',(y, o) contains the points (v, {) satisfying
Rev e V,, [Imv] < y/ vV, ¢ € Tﬁ,,for some Y’ < yando’ < o.

The previous work [14] deals with the case n = 1 and P = N. Lemma 3.6 is
the main tool to generalize the results in [14] to the case 1 < P < N.

Remark 3.9. Lemma 3.6 holds true uniformly in A € C in compact subsets of Ac
where Ac is a suitable complex extension of A to an open subset of C?.

We introduce the spaces X, s € Z, we will deal with below. Given 0 < p, y <
1, and o > 0 we define

X = {h :Tpy,0) — C* | h real analytic ,

Al : = M<OO}

wel, o) IVI°

with £ 2 1 (if some component A, of h takes values on T, we will assume that the
component , of & considered as an element of X, takes values on the universal
covering C? of T%). With the above introduced norms X are Banach spaces. It is
immediate to see that if s < ¢, then X; C Xy and if h € X, then ||A|s < o' | A||;.
Furthermore, if # € X; and g € Xy thenh - g € Xyys and ||k - gllrs S Al glls-
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Moreover, given r € Z and v > 0, we introduce the product Banach space
XY =X N1 X XrNg1 X XroN4 P41
endowed with the norm
WAl = el —N1 + gl —N1 + ViAgllr—on+ P

for some v > 0. To make this norm more flexible we keep v as a parameter. Below
we will use a value of v satisfying a certain smallness condition.

3.3.1. The Linear Operator S
Lemma 3.10. Assume that Ay > by max{1, N — P}. Then, if

N-1 E*

s>max{N—14+ ————,
{ N —5/3ay

2N—P—1},

the linear operator S : X
and bounded.

SN—1 X formally introducedin (3.17) is well defined

Proof. Let0 < a < ay. Wefixa*, b*, p, y satisfying the conditions in Lemma 3.6,
and moreover, (N —4/3)a; < a* and g small. Then, I, (y, o) is invariant by R.
Given T € X, for some r we have

[[vll”

(14 ja* o ¥=1) 7T

|7 (R, v || S ITIAIR @, )17 S 1T,
From (3.10) we also introduce M; = Id + C(¢). Then,

—1
(Mo
M _<0 Id)'

Now let T = (T¢, T, Ty) € X From the definition of S in (3.17) we also

s+N—1"
have
00 J
SITDen@, ) = S| [T MR R )™ | Ty 0 B (0,9,
j=0| (=0

(ST, ¥) =Y Ty 0 R (v, 9).

J=0

<y
Now, using (3.24) and that K;;’ 1(v) —(,0) = O(||v||2), we bound

J J
]_[ M, o K, q Yo R )™ <[[a+ENR 1IN, (3.28)
=0 =0
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To bound (3.28) we will use the formal identity [[r; = exp )_logr;, forr; > 0.
Again by Lemma 3.6,

J J
> log(l + E'IRL@) N S BV IR )V
[=0 [=0

J
1
< 5/ N-1 T o N1
= EWIM Y e
[=0

E/
< B M 4 —log (14 ja v Mh.
Therefore,
! =Sg—1 1 -1 / N—1 sy WN—1\E'/a*
[ITMioks ™ o RLw) | < exp(E'p" D1+ ja* vV HE/
1=0
Then, using thats /(N—1)—E’/a* > 1+E*/((N—=5/3)as)—E'/(N—4/3)af) >

1, by Lemma 3.21, and that T¢, T, € X, we obtain

N—l)

- exp(E’p
I(SITDe, (v, W = 1 Te plls 0] E —
S+ jar V)T

~N+1
< MITe yllsen—1llvll* =,

and similarly, since T, € X;_np,

ISIT Dy (v, ¥ £ MITylls—npllo) NP1
Then, we immediately get

ISITIIS = MITI S s -

3.3.2. The Nonlinear Operator N'© We denote by E: s the closed ball of radius
8 of X)X

Lemma 3.11. Assume g = N and § is so small that if h € qu,a the range ofl?\é +h
is contained in the domain of F. Then, if 8 is small, the operator N sends the ball
X X

Eqﬁ C X into Xq+N_1. Moreover; if ¢ =2 max{2N — P,2N — M + 1} and

v=/p,

Lip Nz« < M(p'/? + p).
q.8
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Proof. Leth € X . Note that the condition on ¢ implies g = N + 1. Taking into
account the definition of N in (3.11) we decompose N(h) = N1+ N2 + N3 + Na
with

N1 = FSa-1, RS —[/(\éol\é,

Ny = F290 (K< 4 1),

N3 = DFSTY(KS)n — M(KS4Yh,

Ny = FS17 1o (RS + h) — FS47 1 6 KS — DFST1(KSHh,
Since R and K= satisfy the approximate invariance equation (3.2) and R-R=

O([[v]|9), N1 € Xq x Xq x Xq C X, y_;. Clearly, we also have N, € Xy x Xy x
Xy On the other hand, from (3.10)

v 20 (hs,n> [C(RE,) - CRETH10 (h%‘,n).
(K 0) \ hy 0 0)\ hy

Since

05, Oy,
C(® —CK—q I 2g—1 2g—-1 3.29
(Kgn) — C( )= <02q—N+M—1 O2g-N+M-1 42

. .. X
and using the cond}tlons ong,wehave N3 € Xy x Xg x Xp_11g-N41 =Xy ;-
For N4, we write

Sq—-1,5<
(Nenp = 5 f(l—t)Dng,fw (K= +th)h® d1.

Using that FSa—1 _ (0, 0, @) does not depend on ¢, we have (N4)g € z\x’q+(q_N),
(Ng)y € Xq+(q+M72N) and (Ng)y € Xq7N+P+(q7N)- Then, N'(h) € XquN,]-

Now we look for the Lipschitz constant of N restricted to E; 5 Given h, g €
qu,s C X>< we decompose N(h) — N(g) =T1 + 1> + T3 + T4 + T5 with

Ty =F290 (K= +h)— F290 (K= + g),
Ty = DFSTY(KS)h — M(K=9"Yh — [DFS1-1(K=)g — M(K =7 1)g],

/(1—:) D2F—" S (RS +1h) — D2ngw‘(1( T o)h®2dr,

/(l—t)Dng_:(pl(K trg)(h h — g)dt,

BN AN _
Ts—2f0<1 DDA RS 41— g, 9)dr.

We have
0q-104-1 0y he — g¢
Ti = | Og-1 041 04 hy =&y |
04-104-1 0y hy — 8
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where Oy stands for terms of order & in v. Therefore,
(T, W, I EMIVIT he — gellg—n+1 + 1y — gyllg—n+D ][4~V
+ Ml[v)l1lhy — gpllg—antpiilv]|d 7N TEH
and hence
U701 oy S MY 0 pd 2Py pd =P g pa =N 1 — g
From the definition of M we have
0
=T +T1}:=|0 B
(K ) (he.n — ge.n)
= >Sq-1
4 [ [CKe) = €Ky I (hen — gean)
0
Therefore,
(T (v, )L S MIIP = lhe — gellg—n+1 + Iy — gyllg—n+D w4V T

and then ||T21 ||Z;<+N—l < Mv|h — g||;<. Taking into account (3.29) we also have

1T ) = MUY 2k — gelg-n+1 + Ilhy — gyllg—n+D 027N
and then [|(T7)g g £ Mp?~" |l — gl Analogously, [[(T5)ylly < MpdtM=N=1
Ih — gl Then,
T30y g S MtV h — g .
Next, we recall that F=4—1 — (0, 0, @) does not depend on ¢. Concerning 73, using
the third derivatives of =9~ and the conditions on q,
1(T3)e . )| EMIIY (ke — gellg—n+1
+ Iy = gnllg—nrD I g 117y ol FD
and ||[(T3)gllg £ Mp*9=N 8% ||h—g| . Analogously, [|(T3), [y £ Mp*+tM—3Ns2
lh — gl and [[(T3)g llg+p—n < Mp*@=N)82|[h — g||X so that
1301 w1 S MM N 4 up? @M §2 0 — g
For T4,
1(Tw)e . )1l < MIIN (ke — gellg—n-+1
Hlhy = gnllg=—nrD I ke yllg— v llv]
and || (Ty)elly < Mp?=N38|lh—g| . Analogously, [[(Ta),llq < Mp9TM=2Ns||h—
gl and [(Ta)gllg+p—n < Mp?~N§||h — g||¥ and
ITall )y oy S M+ )p? N 4 p?TM2N)s 10 — g .

For T5 we have the same estimate as for 7. Taking into account the conditions on
g and that v = ,/p we get the bound for the Lipschitz constant of N. O

|q—N+l
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3.3.3. End of the Proof of Proposition 3.4  Our goal is to prove that the fixed
point equation (3.18) has a solution belonging to X ; . For that we start by estimating

the first iterate of the operator ¥ = —8S o N, starting with Ao =0, namely
A =F(0) = —So N[O].

We recall that Rand K= satisfy the approximate invariance equation (3.2) and that
R — R = O(||v||?). Therefore, using definition of NV in (3.11) we have that

N0l = FS17' o KS _KSoR+F290KS=FoK=S—KSoR=0(v|"

and as a consequence N[0] € Xy x Xy x X;. By Lemmas 3.10 and 3.11, A e X7
We introduce the radius

8o == 2[| Ay}

and the closed ball _;’ 5, of X of radius &o.

A standard argument shows that if p is small, F (
Ac E;(,a(y Then, by Lemma 3.11,

—X

0.5) C E;(go. Indeed, let

IF DI < IFR) = FOIS + IF O]
< LipFI A1 +80/2 < MISI(V/B + p)do + 80/2 < S0,

if p is small. Therefore we have a unique fixed point A of F in qu, s C Xg-

3.4. Characterization of the Stable Manifold

To finish the proof of Theorem 2.7 it remains to relate the parametrization
K (u, ®) with W‘s/p 5 Assume that K and R are solutions of

FoK—-—KoR=0
with
K, ®) —u=0(ul®. Ky, 0)=0(ul?.
Ko(u, ©) — © = O(|ul). (3.30)
and
Ry, ®) =u+ 7", 00 +0(ul¥*"),  Re,®) = O+ w+O0(ul).

We first recall that by Proposition 3.1, performing several steps of averaging
and changes of variables we can remove the dependence on 6 of F up to any order.
Moreover, we also have that the parametrization K (1, ®) — (u, 0, ®) and R do not
depend on ® up to any order. We assume that we have removed this dependence
up to order smaller or equal than N. In particular, after the corresponding change

of variables, the new map F reads as (2.4) with sz , §3M as in (2.8) satisfying
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that f N f (the average of V) and g” = gM are functions independent of 6.
Then, the new map has the same constants ay, by, A ¢, B, as the initial one.

We prove (2.17) for F. From now on, we remove the symbol in the notation.
Then, undoing the changes of variables, we have the claim for F. We first prove
that, if p, B are small,

d
K(V, xT%) C Wi,
with V,, g defined in (2.6). We claim that, foru € V, and ® € T,
Fe(K(u,0)) eV, and |F,(K(u,®)| < BlF(K(u,®)|. (3.31)

Indeed, since Fy (x, y, 0) = x+?N(x, ())-i-fo1 DyTN(x, sy)yds+fENT(x, y,0),

using that 7N satisfies condition (v), namely dist(x + ?N (x,0), V; Yy = ay|x|V,
and (3.30) we easily obtain

dist(Fy (K (u, ©)), V) = aylul™ — MjuN*!
and we conclude that Fy (K (4, ©)) € V,. Also,
Fy(K (u, ©)) = Ky (u, ©) + 8" (K1 (1, ©)) + ¢=MH (K (u, ©)) = O(||u]|?)
and

—N
I Fe(K (. O)]| = [ K (. ©) + F (Ky y (11, ©)) + fEV (K (u, ©))]
Z [lull (1 = Mijul)
give the second condition in (3.31). Next we notice that, by the definition of a ¢

in (2.9),

—N
IR, O < N+ £ @, O+ Ml ¥ = Jlull — aplull™ + Mu|V
a _
< ol (1= S V") <

for (u, ®) € (Vp\{O}) x T4 if p small. Using Lemma 3.6 and an induction argument
we get || RET(u, )| < [[RE(u, ®)| < [lu|| for k = 1 and thus RX(u, ®) — 0 as
k — oo. Therefore, since F¥ o K = K o R, for all k € N, we have that

lim Ff (K(u,©)) =0
k—oo 77
and this implies that K (V,, x T4 ) C ng 5
Now, assuming B, > 0 we will prove that, for a cone set V close to V,
v d
Wi, C K(V, x T%).

To simplify the arguments we first check that the image of K is (locally) the graph
of a function K and then we will change variables to put the graph of K on the
horizontal subspace. To check that { K (#, ®)} can be expressed as a graph we note
that (3.30) implies that the map K, ¢ : (u, ®) — (K, (u, ®), Kg(u, ®)) is locally
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invertible and hence we can write (1, ®) = (Kyg)~ (x 0) for x in a slightly
smaller cone set V. Therefore {K(u,®) | (u,®) € V x ’H‘d} can be expressed
as the graph y = Ky o K e(x 6) which has the same regularity as K. We define

K =Kyo Kx,e- We emphasize that K does not depend on 6 till terms of order

N + 1. Since K, (u, ©) = O(|lu]?), it is also clear that ||‘K(x )| = O(|x||?) so
that, for o small enough x,K(x,0),0) € Ap = Vp g X T,
We perform the close to the identity change of variables

(x,y,0) =&, n+K(E, D), D).
We have that K (&, ©) = O(||$||2) and Dy K (&, 9) = O(||$||N+1).The n-component
of the transformed map ¥ is given by
FoE.n.9) =n+g"E m+g="E 0. 0)
for some =M+, We have g™ (£, 0) = 0 and 221 (£, 0, 9) = 0. Therefore,

1
gV (E ) = GE . G(s,n)=f0 D, g™ (&, su) ds,

/\> o~
=M€ 0, 0) = GE n .
It is clear that » = O corresponds to y = K(x, 0). Therefore, it only remains
to be checked that, if (¢, n, ) are such that ?k (E n,0) € Vp g forall k € N and

,n(é’ n,®) — 0 then n = 0. Indeed, by the deﬁmtlon of B, in (2.11), we have
that

17 & 0. ) = lln = GE mnll + Minll1E1™
< |I1d — G, O [[lInll + MIENM 21> + MIEIM I
< Inl(1 = BolEIM=! + M(p + BIEIMY) < il

if p, B are small enough. Therefore, || 7, (&, n, 9)|| = IInllif (&, r) %) € V B x’]I‘d
Applying this property in a iterative way we have that, when 7:5 n(é n, 19) € Vp 8
for all k € N, then

Inll S 1FyE 0. M -0  as k— oo

and, consequently, ||| = 0.

4. Approximation of the Invariant Manifolds

This section contains the proof of Theorems 2.8 and 2.15. First, in Section 4.1,
we will consider a first order partial differential equation which we will encounter
as a cohomological equation in the inductive step to find the terms of the expan-
sion of the parametrization K, and the function R (for maps) or the vector field ¥
(for differential equations). Then, in Sections 4.2 and 4.3 we prove the approxi-
mation results for maps and flows, respectively. We emphasize that we provide an
explicit inductive algorithm for computing such approximations as finite sums of
homogeneous functions in u.
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4.1. A First Order Partial Differential Equation with Homogeneous Coefficients

In this section we recall Theorem 3.2 of [16] which will be a key result to
solve the so-called cohomological equations. In that paper the result is stated for
the differentiable and analytical cases. Here we reword it for the analytical case.

Let V C R” be a cone-like set, 0 € V., m € Z, m = 1 and A C RP. Let
p:R'XA— R, Q:R"x A — L(R¥, R¥)andw : V x A — R¥, and consider

the equation

Dh(u, A) -p(u, X)) — Qu, X) - h(u, X) = w(u, 1)

“.1

forh:V x A — R¥. Given p > 0, we define the constants ay, by, Ap and Bg by

llu 4+ pQu, VI — llull

ap ==

weVy reA |V ’
, A
bp := inf sup MN)”,
reh ey, ul
IId + Dp(u, M| — 1
Ap:=— sup N1 ,
ueV,. reA [[uel]
Id—Q(u, M| —1
B i Ild - Q. 1]
UeV,, LeA lloell

We assume there exists p > 0 such that the following conditions hold

4.2)

(a) p, Q and w are analytic homogeneous functions in V,, x A of degrees N, N — 1

and m 4+ N, respectively.
(b) The constants ap, Ap, bp satisfy

ap > 0, Ap > by.
(c) There exists a constant a{’, > 0 such that
dist(u +p(u, 1), (V,)) Z a lul™,  VueV,,

(d) If By < 0 we assume that

B
m+1+-2-0.
ap

(4.3)

We will apply the next theorem for different Q’s and in some cases we may

have B¢ < 0.

We will have to consider complex extensions of 2 := V x A of the form

Qc(y) :=={w,») €C" x C” | (Reu,Rer) € V x A,

Itmull < yllReul, [Ima| < y2}.

Finally, let ¢}, be the flow of 2 = p(u, 1) and W be the fundamental matrix solution

of 2 = Q(gp(t; u, 1), M)z such that W (0; u, 1) = Id.
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Theorem 4.1. (Theorem 3.2 of [16]) Assume that p, Q, w satisfy hypotheses (a)-

(d). Then, equation (4.1) has a unique homogeneous solution of degree m+ 1 given
by

h(u, 1) = Hp glwl(u, 1)

0 | (4.4)
::/ \Ilé (5 u, Ow(pp(t;u, M), M) dt, (u,r) €V x A.

If p, Q, w are real analytic functions defined on the extended set Q¢ (yo) for
some yy > 0, then there exists 0 < y < yg such that h is a real analytic function

on Qc(y).

4.2. The Approximate Solution of the Invariance Equation for Maps

To simplify the notation, throughout this section we will not make explicit the
dependence of the considered objects on A. Also, at some places, we skip the depen-
dence on their variables of some functions when it will not be possible confusion.
We recall that the superscript in a function, for instance G/, indicates that G/ is a
homogeneous function of degree j with respect to u or (x, y), i.e. with respect to
all its variables except the angles and parameters. However, when we use paren-
theses, G/) indicates the expression of G at the j step of some iterative procedure.
In this section we prove Theorem 2.8 by finding approximations, K /), R\, as
sums of homogeneous functions that can be determined. The specific way to do
so is precisely described. By an induction procedure, we prove that indeed the
functions obtained with the proposed algorithm satisfy the approximate invariance
equation (2.18).

4.2.1. Iterative Procedure: The Cohomological Equations  Although there is
some freedom, we look for an approximation K ) = (K W K y(/ ) K 9(" ) of the
parametrization of the invariant manifold and R = (RL(/ ), RE)’ )) of the form:

KD, 0) = u+KY®,0),0,0), RVw 0)=(u+R, u),0+o),
and for j = 2,

KD, ©) = KD, 0)+ KD, ),
RDw, ®) = RV"VDw, ©) + RV (u, ®)

with K/, j > 2, decomposed as the sum of an average and an oscillatory part (of
different degrees):

K, 0) = K. )+ KV, 0),

+M~—1

K (. ©) = K w) + K™ w, ),

K, ©) =K~ ) + K, ©)
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and similarly R decomposed as:

R w, ©) =Ry + RV w, 0),

i —j+P-2 ~iip_
RY w, ©) =Ry W) + RSP, @),
such that,
ED — FokW _ g o RW
J+N j+M Jjt+P—1 4.3)
= (OUlul’™), o(lull/*™), O(||ull ).

Remark 4.2. Notice that property (4.5) is not (2.18) in the statement of Theorem 2.8.
We will obtain (2.18) in Section 4.2.2.

First we check that the choices of K1 and R") are such that (4.5) becomes
true for j = 1. Indeed, we write

Fok® —g®oRM
~ ~ —N = —=N
(K;V + fNu+KN,0,0)-R, —KNw+R, (), 0+ o) +0(||u||N+1))

Ol ™+1)
O(lull™)

Comparing the average and the oscillatory parts, we are lead to take ﬁi\] (u) =

?N (u,0) and K ;V to be the zero average solution D[ f N1 of the small divisors
equation

KNw,®+w) — KN, ©) = fNu,0,0),

and (4.5) holds true for j = 1. Assume, by induction,_that we have determined K )
and RO for 1 <1< j — 1, with j = 2 such that EU~D defined in (4.5) satisfies

EYU=D = (O(lull/ N1, O(llul 7M1, O(lul TP 2)).
We decompose
EWD—FoKD _ g o RrW
—FoKU-D _ glU-D g RU-D
4+ FoKY _FokUD _pDFogU-D . gW)
+DFo K(jfl) .7((]) _(]((j) ° R(jfl)
— KW o RU 4 k) o RU-D,
and we define
7-1(]) —FoKW _FokU-D _pForU-D. 7((]‘)7
T = DF o KU=D . W) — i) o RU-D,
79 = KV o RD — KD o RU-D,
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Since F can be expressed as a sum of homogeneous functions with respect to
(x, ¥) (condition (ii)), it is not difficult to check that

T = (Oul™*), 0ul M), O(lul P+)).
Now we deal with 757, Using that KU~V (u, ©) = (u40(|u]|?), O([lu?), O+
O(||lu|l)), decomposition (2.8) in condition (ii) and condition (iv), we write
DF o KU=D

0N+ f2VD (N 4 2N (Y =N A
=| M +g=Mth) It a,(gM + 5= dp(eM + =M | o KUY

d(h” +hZPHY) dy(h? +hZPH)  Xd+ 8p(h + nZPHT)
d+3, fN@,0,0) 3,f¥w,0,0) dfVu,0 0)
= 0 Id + dyg™ (u, 0, ®) 0 +N@u, ©)
0 0 Id

with

olul™) o™y O(lull™*1)
N, ®) = [ odlul™) Oul™) O(lu|™*")
olull”=H o(lul®~1  odull)

We note that, by (iv), g™ o KU=D = O(|ju||*"). Then,

(A4 N @, 0,0) 3y V@, 0,0) 3 fN(u,0,0)
7 = 0 Id + 0,8M(u, 0, ©) 0
0 0 1d
?)]C'_}_E){#N—l
E;+E§+M—l
—i—1 | zj+P-2
K, +K;
Ko RU-D 4 KITN=1 o RU-D
—| ®LoRUD 4+ KMo RUTD | + N, ©) - KV,
K)o RUTD 4 KJHP=2 5 RU-D

Notice that, since RY ™" (u, ©) = u + Ro) (u) + O([ul|¥+") and RY " (u, ©) =
® + w + O(|lu])), we have

Ki,oRY™Vw,©) =K, )+ DK R, @) +O0(u] N2,

—j-1 i —j—1 —j—1, =N iLON_

Ky oRYDw,©) =K, W+ DKy @R, ) +O0(u]/ N3,
and, writing K = (KiTN=1 I?‘yiJrM_l, I?gJFP_z),

KD 5 R(j_l)(u, Q) = r]?‘(j)(u’ O + w)
+(Oul7 N O u TN [ O(|lu )TN HE2)).
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Therefore

T3l == DRLWR, @)+ 8 Y w, 0, 0K 0 + oy 1 (. 0, 0K )
+ 09/ (,0.0) (K )+ K) T, 0)
+ R, 0) = RV 0,0 4 )+ 0l ),

73)) = — DEL()Ry () + dyg™ . 0. ©) K (u)
+ E;‘+M—1(u’ 0) — E)j)’+M—l(u, O +w)
+O0(lull 7+,

7 =~ DK} Ry 0 + K] w,0) - KT 20,0 4+ 0)
+O0(lull/ .

Finally, we write 775 )

. 1
TP =KD 6 RD — KD o RUD :f DKD(RU=D 1 sRIVRD ds

0
1 (1+0dlul) 3 KY +O0(ul™Y /o)
= [{ owun oauiy ) (R ) as
0 o(1) 1+ O(|lull) ©
RN L RN L 0o RN R 4+ RETP2) 4 0(uli+Y)
_ Ol )
R4 RLTPT oY

Since F is expressed as a sum of homogeneous functions until degree ¢ — 1,
we write

EG-D = (E,{JFN*l, E;}Mfl’ Eé'ﬂtz)
HOUul), Oull? M), Oul7*=1). (4.6)
Therefore, since E) has to satisfy (4.5), namely:
EYD = (0(lull*™), Olul ), O(lul’ =),
from the previous estimates, we impose the corresponding conditions on £ )(Cj ) ,E ;j ),

E éj ). That is, for the x-component

EIV " w, ) - DEL@RY )~ RN ) - RV (L ©)

+ 0, fN(u,0,0)K’ (u)+8 Y. 0,9k, Tu) + 39 £V u, 0, K.~ L)
(4.7

+ KM w,0) = RV W, 0+ w) 4 9 £, 0, 0)K )T

— 00K (u, )Ry + R 2w, ) = O(ul 7).

(u, ©)
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Concerning the y-component

E‘y/+M_l(u, ) — Dfi(u)ﬁiv(u) + 8ng(u, 0, @)?i(w)

. . ] 4.8)
+ KM w0y = KM w, 0 4+ 0) = O(jul M),
Finally, for the 6-component,
EIP2w,0) - DK R ) — R T ) — REFP 2w, ©) wo

+ K2, 0) — KPP, 0 4 w) = O(Jul P,

Now, we explain how to deal with equations (4.7), (4.8) and (4.9) to obtain the
terms K) and RY). We introduce some notation. Given a function G (u, ®) =
O(||lu||*) that can be expressed as sum of homogeneous functions of integer degree,
we write

G, ®) = {G}'(u, ®) + O(||u|| ™), (4.10)

where {G}" is the homogeneous part of G of its lowest degree. For practical purposes
we do not assume {G}* to be different from zero. We also introduce
6Ky RG] =0, 1Y (.0, ©)K(u)
—i—1 ~ _
+ 00 /N, 0, 0Ky @)+ 35 S (1,0, 0)K) 2 (w, ©)
-2 Sjt+P—
— 9o KN (1, ©)RL "2 (w) + RET 2 (u, ©))

u,0°
Therefore, using that Ru (n) = ?N (u, 0), equations (4.7), (4.8) and (4.9) de-
couple into the triangular system:

that satisfies G[K /), RY'] = O(lull/*N ") since P > 1 and 8o KN = O(llu|™).

£ w0y + [-0E]w 7w o] o w0, )k w

+ KT w0 = KM w0 4+ 0) =0, @.11)
EJYT T w, 0) + {—ng‘l(u)?N(u,O)}HP* ~RL P - RS w, 0)
+ KT 2w, 0) = KT, 0+ ) =0, (4.12)
EFfY " w, 0) = DEL@) 7Y . 0) + 0, £V (u, 0, ©)K . (1)
J+N Yy — RN @) @13)

~ _ ~ _ J+N— 1
+ R w, 0) = REN w0+ o) + 61k ) RO =
These are the so-called cohomological equations. To solve these equations we deal
separately with the average and the oscillatory parts. We first deal with (4.11). We
distinguish the cases M < N and M = N.
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o Case M < N. Averaging (4.11) we obtain 9,g" (u, 0)K (u) M

and therefore, since by the hypotheses of Theorem 2.8, 9, g M (4, 0) is invertible,

Kl = —(,8" @, 0) "B

e Case M = N, the average part of equation (4.11) is

(u). (4.14)

j+N 1

DKL F @, 0) — 0,8 (u, K () = W.  @15)

This equation is of the form (4.1), therefore we apply Theorem 4.1 with Q(u) =
8y§N (u,0) and p(u) = ?N (u, 0) with the associated constants ap = ay, bp =
by, Ap = Ay and Bg = B, defined in (2.9), (2. 10) and (2.11), respectively.

Note that, by (iv) the domain with respect to u of f (u,0) and 9, 2"V (u, 0) can
be extended to R” by homogeneity.
By condition (4.6) and Theorem 4.1 with m = j — 1 the solution of (4.15) is

1 . — _
WpQ[ B ], with p:fN(u,O), Q:8ygN(u,0),

where Hp,  is defined in (4.4).

In both cases the oscillatory part of (4.11) is solved as a small divisors equation,
using Theorem 2.1 to an extension of the involved functions to a complex neigh-
bourhood of their domain. We have

> j+M—1 ~j+M—1 ~MZ]

Ky = D[E] + 3,87 Ky, (4.16)
where D is introduced in Section 2.1.2.
Remark 4.3. A remarkable fact is that, once f;: and K yj+M_1 are found, equa-
tions (4.12) and (4.13) always have solution. For instance we can choose

K, Kl =0 RLFPTE RN, (4.17)
SIHN=1 _ —j+N-1 HEON Eankint
RAI=EMT ek RO
Ej@-FP—Z _Fé+P 2 4.18)
and
. . . . —1
~j+P—2 ~j+P-2 = j4N-1 ~j+N-1
Kj =Z)[Eé+ KM= oplET +{g[K§,fg,R(”]} }

We notice that with this choice all the involved functions keep the same regularity
as F, K and KJ+M 1

However we want to go further and keep R as simple as possible. That is, we
want to take, whenever possible, RL"™" ™ 2 and R{™ 7! equal to 0.

Before starting solving (4.12) and (4.13) let us say some words about the reg-
ularity of K )Ejg and R,EJ é).
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Remark 4.4. In Theorem 4.1, if instead of condition (b) we have A, < by, we
cannot conclude that the solution of equation (4.1) has the same regularity as p and
Q. This is an optimal general condition as it was shown in Section 6 of [16], where
some examples showing the loss of regularity were provided.

However, when M < N, the functions f; and K §+M_1 defined in (4.14)
and (4.16) are analytic. Therefore, in this case, when solving (4.12) and (4.13), if
Ay <b £ to have analytic solutions of (4.12) and (4.13) we use the expressions
(4.17) and (4.18),

After this remark we continue with the assumption that Ay > b.
The following analysis discusses how to obtain solutions with the simplest
possible R. We solve first (4.12). We take

I'{Vej+P—2 _ Z)[F?fP_z], ﬁé)—i—P—Z —0.
Then, equation (4.12) becomes

/+P 2 —j+P-2

—N j+P-2
w={pK; M w ol T+’ w.
We distinguish the cases P < N and P = N.
. —j-1, —N j+P=2
e Case P < N. The expression {DKQ W f (u, 0)} = 0 and we take

—=Jj+P-2

—Jj+P-2 —j-1
Ry = Ej . Ky free.

e Case P = N. We have that Fé_l and §g+N_2 must satisfy

—j—1_ =N —Jj+N jA+N—2
DK} @ F" @, 0+ R e =E) T ).
We take Q = 0 and p(u) = ?N (u, 0) in Theorem 4.1 and the corresponding
constants Bg = 0,ap = ay, Ap = Ay and by = by defined in (2.11), (2.9)
and (2.10). We take

—j+P-2 —j+P-2
], Ry =o0.

—j—1
In both cases, the solution of the oscillatory part of (4.12) can be given by
Engsz _ D[Engsz]’ EQPQ —o0.

We finally solve equation (4.13). We notice that after having solved (4.11)
and (4.12), the function G[K )(,/ g, RE)/ )] is already a known function. To simplify the
notation, we introduce

—1
j+N-1 . 0 pU)
R ]

where the notation {-}* has been introduced in (4.10). We first deal with the average
part of (4.13) which is

—j+N—1  —j+N-1

DR )Y @, 0) = 0. F" . K. ) + RV =BV LGN
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We use again Theorem 4.1, now taking Q(u) = BX?N(M, 0) and p(u) = ?N (u, 0).
Let B oY = D be the corresponding constant (see (4.2) and (2.11)) and j =

[—f—;] if Dy < 0and j* = 1if Dy > 0 as defined in (2.14). Condition (4.3) in

Theorem 4.1 is satisfied when j + S—; > 0. Therefore,

e When j < j¥ we take Ei free and
—Jj+N-1 —=Jj+N-1 —Jj+N-1 —j, =N
R, w)y=E"" w+G"" ) - DKL) f" (u.0)
+ac [ (u, 0)K . (u).
e When j > j* we apply Theorem 4.1 and we take

—j —j+N—1  —j+N—1 —j+N—1
K§=7{7N37N[Ejf +¢ 7, 'R =0

The oscillatory part of (4.13) is then solved by setting that
RIS p EIV L GV g, VRD) RV o
This arguments show we can take RY) = 0if j > Ji¥. We emphasize that when
— =N — N — _ _
n=1,then f (x,0) = —asx" and there?fore by =ayr, Ay = Naf,BBX?N =
—Nay. As a consequence, j; = N and (Ei+N71, RN —o0if j > N.
4.2.2. End of the Proof of Theorem 2.8 As we pointed out in Remark 4.2, with

the procedure described in the previous section, we have obtained that there exist
K and RV satisfying

EV =FoKY —KY o RY = (O(ull ™), O(lull /™), O(lu) /TP~

instead of the stated result EV) = O(||u|/tV). We need then to work further.
When M < N, we look for K(l),l =j+1,...,j + N — M of the form
KO = K= 4 O with

K =0, KO, ©) =K, w + KM, ©),
and we keep R = 0. Assume that, for j + 1 <1< j+N - M
EU-D — o gU=D _ g(=1 g p=D
= (O(lulN=H, Olul™*M=h, O(llul+F2)).

Since the map F can be expressed as a sum of homogeneous functions up to degree

; . . )
Jj+ N < g — 1, we can apply the procedure described before setting K.p=0.
The equation corresponding to (4.11) is

f— _l K -
Ei}+M l(u’ 0) _’_3ng(”’ 0, ®)Ky(u) + K§;+M 1('47 )]
KM, 0 4+ w) =0,
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which can be solved as described in the previous section. In addition, since K )El)e =0

and RO = 0, then EX = O(ul/*V) and E = O(|ulli+P~1) (see equa-
tions (4.7) and (4.9)).
We repeat this procedure until/ = j + N — M and we obtain that

i+N—M i i+N—M i _
ESNT — o(lu)i Yy, EY D= O(flul TP,

Finally, we look for K (HN=M) RUSN=M) for| — j 41, ... j+ N—P+1
of the form K (+N-M) — gU+N-M-1) 4 gcU+N-M) ith

KN —0, KN, 0) =Ky ) + KW, ©)
and RUAN=M) — RUAN—=M~1) 4 QU+N-M~1) i
RIN-MD 0 Ry =Ry ™ 4 REP2.
Assume that,for j + | SIS j+N—-P+1
EUAN-M-1) _ [ o p(+N=-M=1) _ p(+N-M-1) p(+N—-M—1)
= (Ol O]l 7*™), Olul*F=1).
Similarly as before, now the equation corresponding to (4.12) is

+P=2  _j4p_2 ~p_
=R w - Ry @)

ENP2, @) + {—Dfé‘l(u)fN(u, 0)
+ K52, 0) - KPP, 0+ 0) =0

and it is solved as described previously. Note that we can always take ﬁg‘P 2=0

and, if P = N we can also take ﬁlgp—z = 0. Looking at equations (4.7) and (4.8),
it can be easily deduced that E )(C{;N*M) = O(Jlu||T™). In the last step of this new

induction procedure we obtain that the corresponding remainder EU+2N=M—P) —

O(lull7+M).

4.3. Approximation of the Invariant Manifolds for Differential Equations

Let X be a vector field of the form (2.22) depending quasiperiodically on time
with time frequency v. We briefly describe the procedure which is analogous to the
one for maps explained in detail in Section 4.2. Indeed, first we set

1 >N 1 —N
KVw,0,6)=u+K),0,0),0,0, YVwb0= u0),0+w)
and we check that EXV) defined by (2.24) satisfies
ED = (0(lul™™), o(ul"™), O(|u|l)).
Then, we define KU = KU=D 4 U y() = yU-D 4 YU with

+N—1
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K . 0.0 = Ko@) + R, 0.0,

+P-2

KD w0, =K, @)+ K@, 0.10)

and YY) as:
VP, 0.0 ="+ 77 w00,
Y9, 0) =75 2wy + VI 2w, 0,1).
We prove by induction, reproducing the same arguments as the ones in Sec-
tion 4.2.1, that if EC~D defined by (2.24) is such that

+N-1 +M—1 +P-2

EY ="V, 0,1) =(E{™N " w,0,1), E u,0,1),E]
+ (Ol ™y, Ol ™), O(llu /P~ 1)

(u,0,1))

with E )lc 1.0 homogeneous functions of degree /, then E/) satisfies

ED = ©Cul”*™), O(lul”**), Oul 7+ 7).

if K, Y are solutions of the cohomological equations

. = _ i+M—1 .
ESM 0,0 = {DK;(u)fN(u, 0)}] + 9,8 @, 0,0, DK ()
— 00K w0, N — 0, K1 (. 0, 1), (4.19)
. _ . _ j+P-2 __: -~ — _
Ef 2w 0.0={0Ky it w o+ Cw + 7w e
— 00K T, 0, 0 — 0 KT T, 0, 1), (4.20)
o ISR o
EJPN N, 0,0) =DKL ) F (u, 0) — 0 £V (u, 0, ©)K”. (1)
+ VY )+ T w0,
— KT w0, — 8, KTV " w, 0, 1)

JAN—1
} 4.21)

) pW)
|Gk ). RG

Equations (4.19), (4.20) and (4.21) are the corresponding ones to equations (4.11),
(4.12) and (4.13) for the case of maps. As expected, the difference between them
is that the difference term in the map setting

K, ® + w) — K(u, ®)
now becomes the term
30K, 0, 0w+ 0,K(u,0,1).
Here, to solve the corresponding equations

oK u,0, )0+ 8, Ku,0,t) = h(u,0,1t) 4.22)
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with 7 a known function with zero average, we use the small divisors theorem (The-
orem 2.1) for differential equations instead of the one for maps. Indeed, consider
71\(14, 0, 7) be such that E(u, 0,1 = /h\(u, 0, vt) (as explained in Section 2.1.1) and
the small divisor equation

oK, 0, 0w+ 3, K(u,0,7)v = hu, 0, 7).

Let K := D[h] be its unique solution with zero average (we recall that we use
tEe same notation, D, for both settings: flows and maps). It is then clear that
Ku,0,t) = D[ﬁ](u, 0, vt) is the solution of (4.22). Then, with this interpretation,
the algorithm described in Section 4.2.1 applies in the same way.

5. Double Parabolic Orbits to Infinity in the » + 2-Body Problem

5.1. The n + 2-Body Problem and Jacobi Coordinates

We consider n + 2 point masses, m;, i = 0,...,n + 1, evolving in the plane
under their mutual Newtonian gravitational attraction. We denote by ¢; € R?,
i =0,...,n+ 1, the coordinates of the i-th mass in an inertial frame of reference.
Their motion is described by the Hamiltonian

H(g,p)=T(p) —U(q), (5.1)
where p = (po, ..., pnr1) € R22) are the conjugate momenta and
n+1
T(pos s past) = ) —lpjl*,
— 2m
j=0
mim;
Uqo,---»qn+1) = Z ﬁ
0<i<j<n+l 4 =4

Well known first integrals of this system, besides the energy, are the total linear
momentum, Z;’:(l) pj, and the total angular momentum, Z;’:(l) det(q;, pj).

We devote next sections to prove Theorem 1.1. It will be an immediate con-
sequence of Theorems 2.14, 2.15, once the Hamiltonian (5.1) is written in the
appropriate variables.

We want to show that there are solutions in which the first n bodies evolve in
a bounded motion while the last two arrive to infinity as time goes to infinity. For
this reason, we use the classical Jacobi coordinates, in which the position of the
j-th body is measured with respect the center of mass of the bodies 0 to j — 1,
for I £ j £ n+ 1. More concretely, we consider the new set of coordinates
(G0, - - - » gn+1) defined by

40 = qo,

~ 1 .
qj:qj—ﬁ Z meqye, j=1...,n+1,
T 0<e<j—1
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where M; = Zé;é my, j = 1. The inverse change is given by

q0 = qo,

qj =4; + Z

0<e<j— 1

Qe, j=1,...,n+1. (5.2)

Denoting by A the matrix such that § = Ag, the change in the momenta given by
7 = A~ T p makes the whole transformation symplectic. Let

H@ p)=TA"p)-UMA'D

be the Hamiltonian H in the new variables. Notice that, in the (g, p) variables,
the total linear momentum is simply po. In particular, this implies that H does
not depend on gp. We can also assume that pp = 0. Then, H does not depend on

(90, Po). With this choice and defining M = diag (m,, L m;_ilr 1), acomputation
gives
1 n+1 1
(ATp) =3 p ;Zﬂj 171l

where 7' = M 4+ m . Also, in view of (5.2), we have that

4= =3+ ), qe,1< <nl,

1<e<j— 1
qj — 4qi gi + Z
i<t<i— e+1

M; my o . .
v > o delSi<jSntl.
i+ ip1<e<jo1 T

I
g

Then,

V(A1) = Z _mjmi Z _mam;
<n

0iciZn— ”q]_%” <! Ilqn gill

My+1M; Mp41Mp
2 TR i
0<i<n—1 qn+1 — {qi qdn+1 — 4n

)3 =

. _my >
1< <n—1 qu + 2 i<e<jo1 71,4 H

+ 2 S
=~ _my_
1<i<j<n—1 ‘61/ qi +Zi§l§j*1 Mz+1q€H
ny,n

+

= .
In + 2i<esn—1 w5 9
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+ Z _ mym;

~ o~
1Si<n—1 [|/dn = @i + 2i<e<n1 715 d¢ H

My 1Mo
= .~
\4n+14'§31§e§nﬁn:TQKH

Mp+1M;
+
~ ~ my ~
|Sign—t [dn+1 = i + DXi<e<n My, 4¢ H
My1Mp

||an+l - ‘7}1 + #’L%II ’

+

where in the first line of the formula ¢ = A~!§. Now we introduce symplectic
polar coordinates in each subspace generated by (g;, p;):
gy =rje”.
pj=yje? +iﬂei9f,
Ty

and denote by H(, 5,6, G, rn. Yu, Fns1s Ynt1s Ons Gus Ons1, Gny1) the Hamilto-
nian in these new variables, where 7 = (rq, ..., r,—1) and, analogously, the same
notation applies to y, 9.G.

We will be interested in the region of the phase space where ry, 1,7, > ri,
i =1,...,n—1.However, since the final motions we are looking for are parabolic,
it will happen that r,,/r,+1 will be of order 1. Hence, we will be able to expand
several magnitudes in r; /r,, ri/rp+1,i = 1,...,n — 1, butnotinr,/ry4+1.

In the new variables the potential is

U(r,0) = UG, 0) + Un(Fr s 01 — Oy .. 0yt — 6,)

+Un+1(r’ 'ny 'n+1, 01 _9n+17 ey Oy _9:1+1)’

mjnmq

. me i(6e—6;)
1<j<n—1 ‘V/ + 2 i<e<io w e !

+ > i :

. e pl(0i—0)) my i(0g—0;)
1Si<j<n—1 ‘r] rie ™ +Zi§5§j*1 My €€ !

mpmg

me re i
D<o g 7™

+ > T :

Un(?’ Tns @1y ooy Pp_1) =

I'n

(5.3)

i it me_re i
]§j§n7] "'n 1 rne T+ Zjéeén_l Moty rne o
my1mo
Un+l(ﬁrnarn+lv¢lv-~-v¢n): m , R
14 4 1
r}’l"rl ’1 + Zlg[gn MlH»l Tn+1 e ¢@

My1m

+

- _ T ip; . Mme Tt Ligy
1<j<n Tntl ‘1 Pt € + ZJ§5§" Myt a1 ©
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Proposition 5.1. Let mg, ..., m,_1 € RT be fixed. The functions U, and U,
can be written as

muM, My ~
Un(?9rnv¢l"'-v¢n—l)= +_Un(?vrn7¢l’---v¢n—l) (54)
'n 'n
and
My+1 My 41
Uni1 s s Fpe 1, @15 oo ) =—
n+1 (55)
Mp41 ~
+ Un+1(?vrnvrn+l’¢lv-~-’¢n)v
n+1
with
~ ri o r . Fo_1 I .
Un(;'\’ Tns @1y o vy ¢n—l):An _lel¢1 , _leilqbl ceey Sl lel¢n_1 , St leilq&"—l s
'n 'n 'n 'n
U}’H—l(?’ Tns Yn41, ¢ls"-7¢n) (56)
:An+1( n e"qﬁ‘,—r1 e, 'n el i e_i¢'l,mn),
'n+1 Tn+1 In+1 Tn+1
where
(1) Ay(21,Z05 - - » Zu—1, Zn—1) is analytic with respect to its arguments in a neigh-
borhood of 0 and satisfies
An(z1,21 s Zn—1,2n-1) = 02(21, 205 -+ Zn—15 Zn—1)> (5.7
(2) for any K > 1, there exists m > 0 such that A, +1(21, 21, -+ Zn, Zn, Mp) 1S
analytic in
— -1 . —
DK,m:{|Zj|’|Z]|<K ’ J=1"°'an_17 |Zn|7 |Zn|<K7

= —1
|Zn_l|v |Zn_l|>K s |mn|<m}

and, defining

Xn+l(zv Z’ mVl) :An+l(07 D) 0’ 2, Z’ mVl)
M m
= . + ::4 - Mn+l
] 1t
M,

= (5.8)

R 2
— m —
(1 + anil (z4+72) + M}%zz)

npy

12
o, M2
(1 - M}:Ii] (242 + 35" zz)

+ Mﬂ+11

n+l
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one has

o~

An+l(Z1, H’ ey Zns 57 mn) _An+l(Zn, E, mn)

_ . (5.9)
=021, 20, -+ Zn—1> Zn=1),

uniformly in Dk ,, p. Finally,
n+1 2
1 2 Gj
T,y G)= —|yi+—=].
(r.y.G) ; o (y, 7

Proof. In view of (5.3), we clearly have that

_ R mo
An(ZlaZl""azn—lazn—l)z m
£
‘1 + Zléfgn—l My Z[)
m;
> -,
. e
1<j<n—1 ‘1 —Zj+ X j<e<n—1 T,
and
— — mo
An1(z1,20, o0 Zns T, M) =

)1 + 2 1<e<n ﬁilsz‘

+ Z = — Mp+1-

— . my
1720 |1 =27+ X jesn iy 2t

The claim is then a straightforward computation. Formulas (5.7) and (5.9) are
obtained by expanding in powers of z1, Z1, ..., Zn—1, Zn—1- Lhe first order terms
cancel out identically. O

Now we reduce the number of equations by the total angular momentum. To
do so, we consider the symplectic change of variables

;;.:rl.’ i}-:yi’ l=1,,n+1
G; = G, 6 =60, — 6,1, i=1,....n (5.10)
5n+l :Gl +"'+Gn+ly §n+l :Qn—H'

Since the total angular momentum ® = G| + - -+ + G,41 = G4 is a conserved
quantity, the Hamiltonian in the new variables does not depend on 5,,+1.

We remark that, since the potential U in (5.3) only depends on the angles
through 0; — 6;, with 1 < i, j < n — 1, in the new variables (5.10) it has the
same expression. We will use it with the same name. The same happens to U,
but not to Uy,+;. Dropping the tildes from the variables, the potential U in the
new variables—which we denote again with the same letter although now does not
depend on 6, 1—is

UG, ra.0,60,) =UF, 0) .11
+ Un(?v T, 01 = Opy ooy O — 6,) + Un+l(7'\v Tny I'n41, é: On).
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The Hamiltonian in the new variables is

ns Yo Fntls Ynt1, O, Gn)

=ﬁ<r 5 6>+7{r $.0.G. . Y Fnsts Yut1 00, Gu), (5.12)
where
H#75.0.G)=T¢.5.6) - UG.0).
with
. =l ) G%
TF.5.G) = ]X_;m (yj + ?> , (5.13)

the potential U was introduced in (5.3) and

7_{(?7 5)\5 /9\9 69 rnv yna Vn+1’ )’n+1a ena Gn) - T(rnv yna Vn+1’ yn+17 6v Gn)
— (U -UF0), (.14

with
~ 1 G2
T (Fns Yns 'nt1s Ynt1, G, Gp) = (yr21+_2n>
zﬂn ry
<y2 ©-Gi-—G )2)
+1 B
ZM ! n+1

5.2. A Torus in the n-Body Problem

The Hamiltonian # = T — U, with 7 and U defined in (5.13) and (5.3),
respectively, is the Hamiltonian of a planar n-body problem in Jacobi coordinates.
As such, it possesses 2(n — 1)-dimensional KAM invariant tori. Let w € R2(=D
be a Diophantine frequency for which a KAM tori of H exists. There exists a
symplectic with respect to the standard 2-form dr Ady + doAdG, analytic change
of variables (7, 7, 0, G) = ®(¢, p), (¢, p) € T2~ x B where B ¢ R2"~D is
some ball, such that

Ho(p, p) = Ho ®(p, p) = (@, p) + O2(p).
Let
D(Q, P, s Vs Pt s Yads Oy Gn) = (D(@, ). Ty s Fuets Yt 15 6y G-
It is canonical in the sense that transforms the standard 2-form into

do Adp + dry A dyy +drnt Adyes +dfy A dG. (5.15)
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We define

Hy, (@, 0, Tns Yns Fna1s Y1, Ons Gi)
=H o ®(p, p,7n, Yu> rnt+1s Yn+1, Oy Gn) (5.16)
= Aa)((pv 10) +7{O (D((ps ;Os I’n, )’n, rn+l, )’n+1» 9}17 Gn)»

the Hamiltonian in the new variables.
We define the function

O@. p) =0 — (G + -+ Gu_1) 0 B9, p). (5.17)
Since, for p =0, G| + - - - + G,_ is a conserved quantity of ﬁw, we have that
O) = — (G +--+Gy_1) 0 B(p, 0) (5.18)

does not depend on ¢ and it is the average with respect to ¢ of @)((p, 0).
Theorem 1.1 is a consequence of the following result.

Theorem 5.2. [fm,,, m,+1 > 0are small enough, then Hamiltonian (5.16) satisfies
the following.

e Collinear case. There exist A = 1 + O(mn, Myu+1), depending on my,, M4,
and GO depending on m,, myy1 and OO, and two 2 + 2(n — 1)-dimensional
analytlc invariant manifolds, WCO], invariant by the flow generated by (5.16)
such that, for any solution

(@, 05> Yns Tnt1s Ynt1, O, Gn) (1) € Wgol’

there exists ¢ € T?"=V such that

A0 = B ) =00 i 6,0) =,
. _ . _ . _ 0
t~1>1£|:nooyn () = tilg:noo Ynt+1(1) =0, zinfooG"(t) =G
. _ . _ _ 0
im p(1) =0, im [o@) —ot] = ¢y
and
. In+1 ()
lim — =

t—>x00 1y(t)

e Equilateral case. There exzst@o = n/3+0(mn, My41)and A = 1+O(mn, Mp41),
depending on my, my,1, and G depending on my, m,41 and @O, and two
3 + 2(n — 1)-dimensional analytzc invariant manifold, WEq invariant by the
flow generated by (5.16) such that, for any solution (¢, p, rn, Yn, F'n+1> Yn+1 O,
G,)() € WEIZ, there exists . € T>"= such that

AR ® = Sp rn® =co. My 50 =
lim y,(r) = lim_yy41(0) =0, lim G,(t) = G°
t—=+ t—+o00 t—+o00

: _ _ 0
lim p(7) =0, im o) —wt] = oy

t— 400
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and

Fpg1(2)
1m =
t—+to0 1, (t)

We devote the rest of the section to the proof of the theorem. The collinear
case is a immediate consequence of Proposition 5.9 and, the equilateral one, of
Proposition 5.12, below.

5.3. Local Behaviour at Infinity: Double McGehee Coordinates

Inorder to study the behaviour of the system whenr, 41,71, > ri,i = 1,...,n—
1, we introduce the double McGehee coordinates x, X,+1, yn, yn+1 through

Zan ~ 2an+1 ~
'n = —>% Yn = BnYn, Tnyl = —5 s Yn+1 = Bnt1Yn+1, (5.19)
Xn An+1

where «;,, B, ®y4+1 and B, are constants, depending on m;,,, m, 1, such that

IBn - my My .
Appoy 40[%5/1 ' (5.20)
But1 _ My 1My -1 ’
App10m 405,2l+1ﬂn+1 ’
that is,
[ VE 273 Mumy
%n = 5453 Y1 Pn =2 2/3 °
M"“m (5.21)
1/3 2/3 Mp1Mp41
Aptp1 = WMn+2’ But1 =2 —
n+2

We are interested in the case where mq + - - - + m,,_; is of order 1 while m,, and
my+1 are small. In particular, the constants ¢, and o, 4+ are of order 1 while 8,
and B;41 are small. Furthermore, we have that

140 <@) . (5.22)
Up+1 Mn+]

The change (5.19) is not symplectic. It transforms the form (5.15) into

4 ~
de Ndp — %ﬁndxn Adyy

n
2
_ Aan1 Bt (5.23)
3
xn—H

dxn+1 VAN dynJr] +db, NdG,.

We denote H = 7 — U the Hamiltonian  in (5.14) and H = H + H in (5.12)
both expressed in these new variables. We drop the tildes on the y variables.
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Taking into account (5.11), (5.3), (5.4) and (5.5), the potential U — U (see
(5.11)) is transformed into

2 My 1My 2
Xn n+l1

~ mu,M,
Uo(@, psXn, Xny1,0n) =

20, 200041

2

XZ ~
+ mn_nUn,a)((pa 0, Xn, 6n)
20,

Un+l,a)((ps 0, Xny Xnt1, On), (5.24)

X
n+1
+ mpy1 B

Un+1

where
Un.o(@. p. X, On)

~ [ 2a,
:Un r((ps p)» x_zsel(gov p)_eny---’en—l((P» p)_en P
n

~

Un+1,w((p’ 05 Xn, Xng1, On)

~ ~ 2a 2a 1
= n+1 r(‘% )0)7 _zns ++s 91(@» p)1~'-79n—1((p1 )0)9 en b (525)
A xn+1

With (71(@, p). .. Fa—1(9, ), 01(9, ). . ... O—1(9, p)) = (7, B)oD(p, p), while
the kinetic energy part of H becomes

2 2.4
I /33 2 /3"-1-1 2 ann
T s Py Xns y X, 5 7G = -~
(@, 0y Xns Yus Xu+1, Ynt+1, Gn) zll«nyn+2ﬂn+1yn+l 4(){%“”
(g, p) — Gp)2x?
(O(p p2 n) nil (5.26)
4an+1ﬂn+1

where ® was introduced in (5.17).

Proposition 5.3. Let mg, ..., m,_1 € RT be fixed.

(1) ﬁn,w is analytic with respect to its arguments in a neighborhood of (p, x,,) = 0
and admits an expansion of the form

Un,w(@» 0, Xp, 0y) = Z Cj,Z(@» 9,,)x,1],0£.
j22,620

(2) The function Uy ., can be written as

2 2

O Antl o, % tnti —if,
9

Oyl X2 g1 X2

ﬁn+l,w(‘p» PsXns Xn+1, On) = uo (

o Xy O Xpy
n n—+ i0 n n+l1 —if, 2k
+> | p. et e X
Api1 X Qi1 X

k=2 n+
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where, given K > 1, u (@, p, z, 7) is analytic in a neighborhood of p = 0, |z|,
IZl <K, |1 —z|, |1 =%| =2 K~ and
up(z,2) = n+1(z Z,my) (5.27)

where A, 1 was introduced in (5.8). For k 2 2, we introduce the expansion

w9, p,2,2) = Y i j(9,2,Dp’.
jZ0

Proof. The claim for ﬁnw follows immediately from (5.25), (5.4) and item (1) of
Proposition 5.1.
As for Uy 41,4, in view of (5.6), we have that
2
ntl ,i6 (@.0)

~ X
Un+l,w(§0s pv -xnv -xn+17 en) = An+1 (rl ((ps p)
20,41

2
+L-ifie.p)

(e, p)
20041

x2 2

+1 n— _. n—1(¢,
Pt (@, p) 5 e 1Oy (g, p) e ),

An+1 n+1

2 %2
An xn+lei9 On Ypig —zen)
g1 X2 g1 X2
The claim follows immediately from item (2) of Proposition 5.1. O

Let
Vo(a, 0) = uo(aeie, aeiie).

The following lemma summarizes the properties of the functions ug, Vo that will
be need.

Lemma 5.4. There exist §, K,m > 0 such that, for all 0 < m,, < m, (a,0) €
[1—=6,14+8]x[r =68, m+8]U[1—=6,1+68] x[n/3—6,7/3+ 8] where Vy is
analytic and

3V0
o

<Km,, j=0,1,2.

Moreover,

%(a 0) = —zmn(é? —m)(1 +O0(x — 1,my, 6 — 1)),

%( ,0) = m,,(e——+0(a l,mn)+02(a—l,mn,9—7r/3)).

In particular, for each (o, my) € [1 — 8, 1 + 8] x [0, m], the equation

IV,
—0(01 0) =0
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has the solutions 0 = m and the unique analytic solution in [/3 — §, /3 + §],
50(05, my,), satisfying

0%, my) = % +O0@— 1, my).

Proof. In view of (5.8) and recalling that M,,,1 = M,, + m,,

M,
Vo(a, 0) = 72
2
<1+2 M ~a cos 6§ + a2>
n+1
my
+ - Mn+l

12
<1 2 Ol2>
M2,

is clearly analytic in neighborhoods of («, 8, m;,) = (1,7,0) and («, 6, m,) =
(1,7/3,0), since, then, M, /M, 11 = 1, and Vg, =0 = 0. This implies the first
claim.

The second claim is a straightforward computation. The third one is an imme-
diate consequence of the second. O

5.4. The Constants A, B and GS
Next lemma provides constants that will be needed later.

Lemma 5.5. Let M,, = Z?;(]) m j be fixed. Consider the equations for the constants
A and B

A’B=A,
<1+ v ( A2,9>+ Dt 1% 8V°< T A2, 9) A2>A4
4an+1'3”+1 Un+1 4o} e 1Bn+1 da \ dnt1
=(1--t 8V°< o Az,e)
4o 1B 0 \any

with @ = 7 or 6 = OO(A,mn) = 30( o A2 mn), where 0° is the function

Up+1
introduced in Lemma 5.4. Then, if m, and m, are small enough, they admit two

pairs of solutions, A, B, corresponding to 0 = w and 6 = GO(A, my),
A=1+4+0@my,, myy1), B =140(my,, myy1).
As a consequence 0%A, m,) = % + O(my,, my41).

Proof. We emphasize that, for z € C, z # 1, Ayy1(z,7,0) = M, — Myq = 0.
Then when m, = 0, Vo(a, 0) = n+1(ae’9 e 0) = 0 for all «, O such that

9 £ 1. Using this, the claim simply follows by applying the standard implicit
function theorem at the value (A, B, m,,, m,+1) = (1, 1, 0, 0), taking into account
the definitions of &, B, ®y+1 and B,+1 in (5.21) and Lemma 5.4. O
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We expand @, introduced in (5.17), as

Olp, p) = Y Orlp)p".
k=0

‘We also introduce

~ ~1

eJA* 1 A*

Gy =—— 7 T3 ; (5.28)
OppiMn+1 \¥Hln O Unt]

where A is given by Lemma 5.5 and @8 was introduced in (5.18). Observe that GS
can take two different values, one for & = 7 and another one for 6 = HO(A, my)
in the definition of the constants A and B. We use the same letter to denote both
quantities.

We use GS to introduce a new variable g, through G, = GS + gn. This
change, which preserves the 2-form (5.23), only affects the kinetic energy part of
the Hamiltonian, in (5.26), which now becomes

2
B2 5 By o (GO + g2)x;!

T (@, Py Xns Vs Xntls . 8n) = +
(@, 0, Xny Yy Xnt1s Yt 1s &n) 2Mnyn Dty 402,
(O(p. p) — G — gu)’xi |
4ot,21+1,un+1

5.5. Some Steps of Normal Form

In order to apply Theorems 2.15 and 2.16 we will need some coefficients of
the expansions of 7, and U, in powers of x,, X,+1, Xy+1/%n, 6, and p to be
independent of ¢. To accomplish this, we perform several steps of normal form, as
is done in [14]. We use the following immediate fact. Given the generating function
S(@, P, Yns Xns Ynt1: Xnt1. On, gn), if the equations

o N 5 o4 A
=9 o’ p=p G
201 Br 20k Br a5 4oy P ~ 4o Pr a5
— +_’ = —_ =, k:l’l,n+1 529
7w o m T m R 02
oy =B+ 23 = ot
n —VYn 8gn’ g}’l - gn 3§n7

define a close to the identity map

T : ((ps pa-xnv yl’n xn+1» )’n+1»9n, gn) = ((’Z» ﬁs -’fna ynvzn-‘rlv yl’l-‘rlv 9}'1’ gn),

then T preserves the 2-form (5.23).
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Proposition 5.6. Choose 6 = 7w or 6 = 0%A, m,) in Lemma 5.5 and K as in
Proposition 5.3. Then, after an averaging procedure, Hamiltonian (5.16) becomes

Hw((p, P, en, 8ns Xns Yn» Xn+1, )’n+1)

2
:32 + ﬂn+1 2 myM, , _ Mur1Mpt1 5
Z/J/ 2“}1+1 n+1 n n+1

= (o, p)

20, 200741

2 2 2
X o X . o X .
— M1 n+l uo n n;lelen’ n ngrle iy
20,41 A1 Xy, Q1 X,

(G + gn)?xy + @0x2+1

+

2
4oty

1 4

(®8 - Gg)xfz-i-]gn + xn_Hg,%

20{,%+1:“fn+1 4a2+1/‘(’n+1
+R(§0: p9 9}17 grh Xn, Yny xn+l ) yn+1)5

where

(1) theﬁmction uo(z, z) was introduced in (5.27) (see also (5.8)),
(2) Gg and @8 were introduced in (5.28) and (5.18), respectively, and depend on
the choice of 0 in Lemma 5.5,

(3) @0 = [(@o(go) - 62)2]/(4a5+lun+1) is a constant,
(4) the remainder has the form

R((pv 107 9115 gl’lvxna )’n,xn-H, )’n+1)

2 2
. “n+l 10 i+l —ig 2k 2j _m_l ro.s
- Z Uk, j,m,lr,s (fﬂ, T 5 € n) Xn Xpk1Yn Yn+18nP >

2

X

k. jom,1.r.s 20, n n
k+j22

and there exists @ depending on o, such that uy jm s are analytic in its

2
arguments when ¢ € T2~V |11 — z1|, |1 —z7| > 0~ withz; = n+1 el In

)’l
addition R satisfies

oR oR
= 05X, Xp41), =05(xp, Xn11),
axp 0Xp41
oR oR
— = O6(xn, Xnt1), =06 (xn, Xn+1),
dyn OYn+1
oR oR
@ = (0(p) + O2(Vn+1> &n> Xns Xn1))06 (Xn, Xnt1), % =04(Xn, Xnt1),
oR dR
30 = O0(p)O4(xn, Xn+1) + O6 (X, Xnt1), dg =0(p)04(xy, Xn+1)

+ O6(xn, Xng1)-
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Proof. Using Proposition 5.3 for ﬁn,w and ﬁnH,w we write (with the notation

2
a’lxn+l 19,1)

=
D‘n-%—]xz

2
_ B W+ Bivi 2
200" 2t et

(G +gn)*xy | (G + gn)’x,
402 iy Ao fhn
X8k (O, p) — Gk,

2 2
4an+lﬂn+1 405n+1l/»n+1

O(p, p) — GDguxit, ),

T (@, Py Xns Yo Xnt1s Ynt1s €n)

-—
2a,,+1ﬂn+l

m, M, Muy+1 M, x8
my My 2 n+1Mn+1 2

nt X+l +mn7n02,0(§0, On)
2, 20541 20,

Xy 1 Xy 1
n+ — n+
+ My ug (z,2) + mp41
20541 20541

+ Ro(e, p, xu, 0n)

U (‘P P, x}’lsxn+179)_

uz,0(¢,2,72)

with u2,0(p, 2,2) = u2(p, p,z,2) and Ry satisfying the properties stated for
R in the Proposition. Indeed, the problematic terms are the ones of the form

ui (e, p, z, Z)xiﬁz, k = 3, with uy analytic. For those terms

O, (W (@, p. 2, D), B,y (@, P, 20 DXt ) = O,

provided |z—1|, |z—1| > o~ " and m,,, m,,1 are small enough, and its is immediate

to check that these terms satisfy the other properties stated for R.
Therefore, the terms on the Hamiltonian we need to average out are the follow-
ing:
(1) x L1 in Tw,
2) xnﬂgn in Tw,
3) x inx; Un ws

2 2
4 anu((p 0, nluel 1 gi0n a"x”“ e~ that comes from the term u in U, and a

1 %2 ’ Oln-HX

contribution from the averaging step (2), and
) Bur1b1 ((p)xn 1 Vn+1/ (441 4n+1)- This term appears after the averaging step

(1.

We average them out with a sequence of transformations defined through (5.29)
with suitable generating functions S. We drop the tildes in the variables after each
step. Along the proof, after performing each step of averaging, we take care about
the new terms that can not be considered as a remainder. The tedious but immediate
substitution of the sequence of transformations is left to the reader.

We recall that, given a function f depending on some angles ¢, [ f] denotes its
average with respect ¢.

We start with (1). We consider in (5.29) the generating function

S@, 0, Tns1) = b1(@, PFE,
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where
(@, Vib1) = @i i)™ (0@, ) = GI)* = [(B@. ) - GI)).

We recall that w is Diophantine, and then the existence and analyticity of b; is
guaranteed by Theorem 2.1 (see also [33]). In addition, we can select it with zero
mean. Therefore,

p =0~ Vb (@, DX, ¢ =§+V,bi(@, pTh,,

- 1 .
Ynt1 = Ynt1 + ————b1(®, p)X,) ;1.
Ant+1Bn+1

After this change, the term with x: 41 In the kinetic energy becomes

1

———— =6y +0(p),
40[,%+1,ufn+1

(6@, p) — G2

with O(p) satisfying the conditions for the remainder R, to which we add the term
(besides some other terms considered as a remainder)

,3n+1

~6 ~
Xn+1Yn+1-
Ap4+1Mn+1

bl(¢’ ﬁ)

We will average out this term in step (5).

As for (2), we consider by (@, p) satisfying {(w, Vgba) = —(2055“;1,,,“)_1
O@, p)— G%— [O@, p) — GY] and the generating function S(@, p, Xn+1, &) =
b (@, ,0)35:11 4 18n- Again, since  is Diophantine, this equation can be solved. It
defines the change

P = ;5_ V("p’bZ(‘Z’ p)fi+1§na ¢ = ‘;“‘ Vpr((z’ P)fiﬂg’n,

~ 2 ~ ~ ~ ~ o~
Yn+l = Yny1 + ——b2 (@, p);}?—"-]g"[’ O = On + b2(@, p)xi-q-l'
nt1Bn+1

We emphasize that after this change the coefficient of x;‘ 4 18n becomes

s @@ ,m-6H 4, @©)-6YH

—X = —x +0(x? 0)
nr1 8 2“,2,+1Mn+1 w18 20[,2,+1Mn+1 w18

with O(xﬁ 1 18nP), independent on ¢, satisfying the remainder conditions. More-
over, this change of variables produces a new term in the Hamiltonian of the form

Y i Dy (b, ) =i (2. D)x8y 1 ba(p, 0) + O(pxSy )
=1 (5.30)

+ O(xyllg.])v

where i ; are analytic with respect their arguments, provided [z — 1|, [z — 1| > o L,

see Proposition 5.3.
The coefficient % is averaged out in step (4). The rest of the terms go to the
remainder.
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Now we deal with (3). We consider S (¢, 0, %n) = b3 (@, 0, ))72, where (v, Vzb3) =
¢2.0 — [c2,0], and is straightforwardly checked that, after the change of variables
induced by the generating function S, the new coefficient of x,? is [c2,0] and that
the remainder satisfies the required properties.

To deal with (4), we consider a generating function of the form

o, X2 5 a, X2 ~

~ o~ <= n_“n+l i6, n_ nt+l —if, | ~6

S(@, Xn, Xnt1) = S| @, = e, = X
Apy1 Xj Ap41 Xj

with, § satisfying

~ Myt
(0, VzS) = —

(u2,0 — [u2,0]) + u1bz,
20tp 11

where U1 by, introduced in (5.30), has zero mean. In this case, through (5.29) §
defines the change,

p=0-V5S(@p %300 e =B+ Fs (7.0, 2070,
wn=Su+ F1 (8,0, B D) BT Y1 = St + 2 (8, 0,2.2) T,

~2
~ X . . . .
where 7 = a‘z:’rl —;1 ,and Fj, i = 1,2, 3, are analytic functions of their arguments.
n

Finally, in (5), we consider
S@, Yt Fn1) = b3@T yut1,
where (w, Vgbs) = By+1b1/(ctn+14n+1). Equations (5.29) define the change
St = Bt (14 b3@)xi )™ = T + 51 (7.38,) S
Vot = Tt (1 = 63 @)F2 )T = Foor + 52 (8.0, ) R T,
p =P = Vgbs@Xp 1 ynr1 = P+ 3@, Ty DTy Tt

where §l~, i =1, 2,3, are analytic in their arguments. O

5.6. Regularization of Infinity

In what follows, 50 will be either —7 or 09(A, m,) = % + O(my,, my41) in
Lemma 5.5. Recalling that

2 2 2
o oy Xn+1 eien oy xn+1 e_ien _ VO oy xn+1 9
k) - s Yn

Un+1 x,% Ant1 x,% Unt1 x,%

where Vjy was introduced in Lemma 5.4, we define

IV [ an 5 ~
- _ 9V o
0 = aia0) < A »90)’ i,j 20, (5.31)

By Lemma 5.4, v; j = O(m,,).
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For future purposes, we introduce the constants

)
4an+1 n

1 1 A*
Th=z|>5—+ , (5.32)
2\ ajpn O 1 Mn+1

where A and B were introduced in Lemma 5.5, whose value depends on the choice
of 6. We notice that, since

V= \/1 MA451,0 =1+ 00muq1),

Mo Mym m
o D2l (1 4 Oy, mas)),
Mnt1 My ympyy Mg

A =1+ O(my, m,41) and the conditions (5.20) and (5.22), we have that

1 1
Z(anbn m}’l"rl
= ————(mpq1 +my + O>(my, Myy1)). (5.33)
Mymymy

The regularization will be obtained as a sequence of simple changes of variables
and blow-ups that are summarized in the following technical result.

Proposition 5.7. Consider the blow-ups given by

Xpt1 = Xp (A + &40, Ynt1 = Yu(B + nus1), Yn = Xp (v + &),
Enp1 = xngnJrl’ Ml = Xnllntl, On = 50 +xn§ns 8n = Fn_lgna P = x;?ra

Then, denoting Z = (gn,§n+1,ﬁ,,+1,§n, Sns Pn) there exists a linear change of
variables Z = CZ, where

1 0 0 0 0
0 14862 1463 b4 825

0
0
C— 0—4+686214+6833 634 35 0
0 54,2 84’3 1+ 84’4 1+ 84’5 0

0

0 s 35,3 354 —1+36s55
0 0 0 0 0 Id

and
8i.j = O(my, my41),

such that in these variables the Hamiltonian system with Hamiltonian H,, has the
equations

Xy = —vx) 4+ X301 () + Oo(xn),
2 = _X;:MZ + X302(xn, Z)v (534)
¢ =w+x201(x,. Z),
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where
24¢1, 0 0 0 0 0
0 342 0 0 0 0
M — 0 0 —24e33 0 0 0
- 0 0 0 14644 0 0 ’
0 0 0 0 —y+tess 0
0 0 0 0 0 (1 + &6,6)1d
with

gii =0y, mpyy), if i #5,
€55 = OZ(mn» mn+1)-

Remark 5.8. Notice that, since the hypotheses of the existence result, Theorem 2.16,
only depend on the dominant terms, there is no need to control the dependence on
my, my41 of the non dominant terms.

Proof. We perform the blow ups in three steps. The first one corresponds to (&,+1,
Nn+1):

Xpg1 = Xp (A +&n11), Ynt+1 = Yn(B + np41).

For any choice of o we have Up,1 = 0 (see definition (5.31) of Uy, and
Lemma 5.4). We recall that the equations of motion associated to the Hamiltonian
H,,, in Proposition 5.6, are obtained using the 2-form (5.23) taking into account
the choice of the constants «,, a,+1, Bn, and B,41 in (5.20). Then, also using
Lemma5.5 we have that

; 1. Xnil . 1 x),, 9H, 1 dH,
4= —Xpgpl — —5Xp = — XnXn+1
" Xn " xyzl ! 4ap1Bnr1t Xn Oyna1 4o, By e Oyn

3 2
- _ 1 Xt 'Bn+l Yni1 + dR
dapi1Bnt1 Xn Mn+1 " 0yn+1

2 dR
Ty " <£_y nt W)
= —XpYn(A + £01)> (B + Nng1) + X7 yn (A + Eng1) + Os(x)
= x2u(—A B + 4) — (GA2B = Déusr + A%nus1 ) 52

+ 02 (nt1s M) XV + O8(xn)
= [-Q 4 O0my, myy1)Ens1 — (1 + Ompy, My 1) Ny

02 (Ent1 Mnt1) ] X3 yn + Os ().

+

To avoid cumbersome notation, Vj (and its derivatives) means V| evaluated at

( a—“il —x;}" , 9). Similar computations, recalling that x,4+; = x,(A + &,+1) and
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Yn+1 = Yn(B 4 np4+1), and using again Lemma 5.5, lead us to :

3 3
0 1 y Yn1 ¥ 1 Xnt1 9H, 1 XnYn+1 dH,
n+1 = — Yn+1 — n — -
Yn y,% 400 41Bn+1 Yn 0Xnt1 4o, B )’y% 0xy
4 2
. 1 Xnt1 (_ Mpp1 Mup1 Mgy Vo — Muyy1 o X4 0V
4p1Bn+1 Yn Ap+1 Op+1 Op+1 On+l xr% da

+xn+1105(xn,xn+1))

4
1 x;‘{yn+1 (_mizMn+mn+l o X, 0V

—1

- —-— +x, OS(Xnvxn+l)
4oy By y% Op Op41 Opl xfl do

4

xn 4 ( 1 ~ 1 on ~ 2
== —A"(1+ V0.0 + U1 0A
Yn |: M1y My apt

+B(1- 525 a
4o, 1 Bn

+ Li&pt1 + Lanas1 + L3O — 60) + O2(Ens1, Mnt1, 0 — 6o) + 04(xn)]

4
xn

= y—[L1§n+1 + Lottt + L3(0 — 60)+02(Ent1. ut1, 0—600)+0a(x)],

n

where, taking into account (5.31) and (5.20),
L, = _4+O(mnv mn+l)v Ly=1 "l‘O(mn, mn+1): Lj ZO(mn’ mn+1)-

We emphasize that the non-explicit error terms are now analytic functions in
their variables, the only non-regular factor being the quotient x,‘l‘ /Yn-

The rest of the equations can be obtained immediately from the Hamiltonian
structure and Proposition 5.6. Concerning x,, and yj,, using (5.20), we have that

3
, x> 0H, 3
=— = —x2y, + 09 (xn),
Xn 4o By Ovn X, Vn 9(Xn)
5 — Xy 0H, oM ey Y e (5.35)
da, By dxy, 4l Bu ap

+ x201 (Ent1, 60 — B0) + Os(xn).

In the case of 6, and gy, by the choice of GS in (5.28) and Lemma 5.4 and using
that, by Lemma 5.4 and the choice of 6y, 7y,1 = 0, the equations are

. JdH, 1 1 A4
Gn = @ J— 3 + ) Xflgn +X;4101 (%_n_;’_l) +O(,0)O4(Xn)
ag}’l 2 O‘n/J“n an+1“ﬂ+l
+O6(xn),
; 0H, Muyy1 , Vo [ ay x3+1
- =50 ntlgg 00 | +0(0)O04(x,,
= ey = dansy 56, \apyy a2 00| OO0, )
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+06(xn,xn+1)
Wo [ a
= D24 4 g, )2 0( I (A E)A 0)+O(p>04<xn)

2an+ 30

+O6(xn)

Un 3~ 2 2~ 2 ~
= 5 Mup1 A7V 1€ + my 1 A0 2%, (0, — 6p)

RPN 20041

+x702(6n11, 0 — 6)
+0(p)O04(xn) + Og(x).
In view of Lemma 5.4, if 6 = 0, then ¥} | = 0but,if 6 = 6°(A, m), then 1 # 0.

The coefficient vy, is different from O for both choices of 6.
Finally, the equations for ¢ and p become

0H,

= 3 = w + O4(xy),
g’H (5.36)
o= ‘a_; = (O(p) + O2(yn, &n» Xn))O6 (xn).

The change y, = x,,(v + ¢,) regularizes the term x;‘ /¥ in the equation for 7,,41.
Indeed, with this change,

Enp1 =vx, (1 + 0710 — Q4 Olmy, mp1))én 41
— (1 +O(mu, muyg 1)) nt1 + O2Entts Ny 1) ]
+ Og(xp),
fns1 =0 g (L+ v 150 ™ [ = @ 4 O0mu, mut1))éns1
+ (1 + O@my, myg1)) 1
+ O(my, My 1) O — 00) + O2(Ens1, Nut1. On — o) + Os(xn)],

while equations (5.35) are transformed into

Xn = —vxp (L4718, + Oo(xy),
En = 2030 + X301 i1, O — 00) + X762 + Os ().

Equations (5.36) become

¢ =w + 04 (-xl’l)a

p = (0(p) + O2(xn, gn))O6(xn).
The equations for 6,,, g, remain unchanged (the higher order terms O; can change
their explicit expression but they keep the same order).

After this change, the vector field is analytic in its arguments in a neighborhood
of

{¢€T7 /0207 xn:O’ énzO, §n+1=0a r}nJr] =O7 9}1€T5gn:0}'
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Now we deal with the last blow-up:
%_n-i-l = xngn+l» On = §0 +xn§n’ p = x?,ﬁv NMn+1 = xn’ﬁn-i-lv 8n = F;lgn'
Proceeding as before, it is immediate to check that

X —vx + x, ()1( )+ O9(xy),
‘n n n , (537)
{l’l = vané‘n +xn01 (§n+179n) +xn§n +05(xn)~

Also, for (gn—&—l ﬁn+1)’

§n+1 =vx;[ — (1 +O@my, Mut1)En+1 — (1 + Oy, My 1))ns1
+ 02Eng1 Tng1. )] + O7.(xn),
fnt1 =000 = @+ OGmy, mps1)Enr1 + (1 + v+ Olmy, myi1)in1
+ Oy, M) + 3,02 Ens1. fins1, 0) + 03(xn)], (5.38)
and for (6, gn),

5}1 = ny?:gn + X,fgn +x301(gn+1) + XSOQ()C", En«Hv 5}17 Zn),

. . - - - (5.39)
80 = V1% Ent1 + V2X300 + X302 Ens1, ) + O (xn),
where, using (5.33),
o, 3~ 8 V11
Yi=—> Mmyp1A Ul,lrn Y —(my +muy +02(mn’ Myy1))
%t " " (s 40)
1 o~ 4 0 2
V= Mmuy+1A0020 = — (my + mpq1 + O2(my,, mpy1))
20tp 11 My My
and, finally, for (¢, p),
@ = o+ O4(xp),
" (5.41)

=305 4 O(B)06(xn) + 02(xn, 82)03(x) + px201(Cn).-

To finish the proof of the proposition, the last change is simply a linear change of
variables to distinguish between the contractlng and the expanding variables. Itonly
involves the variables (En-H s Nin+1, O, €n). Denoting Z = (g, $n+1 g1, em 8ns
7, equations (5.37), (5.38), (5.39) and (5.41) can be written as

xn —vxy + 5301 (En) + Oo(xn),
/ = XIMZ 4 x20:(x,, Z),
¢ =w + stl(-xVh Z)7

with,
24611 0 0 0 0 0
0 —l4+eo2—-1+e3 e4 0 0
M= 0 —4+e32 24633 &4 O 0
- 0 0 0 1+e441 0 ’
0 71 0 2 0 0
0 0 0 0 O0@B+e6)ld
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where, using that, by (5.32), v = 1 4+ O(my,, my+1), Lemma 5.4 and (5.40),
g, j = O(mp, Mmpy1).

Taking into account the definition of ¥ ; and U3 in (5.31) and Lemma 5.4, we
have that

Vi = O(mnv ml’l+])7 i = 17 2’ (542)
and

»<0, if Gg=m 5:43)
>0, if 6=0 '

Next, we need to diagonalize the submatrix M.
We notice that the most part of the matrix M is already in diagonal form so that
it is only necessary to diagonalize the submatrix

—1l+e2—-14+e3 e4 0
. —4+e3y 24633 &4 O (MM,
= 0 0 I +e441 T \My My, )’

Y1 0 y, 0

where M; ; are the 2 x 2 blocks of M.

We observe that the eigenvalues of M; | are 3 + O(my, my4+1) and —2 +
O(my, mp41) and, using (5.42) and (5.43), the eigenvalues of My 5 are 1 4+ O1 (m,,
my+1) and —yy» + Oz (my,, my41). The corresponding eigenvectors are, respec-
tively, vj = (1, =T + Oy, mps1), v2 = (LD + O(my, myy1), v3 =
(1,00 +O02(my, mys1) and v = (1, —=1) T +O(my, my41). Let By | and B 5 be
the matrices with columns v, v2 and v3, v4, respectively, and

_(Bi1 O
B_< 0 Bz,2>'

M =B 'MB = <1\:/IL1 1\:/[12)

Clearly, the matrix

My My
satisfies
M _ 3 +O(my, My 41) 0
b= 0 —2+ O(my, mps1) )’
M2 _ 14+ O(my, myq1) 0
J 0 —y2 + Ox(my, my41)
while

M 2, My 1 = O(my,, nmyy1).
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It remains to prove that there exists
A =1d4xs + O2(my,, mpy1)

such that

~

11 0
AMA(O ,

) , (5.44)
2
with

M| =My +O0y(my, mys1),  Maaz =My +O02(my, muyir)

being diagonal matrices. We notice that, taking C =BA and

Id 9 0
C=|0CO0],
0 0Id
the proposition follows. In order to prove (5.44), we first look for A » such that
the matrix
~ (IdAj»
A= (O 1d )
satisfies
T=1xax 1vll 1+ Ox(my, mn—i—l) 0 )
ATTMA =T TR - . (545
( My My > + O2(my,, mpy1) (545)
Since
A-INIA = (Ml 1AL oMo My A2 —Ap 2M2 2 +M1 2 — A12My (A 2)
M, | Mo + My A;2

equation (5.45) is equivalent to find a solution A 2 = O(m,, my+1) of
LA15 = —Mi, +A1oMy A, (5.46)
where
LA =M A2 — A M.

One can easily check that £ is invertible and then we rewrite equation (5.46)
as the fixed point equation

Ao =FA = —L_IMI,Z +£_1A1,2M2,1A1,2-

We have that 70| = [|.£L” 1M1 ol S 1L MIM 2 = O(my, my+1). Defining
p =2(F0l, IFA12— FA < 2pl1L” 1|||IA21 — Ao 1|l if Ay, Ay satisfy
lA12]l, ||A1,2|| < p. Consequently, ¥ is a contraction in the ball of radius p, if m,,
and m,, are small enough, which proves the existence of A2 = O(my, my41).
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Next, let

B Id + Ox(my, mpq1) 0
0 Id + Ox(my, Mp41)

such that the diagonal blocks of

o e e Ni; O
B 'A"'MAB = (.
(NZ,I N2,2>

are in diagonal form. Such matrix B exists because the diagonal blocks of A~IMA
are already in diagonal form up to errors of size O, (m,,, m,+1). We observe that

N1t =M +O0x(mp, muys1), Noo =Moo+ Os(my, mus1),
No 1 =My 1 + Ox(my, myt1).

Next, let Ay | be such that
No2A2 1 — Ay N1 =Nt

Such matrix exists, since, as the operator L above, the operator A | — Nz 2Ap | —
A 1Nj 1 is invertible. Let
~ Id 0
A= .
Ar 1 1Id

It is immediate to check that A~ 'B—'A~! MABA is block diagonal and, in fact,
diagonal provided Ny 1, N2 7 are diagonal matrices. O

5.7. Applying Theorems 2.15 and 2.16: Collinear Case

We need to distinguish the cases 50 = and 50 = 6p(A, my,) since the corre-
sponding stable invariant manifolds have different dimension (see Theorem 5.2).
In this section we consider the case 50 = 7, that corresponds to the collinear
configuration. In this case, the constant y» in the matrix M in (5.34) is neg-
ative. Following the notation of Section 2.2.1, we introduce x = (xy, ﬁnH)T,
Y = (ns Ent1s Xn» O, §) T with x € R2, y € R42=D and ¢ € T2=D. Then,
equations (5.34) become

X = f(x,y) +0s5(x,y),
y =g, y) +0s(x,y), (5.47)
¢ =w+04(x,y),

where

flx,y) = xSSx,

3 (5.48)
g(xv y) = xnUy’
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and
A ~O 00 O
0x 00 O
- 0 ~
s=("o' ) u=|oo0Zo o (5.49)
? 00 0% 0
0 0 0 0 Asld
with
AL =V, Ay =2+ &2,
i =2+4F11, do=3+%0, h=14%3, (5.50)
ha=—y2+%4a As=1+7%5s,
and
gii =O0(mp, myy1), &jj=0my, muy1), j#4, €44 =02(my, myy1).
For §, k > 0, we introduce the cone in R?
Vi = {x = @ Tag) €R? | 0 <Xy <68, [Mug1] S k%)
For all x = (X, Mu+1) € Vs« we have that
Tns Tt S HIxll £ (1 +6D25,, (5.51)

where | - || denotes the standard Euclidean norm in R2.
The next proposition guarantees that we can apply Theorems 2.15 and 2.16 to
Equation (5.47).

Proposition 5.9. The vector field corresponding to equation (5.47) has the
form (2.22) with N = M = P = 4. If m,,, my4+1 are small enough, for § small
enough, it satisfies hypothesis (v) in Section 2.2.1 in the domain Vs , with

L
V= arey ™ { (1+2)

The constants ay, in (2.9), by, Ay, in (2.10) and By, in (2.11), in the domain Vs
have the following values:

1/2 (l"’_O(mn’ ml’l-‘rl)) ’ 1+O(mn» mn-H)} > 0

14+ Oy, My 1) + O3,
—y2 + O2(my, myy1).

ar 2 v 403, k*) +0?), by

<
Af 224 00my, mpi1) +O0K) + 0, k%), By =

Hence, if my, m, | are small enough so that —y, + Ox(m,, m,+1) > 0, then, for
k and § small enough,

ar >0, Ay > bymax{l, N — P}, B, > 0.

Consequently, Equation (5.47) satisfies the hypotheses of Theorems 2.15 and 2.16.
The origin possesses a 2 + 2(n — 1) analytic stable invariant manifold.
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Proof. We will use the standard Euclidean norm and its induced matrix norm to
compute all the constants. We start by computing ay . Clearly, if (a, b) € Vs i,

c : 1
d((a, b), V(;’K) = min {m

(ka — |b|),5—a}.
Then, if x € V, 5, denoting x* = (X5, W, |) = x + f(x, 0), since
M1l = a1 11— 22%)) < k% (1 = 12%),
we have that, for § small enough,
1 DU 1 ~ ~4) _ =2 =3
e 65 = ) = G (¢ (5~ 1) = a1 = 225)

1 - o~
m (K ()Cn — A]f:‘l) - K.Xn|1 — )szr%l)

1Y

1 ~4
= m ()\,2 —)\.])xn.

Also, for x € Vs,
§—XE=08 T+ MT = ML
Hence, using (5.51), for x € V,. s, we have that

1 . 4
dx*,Ves) 2 mmln{m (A2 —)»1),)»1} llx1™.

The claim for ay follows combining this last inequality with (5.50) and taking into
account that v = 1 + O(m,,, my 1), .
Now we compute a . Using (5.48), (5.49) and (5.51), since

b+ £ G Ol = \JR20 — MED? + 724, (1 — M)

5w .
= fll { 1 =221 2 — 22,22 L O()1x)|)

[lx1? [lx1?
< Jlxll = 1+ A D) x [ + O(lIx |17
S lxl 1+ A2x ) [lx ]| + O(llx ||
we have that

Ix + £, Ol = llxll o A1 +2ok? +O0(8%)
Sup 7 = 2\3/2
xeVs Ix] (1 +x2)

lez—

By (5.56), the claim follows.
Next, we compute b . Since, in view of (5.48), (5.49) and (5.51),

1f G, 0l = F301Sxll < xy /23 + k2y3
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we have that, using (5.56),

ILf G, Ol

p L S0 A4 O, )
XeVs.k

by =

The claim on b ¢ follows then from (5.50).
Now we compute

Id + Dy f(x,0)]| — 1
Af=— su

xeVs 13

We bound the spectral radius of (Id + Dy f (x, 0)) " (Id + Dy f(x,0)). Since

_ =3
Id+Dxf(x,0)=<1 403 0 )

—3MX 1 1 — Aoy
we have that

_ =3 =6 (1 — 3,33 et
(d + D £ (x,0) T (1d + Dy f (x.0)) = (_ L8+ OC == Rk ok ""“)

(1= AX)30% a1 1 — 240K, + OGF)
Hence, since (5.50) implies that
8A = 8+O(mn»mn+l)’ 2X2 =4+0(mna mn—&—l),

applying Gershgorin circle theorem,

I1d + Dy f 2, 0)1 £ 1= (2400, mas1) +0) + OED) -

Hence,
o 24 O0my, myy1) + Ok) +O@)
Af 2 2)3/2 :
(1 +«2)3/
We finally compute
Id — Dyg(x,0)|| — 1
By sup M= Do8x. Ol

x€Vyes Jlx]3
By (5.48) and (5.49) it follows that Dyg(x, 0) = 55,3,U. Then, using (5.50) we get
Id — Dyg(x, 0)[| < 1 = (—=y2 + O2(my, muy1))%,,

from which the claim for the stable manifold follows. In order to obtain the unstable
one we apply the same procedure to the time reversed system. O
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5.8. Applying Theorems 2.15 and 2.16: Equilateral Case

Now we deal with the case 50 =6p(A, my) = /3 +O(@my,, my41). Unlike the
previous one, we will see that the invariant manifolds are 34 2(n — 1)-dimensional,
because in this case U, is a “stable” direction.

However, since U, is very slow, it is easy to check that equation (5.34) does not
readily satisfy the hypotheses in Theorems 2.15 and 2.16. To apply these theorems,
we introduce a new set of variables in the next proposition. We recall that y», =
Oy, mys1) and v = 1+ O(my, mi1).

Proposition 5.10. Letm,,, m,+| > 0befixed but small enough. Take 50 = 09(A, my)
in equation (5.34), that corresponds to y, > 0. Let £ € N and define %,, through
Xp = ff; while maintaining the other variables the same. Equation (5.34) becomes

. v -
Xy = _szul + O8¢41(Xn),
7Z=3Nc"'MCZ +730,G 2), (5.52)

9 =w+501G, 7).

Proof. 1t is a straightforward computation. Indeed, using (5.34),

1 . 1 ~

from which the claim follows immediately. O

Remark 5.11. Later, in Proposition 5.12, we will fix £ 2 1 such that § < y». Since
v =14 0(m,, my41) and y» = O(@m,, m,1), £ will be large but fixed.

We use the same notation as in Section 5.7. We introduce x = (X, 41, Un) |
y = (Cn, Ens1s Xno P) |, that is, x € R3, y € R3*2=D and ¢ € T>*=D Then,
equation (5.52) becomes

X = f(x,y) +O0342(x, y),
y =g, y) +O3042(x, ), (5.53)
¢ =w+0341(x,y),

where
=3¢
xX,y)=x"Sx,
S ) A’;Z (5.54)
glx,y)=x,Uy
and
o ho o
s=|0 -x» 0], U= 2 (5.55)
0 0 i 004 0
3 0 0 0 J4ld
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with
v
Al = —, A2 =2+ &30, A3 =y2+ €33,
- 14 N _ ~ (5.56)
M=2+%11, A=34+%p  Az=1+7%3,, rs=1+%44,
and
Eii = O(mna mn+l)’ i ;é 37 £33 = 02(mn, mn+])7 g‘],j = O(ml’l’ mﬂ+1)‘
For 8, k > 0, we introduce the following cone in R3
Vs = {x = . Tas1.0n) €R? | 0 <Xy <8, Mpyy + 0, S 67550
For all x = (X, u+1, Un) € Vs, we have that
Toe [Tnpt ] 10a] S Mlxl S A4+ 6H2%, (5.57)

where || - || denotes the standard Euclidean norm in R3.
Next proposition is analogous to Proposition 5.9 in this case.

Proposition 5.12. The vector field corresponding to equation (5.53) has
the form (2.22) with N = M = P = 3¢ + 1. If my, m,41 are small, choos-
ing € large enough, for § small, hypothesis (v) in Section 2.2.1 is satisfied in the
domain Vs , with

1

VT U2

. 1 v 3¢
m{m (2472~ + 0t mus) +0G™) ’“} -

For the constants ay, in (2.9), by, Ay, in (2.10) and By, in (2.11), in the domain
V.« have the following estimates:

2
V v
afzz+0<6“,xz), bfg,/g—2 + O(k?),

Ap 2 o+ Or(my, mps1) + O(k) + 0@, i?), By = 14+ O0(my, myt1).

Hence, if my, m, 1 are small enough such that y, + Ox(m,,, my41) > 0, taking £
sufficiently large so that v/l < yy + Oy(my, my41), then, for k and § small,

ar <0, Ay¢ > bymax{l, N — P}, Bg > 0.

Consequently, equation (5.53) satisfies the hypotheses of Theorems 2.15 and 2.16.
The origin possesses a 3 + 2(n — 1) analytic stable invariant manifold.
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Proof. We assume m,, and m, 4| small enough sothat A3 = y»+0(m,, my+1) > 0
and choose ¢ such that A = v/€ = (1 + O(m,,, my41)) /€ < A3.

We will use the standard Euclidean norm and its induced matrix norm to com-
pute all the constants. We start by computing ay . Clearly, if (a, b, c) € Vs 4,

(ca= Vo7 +2) 5l

Then, if x € Vs, denoting x* = (X}, 7771"“, U = x + f(x,0),since

1
C — :
d((a,b,c), Vs ) = min {—(1 ISy

Ty = a1 1(1 = 20300 < kX, (1 — 2275,
105 = [Oul(1 — 23%.°) < kX (1 — A3%20),

we have that

1 A*
T (6 =@+ @)

! V.30+1
= m ( (Xn - —_x + ) \/77,,+1(1 _ k2x3€)2 %(l )\,3)636)2)

1

C A+ ( (x,, B MX%K—H) — K n \/(1 — 22924+ (1 - )»3x3€)2>
K
1 o~

= m ()»2 + A3 — A1+ ()(5%)) x3€+].

Also, for x € Vs,
§—Xr=8 T+ ax T 2
Hence, using (5.57), for x € Vs,
A Ve 2 min | (47— +06™). - HixIP!
» Ve s) = (1+K2)1/2 (1+K2)1/2 Y Ty .

Now we compute a ¢. Using (5.54), (5.55) and (5.57), we have

¥ + £x, 0)]] = \/f,%(l — MEID? 472, (1= 29302 + B2 — 45732

353l+2
= Il (1 =207

A3~ AR~

1/2

X X, U

_2)\'2 n nn-f—] _2)\‘3 n “n+l +O(||x||6€)
lc 112 1112

< lxll = (1 + G2 4+ 23D I P + o5

and

e sy @ ON DXl O+ G+ 2306 + 0™
A N (1+ 202
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By (5.56), the claim follows.
Next, we compute b . Since, in view of (5.54), (5.55) and (5.57)

17 GOl = R40Sx) £ 6323+ 202 + vD)
Using (5.56) we obtain

ILf(x, 0l
bp= sup == <[ +/<2(4+ Y3 4+ O(my, myi1)).
xeVs, IxII° ¢
Now we compute
I1d + Dy f(x, 0)] — 1
Af=— su 3¢
x€Vs0 llx]

We bound the spectral radius of (Id + Dy f (x, 0)) " (1d + Dy f(x,0)). Since

1—@e+DHaxt 0 0
Id+ D f(x,0) = | =300% 1 1—2%¢ 0 :
—35%256\%716" 0 1-— )»356\;:'&

we have that
(Id + Dy f(x, O))T(Id + D, f(x,0))

1 =23+ DT+ OGS —(1 = 1aF3H)300% i —(1 = %9303,
= —(1 = T30 T 1 — 22053 4 0F8Y 0
—(1 = 2333930033215, 0 1 — 22533 + 08

Hence, since (5.56) implies that

236+ DAy > 64+ O(mp, mpy1), 242 > 44 O(my, mpq1),

applying Gershgorin circle theorem,

1+ Dy £ 0, Ol £ 1= (2 + O2(my, masn) +0®) + OG5

Therefore,
A, > P2E 02, mui) +0() +0(6%)
f 2 (1 + k2)32
We finally compute
Id — Dyg(x,0)] — 1
B ap M= Dig(x 0

xeVes flx13¢
By (5.54) and (5.55) we have Dyg(x, 0) = %,‘U. By (5.56), this implies
I1d — Dyg(x, 0)[| < 1 — (1 + O(my, myt1))%,",

from which the claim for the stable manifold follows. As in the collinear case, in
order to obtain the unstable one it is only necessary to apply the same procedure to
the time reversed system. O
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A. Proof of Remark 2.4

As in the rest of this work, we do not write the dependence of the different objects
with respect to the parameter A.

Assume that a map F as in the remark satisfies conditions (i)-(iii) and has an
invariant manifold tangent to {y = 0} represented as y = K (x, ). It is clear that
if M > N, we can take Z?’I:_Nl g’/ (x,y,0) = 0, hence (iv) is satisfied and we are
done.

Now we consider the case M < N. By Lemma 3.2, we can remove the dependence

> > >

on 6 of the map F up to order N. Let f*:N(x, y), §*:M(x, y) and h*:P(x, y) be the
terms of degree less or equal than N in each component of ¥ — Id, respectively,
after the dependence on 6 has been removed. The invariance condition for K'(x, 8)
reads as

_>M >N
K(x,0)+gr (x,K(x,0)) =(K(x+f; x,K(x,0)),0 +w
+h=" (K@, 0))) + O(x V).

Differentiating with respect to 6 and writing

Fro,0) = (x + =" (x, K(x,0)), 0 + 0+ h=" (x, K(x,0)),
we have
0K (x,0) — pK(x,0 +w) =— %E%M(x, K(x,0))0pK(x,0) (A.1)
+ KT T (x, K(x, )9 K (x, 6)

+ 0K (FE o= (x, K (x, 0))80K (x. 0)
+ QK (Fg) — pK(x, 0 + ) +O(lx |V .
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If we assume 9K (x, ) = O(||x||"") withm < N, then the right hand side of (A.1)
has order min{~N + 1, m + 1} with respect to x. Since we are assuming K exists,
99K has zero average and therefore the right hand side of (A.1) should have zero
average. By Theorem 2.1, 99K has to have order m + 1, which is a contradiction.
Hence m > N. So we conclude that 3K (x, 8) = O(||x ||V 1). Therefore, we can

write K(x, 0) = K= (x) + O(|lx |V *1y and the invariance condition becomes

1
=Y 0 K2 () = / DS + 572 (e, KE N T2 (o, KE (1)) dis
0

+O(x V.
_>M _>M =M _>M
We decompose g5 (x,y) = gx  (x,0)+[gx (x,y)—2gr (x,0)]=:g1(x)+
g (x,y)y and we denote M the order of g1 and Mz — 1 the order of g. If M| >

M, =M,g, M(x,y) = go(x, y)y and satisfies g 8y M(x,0) = 0. In the other case,
M = My £ M», we have

2100 = —g2 (0 KE@NKE(x) + DKEW F2" (xr, KE () + O(x |2V
+O([lx |V,

and this implies that N =2 M = M| = min{M;, + 1, N + 1, 2N} which provides a
contradiction that comes from assuming that M| < M.

B. Proof of Corollary 2.11

We first prove that

-1

Ualws oy cwg . (B.1)
j=0

Take (x,y,0) € Gf'(Wg (F;)). We have that (%, 3,6) := G,’(x,y,0) €
WA ﬁ(F;L) For all [ € N there exist p,g € N, 0 < p £ ¢ — 1 such that
j-i—l—q@—i—p Then,

i+, - - = -
Gh(x,y,0) =G 5,0 =G6I""@& 3,0)
= Gl (F{(%.5.0)) € Gl (A,.p) C By p.

Moreover

1Ghs Gy 0O = | (GL(F . 5.0)),
= M”(Ff)x,y(x,y,e)” -0 as g — oo.

Therefore, since ¢ — oo if and only if ] — oo, (x, y,0) € Wﬁp 5
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Then, by Theorem 2.9
-1
J
wclJewy ,(F)cw
j=0
and the first claim of Corollary 2.11 is proved.
Assume now that By > 0, then, by Theorem 2.9 we have the properties in (2.20):

o B e~
KV, x T2 =W; (F) and W} (F) _IDOFA (App), (B2)

where we recall that A 0.8 = \7,)’ g X T< where V isa slightly smaller cone contained
in V. To avoid cumbersome notations, we skip the symbol ~ in our notation. To
prove the last part of the result, by (B.1) and (B.2), we only need to check that

-1

j
W, , C UO G (WE, , (F), (B.3)
j=

because, if (B.3) holds true, then, by (B.1) and (B.2),

£-1 -1
J J d
wg =G WL (B =] GL(KV, x T 1) =W.
Jj=0 j=0

Next we prove (B.3). We first observe that, since G, F), are local diffeomorphisms,
we have that

GrWay (F) = Wgy gy (B, LEL. (B.4)

Now we notice that, if for some j € {0, --- , £ — 1}
Gj(Ap,p) = U G (Ap.p)
i#]
then (B.3) holds true and the proof is complete in this case. Indeed, in this case
. ' .

Bp"/g = Gi(Ap’ﬁ).Therefore,lf(x, y,0) € W@p.ﬂ,then,foralll eN,G,(x,y,0) €
G (A, p) and, in particular, F/(x, y,0) € GJ(A, p) for all | € N. From the sec-

ond identity in (B.2) and (B.4), we conclude that (x, y,0) € ng(A )(FA) =
1\ Bp.p

Gi(ng 5 (Fx)) and (B.3) follows trivially.
From the previous arguments, we now assume that the set B, g can be rewritten as

-1
Bos=|JBj. Bi=Glh,p\ | JGi(App)t #0.
j=0 i#]

We notice that B; N B; =@ if i # j.
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Let (x,y,0) € Wg N Bo. Itis clear that Gi(x,y,0) € GL(By) ifl < ¢—1

and since the only set B; with non-empty intersection with GZA(BO) is By, then
G (x, y,60) € B;. In addition,

-1
Gi(x,y,0) € Gy(Be—1) = G5(Ap p)\ {U Gi(Ap,m} :

i=1

Since B; N B; = ¥ and G{(x,y,0) ¢ Gi(App) fori = 1,---, € — 1, we

conclude that Gﬁ (x,y,0) € Bp. By induction, we prove that if (x, y,0) € By,
¢

Fl(x,y,0) = GI"(x, y,0) € By. Therefore, (x, y, 0) € W (Fy) C Wgw(m.

When (x, y,0) € W]]‘;p 5 N Bj, reasoning in an analogous way as for j = 0, we

conclude that (x, y,0) € Wg/ (F,) C W(S;j(A )(F)\) and by property (B.4) the
- B
proof of (B.3) is complete. s

C. Proof of Lemma 3.6

We first recall that for z € C! we use the norm ||z|| = max(||Rez][, |[Imz]). In
addition, by definition of the complex set Q,(y), [[Im z|| < y [|Re z|| and therefore
Izl = IRez|l if y < 1. As a consequence, if we consider the definition of the
values ay, by, Ay, Dy and B, in (2.9), (2.10) and (2.11) with x belonging to
Q,(y) instead of V), they change by a quantity of order y, provided y is small
enough. Since all the conditions on these constants are open conditions we can
choose y small enough such that those properties still hold true.

We also recall that, R,(v) = v + 7N(v, 0) + w=N*1 (), with wZN+l() =
O(llv[V+h.

The two firstitems in Lemma 3.6 has been proven in previous works [14—16]. Then,
we sketch a simple proof of them. The first item relies on the invariance by ﬁv of
the set 2, (). To do so, the following technical lemma, which is a straightforward
consequence of Taylor’s theorem, is used.

LemmaC.l.Let 0 < p,y < L If x : Q,(y) C C" — C" is a real analytic

function, satisfying x (v) = O(||v||*), then

1
x(v) = x(Rev) +i/ Dy Rev +isImv)Imvds = x(Rev)
0

+iDyx(Rev)Imv + y2O(||Re v||*).

We fix a, b, A satisfying (3.20), namely a < ay, b > by and A < Ay. Recall
that ay < by. Let v € Q,(y). We are going to check that Re R, (v) € V, and
IIm R, (v)|| < y|Re Ry(v)]. On the one hand, by hypothesis (v) on " and

Lemma C.1 we have that, if y is small,

dist(Re R, (v), V) 2 dist(Rev + F (Re v, 0), V<) — My [Rev|[¥

1\

I Rew|V.
2
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On the other hand, if v € Q,(y) with y < 1, using again Lemma C.1, and that
lv]| = ||IRe v||, we obtain

ITm Ry ()| < [Tm vl (ITd + DF" (Re v, 0) | + My o]V~ + Mjv|V)
< ylRevl|(1 — (Af — My — Mp)|vlIV ™).

Using similar arguments we can see that ||[Re Ev(v)H 2 [Rev|[(1 = (by + My +
Mp)|[v|N=1). Then, to check that |[Im R, (v)|| < y[[Re Ry (v)], it is sufficient to

check that
br+Mly+p)<b<A<Ar—My+p)

which is satisfied if » < A and p, y are small enough. This proves that ,(y) is
invariant by R,.

To prove (3.25) in the second item of Lemma 3.6, we note that there exist p, y
small enough such thatif v € Q,(y),

IR, )l £ Ioll — agllol™ + MlvI¥* < ol —alpl¥1,  (C.1)

and
IR, ) = ol = byllvl™ = MY+ 2 ol = bllo¥. (C.2)
Analogously,
IDR, ()|l £ 1— Afv|¥~". (C3)
Then, since

ol (1 =blvI¥ 1) S IR, £ Il = alv¥ ),

taking a* < a(N — 1), b* > b(N — 1) and p, y small enough, it is clear that if
v e Qy(y),

vl < vl
— S IRy = —
[14 b*[lv| V1]~ [1 4 a*|v)N-1]7T

[IA

(C.4)

1
Introducing the map Re(§) = £[1 4+ c£V~1]""1, with ¢ > 0, (C.4) can be
rewritten as
Ro+(Jv]) < |Ry)]| £ Rex ([[0]]).

On the other hand, the flow ¢ (7, w) of the differential equation w = —ﬁwN is

w

o(t,w) = -
[1+ tcwN-1]7T

Clearly, by induction on k&, ‘R’c‘(||v||) = @(k, ||v||) for all k = 0. Since R+ and Ry«
are increasing functions and €2, (y) is invariant by Ry, using again induction on k
we prove (3.25).
In order to prove items (3) and (4) of Lemma 3.6, we first need some estimates on
Dkv and DZEU.
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Lemma C.2. Let a, b and A satisfy (C.1), (C.2) and (C.3) with A > b. Let also
1 <t<A/bandb* = w. Then, there exist p, y small enough and a constant
M > 0 such that, for all v € Q,(y) and k 2 1,

k—1

~ ~ ~ 1
IDRy I = [TIDR, (R, )l < —
1=0 [1 +kb*||v||N71]N—l
- 1
ID?REw)| £ M —. (C.5)

_t
lwlI[1 + kb* o] N=1]7
In addition,
< |Im |
ITm Ry ()] < —. (C.6)
[14 kb* vl V=17

Proof. By the chain rule and (C.3), if v € Q,(y),

k—1 k—1
IDREW) < TTIDR(R o)l < T = AR, @)Y,
=0 =0

Now we bound the logarithm of the product. Since b* > b(N — 1), using prop-
erty (3.25) we obtain

k—1 k—1
> log (1 - AR, @)INT) £ =4 IR, )V
1=0 =0
k—1
—ARIT D +lb*||v||N T+ [ V-1
=0
< — Ztog (1+ kb* 0]
Therefore,
. 1
IDR; ()] = .
’ [1 + kbl V1]
Finally, since bﬁ* = N 1> property (C.5) is proven.

Now, we deal with the bound for || DzRﬁ (v)||. We have that
||Dzﬁk(v> I

< Z ID? R, (Rm<v)>||||DRm<v)||]"[ DR, R @)D R, (R o))~
m=0
Werecall thata* < a(N—1)anda* < b*. Usingthat || DR, (R" (v))|| = 1—-Cp" ™!
for all m € N, that || D2R,(v)|| < M|[v||N=2, (C.5) and (3.25):
k—1 k—1
ID?RE@) £ M TIDR(RL o) Y IR @) N2 DR )]
=0 m=0
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N-2
< Ml

[1+ kb* | N=1]7T
1 1

Xzz [1 4+ ma*|lv| V- 1]N L [1+mb*||v||N*]]%
k—1

_ 1
< M|V 2

i N—2+¢
[1+kb*oN=1]7T =0 [1 + ma*|lv|N-1] ¥
Then, since £ > 1, the sum above converges when k — oo and we conclude that

1

ID2 R ) < M——
[lv]] [1+kb*||v||N 1]

To finish the proof of this lemma we prove (C.6). By Lemma C.1,
~ 1 ~
ITm RX(v)|| < [[Im v / IDRX(Re v + isIm v)|| ds.
0

Then, from the fact |Re v + isImv|| = max{|[Re v]|, s|Imv[[} = [[Rev|| = [[v],
using (C.5) for || DRﬁ(Re v + isImv)||, we obtain the result. |

Remark C.3. When n = 1 one can further check that Im ﬁﬁ (v) -Imv = 0 and that
fora* <a(N —1)and ¢ > N,

[Im v|

Im RS (v)] 2 —
[1 + ka*”v”N—l]N—l

Indeed, when n = 1, R(v) = v — av" + O(Jv|¥*1). Then, Im R(v) = Im v(1 —
aO(Jv))N~1) and it is clear that, if Im v is small, Im R¥ (v) and Im v have the same
sign.

To prove the lower bound for Im Rk (v) we use that, for any B > aN, taking y, p
small enough

IIm R(v)| 2 [Imx|(1 — Blo|¥™),  x e Q@ p).

Therefore,

k—1
Im RE ) = [Imo| [ [0 = BIR' )V 7).
=0

As we did in the proof of Lemma C.2, we consider the logarithm of the last product:

k—1

~ . B _
> log (1 — BIR ()Y l)z—a—*log(1+a*k)|v|N h.
=0
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Take a* < a* and p small enough such that

[Im v|

[1 4 a*k[v|N-1

pk
tm R (v)| = R

Since the choice of B, a*, @* can be done arbitrarily close to Na, a(N — 1), a* and
B/a* > N/(N — 1) the proof is finished.

Next, we prove property (3.26) in the third item of Lemma 3.6. Recall that I\éw ,¥) =
o+ ¥ + Ry (v) with Ry (v) = O(||v||?). By Lemma C.1 one has that

1
[Im Ry (v)|| < [IIm v||/ IDRyRev +isImv)| ds < M|Imv|||jv) P~
0

Let £ be such that max{1, N — P} < £ < A/b. Then, using (3.25) and Lemma C.2,

o0 o
> Im Ry (R} )| £ M [[Im R] @) [ R] (w)[| "~
j=0 j=0

o0

1

< M{Im v [|v) P!
=0 [1+ ja o V1]

[[Tm |
I 1R

where we have used thata < band¢ +P —1 > N — 1. _
Finally, for item (4) let (v, ¥) € I'y(y, o). We have already seen that R,(v) €

Q,(y). It remains to prove that Ew (v, ¥) satisfies the condition of the definition
of the set I', (v, o). We have

ITm Ry (v, ¥l + Y Ilim Ry (R ()| =IITm (¥ + Ry (v)]
=0

o0
+ ) llIm Ry (R )
=0

o0
<Imy |+ [Im Ry (R )]l < o,
=0

so that I, (y, o) is invariant by R. This finishes the proof of Lemma 3.6.
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