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The Restricted 3-Body Problem models the motion of a body 
of negligible mass under the gravitational influence of two 
massive bodies called the primaries. If one assumes that 
the primaries perform circular motions and that all three 
bodies are coplanar, one has the Restricted Planar Circular 
3-Body Problem (RPC3BP). In rotating coordinates, it can 
be modeled by a two degrees of freedom Hamiltonian, which 
has five critical points called the Lagrange points L1, . . . , L5.
The Lagrange point L3 is a saddle-center critical point which 
is collinear with the primaries and beyond the largest of the 
two. In this paper, we obtain an asymptotic formula for the 
distance between the stable and unstable manifolds of L3 for 
small values of the mass ratio 0 < μ � 1. In particular we 
show that L3 cannot have (one round) homoclinic orbits.
If the ratio between the masses of the primaries μ is small, the 
hyperbolic eigenvalues of L3 are weaker, by a factor of order √
μ, than the elliptic ones. This rapidly rotating dynamics 

makes the distance between manifolds exponentially small 
with respect to √μ. Thus, classical perturbative methods (i.e. 
the Melnikov-Poincaré method) can not be applied.
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The obtention of this asymptotic formula relies on the results 
obtained in the prequel paper [10] on the complex singularities 
of the homoclinic of a certain averaged equation and on the 
associated inner equation.
In this second paper, we relate the solutions of the inner 
equation to the analytic continuation of the parameterizations 
of the invariant manifolds of L3 via complex matching 
techniques. We complete the proof of the asymptotic formula 
for their distance showing that its dominant term is the one 
given by the analysis of the inner equation.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

The Restricted Circular 3-Body Problem models the motion of a body of negligible 
mass under the gravitational influence of two massive bodies, called the primaries, which 
perform a circular motion. If one also assumes that the massless body moves on the 
same plane as the primaries one has the Restricted Planar Circular 3-Body Problem 
(RPC3BP).

Let us name the two primaries S (star) and P (planet) and normalize their masses so 
that mS = 1 − μ and mP = μ, with μ ∈

(
0, 1

2
]
. Choosing a suitable rotating coordinate 

system, the positions of the primaries can be fixed at qS = (μ, 0) and qP = (μ − 1, 0). 
Then, the position and momenta of the third body, (q, p) ∈ R2 × R2, are governed by 
the Hamiltonian system associated to the Hamiltonian

h(q, p;μ) = ||p||2
2 − qt

Å
0 1
−1 0

ã
p− (1 − μ)

||q − (μ, 0)|| −
μ

||q − (μ− 1, 0)|| . (1.1)

Note that this Hamiltonian is autonomous. The conservation of h corresponds to the 
preservation of the classical Jacobi constant.

For μ > 0, it is a well known fact that (1.1) has five critical points, usually called 
Lagrange points (see Fig. 1(a)). On an inertial (non-rotating) system of coordinates, 
the Lagrange points correspond to periodic dynamics with the same period as the two 
primaries, i.e. on a 1:1 mean motion resonance. The three collinear Lagrange points, L1, 
L2 and L3, are of center-saddle type whereas, for small μ, the triangular ones, L4 and 
L5, are of center-center type (see, for instance, [55]).

Due to its interest in astrodynamics, a lot of attention has been paid to the study of 
the invariant manifolds associated to the points L1 and L2 (see [40,32,21]). The dynamics 
around the points L4 and L5 has also been heavily studied since, due to its stability, 
it is common to find objects orbiting around these points (for instance the Trojan and 
Greek Asteroids associated to the pair Sun-Jupiter, see [29,20,51]). Since the point L3
is located “at the other side” of the massive primary, it has received somewhat less 
attention. However, the associated invariant manifolds (more precisely its center-stable 
and center-unstable invariant manifolds) play an important role in the dynamics of the 
RPC3BP since they act as boundaries of effective stability of the stability domains around 
L4 and L5 (see [31,54]). The invariant manifolds of L3 play also a fundamental role in 
creating transfer orbits from the small primary to L3 in the RPC3BP (see [37,56]) or 
between primaries in the Bicircular 4-Body Problem (see [38,39]).

Moreover, being far from collision, the dynamics close to the Lagrange point L3 and its 
invariant manifolds for small μ are rather similar to that of other mean motion resonances 
which play an important role in creating instabilities in the Solar system, see [28]. On 
the contrary, since the points L1 and L2 are close to collision for small μ, the analysis 
of the associated dynamics is quite different.

Over the past years, one of the main focuses of study of the dynamics “close” to 
L3 and its invariant manifolds has been the so called “horseshoe-shaped orbits”, first 
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Fig. 1. (a) Projection onto the q-plane of the Lagrange points (red) for the RPC3BP on rotating coordinates. 
(b) Plot of the stable (green) and unstable (blue) manifolds of L3, for μ = 0.0028, on the q-plane. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

considered in [17], which are quasi-periodic orbits that encompass the critical points L4, 
L3 and L5. The interest on these types of orbits arises when modeling the motion of 
co-orbital satellites, the most famous being Saturn’s satellites Janus and Epimetheus, 
and near Earth asteroids. Recently, in [49], the authors have proved the existence of 2-
dimensional elliptic invariant tori on which the trajectories mimic the motions followed 
by Janus and Epimetheus (see also [24,25,44,22,12,15,9,23]).

Rather than looking at stable motions “close to” L3 as [49], the goal of this paper 
(and its prequel [10]) is rather different: its objective is to prove the breakdown of ho-
moclinic connections to L3. Indeed, since L3 is a center-saddle critical point, it possesses 
1-dimensional unstable and stable manifolds, which we denote by W u(μ) and W s(μ), 
respectively, and a 2-dimensional center manifold. Theorem 1.1 below gives an asymp-
totic formula for the distance between the stable and unstable invariant manifolds (at a 
suitable transverse section) for mass ratio μ > 0 small enough.

1.1. The distance between the invariant manifolds of L3

The one dimensional unstable and stable invariant manifolds of L3 have two branches 
each (see Fig. 1(b)). One pair circumvents L5, which we denote by W u,+(μ) and W s,+(μ), 
and the other, W u,−(μ) and W s,−(μ), circumvents L4. Since the Hamiltonian system 
associated to the Hamiltonian h is reversible with respect to the involution

Φ(q, p; t) = (q1,−q2,−p1, p2),

the + branches of the invariant manifolds are symmetric with respect to the − branches. 
Thus, we restrict our analysis to the positive branches.

To measure the distance between W u/s,+(μ), we consider the symplectic polar change 
of coordinates
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q = r

Å
cos θ
sin θ

ã
, p = R

Å
cos θ
sin θ

ã
− G

r

Å
sin θ

− cos θ

ã
, (1.2)

where R is the radial linear momentum and G is the angular momentum.
We consider the 3-dimensional section

Σ =
{

(r, θ, R,G) ∈ R× T ×R2 : r > 1, θ = π

2

}
and denote by (ru

∗ , 
π
2 , R

u
∗ , G

u
∗) and (rs

∗, 
π
2 , R

s
∗, G

s
∗) the first crossing of the invariant man-

ifolds with this section.
The next theorem measures the distance between these points for 0 < μ � 1.

Theorem 1.1. There exists μ0 > 0 such that, for μ ∈ (0, μ0),

‖(ru
∗ , R

u
∗ , G

u
∗) − (rs

∗, R
s
∗, G

s
∗)‖ = 3

√
4μ 1

3 e
− A√

μ

ï
|Θ| + O

Å 1
|logμ|

ãò
,

where:

• The constant A > 0 is the real-valued integral

A =

√
2−1
2∫

0

2
1 − x

…
x

3(x + 1)(1 − 4x− 4x2)dx ≈ 0.177744. (1.3)

• The constant Θ ∈ C is the Stokes constant associated to the inner equation analyzed 
in [10] and in Theorem 3.13 below.

Remark 1.2. We can prove the same result for any section

Σ(θ∗) =
{
(r, θ, R,G) ∈ R× T ×R2 : r > 1, θ = θ∗

}
,

with θ∗ ∈ (0, θ0) and θ0 = arccos
( 1

2 −
√

2
)

(the value of μ0 depends on how close to the 
endpoints of the interval θ∗ is). The section θ = θ0 is close to the “turning point” of the 
invariant manifolds (see Fig. 1(b)).

The constant A in (1.3) is derived from the values of the complex singularities of the 
separatrix of certain integrable averaged system, which is studied in the prequel paper 
[10]. The results obtained in [10] about this separatrix are summarized in Theorem 3.1
below.

The origin of the constant Θ appearing in Theorem 1.1 is explained in Theorem 3.13, 
which analyzes the so-called inner equation. This theorem is also proven in [10]. Moreover, 
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in that paper it is seen, by a numerical computation,1 that |Θ| ≈ 1.63. We expect that 
one should be able to prove that |Θ| �= 0 by means of rigorous computer computations 
(see [6]). Note that |Θ| �= 0 implies that there are not primary (i.e. one round) homoclinic 
orbits to L3.

A fundamental problem in dynamical systems is to prove whether a given model has 
chaotic dynamics (for instance a Smale horseshoe). For many physically relevant models 
this is usually remarkably difficult. This is the case of many Celestial Mechanics models, 
where most of the known chaotic motions have been found in nearly integrable regimes 
where there is an unperturbed problem which already presents some form of “hyperbol-
icity”. This is the case in the vicinity of collision orbits (see for example [46,13,16,47]) 
or close to parabolic orbits (which allows to construct chaotic/oscillatory motions), 
see [53,1,43,48,33,35,34]. There are also several results in regimes far from integrable 
which rely on computer assisted proofs [2,58,19,36]. The problem tackled in this paper 
and [10] is radically different. Indeed, if one takes the limit μ → 0 in (1.1) one obtains 
the classical integrable Kepler problem in the elliptic regime, where no hyperbolicity is 
present. Instead, the (weak) hyperbolicity is created by the O(μ) perturbation, which 
can be captured considering an integrable averaged Hamiltonian along the 1 : 1 mean 
motion resonance.2

One of the classical methods to construct chaotic dynamics is the Smale-Birkhoff 
homoclinic theorem by proving the existence of transverse homoclinic orbits to invariant 
objects, most commonly, periodic orbits. Certainly the breakdown of homoclinic orbits 
to the critical point L3 given by Theorem 1.1 does not lead to the existence of chaotic 
orbits. However, one should expect that Theorem 1.1 implies that there exist Lyapunov 
periodic orbits exponentially close to L3 whose stable and unstable invariant manifolds 
intersect transversally. This would create chaotic motions “exponentially close” to L3
and its invariant manifolds (see [11]).

As already mentioned, Theorem 1.1 rules out the existence of primary homoclinic 
connections to L3 in the RPC3BP for 0 < μ � 1. However, it does not prevent the 
existence of multiround homoclinic orbits, that is homoclinic orbits which pass close 
to L3 multiple times. It has been conjectured (see for instance [14], where the authors 
analyze this problem numerically) that multi-round homoclinic connections to L3 should 
exist for a sequence of values {μk}k∈N satisfying μk → 0 as k → ∞.

A first step towards proving Arnold diffusion along the 1 : 1 mean motion resonance 
in the 3-body problem? Consider the 3-Body Problem in the planetary regime, that is 
one massive body (the Sun) and two small bodies (the planets) performing approximate 
ellipses (including the “Restricted limit” when one of planets has mass zero). A funda-
mental problem is to assert whether such configuration is stable (i.e. is the Solar system 

1 One can find in the webpage https://github .com /margiralt /stokesConstantL3 the code for this numerical 
computation.
2 The 1 : 1 averaged Hamiltonian has been also studied to obtain “good” approximations for the global 

dynamics in the 1 : 1 resonant zone, see for example [52,50] and the references therein.

https://github.com/margiralt/stokesConstantL3
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stable?). Thanks to Arnold-Herman-Féjoz KAM Theorem, many of such configurations 
are stable, see [3,26]. However, it is widely expected that there should be strong insta-
bilities created by Arnold diffusion mechanisms (as conjectured by Arnold in [4]). In 
particular, it is widely believed that one of the main sources of such instabilities dynam-
ics are the mean motion resonances, where the period of the two planets is resonant (i.e. 
rationally dependent) [28].

The RPC3BP has too low dimension (2 degrees of freedom) to possess Arnold diffu-
sion. However, since it can be seen as a first order for higher dimensional models, the 
analysis performed in this paper can be seen as a humble first step towards constructing 
Arnold diffusion in the 1 : 1 mean motion resonance. In this resonance, the RPC3BP has 
a normally hyperbolic invariant manifold given by the center manifold of the Lagrange 
point L3. This normally hyperbolic invariant manifold is foliated by the classical Lya-
punov periodic orbits. One should expect that the techniques developed in the present 
paper would allow to prove that the invariant manifolds of these periodic orbits intersect 
transversally within the corresponding energy level of (1.1). Still, this is a much harder 
problem than the one considered in this paper and the technicalities involved would be 
considerable.

This transversality would not lead to Arnold diffusion due to the low dimension of 
the RPC3BP. However, if one considers either the Restricted Spatial Circular 3-Body 
Problem with small μ > 0 which has three degrees of freedom, the Restricted Planar 
Elliptic 3-Body Problem with small μ > 0 and eccentricity of the primaries e0 > 0, which 
has two and a half degrees of freedom, or the “full” planar 3-Body Problem (i.e. all three 
masses positive, two small) which has three degrees of freedom (after the symplectic 
reduction by the classical first integrals) one should be able to construct orbits with a 
drastic change in angular momentum (or inclination in the spatial setting).

In the Restricted Planar Elliptic 3-Body Problem the change of angular momentum 
would imply the transition of the zero mass body orbit from a close to circular ellipse 
to a more eccentric one. In the full 3BP, due to total angular momentum conservation, 
the angular momentum would be transferred from one body to the other changing both 
osculating ellipses. This behavior would be analogous to that of [28] for the 3 : 1 and 1 : 7
resonances. In that paper, the transversality between the invariant manifolds of the nor-
mally hyperbolic invariant manifold was checked numerically for the realistic Sun-Jupiter 
mass ratio μ = 10−3. Arnold diffusion instabilities have been analyzed numerically for 
the Restricted Spatial Circular 3-Body Problem in [57].

1.2. The strategy to prove Theorem 1.1

The main difficulty in proving Theorem 1.1 is that the distance between the stable and 
unstable manifolds of L3 is exponentially small with respect to 

√
μ (this is also usually 

known as a beyond all orders phenomenon). This implies that the classical Melnikov 
Method [30] to detect the breakdown of homoclinics cannot be applied.
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To prove Theorem 1.1, we follow the strategy of exponentially small splitting of sep-
aratrices (already outlined in [10]) which goes back to the seminal work by Lazutkin 
[41,42]. See [10] for a list of references on the recent developments in the field of ex-
ponentially small splitting of separatrices. In particular, we follow similar strategies of 
those in [8,7].

In the present work the first order of the difference between manifolds is not given 
by the Melnikov function. Instead, we must derive and analyze an inner equation which 
provides the dominant term of this distance. As a consequence, we need to “match” 
(i.e. compare) certain solutions of the inner equation with the parameterizations of the 
perturbed invariant manifolds.

The first part of the proof, that was completed in the prequel [10], dealt with the 
following steps:

A. We perform a change of coordinates to capture the slow-fast dynamics of the sys-
tem. The first order of the new Hamiltonian has a saddle point with an homoclinic 
connection (also known as separatrix) and a fast harmonic oscillator. The change of 
coordinates is introduced in Section 2 and the properties of the new Hamiltonian 
are stated in Proposition 2.1, which corresponds to Theorem 2.1 in [10].

B. We study the analytical continuation of the time-parametrization of the separatrix 
of this first order. In particular, we obtain its maximal strip of analyticity and 
the singularities at the boundary of this strip. This is explained in Theorem 3.1 in 
Section 3.1, which corresponds to Theorem 2.2 and Proposition 2.3 in [10].

C. We derive the inner equation. This step is contained in Proposition 3.12, which 
corresponds to Proposition 2.5 of [10].

D. We study two special solutions which will be “good approximations” of the perturbed 
invariant manifolds near the singularities of the unperturbed separatrix (see Step F 
below). Such solutions, and their difference, are provided by Theorem 3.13, which 
corresponds to Theorem 2.7 of [10].

The remaining steps necessary to complete the proof of Theorem 1.1 are the following:

E. We prove the existence of the analytic continuation of the parametrizations of the 
invariant manifolds of L3, W u,+(δ) and W s,+(δ), in an appropriate complex do-
main called boomerang domain. This domain contains a segment of the real line and 
intersects a sufficiently small neighborhood of the singularities of the unperturbed 
separatrix.

F. By using complex matching techniques, we show that, close to the singularities of the 
unperturbed separatrix, the solutions of the inner equation obtained in Step D are 
“good approximations” of the parameterizations of the perturbed invariant manifolds 
obtained in Step E.
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G. We obtain an asymptotic formula for the difference between the perturbed invariant 
manifolds by proving that the dominant term comes from the difference between the 
solutions of the inner equation.

The structure of this paper goes as follows. In Section 2 we perform the change 
of coordinates introduced in Step A and state Theorem 2.2, which is a reformulation 
of Theorem 1.1 in this new set of variables. Then, in Section 3, we state the results 
concerning Steps B, C and D above (which are proven in [10]) and we carry out Steps 
E, F and G. These steps lead to the proof of Theorem 2.2. Sections 4 and 5 are devoted 
to proving the results in Section 3 which concern Steps E and F.

2. A singular formulation of the problem

The Lagrange point L3 is a center-saddle equilibrium point, of the form (dμ, 0, 0, dμ)
with dμ = 1 + 5

12μ + O(μ3), of the Hamiltonian h in (1.1) whose eigenvalues, as μ → 0, 
satisfy (see [55])

Spec = {±√
μρ(μ),±i ω(μ)} , with

{
ρ(μ) =

»
21
8 + O(μ),

ω(μ) = 1 + 7
8μ + O(μ2).

The center and saddle eigenvalues are found at different time-scales. Moreover, when 
μ = 0, the unstable and stable manifolds of L3 “collapse” to a circle of critical points. Ap-
plying a suitable singular change of coordinates, which is based on the classical Poincaré 
variables (see [27,45]) and singular scalings, the Hamiltonian h can be written as a per-
turbation of a pendulum-like Hamiltonian weakly coupled with a fast oscillator.

The construction of this change of variables is presented in detail in Section 2.1 of [10]. 
To make the paper self-contained, in Appendix A, we give some details on the definition 
and properties of the Poincaré variables. In the present section we just describe the 
properties of the Hamiltonian (1.1) in these coordinates.

The Hamiltonian h expressed in the classical (rotating) Poincaré coordinates, φPoi :
(λ, L, η, ξ) → (q, p), defines a Hamiltonian system with respect to the symplectic form 
dλ ∧ dL + i dη ∧ dξ and the Hamiltonian

HPoi = HPoi
0 + μHPoi

1 , (2.1)

with

HPoi
0 (L, η, ξ) = − 1

2L2 − L + ηξ and HPoi
1 = h1 ◦ φPoi. (2.2)

Moreover, the critical point L3 satisfies

λ = 0, (L, η, ξ) = (1, 0, 0) + O(μ) (2.3)
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and the linearization of the vector field at this point has, at first order, an uncoupled 
nilpotent and center blocks, Ö0 −3 0 0

0 0 0 0
0 0 i 0
0 0 0 −i

è
+ O(μ). (2.4)

Since φPoi is an implicit change of coordinates, there is no explicit expression for HPoi
1 . 

However, it is possible to obtain series expansion in powers of (L − 1, η, ξ) (see Ap-
pendix B). These expansions have already been used in [10] (see Lemma 4.1).

To capture the slow-fast dynamics of the system, renaming

δ = μ
1
4 ,

we perform the singular symplectic scaling

φsc : (λ,Λ, x, y) �→ (λ, L, η, ξ), L = 1 + δ2Λ, η = δx, ξ = δy (2.5)

and the time reparametrization t = δ−2τ . Defining the potential

V (λ) = HPoi
1 (λ, 1, 0, 0; 0) = 1 − cosλ− 1√

2 + 2 cosλ
, (2.6)

the Hamiltonian system associated to HPoi, expressed in scaled coordinates, defines a 
Hamiltonian system with respect to the symplectic form dλ ∧ dΛ + idx ∧ dy and the 
Hamiltonian

H = Hp + Hosc + H1, (2.7)

where

Hp(λ,Λ) = −3
2Λ2 + V (λ), Hosc(x, y; δ) = xy

δ2 , (2.8)

H1(λ,Λ, x, y; δ) = HPoi
1 (λ, 1 + δ2Λ, δx, δy; δ4) − V (λ) + 1

δ4Fp(δ2Λ) (2.9)

and

Fp(z) =
Å
− 1

2(1 + z)2 − (1 + z)
ã

+ 3
2 + 3

2z
2 = O(z3). (2.10)

Therefore, we can define the “new” first order

H0 = Hp + Hosc. (2.11)



I. Baldomá et al. / Advances in Mathematics 430 (2023) 109218 11
Fig. 2. Phase portrait of the system given by Hamiltonian Hp(λ,Λ) on (2.8). On blue the two separatrices.

From now on, we refer to H0 as the unperturbed Hamiltonian and we identify H1 as the 
perturbation.

The next proposition, proven in [10, Theorem 2.1], gives some properties of the Hamil-
tonian H.

Proposition 2.1. The Hamiltonian H, away from collision with the primaries, is real-
analytic in the sense of H(λ,Λ, x, y; δ) = H(λ, Λ, y, x; δ).

Moreover, for δ > 0 small enough,

• The critical point L3 expressed in coordinates (λ, Λ, x, y) is given by

L(δ) =
(
0, δ2LΛ(δ), δ3Lx(δ), δ3Ly(δ)

)
, (2.12)

with |LΛ(δ)|, |Lx(δ)|, |Ly(δ)| ≤ C, for some constant C > 0 independent of δ.
• The point L(δ) is a saddle-center equilibrium point and its linearization isÜ

0 −3 0 0
−7

8 0 0 0
0 0 i

δ2 0
0 0 0 − i

δ2

ê
+ O(δ).

Therefore, it possesses a one-dimensional unstable and stable manifolds, Wu(δ) and 
Ws(δ).

The unperturbed system given by H0 in (2.11) has two homoclinic connections in 
the (λ, Λ)-plane associated to the saddle point (0, 0) and described by the energy level 
Hp(λ, Λ) = −1

2 (see Fig. 2). We define

λ0 = arccos
Å1

2 −
√

2
ã
, (2.13)

which satisfies Hp(λ0, 0) = −1
2 so that, for the unperturbed system, λ0 is the “turning 

point” in the (λ, Λ) variables. We will see that, in our regime, θ ≈ λ and thus the value 
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of θ0 introduced in Remark 1.2 is indeed close to the “turning point” of the invariant 
manifolds (see Fig. 1(b)).

We rewrite Theorem 1.1, in fact the more general result in Remark 1.2, in the set of 
coordinates (λ, Λ, x, y). For λ∗ ∈ (0, λ0), we consider the 3-dimensional section

S(λ∗) =
{
(λ,Λ, x, y) ∈ R2 ×C2 : λ = λ∗, Λ > 0, x = y

}
,

which is transverse to the flow of H, and we define the first crossings of the invariant 
manifolds Wu,s(δ) with this section as (λ∗, Λu

∗, x
u
∗, y

u
∗ ) and (λ∗, Λs

∗, x
s
∗, y

s
∗).

Theorem 2.2. Fix an interval [λ1, λ2] ⊂ (0, λ0) with λ0 as given in (2.13). Then, there 
exists δ0 > 0 and b0 > 0 such that, for δ ∈ (0, δ0) and λ∗ ∈ [λ1, λ2], the first crossings 
are analytic with respect to λ∗ and

|Λ�
∗| ≤ b0, |x�

∗|, |y�∗ | ≤ b0δ
3, � = u, s. (2.14)

Moreover,

|xu
∗ − xs

∗| = |yu
∗ − ys

∗| = 6
√

2 δ 1
3 e−

A
δ2

ï
|Θ| + O

Å 1
|log δ|

ãò
,

|Λu
∗ − Λs

∗| = O(δ 4
3 e−

A
δ2 ),

where A and Θ are the constants introduced in Theorem 1.1.

2.1. Proof of Theorem 1.1

To prove Theorem 1.1 (and Remark 1.2) from Theorem 2.2 we need to “undo” the 
changes of coordinates φPoi and φsc and adjust the section from λ = constant to θ =
constant.

First, we consider the change φsc given by (λ, L, η, ξ) = (λ, 1 +δ2Λ, δx, δy), (see (2.5)). 
For λ∗ ∈ [λ1, λ2] we define

L�(λ∗; δ) = 1 + δ2Λ�
∗, η�(λ∗; δ) = δx�

∗, ξ�(λ∗; δ) = δy�∗ , for � = u, s. (2.15)

Then, by Theorem 2.2, one has

|ΔL(λ∗; δ)| = |Lu(λ∗; δ) − Ls(λ∗; δ)| = O
Ä
δ

10
3 e−

A
δ2
ä
,

|Δη(λ∗; δ)| = |ηu(λ∗; δ) − ηs(λ∗; δ)| = 6
√

2 δ 4
3 e−

A
δ2

ï
|Θ| + O

Å 1
|log δ|

ãò
,

Δξ(λ∗; δ) = Δη(λ∗; δ).

(2.16)

Next, we study the change φPoi. In the following result, we give a series expression 
of the polar coordinates with respect to the Poincaré elements. Even though its proof 
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is a consequence of the definition of the Poincaré variables (see Section 4.1 in [10]), we 
provide it in Appendix A.

Lemma 2.3. Fix � > 0. Then, for |(L− 1, η, ξ)| � 1 and |Imλ| ≤ �, the polar coordinates 
(r, θ, R, G) introduced in (1.2) satisfy

r = 1 + 2(L− 1) − e−iλ

√
2
η − eiλ√

2
ξ + O(L− 1, η, ξ)2,

θ = λ + i
√

2e−iλη − i
√

2eiλξ + O(L− 1, η, ξ)2,

R = ie−iλ

√
2

η − ieiλ√
2
ξ + O(L− 1, η, ξ)2, G = L− ηξ.

Since in Theorem 2.2 the distance is measured in the section λ = λ∗ whereas the 
Theorem 1.1, and more generally Remark 1.2, measures it in the section θ = θ∗, we 
must “translate” the estimates in (2.16) to the new section. By Lemma 2.3, let gθ be the 
function such that θ = λ + gθ(λ, L, η, ξ). Then, for � = u, s, we consider

F �(λ, θ, δ) = θ − λ + gθ (λ, L�(λ; δ), η�(λ; δ), ξ�(λ; δ)) .

Applying the Implicit Function Theorem, Lemma 2.3 and that, by (2.15), L�(λ; 0) = 1
and η�(λ; 0) = ξ�(λ; 0) = 0, then there exist function ̂λ�(θ; δ) such that F �(λ̂�(θ; δ), θ, δ) =
0 and

λ̂�(θ; δ) = θ − i
√

2e−iθη̂�(θ; δ) + i
√

2eiθ ξ̂�(θ; δ)

+ O
Ä
L̂�(θ; δ) − 1, η̂�(θ; δ), ξ̂�(θ; δ)

ä2
,

(2.17)

with η̂�(θ; δ) = η�(λ̂�(θ; δ); δ), ξ̂�(θ; δ) = ξ�(λ̂�(θ; δ); δ) and L̂�(θ; δ) = L�(λ̂�(θ; δ); δ). 
Notice that, by (2.14) (plus Cauchy estimates for their derivatives) and (2.15),

λ̂�(θ; δ) = θ + O(δ4).

Thus, for any [θ1, θ2] ⊂ (0, λ0) and δ small enough, there exists [λ1, λ2] ⊂ (0, λ0) such 
that, for θ ∈ [θ1, θ2] one has λ̂u,s(θ; δ) ∈ [λ1, λ2]. In addition,

L̂�(θ; δ) = L�(θ; δ) + O(δ6) = 1 + O(δ2),

η̂�(θ; δ) = η�(θ; δ) + O(δ8) = O(δ4),

ξ̂�(θ; δ) = ξ�(θ; δ) + O(δ8) = O(δ4).

(2.18)

Then, since Λu,s
∗ > 0, by (2.15) one has that L̂u,s(θ; δ) > 1 for θ ∈ [θ1, θ2]. Moreover, by 

Lemma 2.3 and taking δ small enough, one has ru,s(θ) − 1 > 0.
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The difference between the invariant manifolds in a section of fixed θ ∈ [θ1, θ2] is given 
by

Δλ̂(θ; δ) = λ̂u(θ; δ) − λ̂s(θ; δ), ΔL̂(θ; δ) = L̂u(θ; δ) − L̂s(θ; δ),

Δη̂(θ; δ) = η̂u(θ; δ) − η̂s(θ; δ), Δξ̂(θ; δ) = ξ̂u(θ; δ) − ξ̂s(θ; δ).

Then, by (2.17) and (2.18), one has that

Δλ̂(θ; δ) = −i
√

2e−iθΔη̂(θ; δ) + i
√

2eiθΔξ̂(θ; δ) + O
Ä
δ2ΔL̂(θ; δ), δ4Δη̂(θ; δ), δ4Δξ̂(θ; δ)

ä
.

Moreover, by the mean value theorem, (2.16) and (2.18),

ΔL̂(θ; δ) =ΔL(λ̂u(θ; δ); δ) + L̂s(λ̂u(θ; δ); δ) − L̂s(λ̂s(θ; δ); δ)

=O(δ 10
3 e−

A
δ2 ) + δ2O

Ä
Δλ̂(θ; δ)

ä
.

Analogously,

Δη̂(θ; δ) = Δη(λ̂u(θ; δ); δ) + δ4O
Ä
Δλ̂(θ; δ)

ä
,

Δξ̂(θ; δ) = Δη(λu(θ; δ); δ) + δ4O
Ä
Δλ̂(θ; δ)

ä
.

Therefore, using (2.16), one can conclude that

|Δλ̂(θ; δ)| = O
Ä
δ

4
3 e−

A
δ2
ä
, |Δη̂(θ; δ)| = 6

√
2 δ 4

3 e−
A
δ2

ï
|Θ| + O

Å 1
|log δ|

ãò
,

|ΔL̂(θ; δ)| = O
Ä
δ

10
3 e−

A
δ2
ä
, Δξ̂(θ; δ) = Δη̂(θ; δ).

Once we have adjusted the transverse section, it only remains to apply Lemma 2.3 to 
translate these differences to polar coordinates. That is,

ru − rs = −
√

2 cos θReΔη̂(θ; δ) −
√

2 sin θ Im Δη̂(θ; δ) + O(δ 10
3 e−

A
δ2 ),

Ru −Rs = −
√

2 cos θ Im Δη̂(θ; δ) +
√

2 sin θReΔη̂(θ; δ) + O(δ 16
3 e−

A
δ2 ),

Gu −Gs = O(δ 10
3 e−

A
δ2 ),

which implies

‖(ru, Ru, Gu) − (rs, Rs, Gs)‖ =
√

2 |Δη̂(θ; δ)| + O(δ 10
3 e−

A
δ2 )

= 3
√

4 δ 4
3 e−

A
δ2

ï
|Θ| + O

Å 1
|log δ|

ãò
.

To conclude the proof of Theorem 1.1, it is enough to recall that δ = μ
1
4 .
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3. Proof of Theorem 2.2

In this section, we present the main steps necessary to prove Theorem 2.2 (see the 
list in Section 1) and complete its proof. In Section 3.1 we summarize the results con-
cerning the analysis of the separatrix of the unperturbed Hamiltonian Hp (see (2.8)) 
done in [10] (Step B). In Section 3.2, we prove the existence of parametrizations of the 
perturbed invariant manifolds in suitable complexes domains (Step E). In Section 3.3, 
we study the difference between the perturbed manifolds near the singularities of the 
perturbed separatrix. In particular, in Section 3.3.1, we summarize the results concern-
ing the derivation (Step C) and analysis (Step D) of the inner equation obtained in 
[10] and, in Section 3.3.2, we compare certain solutions of the inner equation with the 
parametrizations of the perturbed manifolds by means of complex matching techniques 
(Step F). Finally, in Section 3.4, we combine all the previous results to obtain the domi-
nant term of the difference between the invariant manifolds and prove Theorem 2.2 (Step 
G).

3.1. Analytical continuation of the unperturbed separatrix

The unperturbed Hamiltonian

H0(λ,Λ, x, y) = Hp(λ,Λ) + Hosc(x, y)

(see (2.11)) possesses a saddle with two separatrices in the (λ, Λ)-plane (see Fig. 2). Let 
us consider the real-analytic time parametrization of the separatrix with λ ∈ (0, π),

σ : R → T ×R

t �→ σ(t) = (λh(t),Λh(t)),
(3.1)

with initial condition σ(0) = (λ0, 0) where λ0 = arccos
( 1

2 −
√

2
)
∈
( 2

3π, π
)
.

The following result (which encompass Theorem 2.2, Proposition 2.3 and Corollary 2.4 
in [10]) gives the properties of the analytic extension of σ(t) to the domain

Πext
A,β = {t ∈ C : |Im t| < tan β Re t + A}∪

{t ∈ C : |Im t| < − tan β Re t + A} ,
(3.2)

with A as given in (1.3) (see Fig. 3).

Theorem 3.1. The real-analytic time parametrization σ defined in (3.1) satisfies:

• There exists 0 < β0 < π
2 such that σ(t) extends analytically to ΠA,β0.

• σ(t) has only two singularities on ∂Πext
A,β at t = ±iA.
0
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Fig. 3. Representation of the domain Πext
A,β in (3.2).

• There exists υ > 0 such that, for t ∈ C with |t− iA| < υ and arg (t − iA) ∈ (−3π
2 , π2 ),

λh(t) = π + 3α+(t− iA) 2
3 + O(t− iA) 4

3 ,

Λh(t) = −2α+

3
1

(t− iA) 1
3

+ O(t− iA) 1
3 ,

with α+ ∈ C such that α3
+ = 1

2 .
An analogous result holds for |t + iA| < υ, arg (t + iA) ∈ (−π

2 , 
3π
2 ) and α− = α+.

• Λh(t) has only one zero in Πext
A,β0

at t = 0.

3.2. The perturbed invariant manifolds

In this section, following the approach described in [8,7,33], we study the analytic con-
tinuation of the parametrizations of the perturbed one-dimensional stable and unstable 
manifolds, Wu(δ) and Ws(δ).

Since we measure the distance between the invariant manifolds in the section λ = λ∗
(see Theorem 2.2), we parameterize them as graphs with respect to λ (whenever is 
possible) or, more conveniently, with respect to the independent variable u defined by 
λ = λh(u).

To define these suitable parameterizations we first translate the equilibrium point 
L(δ) to 0 by the change of coordinates

φeq : (λ,Λ, x, y) �→ (λ,Λ, x, y) + L(δ). (3.3)

Second, we consider the symplectic change of coordinates

φsep : (u,w, x, y) → (λ,Λ, x, y), λ = λh(u), Λ = Λh(u) − w

3Λh(u) . (3.4)

We refer to (u, w, x, y) as the separatrix coordinates.
Let us remark that φsep is not defined for u = 0 since Λh(0) = 0 (see Theorem 3.1). 

We deal with this fact later when considering the domain of definition for u.
After these changes of variables, we look for the perturbed invariant manifolds as a 

graph with respect to u. In other words, we look for functions
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Fig. 4. The boomerang domain Dκ,d defined in (3.7).

z�(u) = (w�(u), x�(u), y�(u))T , for � = u, s,

such that the invariant manifolds given in Proposition 2.1 can be expressed as

W�(δ) =
ßÅ

λh(u),Λh(u) − w�(u)
3Λh(u) , x

�(u), y�(u)
ã

+ L(δ)
™
, for � = u, s, (3.5)

with u belonging to an appropriate domain contained in Πext
A,β0

(see (3.2)). The graphs 
zu and zs must satisfy the asymptotic conditions

lim
Reu→−∞

Å
wu(u)
Λh(u) , x

u(u), yu(u)
ã

= lim
Reu→+∞

Å
ws(u)
Λh(u) , x

s(u), ys(u)
ã

= 0. (3.6)

Remark 3.2. Since the Hamiltonian H is real-analytic in the sense of H(λ,Λ, x, y; δ) =
H(λ, Λ, y, x; δ) (see Proposition 2.1), then we say that z(u) = (w(u), x(u), y(u))T is real-
analytic if it satisfies

w(u) = w(u), x(u) = y(u), y(u) = x(u).

The classical way to study exponentially small splitting of separatrices, in this setting, 
is to look for solutions zu and zs in a certain complex common domain containing 
a segment of the real line and intersecting a O(δ2) neighborhood of the singularities 
u = ±iA of the separatrix.

Recall that the invariant manifolds can not be expressed as a graph in a neighborhood 
of u = 0. To overcome this technical problem, we find solutions zu and zs defined in a 
complex domain, which we call boomerang domain due to its shape (see Fig. 4). Namely,

Dκ,d = {u ∈ C : |Im u| < A− κδ2 + tan β0Reu, |Im u| < A− κδ2 − tan β0Reu,

|Im u| > dA− tan β Reu} ,
(3.7)
1
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where κ > 0 is such that A − κδ2 > 0, β0 is the constant given in Theorem 3.1 and 
β1 ∈ [β0, π2 ) and d ∈ (1

4 , 
1
2 ) are independent of δ.

Theorem 3.3. Fix a constant d ∈ (1
4 , 

1
2 ). Then, there exists δ0, κ0 > 0 such that, for 

δ ∈ (0, δ0), κ ≥ κ0, the graph parameterizations zu and zs introduced in (3.5) can be 
extended real-analytically to the domain Dκ,d.

Moreover, there exists a real constant b1 > 0 independent of δ and κ such that, for 
u ∈ Dκ,d we have that

|w�(u)| ≤ b1δ
2

|u2 + A2| + b1δ
4

|u2 + A2|
8
3
, |x�(u)| ≤ b1δ

3

|u2 + A2|
4
3
, |y�(u)| ≤ b1δ

3

|u2 + A2|
4
3
.

Notice that the asymptotic conditions (3.6) do not have any meaning in the domain 
Dκ,d since it is bounded. Therefore, to prove the existence of zu and zs in Dκ,d one has 
to start with different domains where these asymptotic conditions make sense and then 
find a way to extend them real-analytically to Dκ,d. We describe the details of these 
processes in the following Sections 3.2.1 and 3.2.2.

3.2.1. Analytic extension of the stable and unstable manifolds
The Hamiltonian H written in separatrix coordinates (see (3.3) and (3.4)) becomes

Hsep = Hsep
0 + Hsep

1 , (3.8)

with

Hsep
0 = w + xy

δ2 , Hsep
1 = H ◦ (φeq ◦ φsep) −Hsep

0 . (3.9)

Introducing the notation z = (w, x, y)T and defining

Asep = i

δ2

(0 0 0
0 1 0
0 0 −1

)
, (3.10)

the equations associated to the Hamiltonian Hsep can be written as®
u̇ = 1 + gsep(u, z),
ż = Asepz + f sep(u, z),

(3.11)

where gsep = ∂wH
sep
1 and f sep = (−∂uH

sep
1 , i∂yH

sep
1 ,−i∂xH

sep
1 )T . Consequently, the 

parameterizations zu(u) and zs(u) given in (3.5) satisfy the invariance equation

∂uz
� = Asepz� + Rsep[z�], for � = u, s, (3.12)

with
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Rsep[ϕ](u) = f sep(u, ϕ) − gsep(u, ϕ)Asepϕ

1 + gsep(u, ϕ) . (3.13)

Remark 3.4. Note that one can use this invariance equation whenever

1 + gsep(u, ϕ) = 1 + ∂wH
sep
1 (u, ϕ) �= 0.

This condition is satisfied in the different domains that are considered in this section 
and in the forthcoming ones and it is checked in Appendix B (see (B.16) and (B.32)). 
This fact is also used later in Section 3.3.

The first step is to look for solutions of this equation in the domains

Du,∞
ρ1

= {u ∈ C : Reu < −ρ1} , Ds,∞
ρ1

= {u ∈ C : Reu > ρ1} , (3.14)

for some ρ1 > 0, which allows us to take into account the asymptotic conditions (3.6).

Proposition 3.5. Fix ρ1 > 0. Then, there exists δ0 > 0 such that, for δ ∈ (0, δ0), the 
equation (3.12) has a unique real-analytic solution z� = (w�, x�, y�)T in D�,∞

ρ1
(for � =

u, s) satisfying the corresponding asymptotic condition (3.6).
Moreover, there exists b2 > 0 independent of δ such that, for u ∈ D�,∞

ρ1
,

|w�(u)e−2νu| ≤ b2δ
2, |x�(u)e−νu| ≤ b2δ

3, |y�(u)e−νu| ≤ b2δ
3,

with ν =
»

21
8 for � = u and ν = −

»
21
8 for � = s.

This proposition is proved in Section 4.1.
To extend analytically the invariant manifolds to reach the boomerang domain Dκ,d

we have to face the problem that these parameterizations become undefined at u = 0. 
To overcome it, first we extend the solutions zu and zs of Proposition 3.5 to the outer 
domains (see Fig. 5)

Du,out
κ,d1,ρ2

= {u ∈ C : |Im u| < A− κδ2 − tan β0Reu,

|Im u| > d1A + tan β1Reu, Reu > −ρ2} ,
Ds,out

κ,d1,ρ2
=
{
u ∈ C : − u ∈ Du,out

κ,d1,ρ2

}
,

(3.15)

where d1 ∈ (1
4 , 

1
2 ) and ρ2 > ρ1 are fixed independent of δ, and κ > 0 is such that 

A − κδ2 > 0.

Proposition 3.6. Consider the functions zu, zs and the constant ρ1 > 0 obtained in 
Proposition 3.5. Fix constants ρ2 > ρ1 and d1 ∈ (1

4 , 
1
2 ). Then, there exist δ0, κ1 > 0 such 

that, for δ ∈ (0, δ0), κ ≥ κ1, the functions z� = (w�, x�, y�)T , � = u, s, can be extended 
analytically to the domain D�,out

κ,d ,ρ .

1 2
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Fig. 5. The outer domains Du,out
κ,d1,ρ2

and Ds,out
κ,d1,ρ2

defined in (3.15).

Moreover, there exists b3 > 0 independent of δ and κ such that, for u ∈ D�,out
κ,d1,ρ2

,

|w�(u)| ≤ b3δ
2

|u2 + A2| + b3δ
4

|u2 + A2|
8
3
, |x�(u)| ≤ b3δ

3

|u2 + A2|
4
3
, |y�(u)| ≤ b3δ

3

|u2 + A2|
4
3
.

This proposition is proved in Section 4.2.
Notice that taking ρ2 big enough, d1 ≤ d and κ1 ≤ κ0 we have Dκ0,d ⊂ Ds,out

κ1,d1,ρ2
. 

Therefore, for the stable manifold zs, Proposition 3.6 implies Theorem 3.3. However, we 
still need to extend further zu in order to reach Dκ0,d.

3.2.2. Further analytic extension of the unstable manifold
Since by Proposition 3.6 the unstable solution zu is defined in Du,out

κ1,d1,ρ2
. To prove 

Theorem 3.3 it only remains to extend it to the points in the boomerang domain Dκ0,d

which do not belong to the outer unstable domain. Namely, we extend zu to‹Dκ,d = {u ∈ C : |Im u| < A− κδ2 − tan β0Reu,

|Im u| < dA + tan β1Reu, |Im u| > dA− tan β1Reu} ,
(3.16)

for suitable κ and d (see Fig. 6). Notice that ‹Dκ,d ⊂ Dκ,d and that ‹Dκ,d only contains 
points at distance of u = ±iA of order 1 with respect to δ.

As we have mentioned, to measure the difference between the invariant manifolds 
Wu(δ) and Ws(δ) it is convenient to parameterize them as graphs (see (3.5)). However, 
these graph parametrizations are not defined at u = 0. Moreover, since all the fixed point 
arguments that we apply to obtain the graph parameterizations rely on complex path 
integration, we are not able to extend them to domains which are not simply connected. 
Therefore, to reach ‹Dκ,d from Du,out

κ,d1,ρ2
, we need to switch to a different parametrization 

that is well defined at u = 0.
The auxiliary parametrization we consider is the classical time-parametrization which 

is associated to the Hamiltonian H in (2.7). (Recall that the graph parametrization zu

was associated to the Hamiltonian Hsep = H ◦ φeq ◦ φsep).
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Fig. 6. The domain ‹Dκ,d defined in (3.16).

This analytic extension procedure has three steps:

1. We consider the outer transition domain (see Fig. 7)‹Du,out
κ2,d2,d3

= {v ∈ C : |Im v| < A− κ2δ
2 − tan β0Re v,

|Im v| > d2A + tan β1Re v,

|Im v| < d3A + tan β1Re v} ,

(3.17)

where d1 < d2 < d3 < 1
2 are independent of δ and κ2 > κ1 is such that A − κ2δ

2 > 0. 
Notice that ‹Du,out

κ2,d2,d3
⊂ Du,out

κ1,d1,ρ2
.

Since u̇ = 1 + o(1) (see (3.11)), we look for a real-analytic and close to the 
identity change of coordinates u = v + U(v) defined in ‹Du,out

κ2,d2,d3
such that the time-

parametrization

Γu(v) = φeq ◦ φsep(v + U(v), zu(v + U(v))) (3.18)

is a solution of the Hamiltonian H in (2.7). That is, v̇ = 1 and Γu(v) ∈ Wu(δ) for 
v ∈ ‹Du,out

κ2,d2,d3
. See the details in Proposition 3.7 and Corollary 3.8 below.

2. We extend analytically the time-parametrization Γu(v) to reach the domain ‹Dκ,d. In 
particular, we extend Γu to the flow domain

Dfl
κ3,d4

= {v ∈ C : |Im v| < A− κδ2 − tan β0Re v,

|Im v| < d4A + tan β1Re v} ,
(3.19)

where d4 ∈ (d2, d3) is independent of δ and κ3 > κ2 is such that A −κ3δ
2 > 0. Notice 

that, ‹Du,out
κ ,d ,d ∩Dfl

κ ,d �= ∅ and ‹Dκ4,d5 ⊂ Dfl
κ ,d ,
2 2 3 3 4 3 4
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Fig. 7. The domain ‹Du,out
κ2,d2,d3

given in (3.17) (left) and Dfl
κ3,d4

in (3.19) (right).

for d5 ∈ (d1, d4) and κ4 > κ3. See the details in Proposition 3.9.
3. We prove that there exists a real-analytic close to the identity change of variables of 

the form v = u + V(u), u ∈ ‹Dκ4,d5 , such that the function zu(u) defined by

(u, zu(u)) = (φeq ◦ φsep)−1
(
Γu(u + V(u))

)
(3.20)

gives an invariant graph of Hsep in (3.8). See the details in Proposition 3.10 and 
Corollary 3.11 below.

As a consequence, we have extended analytically zu to ‹Dκ4,d5 .
For the first step, we look for a function U such that (v + U(v), zu(v + U(v))) is a 

solution of the differential equations given by the Hamiltonian Hsep in (3.8). Therefore, 
U satisfies

∂v U(v) = ∂wH
sep
1 (v + U(v), zu(v + U(v))) . (3.21)

The next proposition ensures that U exists and it is well defined for v ∈ ‹Du,out
κ2,d2,d3

.

Proposition 3.7. Let the function zu and the constants ρ2, d1 and κ1 be as obtained in 
Proposition 3.6 and consider constants d2, d3 ∈ (d1, 12 ) such that d2 < d3 and κ2 > κ1. 
Then, there exists δ0 such that, for δ ∈ (0, δ0), the equation (3.21) has a real-analytic 
solution U : ‹Du,out

κ2,d2,d3
→ C.

Moreover, for some constant b4 > 0 independent of δ and for v ∈ ‹Du,out
κ2,d2,d3

, U satisfies

|U(v)| ≤ b4δ
2 and v + U(v) ∈ Du,out

κ1,d1,ρ2
.

This proposition is proved in Section 4.3. Together with Proposition 3.7 implies the 
following corollary.

Corollary 3.8. Under the hypothesis of Proposition 3.7, there exists δ0 > 0 such that, for 
δ ∈ (0, δ0), the function Γu in (3.18) is well defined and real-analytic in ‹Du,out

κ ,d ,d .

2 2 3
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On the following, we use without mention that Γu(v) can be split as

Γu(v) = Γh(v) + Γ̂(v), with
{

Γh = (λh,Λh, 0, 0)T ,

Γ̂ = (λ̂, Λ̂, x̂, ŷ)T .
(3.22)

The next proposition extends the parametrization Γu to the domain Dfl
κ3,d4

(see (3.19)).

Proposition 3.9. Let the function Γu and the constants d2, d3 and κ2 be as obtained in 
Corollary 3.8 and Proposition 3.7 and fix d4 ∈ (d2, d3) and κ3 > κ2. Then, there exists 
δ0 > 0 such that, for δ ∈ (0, δ0), Γu can be real-analytically extended to Dfl

κ3,d4
.

Moreover, there exists a constant b5 > 0 independent of δ such that, for v ∈ Dfl
κ3,d4

,

|λ̂(v)| ≤ b5δ
2, |Λ̂(v)| ≤ b5δ

2, |x̂(v)| ≤ b5δ
3, |ŷ(v)| ≤ b5δ

3.

This proposition is proved in Section 4.4.
For the third step, we “go back” to the graph parametrization zu(u) by looking for a 

change v = u + V(u) for u ∈ ‹Dκ,d. Notice that, in order to satisfy equation (3.20) and 
recalling (2.12), V must be a solution of

λ̂(u + V(u)) = λh(u) − λh(u + V(u)). (3.23)

Then, one can easily recover the graph parametrization (wu(u), xu(u), yu(u)) using the 
equations

Λh(u) − Λh(u + V(u)) − wu(u)
3Λh(u) + δ2LΛ(δ) = Λ̂(u + V(u)),

xu(u) + δ3Lx(δ) = x̂(u + V(u)),

yu(u) + δ3Ly(δ) = ŷ(u + V(u)).

(3.24)

The next proposition ensures that V exists and it is well defined in ‹Dκ,d (see (3.16)).

Proposition 3.10. Let the function Γu and the constants d4 and κ3 be as obtained in 
Proposition 3.9 and the constant d1 as obtained in Proposition 3.6. Let us consider 
constants d5 ∈ (d1, d4) and κ4 > κ3. Then, there exists δ0 > 0 such that, for δ ∈ (0, δ0), 
equation (3.23) has a real-analytic solution V : ‹Dκ4,d5 → C satisfying

|V(u)| ≤ b6δ
2 and u + V(u) ∈ Dfl

κ3,d4
,

for some constant b6 > 0 independent of δ and u ∈ ‹Dκ4,d5 .

Proposition 3.10 is proved in Section 4.5. Summarizing all the previous results we 
obtain the following result.
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Corollary 3.11. Let the function V and the constants d5 and κ4 be as obtained in Propo-
sition 3.10. Then, there exists δ0 > 0 such that, for δ ∈ (0, δ0), equation (3.24) has a 
unique solution zu = (wu, xu, yu)T : ‹Dκ4,d5 → C3.

Moreover, there exists a constant b7 > 0 independent of δ such that, for u ∈ ‹Dκ4,d5 ,

|wu(u)| ≤ b7δ
2, |xu(u)| ≤ b7δ

3, |yu(u)| ≤ b7δ
3.

To finish this section, notice that, taking ρ2 big enough, d ≥ d5 and κ0 ≥ κ4 we have 
that

Dκ0,d ⊂ Du,out
κ1,d1,ρ2

∪ ‹Dκ4,d5 , with Du,out
κ1,d1,ρ2

∩ ‹Dκ4,d5 �= ∅,

and then, Corollary 3.11 and Proposition 3.6 imply the statements of Theorem 3.3 re-
ferring to the unstable manifold zu.

3.3. A first order of the invariant manifolds near the singularities

Let us consider the difference

Δz = (Δw,Δx,Δy)T = zu − zs,

where zu and zs are the perturbed invariant graphs given in Theorem 3.3. Since zu and 
zs satisfy the invariance equation (3.12), the difference Δz satisfies the linear equation

∂uΔz(u) = AsepΔz(u) + B̃spl(u)Δz(u), (3.25)

where Asep is as given in (3.10) and

B̃spl(u) =
1∫

0

DzRsep[σzu + (1 − σ)zs](u)dσ. (3.26)

Since zu and zs are already defined in Dκ,d, B̃spl(u) can be considered as a “known” 
function.

In addition, since the graphs of zu and zs belong to the same energy level of Hsep (see 
(3.8)), we have that

Hsep(u, zu(u); δ) −Hsep(u, zs(u); δ) = 0, for u ∈ Dκ,d.

Therefore, we can reduce (3.25) to a two dimensional equation. Indeed, defining Υ =
(Υ1,Υ2,Υ3) such that

Υ(u) =
1∫

0

DzH
sep (u, σzu(u) + (1 − σ)zs(u)) dσ, (3.27)
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and applying the mean value theorem we have that

Υ1(u)Δw(u) + Υ2(u)Δx(u) + Υ3(u)Δy(u) = 0.

Notice that Υ1(u) = 1 +
∫ 1
0 ∂wH

sep
1 (u, σzu(u) + (1 − σ)zs(u)) dσ and therefore Υ1(u) �= 0

for u ∈ Dκ,d (see Remark 3.4). Therefore, writing

Δw(u) = −Υ2(u)
Υ1(u)Δx(u) − Υ3(u)

Υ1(u)Δy(u) (3.28)

and defining ΔΦ = (Δx, Δy)T , the last two components of (3.25) are equivalent to

∂uΔΦ(u) = Aspl(u)ΔΦ(u) + Bspl(u)ΔΦ(u), (3.29)

where

Aspl =
Ç

i
δ2 + B̃spl

2,2 0
0 − i

δ2 + B̃spl
3,3

å
,

Bspl =
(

−Υ2
Υ1

B̃spl
2,1 B̃spl

2,3 − Υ3
Υ1

B̃spl
2,1

B̃spl
3,2 − Υ2

Υ1
B̃spl

3,1 −Υ3
Υ1

B̃spl
3,1

)
.

(3.30)

Next, we give an heuristic idea of how to obtain an exponentially small bound for 
Δy(u) for u ∈ Dκ,d. The case for Δx is analogous. If we omit the influence of B̃spl, then 
there exists cy ∈ C such that Δy is of the form

Δy(u) = cy e
− i

δ2 u.

Evaluating this function at the points

u+ = i(A− κδ2), u− = −i(A− κδ2),

one has Δy(u+) ∼ cye
A
δ2 −κ. Then, since Δy(u+) ∼ 1, it implies that cy ∼ e−

A
δ2 +κ and, 

as a consequence, Δy is exponentially small for u ∈ R. However, we are not interested in 
an upper bound of Δy but in an asymptotic formula. Thus we have to find the constant 
cy, or more precisely a good approximation of it.

To this end, we need to give the main terms of Δy at u = u+. Likewise we need to 
analyze Δx(u) ∼ cx e

i
δ2 u at u = u−. To perform this analysis we proceed as follows:

1. We provide suitable solutions Zu,s
0 (U) of the so-called inner equation. The inner equa-

tion, see [5,18], describes the dominant behavior of the functions zu and zs close to 
(one of) the singularities u = ±iA. In particular, it involves the first order of the 
Hamiltonian Hsep close to a singularity and it is independent of the small parameter 
δ. See Section 3.3.1.
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2. We check how well zu,s(u) are approximated by Zu,s
0 (U) around the singularities 

u = ±iA by means of a complex matching procedure. See Section 3.3.2.

3.3.1. The inner equation
In this section we summarize the results on the derivation and study of the inner 

equation obtained in [10]. We focus on the inner equation around the singularity u = iA, 
but analogous results hold near u = −iA.

To derive the inner equation, we look for a new Hamiltonian which is a good ap-
proximation of Hsep, given in (3.8), in a suitable neighborhood of u = iA. First, we 
scale the variables (u, w, x, y) so that the graphs zu,s(u) become O(1)-functions when 
u − iA = O(δ2). Since, by Theorem 3.3, we have that

w�(u) = O(δ− 4
3 ), x�(u) = O(δ 1

3 ), y�(u) = O(δ 1
3 ), for � = u, s,

we consider the symplectic scaling φin : (U, W, X, Y ) → (u, w, x, y), given by

U = u− iA

δ2 , W = δ
4
3

w

2α2
+
, X = x

δ
1
3
√

2α+
, Y = y

δ
1
3
√

2α+
, (3.31)

where α+ ∈ C is the constant given by in Theorem 3.1, which is added to avoid the 
dependence of the inner equation on it. Moreover, we also perform the time scaling 
τ = δ2T . We refer to (U, W, X, Y ) as the inner coordinates.

Proposition 3.12. The Hamiltonian system associated to (3.8) expressed in the inner 
coordinates is Hamiltonian with respect to the symplectic form dU ∧dW + idX ∧dY and

H in = H + H in
1 , (3.32)

where

H(U,W,X, Y ) = H in(U,W,X, Y ; δ)|δ=0 = W + XY + K(U,W,X, Y ),

with

K(U,W,X, Y ) = − 3
4U

2
3W 2 − 1

3U 2
3

Ç
1√

1 + J (U,W,X, Y )
− 1

å
,

J (U,W,X, Y ) = 4W 2

9U 2
3
− 16W

27U 4
3

+ 16
81U2 + 4(X + Y )

9U

Å
W − 2

3U 2
3

ã
− 4i(X − Y )

3U 2
3

− X2 + Y 2

3U 4
3

+ 10XY

9U 4
3

.

Moreover, if c−1
1 ≤ |U | ≤ c1 and |(W,X, Y )| ≤ c2 for some c1 > 1 and 0 < c2 < 1, there 

exist b8, γ1, γ2 > 0 independent of δ, c1, c2 such that
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Fig. 8. The inner domain Du,in
κ for the unstable case.

|H in
1 (U,W,X, Y ; δ)| ≤ b8c

γ1
1 cγ2

2 δ
4
3 . (3.33)

This result is proven in [10] in Proposition 2.5.
Now, we present the study of the inner Hamiltonian H. Denoting Z = (W, X, Y )T , 

the equations associated to the Hamiltonian H, can be written as®
U̇ = 1 + gin(U,Z),
Ż = Ain

Z + f in(U,Z),

where

Ain =
(0 0 0

0 i 0
0 0 −i

)
, (3.34)

and f
in = (−∂UK, i∂Y K,−i∂XK)T and gin = ∂WK. We look for invariant graphs Z =

Zu
0 (U) and Z = Zs

0(U) of this equation, that satisfy the invariance equation also called 
inner equation,

∂UZ
�
0 (U) = AinZ�

0 + Rin[Z�
0 ](U), for � = u, s, (3.35)

with

Rin
[ϕ](U) = f in(U,ϕ) − gin(U,ϕ)Ainϕ

1 + gin(U,ϕ) . (3.36)

These functions Zu
0 and Zs

0 will be defined in the domains

Du,in
κ = {U ∈ C : |ImU | ≥ tan β0ReU + κ} , Ds,in

κ = −Du,in
κ ,

respectively, for some κ > 0 and with β0 as given in Theorem 3.3 (see Fig. 8). Moreover, 
we analyze the difference ΔZ0 = Zu

0 − Zs
0 in the overlapping domain
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E in
κ = Du,in

κ ∩ Ds,in
κ ∩ {U ∈ C : ImU < 0} .

Theorem 3.13. There exist κ5, b9 > 0 such that for κ ≥ κ5, the equation (3.35) has 
analytic solutions Z�

0 (U) = (W �
0 (U), X�

0 (U), Y �
0 (U))T , for U ∈ D�,in

κ , � = u, s, satisfying

|U 8
3W �

0 (U)| ≤ b9, |U 4
3X�

0 (U)| ≤ b9, |U 4
3Y �

0 (U)| ≤ b9.

In addition, there exist Θ ∈ C, b10 > 0 independent of κ, and an analytic function 
χ = (χ1, χ2, χ3)T such that, for U ∈ E in

κ ,

ΔZ0(U) = Zu
0 (U) − Zs

0(U) = Θe−iU
(
(0, 0, 1)T + χ(U)

)
,

with |(U 7
3χ1(U), U2χ2(U), Uχ3(U))| ≤ b10.

This result is Theorem 2.7 of [10].

Remark 3.14. To obtain the analogous result to Theorem 3.13 near the singularity u =
−iA, one must perform the change of coordinates

V = u + iA

δ2 , Ŵ = δ
4
3

w

2α2
−
, “X = x

δ
1
3
√

2α−
, “Y = y

δ
1
3
√

2α−
,

where α− ∈ C is α− = α+ (see Theorem 3.1). Then, for V ∈ D�,in
κ , one can prove the 

existence of the corresponding solutions

Ẑ�
0 (V ) = (Ŵ �

0 (V ), “X�
0 (V ),“Y �

0 (V ))T , where � = u, s.

Due to the real-analyticity of the problem (see Remark 3.2) we have that “X�(V ) =
Y �(U). Therefore, the difference ΔẐ0 = Ẑu

0 − Ẑs
0, is given asymptotically for U ∈ E in

κ by

ΔẐ0(V ) = ΘeiV
(
(0, 1, 0)T + ζ(V )

)
,

where ζ = (ζ1, ζ2, ζ3)T satisfies |(V 7
3 ζ1(V ), V ζ2(V ), V 2ζ3(V )| ≤ C, for a constant C

independent of κ.

3.3.2. Complex matching estimates
We now study how well the solutions of the inner equation approximate the solutions 

of the original system given by Proposition 3.6 in an appropriate domain. As in the 
previous section, we focus on the singularity u = iA, but analogous results can be proven 
for u = −iA (see Remark 3.14). Let us recall that the functions zu,s are expressed in 
the separatrix coordinates (see (3.4)) while the functions Zu,s

0 are expressed in inner 
coordinates (see (3.31)).
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Fig. 9. The matching domains Dmch,u
κ and Dmch,s

κ in the outer variables.

We first define the matching domains in separatrix coordinates and, later, we translate 
them to the inner coordinates. Let us consider β2, β3, and γ independent of δ and κ, 
such that

0 < β2 < β0 < β3 <
π

2 , and γ ∈
ï3
5 , 1

ã
,

with β0 as given in Theorem 3.1. Then, we define uj ∈ C j = 2, 3 (see Fig. 9), as the 
points satisfying:

• Im uj = − tan βjReuj + A − κδ2.
• |uj − u+| = δ2γ , where u+ = i(A − κδ2).
• Reu2 < 0 and Reu3 > 0.

We define the matching domains in the separatrix coordinates as the triangular domains

Dmch,u
κ = u+ u2 u3

�

, Dmch,s
κ = u+ (−u2) (−u3)

�
.

Let d1, ρ2 and κ1 be as given in Proposition 3.6. Then, for κ ≥ κ1 and δ > 0 small 
enough, the matching domains satisfy

Dmch,u
κ ⊂ Du,out

κ,d1,ρ2
and Dmch,s

κ ⊂ Ds,out
κ,d1,ρ2

, (3.37)

and, as a result, zu and zs are well defined in Dmch,u
κ and Dmch,s

κ , respectively.
The matching domains in inner variables are defined by

Dmch,�
κ =

{
U ∈ C : δ2U + iA ∈ Dmch,�

κ

}
, for � = u, s, (3.38)

with
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Uj = uj − iA

δ2 , for j = 2, 3. (3.39)

Therefore, for U ∈ Dmch,�
κ ,

κ cosβ2 ≤ |U | ≤ C

δ2(1−γ) .

By definition,

Dmch,u
κ ⊂ Du,in

κ and Dmch,s
κ ⊂ Ds,in

κ ,

for κ ≥ κ5 (see Theorem 3.13). Thus, Zu,s
0 is well defined in Dmch,u,s

κ .
In order to compare zu,s(u) and Zu,s

0 (U), we translate zu,s to inner coordinates

Z�(U) =
(
W �, X�, Y �)T (U) =

Ç
δ

4
3
w�

2α2
+
,

x�

δ
1
3
√

2α+
,

y�

δ
1
3
√

2α+

åT

(δ2U + iA), (3.40)

with � = u, s and z� = (w�, x�, y�)T are given in Proposition 3.6. Therefore, by (3.37), 
Z� is well defined in the matching domain Dmch,�

κ (which is expressed in inner variables).
Next theorem gives estimates for Zu,s − Zu,s

0 .

Theorem 3.15. Consider κ1 and κ5 as obtained in Proposition 3.6 and Theorem 3.13, 
respectively. Then, there exist γ∗ ∈ [ 35 , 1), κ6 ≥ max {κ1, κ5} and δ0 > 0 such that, for 
γ ∈ (γ∗, 1), there exists b11 > 0 satisfying that, for U ∈ Dmch,�

κ , κ ≥ κ6 and δ ∈ (0, δ0),

|U 4
3W �

1 (U)| ≤ b11δ
2
3 (1−γ), |U X�

1 (U)| ≤ b11δ
2
3 (1−γ), |U Y �

1 (U)| ≤ b11δ
2
3 (1−γ),

with (W �
1 , X

�
1 , Y

�
1 )T = Z�

1 = Z� − Z�
0 and � = u, s.

This theorem is proven in Section 5.

3.4. The asymptotic formula for the difference

We look for an asymptotic expression for the difference

ΔΦ = (Δx,Δy)T = (xu − xs, yu − ys)T ,

where (xu, yu) and (xs, ys) are components of the perturbed invariant graphs given in 
Theorem 3.3. Recall that, by (3.29), ΔΦ satisfies

∂uΔΦ(u) = Aspl(u)ΔΦ(u) + Bspl(u)ΔΦ(u), (3.41)

with Aspl and Bspl as given in (3.30). The equation is split as a dominant part, given by 
the matrix Aspl and a small perturbation corresponding to the matrix Bspl. Therefore, 
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it makes sense to look for ΔΦ as ΔΦ = ΔΦ0 + h.o.t with a suitable dominant term 
ΔΦ0 = (Δx0, Δy0)T satisfying

∂uΔΦ0(u) = Aspl(u)ΔΦ0(u). (3.42)

A fundamental matrix of (3.42), for u ∈ Dκ,d, is given by

M(u) =
Å
mx(u) 0

0 my(u)

ã
, (3.43)

with

mx(u) = e
i
δ2 uBx(u), Bx(u) = exp

Ñ
u∫

u∗

B̃spl
2,2(s)ds

é
,

my(u) = e−
i
δ2 uBy(u), By(u) = exp

Ñ
u∫

u∗

B̃spl
3,3(s)ds

é
,

(3.44)

and a fixed u∗ ∈ Dκ,d ∩R. Then, ΔΦ0 must be of form

ΔΦ0(u) =
Ç

Δx0(u)
Δy0(u)

å
=

Ç
c0xmx(u)
c0ymy(u)

å
, (3.45)

for suitable constants c0x, c0y ∈ C which we now determine.
By Theorems 3.13 and 3.15 and using the inner change of coordinates in (3.31), we 

have a good approximation of Δy(u) near the singularity u = iA given by

Δy(u) ≈
√

2α+δ
1
3 ΔY0

Å
u− iA

δ2

ã
.

Then, taking u = u+ = i(A − κδ2), we have that

Δy(u+) ≈ Δy0(u+) ≈
√

2α+δ
1
3 ΔY0

Å
u+ − iA

δ2

ã
=

√
2α+δ

1
3 e−κΘ(1 + χ3(−iκ)).

Then, using that Δy(u+) ≈ Δy0(u+) = c0ymy(u+), and proceeding analogously for the 
component Δx at the point u− = −i(A − κδ2) (see Remark 3.14), we take

c0x = δ
1
3 e−

A
δ2 Θ

√
2α−B

−1
x (u−) and c0y = δ

1
3 e−

A
δ2 Θ

√
2α+B

−1
y (u+). (3.46)

To prove Theorem 2.2, we check that ΔΦ0(u) is the leading term of ΔΦ(u), for u ∈
R ∩Dκ,d, by estimating the remainder ΔΦ1 = ΔΦ − ΔΦ0.

In order to simplify the notation, throughout the rest of the document, we denote by 
C any positive constant independent of δ and κ to state estimates.
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3.4.1. End of the proof of Theorem 2.2
We look for ΔΦ1 as the unique solution of an integral equation. Since ΔΦ satis-

fies (3.41), by the variations of constants formula

ΔΦ(u) =
Å
cxmx(u)
cymy(u)

ã
+

⎛⎜⎜⎜⎜⎜⎜⎝
mx(u)

u∫

u−

m−1
x (s)π1

(
Bspl(s)ΔΦ(s)

)
ds

my(u)
u∫

u+

m−1
y (s)π2

(
Bspl(s)ΔΦ(s)

)
ds

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.47)

where M(u) is the fundamental matrix (3.43), s belongs to some integration path in 
Dκ,d and cx and cy are defined as

cx = Δx(u−)m−1
x (u−), cy = Δy(u+)m−1

y (u+). (3.48)

For k1, k2 ∈ C, we define

I[k1, k2](u) =
(
k1 mx(u), k2 my(u)

)T
, (3.49)

and the operator

E [ϕ](u) =

⎛⎜⎜⎜⎜⎜⎜⎝
mx(u)

u∫

u−

m−1
x (s)π1

(
Bspl(s)ϕ(s)

)
ds

my(u)
u∫

u+

m−1
y (s)π2

(
Bspl(s)ϕ(s)

)
ds

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.50)

Then, with this notation, ΔΦ0 = I[c0x, c0y] (see (3.46)) and equation (3.47) is equivalent 
to ΔΦ = I[cx, cy] + E [ΔΦ]. Since E is a linear operator, ΔΦ1 = ΔΦ − ΔΦ0 satisfies

ΔΦ1(u) = I[cx − c0x, cy − c0y](u) + E [ΔΦ0](u) + E [ΔΦ1](u). (3.51)

To obtain estimates for ΔΦ1, we first prove that Id − E is invertible in the Banach 
space X spl

× = X spl ×X spl, with

X spl =
®
ϕ : Dκ,d → C : ‖ϕ‖spl = sup

u∈Dκ,d

∣∣∣eA−|Im u|
δ2 ϕ(u)

∣∣∣ < +∞
´
,

endowed with the norm

‖ϕ‖spl
× = ‖ϕ1‖spl + ‖ϕ2‖spl

, (3.52)
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for ϕ = (ϕ1, ϕ2). Therefore, to prove Theorem 2.2 it is enough to see that ΔΦ1 satisfies 
that ‖ΔΦ1‖spl

× ≤ Cδ
1
3 |log δ|−1.

First, we state a lemma whose proof is postponed to Appendix C.1.

Lemma 3.16. Let κ0, δ0 be the constants given in Theorem 3.3. Then, there exists a 
constant C > 0 such that, for κ ≥ κ0, δ ∈ (0, δ0) and u ∈ Dκ,d, the function Υ in 
(3.27), the matrix Bspl in (3.30) and the functions Bx, By in (3.44) satisfy for κ ≥ κ0, 
δ ∈ (0, δ0) and u ∈ Dκ,d,

|Υ1(u) − 1| ≤ C

κ2 , |Υ2(u)| ≤ Cδ

|u2 + A2|
4
3
, |Υ3(u)| ≤ Cδ

|u2 + A2|
4
3
,

C−1 ≤ |B∗(u)| ≤ C, ∗ = x, y, and |Bspl
i,j (u)| ≤ C δ2

|u2 + A2|2
, i, j = 1, 2.

(3.53)

In the next lemma we obtain estimates for the linear operator E (see (3.50)).

Lemma 3.17. Let κ0, δ0 be the constants as given in Theorem 3.3. There exists b12 > 0
such that for δ ∈ (0, δ0) and κ ≥ κ0, the operator E : X spl

× → X spl
× in (3.50) is well 

defined and satisfies that, for ϕ ∈ X spl
× ,

‖E [ϕ]‖spl
× ≤ b12

κ
‖ϕ‖spl

× .

In particular, Id − E is invertible and
∥∥(Id − E)−1[ϕ]

∥∥spl
× ≤ 2 ‖ϕ‖spl

× .

Proof. Let us consider E = (E1, E2)T , ϕ ∈ X spl
× and u ∈ Dκ,d. We only prove the estimate 

for E2[ϕ](u). The corresponding one for E1[ϕ](u) follows analogously.
By the definition of my in (3.44) and Lemma 3.16, we have that

|E2[ϕ](u)| ≤ Cδ2e
Im u
δ2

∣∣∣∣∣∣∣
u∫

u+

e−
Im s
δ2

|ϕ1(s)| + |ϕ2(s)|
|s2 + A2|2

ds

∣∣∣∣∣∣∣
≤ Cδ2e

Im u−A

δ2 ‖ϕ‖spl
×

∣∣∣∣∣∣∣
u∫

u+

e
|Im s|−Im s

δ2
ds

|s2 + A2|2

∣∣∣∣∣∣∣ .
Let us consider the case Im u < 0. Then, for a fixed u0 ∈ R ∩ Dκ,d, we define the 
integration path ρt ⊂ Dκ,d as

ρt =
{
u+ + 2t(u0 − u+) for t ∈ (0, 1

2 ),
u0 + (2t− 1)(u− u0) for t ∈ [ 12 , 1).
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Then,

|E2[ϕ](u)| ≤ Cδ2e−
|Im u|+A

δ2 ‖ϕ‖spl
×

∣∣∣∣∣∣∣
1
2∫

0

dt

|ρt − iA|2
+

1∫
1
2

e
2|Im ρt|

δ2

|ρt + iA|2
dt

∣∣∣∣∣∣∣ ≤
C

κ
e

|Im u|−A

δ2 ‖ϕ‖spl
× .

If Im u ≥ 0, we consider the integration path ρt = u+ + t(u − u+) for t ∈ [0, 1] and we 
obtain

|E2[ϕ](u)| ≤ Cδ2e
|Im u|−A

δ2 ‖ϕ‖spl
×

∣∣∣∣∣∣
1∫

0

|u− u+|
|ρt − iA|2

dt

∣∣∣∣∣∣ ≤ C

κ
e

|Im u|−A

δ2 ‖ϕ‖spl
× .

Therefore, ‖E2[ϕ]‖spl ≤ C
κ ‖ϕ‖spl

× . �
Notice that, by (3.51), ΔΦ1 satisfies

(Id − E)ΔΦ1(u) = I[cx − c0x, cy − c0y](u) + E [ΔΦ0](u). (3.54)

Since, by Lemma 3.17, Id − E is invertible in X spl
× we have an explicit formula for ΔΦ1. 

Nevertheless, we still need good estimates for the right hand side with respect to the 
norm (3.52).

Lemma 3.18. There exist κ∗, δ0, b13 > 0 such that, for κ = κ∗ |log δ| and δ ∈ (0, δ0),

∥∥I[cx − c0x, cy − c0y]
∥∥spl
× ≤ b13 δ

1
3

|log δ| and ‖E [ΔΦ0](u)‖spl
× ≤ b13 δ

1
3

|log δ| ,

with I, (c0x, c0y), (cx, cy), E and ΔΦ0 defined in (3.49), (3.46), (3.48), (3.50) and (3.45), 
respectively.

Proof. By the definition of the function I,
∥∥I[cx − c0x, cy − c0y]

∥∥spl
× =

∣∣cx − c0x
∣∣ ‖mx‖spl +

∣∣cy − c0y
∣∣ ‖my‖spl

,

where mx and my are given in (3.44). Then, by Lemma 3.16,

‖mx‖spl = e
A
δ2 sup

u∈Dκ,d

[
e−

Im u+|Im u|
δ2 |Bx(u)|

]
≤ Ce

A
δ2 , ‖my‖spl ≤ Ce

A
δ2 ,

and, as a result,
∥∥I[cx − c0x, cy − c0y]

∥∥spl
× ≤ Ce

A
δ2
(
|cx − c0x| + |cy − c0y|

)
. (3.55)

We now obtain an estimate for |cy − c0y|. The estimate for |cx − c0x| follows analogously.
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By the definition of my (see (3.44)), one has

∣∣cy − c0y
∣∣ = e−

A
δ2 +κ

∣∣B−1
y (u+)

∣∣ |Δy(u+) − Δy0(u+)| . (3.56)

Let us denote ΔY = Y u−Y s where Y u,s are given on (3.40). Recall that Y u,s = Y u,s
0 +Y u,s

1
where Y u,s

0 is the third component of Zu,s
0 , the solutions of the inner equation (see 

Theorems 3.13 and 3.15). We write,

Δy(u+) =
√

2α+δ
1
3 ΔY

Å
u+ − iA

δ2

ã
=

√
2α+δ

1
3 [ΔY0 (−iκ) + Y u

1 (−iκ) − Y s
1 (−iκ)] .

By the definition of Δy0 in (3.45) (see also (3.46)), we have Δy0(u+) =
√

2α+δ
1
3 Θe−κ. 

Then, by (3.56) and Lemma 3.16,

∣∣cy − c0y
∣∣ ≤ Cδ

1
3 e−

A
δ2 +κ

[ ∣∣ΔY0 (−iκ) − Θe−κ
∣∣+ |Y u

1 (−iκ)| + |Y s
1 (−iκ)|

]
,

and, applying Theorems 3.13 and 3.15, we obtain

∣∣cy − c0y
∣∣ ≤ Cδ

1
3 e−

A
δ2 +κ

ï∣∣χ3(−iκ)e−κ
∣∣+ C

κ
δ

2
3 (1−γ)

ò
≤ C

κ
δ

1
3 e−

A
δ2

Ä
1 + δ

2
3 (1−γ)eκ

ä
,

where γ ∈ (γ∗, 1) with γ∗ ∈ [ 35 , 1) given in Theorem 3.15. Taking κ = κ∗ |log δ| with 
0 < κ∗ < 2

3 (1 − γ), we obtain

∣∣cy − c0y
∣∣ ≤ Cδ

1
3

|log δ|e
− A

δ2
Ä
1 + δ

2
3 (1−γ)−κ∗

ä
≤ Cδ

1
3

|log δ|e
− A

δ2 .

This bound and (3.55) prove the first estimate of the lemma.
For the second estimate, it only remains to bound ΔΦ0 and apply Lemma 3.17. Indeed, 

by the definition of ΔΦ0 in (3.46), Lemma 3.16 and (3.55), we have that

‖ΔΦ0‖spl
× =

∥∥I[c0x, c0y]
∥∥spl
× ≤ Ce

A
δ2
(∣∣c0x∣∣+ ∣∣c0y∣∣) ≤ Cδ

1
3 .

Since κ = κ∗ |log δ| with 0 < κ∗ < 2
3 (1 −γ), Lemma 3.17 implies ‖E [ΔΦ0]‖spl

× ≤ Cδ
1
3

|log δ| . �
With this lemma, we can give sharp estimates for ΔΦ1 by using equation (3.54). 

Indeed, since the right hand side of this equation belongs to X spl
× , by Lemma 3.17,

ΔΦ1(u) = (Id − E)−1 (I[cx − c0x, cy − c0y](u) + E [ΔΦ0](u)
)
.

Then, Lemmas 3.17 and 3.18 imply

‖ΔΦ1‖spl
× ≤ Cδ

1
3

|log δ| . (3.57)



36 I. Baldomá et al. / Advances in Mathematics 430 (2023) 109218
To prove Theorem 2.2, it only remains to analyze Bx(u−) and By(u+).

Lemma 3.19. Let κ∗ be as given in Lemma 3.18. Then, there exists δ0 > 0 such that, for 
δ ∈ (0, δ0) and κ = κ∗ |log δ|, the functions Bx, By defined in (3.44) satisfy

B−1
x (u−) = e−

4i
9 (π−λh(u∗))

Å
1 + O

Å 1
|log δ|

ãã
,

B−1
y (u+) = e

4i
9 (π−λh(u∗))

Å
1 + O

Å 1
|log δ|

ãã
,

where u± = ±i(A − κδ2).

This lemma is proven in Appendix C.2.
Let u∗ ∈ Dκ,d ∩ R. We compute the first order of ΔΦ0(u∗) = (Δx0(u∗), Δy0(u∗))T . 

Since, by Theorem 3.1, (α+)3 = (α−)3 = 1
2 , and applying Lemma 3.19 and (3.46), we 

obtain

|Δx0(u∗)| = |Δy0(u∗)| = 6
√

2 |Θ| δ 1
3 e−

A
δ2

Å
1 + O

Å 1
|log δ|

ãã
.

Moreover, by (3.57),

|Δx(u∗) − Δx0(u∗)| , |Δy(u∗) − Δy0(u∗)| ≤
Cδ

1
3 e−

A
δ2

|log δ| .

Finally, notice that the section u = u∗ ∈ Dκ,d ∩ R translates to λ = λ∗ := λh(u∗) (see 
(3.4)). Moreover, since λ̇h = −3Λh (see (3.1)), one deduces that Λh(u) > 0 for u > 0. 
Therefore, by the change of coordinates (3.4), Theorem 3.3 and taking δ small enough,

Λ�
∗ = Λh(u∗) −

w�(u∗)
3Λh(u∗)

= Λh(u∗) + O(δ2) > 0, with � = u, s,

and, therefore using formula (3.28) for Δw and Lemma 3.16, we obtain that

|Λu
∗ − Λs

∗| ≤ C |Δw(u∗)| ≤ Cδ |Δx(u∗)| + Cδ |Δy(u∗)| ≤ Cδ
4
3 e−

A
δ2 .

4. The perturbed invariant manifolds

In this section, we prove Theorem 3.3 by following the scheme detailed in Sections 3.2.1
and 3.2.2.

Throughout this section and the following ones, we denote the components of all 
the functions and operators by a numerical sub-index f = (f1, f2, f3)T , unless stated 
otherwise.
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4.1. The invariant manifolds in the infinity domain

The first step is to prove Proposition 3.5, which deals with the proof of the existence of 
parameterizations zu and zs satisfying the invariance equation (3.12) and the asymptotic 
conditions (3.6). We only consider the −u− case, being the −s− case analogous.

Consider the invariance equation (3.12), ∂uzu = Asepzu + Rsep[zu], with Asep and 
Rsep defined in (3.10) and (3.13), respectively. This equation can be written as

Lzu = Rsep[zu], with Lϕ = (∂u −Asep)ϕ. (4.1)

In order to obtain a fixed point equation from (4.1), we look for a left inverse of L in a 
suitable Banach space. To this end, for a fixed ρ1 > 0 and a given α ∈ R, we introduce

X∞
α =

ß
ϕ : Du,∞

ρ1
→ C : ϕ real-analytic, ‖ϕ‖∞α := sup

u∈Du,∞
ρ1

|e−αuϕ(u)| < ∞
™
,

and the product space X∞
× = X∞

2ν ×X∞
ν ×X∞

ν , with ν =
»

21
8 endowed with the weighted 

product norm

‖ϕ‖∞× = δ ‖ϕ1‖∞2ν + ‖ϕ2‖∞ν + ‖ϕ3‖∞ν .

Next lemmas, proven in [8], give some properties of these Banach spaces and provide 
a left inverse operator of L.

Lemma 4.1. Let α, β ∈ R. Then, the following statements hold:

1. If α > β ≥ 0, then X∞
α ⊂ X∞

β . Moreover ‖ϕ‖∞β ≤ ‖ϕ‖∞α .
2. If ϕ ∈ X∞

α and ζ ∈ X∞
β , then ϕζ ∈ X∞

α+β and ‖ϕζ‖∞α+β ≤ ‖ϕ‖∞α ‖ζ‖∞β .

Lemma 4.2. The linear operator G : X∞
× → X∞

× given by

G[ϕ](u) =

Ñ
u∫

−∞

ϕ1(s)ds,
u∫

−∞

e−
i
δ2 (s−u)ϕ2(s)ds,

u∫

−∞

e
i
δ2 (s−u)ϕ3(s)ds

éT

is continuous, injective and is a left inverse of the operator L.
Moreover, there exists a constant C independent of δ and ρ1 such that, for ϕ ∈ X∞

× ,

‖G[ϕ]‖∞× ≤ C
(
‖ϕ1‖∞2ν + δ2 ‖ϕ2‖∞ν + δ2 ‖ϕ3‖∞ν

)
.

Notice that the eigenvalues of the saddle point (0, 0) of Hp(λ, Λ) (see (2.8)) are ±
»

21
8 . 

Then, the parametrization of the separatrix σ = (λh, Λh) (see (3.1)) satisfies
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λh ∈ X∞
ν and Λh ∈ X∞

ν . (4.2)

Therefore, zu is a solution of (4.1) satisfying the asymptotic conditions (3.6) if and only 
if zu ∈ X∞

× and satisfies the fixed point equation

ϕ = F [ϕ] = G ◦ Rsep[ϕ].

Thus, Proposition 3.5 is a straightforward consequence of the following proposition.

Proposition 4.3. There exists δ0 > 0 such that, for δ ∈ (0, δ0), equation ϕ = F [ϕ] has a 
solution zu ∈ X∞

× . Moreover, there exists a real constant b14 > 0 independent of δ such 
that ‖zu‖∞× ≤ b14δ

3.

To see that F is a contractive operator, we have to pay attention to the nonlinear 
terms Rsep.

Lemma 4.4. Fix � > 0 and let Rsep be the operator defined in (3.13). Then, for δ > 0
small enough3 and ‖ϕ‖∞× ≤ �δ3, there exists a constant C > 0 such that

‖Rsep
1 [ϕ]‖∞2ν ≤ Cδ2, ‖Rsep

j [ϕ]‖∞ν ≤ Cδ, j = 2, 3,

and

‖∂wRsep
1 [ϕ]‖∞0 ≤ Cδ2, ‖∂xRsep

1 [ϕ]‖∞ν ≤ Cδ, ‖∂yRsep
1 [ϕ]‖∞ν ≤ Cδ,

‖∂wRsep
j [ϕ]‖∞−ν ≤ Cδ, ‖∂xRsep

j [ϕ]‖∞0 ≤ C, ‖∂yRsep
j [ϕ]‖∞0 ≤ C, j = 2, 3.

The proof of this lemma is postponed to Appendix B.1.

Proof of Proposition 4.3. Consider the closed ball

B(�) =
{
ϕ ∈ X∞

× : ‖ϕ‖∞× ≤ �
}
.

First, we obtain an estimate for F [0]. By Lemmas 4.2 and 4.4, if δ is small enough,

‖F [0]‖∞× ≤ Cδ ‖Rsep
1 [0]‖∞2ν + Cδ2 ‖Rsep

2 [0]‖∞ν + Cδ2 ‖Rsep
3 [0]‖∞ν ≤ 1

2b14δ
3, (4.3)

for some b14 > 0.
Then, it only remains to check that the operator F is contractive in B(b14δ3). Let 

ϕ, ϕ̃ ∈ B(b14δ3). Then, by the mean value theorem,

3 To simplify the exposition, in this lemma and in the technical lemmas from now on, we avoid referring 
to the existence of δ0 and just mention that δ must be small enough. We follow the same convention for κ
whenever is needed.
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Rsep
j [ϕ] −Rsep

j [ϕ̃] =

⎡⎣ 1∫

0

DRsep
j [sϕ + (1 − s)ϕ̃]ds

⎤⎦ (ϕ− ϕ̃), j = 1, 2, 3.

Applying Lemmas 4.1 and 4.4 and the above equality, we obtain

‖Rsep
1 [ϕ] −Rsep

1 [ϕ̃]‖∞2ν ≤ sup
ζ∈B(b14δ3)

[
‖ϕ1 − ϕ̃1‖∞2ν ‖∂wR

sep
1 [ζ]‖∞0

+ ‖ϕ2 − ϕ̃2‖∞ν ‖∂xRsep
1 [ζ]‖∞ν + ‖ϕ3 − ϕ̃3‖∞ν ‖∂yRsep

1 [ζ]‖∞ν
]
≤ Cδ ‖ϕ− ϕ̃‖∞× ,

‖Rsep
j [ϕ] −Rsep

j [ϕ̃]‖∞ν ≤ sup
ζ∈B(b14δ3)

[
‖ϕ1 − ϕ̃1‖∞2ν ‖∂wR

sep
j [ζ]‖∞−ν

+ ‖ϕ2 − ϕ̃2‖∞ν ‖∂xRsep
j [ζ]‖∞0 + ‖ϕ3 − ϕ̃3‖∞ν ‖∂yRsep

j [ζ]‖∞0
]
≤ C ‖ϕ− ϕ̃‖∞× ,

for j = 2, 3. Then, by Lemma 4.2 and taking δ small enough,

‖F [ϕ] −F [ϕ̃]‖∞× ≤Cδ ‖Rsep
1 [ϕ] −Rsep

1 [ϕ̃]‖∞2ν + Cδ2
3∑

j=2
‖Rsep

j [ϕ] −Rsep
j [ϕ̃]‖∞ν

≤Cδ2 ‖ϕ− ϕ̃‖∞× ≤ 1
2 ‖ϕ− ϕ̃‖∞× .

(4.4)

Then, by the definition of � in (4.3) and (4.4), F : B(b14δ3) → B(b14δ3) is well defined 
and contractive. Therefore, F has a fixed point zu ∈ B(b14δ3). �
4.2. The invariant manifolds in the outer domain

To prove Proposition 3.6, we must extend analytically the parameterizations zu and 
zs given in Proposition 3.5 to the outer domains, Du,out

κ,d1,ρ2
and Ds,out

κ,d1,ρ2
, respectively. 

Again, we only deal with the unstable -u- case, being the -s- case analogous. We prove 
the existence of zu by means of a fixed point argument in a suitable Banach space.

Given α, β ∈ R, we consider the norm

‖ϕ‖out
α,β = sup

u∈Du,out
κ,d1,ρ2

∣∣∣g−α
δ (u)

(
u2 + A2)β ϕ(u)

∣∣∣ , gδ(u) = 1
|u2 + A2| + δ2

|u2 + A2|
8
3
,

and the associated Banach space

X out
α,β =

¶
ϕ : Du,out

κ,d1,ρ2
→ C : ϕ real-analytic, ‖ϕ‖out

α,β < ∞
©
. (4.5)

These Banach spaces have the following properties, which we use without mentioning 
along the section. Their proof follows the same lines as the proof of Lemma 7.1 in [8].
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Lemma 4.5. The following statements hold:

1. If ϕ ∈ X out
α,β1

, then ϕ ∈ X out
α,β2

for any β2 ∈ R and

{
‖ϕ‖out

α,β2
≤ C ‖ϕ‖out

α,β1
, for β2 − β1 > 0,

‖ϕ‖out
α,β2

≤ C(κδ2)β2−β1 ‖ϕ‖out
α,β1

, for β2 − β1 ≤ 0.

2. If ϕ ∈ X out
α,β1

, then ϕ ∈ X out
α−1,β2

for any β2 ∈ R and

⎧⎨⎩‖ϕ‖out
α−1,β2

≤ C ‖ϕ‖out
α,β1

, for β2 − β1 > 5
3 ,

‖ϕ‖out
α−1,β2

≤ Cδ2(κδ2)(β2−β1)− 8
3 ‖ϕ‖out

α,β1
, for β2 − β1 ≤ 5

3 .

3. If ϕ ∈ X out
α1,β1

and ζ ∈ X out
α2,β2

, then ϕζ ∈ X out
α1+α2,β1+β2

and

‖ϕζ‖out
α1+α2,β1+β2

≤ ‖ϕ‖out
α1,β1

‖ζ‖out
α2,β2

.

4. If ϕ ∈ X out
0,β+1 and ζ ∈ X out

0,β+ 8
3
, then ϕ + δ2ζ ∈ X out

1,β and

‖ϕ + δ2ζ‖out
1,β ≤ ‖ϕ‖out

0,β+1 + ‖ζ‖out
0,β+ 8

3
.

Let us recall that, by Proposition 3.5, the invariance equation (3.12) has a unique 
solution zu in the domain Du,∞

ρ1
satisfying the asymptotic condition (3.6). Our objective 

is to extend analytically zu to the outer domain Du,out
κ,d1,ρ2

. Notice that, since ρ1 < ρ2, 
Du,∞

ρ1
∩Du,out

κ,d1,ρ2
�= ∅ (see definitions (3.14) and (3.15) of Du,∞

ρ1
and Du,out

κ,d1,ρ2
).

As explained in Section 4.1, equation (3.12) is equivalent to Lzu = Rsep[zu] with 
Lϕ = (∂u − Asep)ϕ and Rsep given in (3.13). In the following lemma we introduce a 
right-inverse operator of L defined on X out

α,β .

Lemma 4.6. Let us consider the operator G[ϕ] = (G1[ϕ1],G2[ϕ2],G3[ϕ3])T , such that

G[ϕ](u) =

Ñ
u∫

−ρ2

ϕ1(s)ds,
u∫

u1

e−
i
δ2 (s−u)ϕ2(s)ds,

u∫

u1

e
i
δ2 (s−u)ϕ3(s)ds

éT

,

where u1 and u1 are the vertices of the domain Du,out
κ,d1,ρ2

(see Fig. 5). Fix β > 0. There 
exists a constant C such that:

1. If ϕ ∈ X out
1,β , then G1[ϕ] ∈ X out

1,β−1 and ‖G1[ϕ]‖out
1,β−1 ≤ C ‖ϕ‖out

1,β .
2. If ϕ ∈ X out

0,β , then Gj [ϕ] ∈ X out
0,β , j = 2, 3, and ‖Gj [ϕ]‖out

0,β ≤ Cδ2 ‖ϕ‖out
0,β .

The proof of this lemma follows the same lines as the proof of Lemma 7.3 in [8].
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Consider u1 and u1 as in Fig. 5 and the function

F 0(u) =
Ä
wu(−ρ2), xu(u1)e−

i
δ2 (u1−u), yu(u1)e

i
δ2 (u1−u)

äT
.

Notice that, since 0 < ρ1 < ρ2, we have {−ρ2, u1, u1} ∈ Du,∞
ρ1

. Therefore, by Proposi-
tion 3.5, zu is already defined at these points. We define the fixed point operator

F [ϕ] = F 0 + G ◦ Rsep[ϕ], (4.6)

where the operator Rsep is given in (3.13). Since L(F 0) = 0, by Lemma 4.6, a solution 
zu = F [zu] satisfies Lzu = Rsep[zu] and by construction is the real-analytic continuation 
of the function zu obtained in Proposition 3.5.

We rewrite Proposition 3.6 in terms of the operator F defined in the Banach space

X out
× = X out

1,0 ×X out
0, 43

×X out
0, 43

,

endowed with the norm

‖ϕ‖out
× = δ ‖ϕ1‖out

1,0 + ‖ϕ2‖out
0, 43

+ ‖ϕ3‖out
0, 43

.

Proposition 4.7. There exist δ0, κ1 > 0 such that, for δ ∈ (0, δ0) and κ ≥ κ1, the fixed 
point equation zu = F [zu] has a unique solution zu ∈ X out

× . Moreover, there exists a real 
constant b15 > 0 independent of δ and κ such that ‖zu‖out

× ≤ b15δ
3.

We prove this proposition through a fixed point argument. First, we state a technical 
lemma, whose proof is postponed until Appendix B.2. Fix � > 0 and define

B(�) =
¶
ϕ ∈ X out

× : ‖ϕ‖out
× ≤ �

©
.

Lemma 4.8. Fix � > 0 and let Rsep be the operator defined in (3.13). For δ > 0 small 
enough and κ > 0 big enough, there exists a constant C > 0 such that, for ϕ ∈ B(�δ3),

‖Rsep
1 [ϕ]‖out

1,1 ≤ Cδ2, ‖Rsep
j [ϕ]‖out

0, 43
≤ Cδ, j = 2, 3,

and

‖∂wRsep
1 [ϕ]‖out

1, 13
≤ Cδ2, ‖∂xRsep

1 [ϕ]‖out
0, 73

≤ Cδ, ‖∂yRsep
1 [ϕ]‖out

0, 73
≤ Cδ,

‖∂wRsep
2 [ϕ]‖out

0, 23
≤ Cδ, ‖∂xRsep

2 [ϕ]‖out
1,− 2

3
≤ C, ‖∂yRsep

2 [ϕ]‖out
0,2 ≤ Cδ2,

‖∂wRsep
3 [ϕ]‖out

0, 23
≤ Cδ, ‖∂xRsep

3 [ϕ]‖out
0,2 ≤ Cδ2, ‖∂yRsep

3 [ϕ]‖out
1,− 2

3
≤ C.

The next lemma gives properties of the operator F .
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Lemma 4.9. Fix � > 0 and let F be the operator defined in (4.6). Then, for δ > 0 small 
enough and κ > 0 big enough, there exist constants b16, b17 > 0 independent of δ and κ
such that

‖F [0]‖out
× ≤ b16δ

3.

Moreover, for ϕ, ϕ̃ ∈ B(�δ3),

δ ‖F1[ϕ] −F1[ϕ̃]‖out
1,0 ≤ b17

Å
δ

κ2 ‖ϕ1 − ϕ̃1‖out
1,0 + ‖ϕ2 − ϕ̃2‖out

0, 43
+ ‖ϕ3 − ϕ̃3‖out

0, 43

ã
,

‖Fj [ϕ] −Fj [ϕ̃]‖out
0, 43

≤ b17
κ2 ‖ϕ− ϕ̃‖out

× , for j = 2, 3.

Proof. First, we obtain the estimates for F [0]. By Proposition 3.5, we have that

|wu(−ρ2)| ≤ Cδ2, |xu(u1)| ≤ Cδ3, |yu(u1)| ≤ Cδ3

and, as a result, ‖F 0‖out
× ≤ Cδ3. Then, applying Lemmas 4.6 and 4.8, we obtain

‖F [0]‖out
× ≤

∥∥F 0∥∥out
× + Cδ ‖Rsep

1 [0]‖out
1,1 + Cδ2 ∑3

j=2‖R
sep
j [0]‖out

0, 43
≤ Cδ3.

For the second statement, since F = F 0+G◦Rsep and G is linear, we need to compute 
estimates for Rsep[ϕ] −Rsep[ϕ̃]. Then, by the mean value theorem,

Rsep
j [ϕ] −Rsep

j [ϕ̃] =

⎡⎣ 1∫

0

DRsep
j [sϕ + (1 − s)ϕ̃]ds

⎤⎦ (ϕ− ϕ̃), j = 1, 2, 3.

In addition, by Lemmas 4.5 and 4.8, for j = 2, 3, we have the estimates

‖∂wRsep
1 [ϕ]‖out

0,1 ≤ C

κ2 , ‖∂xRsep
1 [ϕ]‖out

1,− 1
3
≤ C

δ
, ‖∂yRsep

1 [ϕ]‖out
1,− 1

3
≤ C

δ
,

‖∂wRsep
j [ϕ]‖out

−1, 43
≤ C

κ2δ
, ‖∂xRsep

j [ϕ]‖out
0,0 ≤ C

κ2δ2 , ‖∂yRsep
j [ϕ]‖out

0,0 ≤ C

κ2δ2 .

We estimate each component separately. For j = 1, we have that

δ‖Rsep
1 [ϕ] −Rsep

1 [ϕ̃]‖out
1,1 ≤ sup

ζ∈B(
δ3)
δ
[
‖ϕ1 − ϕ̃1‖out

1,0 ‖∂wRsep
1 [ζ]‖out

0,1

+ ‖ϕ2 − ϕ̃2‖out
0, 43

‖∂xRsep
1 [ζ]‖out

1,− 1
3

+ ‖ϕ3 − ϕ̃3‖out
0, 43

‖∂yRsep
1 [ζ]‖out

1,− 1
3

]
≤ Cδ

κ2 ‖ϕ1 − ϕ̃1‖out
1,0 + C ‖ϕ2 − ϕ̃2‖out

0, 43
+ C ‖ϕ3 − ϕ̃3‖out

0, 43
.

Analogously, for j = 2, 3, we obtain
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‖Rsep
j [ϕ]−Rsep

j [ϕ̃]‖out
0, 43

≤ sup
ζ∈B(
δ3)

[
‖ϕ1 − ϕ̃1‖out

1,0 ‖∂wRsep
j [ζ]‖out

−1, 43

+ ‖ϕ2 − ϕ̃2‖out
0, 43

‖∂xRsep
j [ζ]‖out

0,0 + ‖ϕ3 − ϕ̃3‖out
0, 43

‖∂yRsep
j [ζ]‖out

0,0

]
≤ C

κ2δ2 ‖ϕ− ϕ̃‖out
×

and, using Lemma 4.6, we obtain the estimates for the second statement. �
Lemma 4.9 shows that, by assuming κ big enough, operators F2 and F3 have Lipschitz 

constant less than 1 with the norm in X out
× . However, we are not able to control the 

Lipschitz constant of F1. To overcome this problem, we apply a Gauss-Seidel argument 
to define a new operator

‹F [z] = ‹F [(w, x, y)] =
(F1[w,F2[z],F3[z]]

F2[z]
F3[z]

)
,

which turns out to be contractive in a suitable ball and has the same fixed points as F .

End of the proof of Proposition 4.7. We look for a fixed point of ‹F . First, we obtain an 
estimate for ‖‹F [0]‖out

× . We rewrite it as‹F [0] = F [0] +
(
F1[0,F2[0],F3[0]] −F1[0], 0, 0

)T
,

and we notice that, by Lemma 4.9, ‖(0, F2[0], F3[0])‖out
× ≤ ‖F [0]‖out

× ≤ Cδ3. Then, 
applying Lemma 4.9, there exists constant b15 > 0 such that

‖‹F [0]‖out
× ≤ ‖F [0]‖out

× + ‖F1[0,F2[0],F3[0]] −F1[0]‖out
1,0

≤ ‖F [0]‖out
× + C ‖F2[0]‖out

0, 43
+ C ‖F3[0]‖out

0, 43
≤ 1

2b15δ
3.

(4.7)

Now, we prove that the operator ‹F is contractive in B(b15δ3). Indeed, by Lemma 4.9, 
we have that, for ϕ, ϕ̃ ∈ B(b15δ3),

δ‖‹F1[ϕ] − ‹F1[ϕ̃]‖out
1,0 ≤ C

Å
δ

κ2 ‖ϕ1 − ϕ̃1‖out
1,0 + ‖F2[ϕ] −F2[ϕ̃]‖out

0, 43
+ ‖F3[ϕ] −F3[ϕ̃]‖out

0, 43

ã
≤ Cδ

κ2 ‖ϕ1 − ϕ̃1‖out
1,0 + 2C

κ2 ‖ϕ− ϕ̃‖out
× ≤ C

κ2 ‖ϕ− ϕ̃‖out
× ,

‖‹Fj [ϕ] − ‹Fj [ϕ̃]‖out
0, 43

= ‖Fj [ϕ] −Fj [ϕ̃]‖out
0, 43

≤ C

κ2 ‖ϕ− ϕ̃‖out
× , for j = 2, 3.

Then, for κ > 0 big enough, we have that ‖‹F [ϕ] − ‹F [ϕ̃]‖out
× ≤ 1

2 ‖ϕ− ϕ̃‖out
× . Together 

with (4.7), this implies that ‹F : B(b15δ3) → B(b15δ3) is well defined and contractive. 
Therefore, ‹F has a fixed point zu ∈ B(b15δ3). �
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4.3. Switching to the time-parametrization

In this section, by means of a fixed point argument, we prove Proposition 3.7. That 
is, we obtain a change of variables U satisfying (3.21), that is

∂vU = R[U ] where R[U ] = ∂wH
sep
1 (v + U(v), zu(v + U(v))) . (4.8)

To this end, we consider the Banach space

Yout =
ß
ϕ : ‹Du,out

κ2,d2,d3
→ C : ϕ real-analytic, ‖ϕ‖sup := sup

v∈‹Du,out
κ2,d2,d3

|U(v)| < ∞
™
. (4.9)

First, we state a technical lemma. Its proof is a direct consequence of the proof of 
Lemma 4.8 (see also Remark B.12 in Appendix B.2).

Lemma 4.10. Fix � > 0. For δ > 0 small enough and ϕ ∈ Yout such that ‖ϕ‖sup ≤ �δ2, 
there exists a constant C > 0 such that ‖R[ϕ]‖sup ≤ Cδ2 and ‖DR[ϕ]‖sup ≤ Cδ2.

Let us define the operators

G[ϕ](v) =
v∫

ρ3

ϕ(s)ds and F = G ◦R, (4.10)

where ρ3 ∈ R is the rightmost vertex of the domain ‹Du,out
κ2,d2,d3

(see Fig. 7). Then, a 
solution U = F [U ] satisfies equation (4.8) and the initial condition U(ρ3) = 0.

Proof of Proposition 3.7. The operator G in (4.10) satisfies that, for ϕ ∈ Yout,

‖G[ϕ]‖sup ≤ C‖ϕ‖sup. (4.11)

Then, by Lemma 4.10, there exists b4 > 0 independent of δ such that

‖F [0]‖sup ≤ C‖R[0]‖sup ≤ 1
2b4δ

2. (4.12)

Moreover, for ϕ, ϕ̃ ∈ B(b4δ2) =
{
ϕ ∈ Yout : ‖ϕ‖sup ≤ b4δ

2}, by the mean value theorem 
and Lemma 4.10,

‖R[ϕ] −R[ϕ̃]‖sup =

∥∥∥∥∥∥
1∫

0

DR[sϕ + (1 − s)ϕ̃]ds

∥∥∥∥∥∥
sup

‖ϕ− ϕ̃‖sup ≤ Cδ2‖ϕ− ϕ̃‖sup.

Then, by Lemma 4.10, (4.11), (4.12) and taking δ small enough, F is well defined and 
contractive in B(b4δ2) and, as a result, has a fixed point U ∈ B(b4δ2).
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It only remains to check that v + U(v) ∈ Du,out
κ1,d1,ρ2

for v ∈ ‹Du,out
κ2,d2,d3

. Indeed, 
since ‖U‖sup ≤ b4δ

2 and ‹Du,out
κ2,d2,d3

⊂ Du,out
κ,d1,ρ2

, taking δ small enough the statement 
is proved. �
4.4. Extending the time-parametrization

In this section, we extend analytically the parametrization Γu given in Corollary 3.8
from the transition domain Du,out

κ,d1,ρ2
to the flow domain Dfl

κ3,d4
(see (3.19)).

Since Γu satisfies the equations given by H in (2.7), Γ̂ = Γu −Γh (see (3.22)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vλ̂ = −3Λ̂ + ∂ΛH1(Γh + Γ̂; δ),

∂vΛ̂ = −V ′(λh + λ̂) + V ′(λh) − ∂λH1(Γh + Γ̂; δ),

∂vx̂ = i
x̂

δ2 + i∂yH1(Γh + Γ̂; δ),

∂v ŷ = −i
ŷ

δ2 − i∂xH1(Γh + Γ̂; δ),

which can be rewritten as Lfl Γ̂ = Rfl[Γ̂], where

Lflϕ =
(
∂v −Afl(v)

)
ϕ, Afl(v) =

Ö 0 −3 0 0
−V ′′(λh(v)) 0 0 0

0 0 i
δ2 0

0 0 0 − i
δ2

è
, (4.13)

and

Rfl[ϕ](v) =

á
∂ΛH1(Γh(v) + ϕ(v); δ)

T [ϕ1](v) − ∂λH1(Γh(v) + ϕ(v); δ)
i∂yH1(Γh(v) + ϕ(v); δ)
−i∂xH1(Γh(v) + ϕ(v); δ)

ë
, (4.14)

with T [ϕ1] = −V ′(λh + ϕ1) + V ′(λh) + V ′′(λh)ϕ1.
We look for Γ̂ through fixed point argument in the Banach space X fl

× =
(
X fl)4, where

X fl =
ß
ϕ : Dfl

κ3,d4
→ C : ϕ real-analytic, ‖ϕ‖fl := sup

v∈Dfl
κ3,d4

|ϕ(v)| < ∞
™
,

endowed with the norm

‖ϕ‖fl
× = δ‖ϕ1‖fl + δ‖ϕ2‖fl + ‖ϕ3‖fl + ‖ϕ4‖fl.

A fundamental matrix of the linear equation ξ̇ = Afl(v)ξ is
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Φ(v) =

Ü 3Λh(v) 3fh(v) 0 0
−Λ̇h(v) −ḟh(v) 0 0

0 0 e
i
δ2 v 0

0 0 0 e−
i
δ2 v

ê
with fh(v) = Λh(v)

v∫

v0

1
Λ2
h(s)ds.

Note that fh(v) is analytic at v = 0.
To look for a right inverse of operator Lfl in (4.13), let us consider the linear operator

Gfl[ϕ](v) =

Ñ
v∫

v0

ϕ1(s)ds,
v∫

v0

ϕ2(s)ds,
v∫

v1

ϕ3(s)ds,
v∫

v1

ϕ4(s)ds

éT

,

where v0, v1 and v1 are the vertexes of the domain Dfl
κ3,d4

(see Fig. 7). Then, the linear 
operator Ĝ[ϕ] = ΦG[Φ−1ϕ] is a right inverse of the operator Lfl, and, for ϕ ∈ X fl

×, satisfies

‖Ĝ1[ϕ]‖fl + ‖Ĝ2[ϕ]‖fl ≤ C
(
‖ϕ1‖fl + ‖ϕ2‖fl) ,

‖Ĝj [ϕ]‖fl ≤ Cδ2‖ϕj‖fl for j = 3, 4.
(4.15)

Next, we state a technical lemma providing estimates for Rfl. Its proof is a direct 
consequence of the definition of the operator in (4.14) and Corollary B.7, which gives 
estimates for HPoi

1 in (2.1) (see also the change of coordinates (2.5) which relates HPoi
1

and H1).

Lemma 4.11. Fix � > 0 and consider ϕ ∈ X fl
× with ‖ϕ‖fl

× ≤ �δ3. Then, for δ > 0 small 
enough, there exists a constant C > 0 such that the operator Rfl in (4.14) satisfies

‖Rfl
1 [ϕ]‖fl, ‖Rfl

2 [ϕ]‖fl ≤ Cδ2, ‖Rfl
3 [ϕ]‖fl, ‖Rfl

4 [ϕ]‖fl ≤ Cδ,

‖DjRfl
l [ϕ]‖fl ≤ Cδ, j, l ∈ {1, 2, 3, 4} .

Denote by ej , j = 1, 2, 3, 4, the canonical basis in R4. Noticing that, by Corollary 3.8, 
the function Γ̂ = (λ̂, Λ̂, ̂x, ŷ) is already defined at {v0, v1, v1} ∈ ‹Du,out

κ2,d2,d3
, we can consider 

the function

F 0(v) = Φ(v)
î
Φ−1(v0)

Ä
λ̂(v0)e1 + Λ̂(v0)e2

ä
+ x̂(v1)Φ−1(v1)e3 + ŷ(v1)Φ−1(v1)e4

ó
.

Then, since Ĝ(F 0) = 0, it only remains to check that F = F 0 + Ĝ ◦ Rfl is contractive in 
a suitable ball of X fl

×.

End of proof of Proposition 3.9. First, we obtain a suitable estimate for F [0]. Applying 
Propositions 3.6 and 3.7 and using (3.18) we obtain that, for v ∈ ‹Du,out

κ2,d2,d3
,

|λ̂(v)| ≤ Cδ2, |Λ̂(v)| ≤ Cδ2, |x̂(v)| ≤ Cδ3, |ŷ(v)| ≤ Cδ3.



I. Baldomá et al. / Advances in Mathematics 430 (2023) 109218 47
Therefore, since {v0, v1, v1} ∈ ‹Du,out
κ2,d2,d3

,

‖F 0‖fl
× ≤ Cδ|λ̂(v0)| + Cδ|Λ̂(v0)| + C |x̂(v1)| + C |ŷ(v1)| ≤ Cδ3

and, applying (4.15) and Lemma 4.11, there exists b5 > 0 independent of δ such that

‖F [0]‖fl
× ≤ ‖F 0‖fl

× + ‖G ◦ Rfl[0]‖fl
× ≤ 1

2b5δ
3. (4.16)

Let us define B(b5δ3) =
{
ϕ ∈ X fl

× : ‖ϕ‖fl
× ≤ b5δ

3}. By the mean value theorem and 
Lemma 4.11, for ϕ, ϕ̃ ∈ B(b5δ3) and j = 1, .., 4, we obtain

‖Rfl
j [ϕ] −Rfl

j [ϕ̃]‖fl ≤
4∑

l=1

ñ
sup

ζ∈B(b5δ3)

{
‖DlRfl

j [ζ]‖fl} ‖ϕl − ϕ̃l‖fl
ô
≤ C‖ϕ− ϕ̃‖fl

×.

Then, by (4.15) and taking δ small enough,

‖F [ϕ] −F [ϕ̃]‖fl
× ≤Cδ

⎡⎣ 2∑
j=1

‖Rfl
j [ϕ] −Rfl

j [ϕ̃]‖fl

⎤⎦+ Cδ2

[ 4∑
l=3

‖Rfl
l [ϕ] −Rfl

l [ϕ̃]‖fl

]

≤Cδ‖ϕ− ϕ̃‖fl
× ≤ 1

2‖ϕ− ϕ̃‖fl
×.

(4.17)

Therefore, by (4.16) and (4.17), F is well defined and contractive in B(b5δ3) and, as 
a result, has a fixed point Γ̂ ∈ B(b5δ3). �
4.5. Back to a graph parametrization

Now we prove Proposition 3.10 by obtaining the change of variables V : ‹Dκ4,d5 → C

as a solution of equation (3.23). This equation is equivalent to V = N [V] with

N [ϕ](u) = 1
3Λh(u)

î
λ̂(u + ϕ(u)) + λh(u + ϕ(u)) − λh(u) + 3Λh(u)ϕ(u)

ó
.

We obtain V by means of a fixed point argument in the Banach space

Ỹ =
ß
ϕ : ‹Dκ4,d5 → C : ϕ real-analytic, ‖ϕ‖sup := sup

u∈‹Dκ4,d5

|ϕ(u)| < ∞
™
.

Proof of Proposition 3.10. Let us first notice that, by Theorem 3.1,

C−1 ≤ ‖Λh‖sup ≤ C. (4.18)

Since d5 < d4 and κ4 > κ3, we have that ‹Dκ4,d5 ⊂ Dfl
κ3,d4

, (see (3.16) and (3.19)). 
Then, applying Proposition 3.9, there exists b6 > 0 independent of δ such that
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‖N [0]‖sup ≤ 1
3‖(Λh)−1‖sup‖λ̂‖sup ≤ 1

2b6δ
2.

Next, we compute the Lipschitz constant of N in B(b6δ2) = {ϕ ∈ Ỹ : ‖ϕ‖sup ≤ b6δ
2}. 

By the mean value theorem, for ϕ, ϕ̃ ∈ B(b6δ2) and ϕs = (1 − s)ϕ + sϕ̃, we have that

‖N [ϕ] −N [ϕ̃]‖sup ≤ sup
u∈‹Dκ4,d5

∣∣∣∣∣∣
1∫

0

DN [ϕs](u)ds

∣∣∣∣∣∣ ‖ϕ− ϕ̃‖sup.

For u ∈ ‹Dκ4,d5 and δ small enough, we have that u + ϕs(u) ∈ Dfl
κ3,d4

. Therefore, by 
Proposition 3.9, (4.18) and recalling that λ̇h = −3Λh,

|DN [ϕs](u)| ≤ 1
3 |Λh(u)|

¶
|∂vλ̂(u + ϕs(u))| + |Λh(u + ϕs(u)) − Λh(u)|

©
≤ Cδ2

and, taking δ small enough, ‖N [ϕ] −N [ϕ̃]‖sup ≤ 1
2‖ϕ − ϕ̃‖sup. Therefore, the operator N

is well defined and contractive in B(b6δ2) and, as a result, has a fixed point V ∈ B(b6δ2).
Besides, since ‹Dκ4,d5 ⊂ Dfl

κ3,d4
, we obtain that u + V(u) ∈ Dfl

κ3,d4
for u ∈ ‹Dκ4,d5 and 

δ small enough. �
5. Complex matching estimates

This section is devoted to prove Theorem 3.15 which provides estimates for Zu,s
1 =

Zu,s − Zu,s
0 in the matching domains Dmch,u

κ and Dmch,s
κ , given in (3.38). We only prove 

the theorem for Zu
1 , being the proof for Zs

1 analogous.

5.1. Preliminaries and set up

Proposition (3.12) shows that the Hamiltonian Hsep expressed in inner coordinates, 
that is H in as given in (3.32), is of the form H in = W + XY + K + H in

1 . Then, the 
equation associated to H in can be written as®

U̇ = 1 + gin(U,Z) + gmch(U,Z),
Ż = Ain

Z + f in(U,Z) + fmch(U,Z),
(5.1)

where Ain is given in (3.34) and

f
in

= (−∂UK, i∂Y K,−i∂XK)T , gin = ∂WK,

fmch =
(
−∂UH

in
1 , i∂Y H

in
1 ,−i∂XH in

1
)T

, gmch = ∂WH in
1 .

(5.2)

Notice that, since (u, zu(u)) = φin(U, Zu(U)) (see (3.40)), (U, Zu(U)) is an invariant 
graph of equation (5.1). Therefore, Zu satisfies the invariance equation
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∂UZ
u = AinZu + Rin[Zu] + Rmch[Zu],

with Rin as defined in (3.36) and

Rmch[ϕ] = Ainϕ + f
in(U,ϕ) + fmch(U,ϕ)

1 + gin(U,ϕ) + gmch(U,ϕ)
−Ainϕ−Rin[ϕ]. (5.3)

Similarly Zu
0 satisfies the invariance equation ∂UZu

0 = AinZu
0 + Rin[Zu

0 ] (see Theo-
rem 3.13) and, therefore, the difference Zu

1 = Zu − Zu
0 must be a solution of

∂UZ
u
1 = AinZu

1 + B(U)Zu
1 + Rmch[Zu], (5.4)

with

B(U) =
1∫

0

DZR
in

[(1 − s)Zu
0 + sZu](U)ds. (5.5)

The key point is that, since the existence of both Zu
0 and Zu is already been proven, we 

can think of B(U) and Rmch[Zu](U) as known functions. Therefore, equation (5.4) can be 
understood as a non homogeneous linear equation with independent term Rmch[Zu](U). 
Moreover, defining the linear operator Linϕ = (∂U −Ain)ϕ, equation (5.4) is equivalent 
to

LinZu
1 (U) = B(U)Zu

1 (U) + Rmch[Zu](U). (5.6)

We prove Theorem 3.15 by solving this equation (with suitable initial conditions). To 
this end, we define the Banach space Xmch

× = Xmch
4
3

×Xmch
1 ×Xmch

1 with

Xmch
α =

®
ϕ : Dmch,u

κ → C : ϕ real-analytic, ‖ϕ‖mch
α = sup

U∈Dmch,u
κ

|Uαϕ(U)| < ∞
´
,

endowed with the product norm ‖ϕ‖mch
× = ‖ϕ1‖mch

4
3

+ ‖ϕ2‖mch
1 + ‖ϕ3‖mch

1 .
Next lemma gives some properties of these Banach spaces.

Lemma 5.1. Let γ ∈ [ 35 , 1) and α, β ∈ R. The following statements hold:

1. If ϕ ∈ Xmch
α , then ϕ ∈ Xmch

β for any β ∈ R. Moreover,

{
‖ϕ‖mch

β ≤ Cκβ−α ‖ϕ‖mch
α , for α > β,

‖ϕ‖mch
β ≤ Cδ2(α−β)(1−γ) ‖ϕ‖mch

α , for α < β.

2. If ϕ ∈ Xmch
α and ζ ∈ Xmch

β , then ϕζ ∈ Xmch
α+β and ‖ϕζ‖mch

α+β ≤ ‖ϕ‖mch
α ‖ζ‖mch

β .
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This lemma is a direct consequence of the fact that, as explained in Section 3.3.2, U
satisfies

κ cosβ2 ≤ |U | ≤ C

δ2(1−γ) . (5.7)

Now, we present the main result of this section, which implies Theorem 3.15.

Proposition 5.2. There exist γ∗ ∈ [ 35 , 1), κ6 ≥ max {κ1, κ5}, δ0 > 0 and b18 > 0 such 
that, for γ ∈ (γ∗, 1), κ ≥ κ6 and δ ∈ (0, δ0), Zu

1 satisfies ‖Zu
1 ‖

mch
× ≤ b18 δ

2
3 (1−γ).

5.2. An integral equation formulation

To prove Proposition 5.2, we first introduce a right-inverse of Lin = ∂U −Ain.

Lemma 5.3. The operator Gin[ϕ] =
(
Gin

1 [ϕ1],Gin
2 [ϕ2],Gin

3 [ϕ3]
)T defined as

Gin[ϕ](U) =

Ñ
U∫

U3

ϕ1(S)dS,
U∫

U3

e−i(S−U)ϕ2(S)dS,
U∫

U2

ei(S−U)ϕ3(S)dS

éT

, (5.8)

where U2 and U3 are introduced in (3.39), is a right inverse of Lin.
Moreover, there exists a constant C > 0 such that:

1. Let α > 1. If ϕ ∈ Xmch
α , then Gin

1 [ϕ] ∈ Xmch
α−1 and 

∥∥Gin
1 [ϕ]

∥∥mch
α−1 ≤ C ‖ϕ‖mch

α .
2. Let α > 0, j = 2, 3. If ϕ ∈ Xmch

α , then Gin
j [ϕ] ∈ Xmch

α and ‖Gin
j [ϕ]‖mch

α ≤ C ‖ϕ‖mch
α .

The proof of this lemma follows the same lines as the proof of Lemma 20 in [7]. Using 
the operator Gin, equation (5.6) is equivalent to

Z1(U) = CmcheA
inU + Gin [B · Z1] (U) +

(
Gin ◦ Rmch[Z]

)
(U),

where Cmch = (Cmch
W , Cmch

X , Cmch
Y )T is defined as

Cmch
W = W1(U3), Cmch

X = e−iU3X1(U3), Cmch
Y = eiU2Y1(U2).

Then, defining the operator T [ϕ](U) = Gin [B · ϕ] (U), this equation is equivalent to

(Id − T )Zu
1 = CmcheA

inU +
(
Gin ◦ Rmch[Zu]

)
(5.9)

and therefore, to estimate Zu
1 , we need to prove that Id − T is invertible in Xmch,u

× .

Lemma 5.4. Let us consider operators B and Gin as given in (5.5) and (5.8). Then, for 
γ ∈ [ 3 , 1), κ > 0 big enough and δ > 0 small enough, for ϕ ∈ Xmch

× ,
5
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‖T [ϕ]‖mch
× =

∥∥Gin[B · ϕ]
∥∥mch
× ≤ 1

2 ‖ϕ‖mch
×

and therefore

∥∥(Id − T )−1[ϕ]
∥∥mch
× ≤ 2 ‖ϕ‖mch

× .

To prove this lemma, we use the following estimates, whose proof is a direct result of 
Lemma 5.5 in [10].

Lemma 5.5. Fix � > 0 and take κ > 0 big enough. Then, there exists a constant C
(depending on � but independent of κ) such that, for ϕ ∈ Xmch

× with ‖ϕ‖mch
× ≤ �, the 

functions gin and f in in (3.36) and the operator Rin in (5.2) satisfy

∥∥gin(·, ϕ)
∥∥mch

2 ≤ C,
∥∥f in

1 (·, ϕ)
∥∥mch

11
3

≤ C,
∥∥f in

j (·, ϕ)
∥∥mch

4
3

≤ C, j = 2, 3

and

∥∥∂WRin
1 [ϕ]

∥∥mch
3 ≤ C,

∥∥∂XRin
1 [ϕ]

∥∥mch
7
3

≤ C,
∥∥∂Y Rin

1 [ϕ]
∥∥mch

7
3

≤ C,

∥∥∂WRin
j [ϕ]

∥∥mch
2
3

≤ C,
∥∥∂XRin

j [ϕ]
∥∥mch

2 ≤ C,
∥∥∂Y Rin

j [ϕ]
∥∥mch

2 ≤ C, j = 2, 3.

Proof of Lemma 5.4. Let Zu be as given in (3.40). Then, by Proposition 3.6, estimates 
(5.7) and taking γ ∈ [ 35 , 1), we have that, for U ∈ Dmch,u

κ ,

|W u(U)| ≤ C

|U |
8
3

+ Cδ
4
3

|U | ≤ C

|U |
8
3
, ‖Xu‖mch

4
3

≤ C, ‖Y u‖mch
4
3

≤ C. (5.10)

Then, using also Theorem 3.13, we obtain that (1 − s)Zu
0 + sZu ∈ Xmch

× for s ∈ [0, 1]
and γ ∈ [ 35 , 1) and ‖(1 − s)Zu

0 + sZu‖mch
× ≤ C. As a result, using the definition of B in 

(5.5) and Lemma 5.5,

‖B1,1‖mch
3 ≤ C, ‖B1,2‖mch

7
3

≤ C, ‖B1,3‖mch
7
3

≤ C,

‖Bj,1‖mch
2
3

≤ C, ‖Bj,2‖mch
2 ≤ C, ‖Bj,3‖mch

2 ≤ C, for j = 2, 3.
(5.11)

Therefore, by Lemmas 5.3 and 5.1 and (5.11), we obtain

‖T1[ϕ]‖mch
4
3

≤ C ‖π1 (Bϕ)‖mch
7
3

≤ C
î
‖B1,1‖mch

1 ‖ϕ1‖mch
4
3

+ ‖B1,2‖mch
4
3

‖ϕ2‖mch
1 + ‖B1,3‖mch

4
3

‖ϕ3‖mch
1

ó
≤ C

κ2 ‖ϕ1‖mch
4
3

+ C

κ
‖ϕ2‖mch

1 + C

κ
‖ϕ3‖mch

1 ≤ C

κ
‖ϕ‖mch

× .

Proceeding analogously, for j = 2, 3, we have
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‖Tj [ϕ]‖mch
1 ≤ C

[
‖Bj,1‖mch

− 1
3
‖ϕ1‖mch

4
3

+
3∑

l=2

‖Bj,l‖mch
0 ‖ϕl‖mch

1

]
≤ C

κ
‖ϕ‖mch

× .

Taking κ > 0 big enough, we obtain the statement of the lemma. �
5.3. End of the proof of Proposition 5.2

To complete the proof of Proposition 5.2, we study the right-hand side of equa-
tion (5.9). First, we deal with the term CmcheA

inU . Recall that U2 and U3 in (3.39)
satisfy

C−1

δ2(1−γ) ≤ |Uj | ≤
C

δ2(1−γ) , for j = 2, 3.

Then, taking into account that W u
1 = W u −W u

0 , (5.10) and Theorem 3.13 imply

|Cmch
W | = |W u

1 (U3)| ≤ |W u(U3)| + |W u
0 (U3)| ≤

C

|U3|
8
3
≤ Cδ

16
3 (1−γ)

and, as a result, by Lemma 5.1, ‖Cmch
W ‖mch

4
3

≤ Cδ
8
3 (1−γ). Analogously, for U ∈ Dmch,u

κ ,

|Cmch
X eiU | = |ei(U−U3)Xu

1 (U3)| ≤
Ce−Im (U−U3)

|U3|
4
3

≤ Cδ
8
3 (1−γ)

and then ‖Cmch
X eiU‖mch

1 ≤ Cδ
2
3 (1−γ). An analogous result holds for Cmch

Y e−iU . Therefore,

‖CmcheA
inU‖mch

× ≤ Cδ
2
3 (1−γ). (5.12)

Now, we estimate the norm of Gin ◦ Rmch[Zu]. The operator Rmch in (5.3) can be 
rewritten as

Rmch[Zu] = fmch(1 + g
in) − gmch(Ain

Zu + f
in)

(1 + gin)(1 + gin + gmch)
.

Then by (5.10), Lemmas 5.1 and 5.5 and taking κ big enough, we obtain

∥∥gin(·, Zu)
∥∥mch

0 ≤ C

κ2 ≤ 1
2 ,

∥∥iXu + f in
2 (·, Zu)

∥∥mch
0 ≤ C,

∥∥f in
1 (·, Zu)

∥∥mch
0 ≤ C,

∥∥−iY u + f in
3 (·, Zu)

∥∥mch
0 ≤ C.

(5.13)

To analyze fmch and gmch (see (5.2)) we rely on the estimates for H in
1 in (3.33) and 

its derivatives, which can be easily obtained by Cauchy estimates. Indeed, they can be 
applied since U ∈ Dmch,u

κ and, by (5.10),
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|W u(U)| , |Xu(U)| , |Y u(U)| ≤ C.

Then, there exists m > 0 such that

|gmch(U,Zu)| ≤ Cδ
4
3−2m(1−γ), |fmch

j (U,Zu)| ≤ Cδ
4
3−2m(1−γ), for j = 1, 2, 3. (5.14)

We note that, for γ ∈ (γ∗
0 , 1) with γ∗

0 = max{3
5 , 

3m−2
3m }, we have that 4

3 − 2m(1 − γ) > 0. 
Then, for γ ∈ (γ∗

0 , 1), δ small enough and κ big enough, using (5.13) and (5.14) we obtain

|Rmch
j [Zu](U)| ≤ Cδ

4
3−2m(1−γ), for j = 1, 2, 3.

Then, by Lemmas 5.1 and 5.3,

‖Gin ◦ Rmch[Zu]‖mch
× = ‖Gin

1 ◦ Rmch
1 [Zu]‖mch

4
3

+
∑3

j=2‖Gin
j ◦ Rmch

j [Zu]‖mch
1

≤ C‖Rmch
1 [Zu]‖mch

7
3

+
∑3

j=2 C‖Rmch
j [Zu]‖mch

1 ≤ Cδ
4
3−2

(
m+ 7

3
)
(1−γ).

If we take γ∗ = max
{ 3

5 , γ
∗
0 , γ

∗
1
}

with γ∗
1 = 3m+5

3m+7 , and γ ∈ (γ∗, 1),

‖Gin ◦ Rmch[Zu]‖mch
× ≤ Cδ

2
3 (1−γ). (5.15)

To complete the proof of Proposition 5.2, we consider equation (5.9). By Lemma 5.4, 
(Id − T ) is invertible in Xmch

× and moreover

‖Zu
1 ‖

mch
× =

∥∥∥(Id − T )−1
Ä
CmcheA

inU + Gin ◦ Rmch[Zu]
ä∥∥∥mch

×

≤ 2
∥∥∥CmcheA

inU + Gin ◦ Rmch[Zu]
∥∥∥mch

×
.

Then, it is enough to apply (5.12) and (5.15). �
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Appendix A. Poincaré variables

This appendix is devoted to define the (rotating) Poincaré coordinates for the 
RPC3BP through the Delaunay elements. We follow exactly the same scheme as the 
one in Section 2.1 of [10]. In addition we also provide the proof of Lemma 2.3.

Let φpol : (r, θ, R, G) �→ (q, p), be the symplectic polar change of coordinates defined 
in (1.2), where r is the radius, θ the argument of q, R the linear momentum in the r
direction and G is the angular momentum. In these variables, the Hamiltonian (1.1), 
becomes

Hpol = Hpol
0 + μHpol

1 , Hpol
0 (r,R,G) = 1

2

Å
R2 + G2

r2

ã
− 1

r
−G. (A.1)

The critical point L3 (see [55] for the details) satisfies that, as μ → 0, (r, θ, R, G) =
(dμ, 0, 0, d2

μ) being dμ = 1 + 5
12μ + O(μ3).

We introduce now the celebrated Delaunay elements, (�, L, ̂g, G), where � is the mean 
anomaly, ĝ is the argument of the pericenter, L is the square root of the semi major axis 
and G is the angular momentum, (see [45]). It is well known that the action L is defined 
by

− 1
2L2 = 1

2

Å
R2 + G2

r2

ã
− 1

r

and the (osculating) eccentricity of the body is expressed as

e =
…

1 − G2

L2 =
√

(L−G)(L + G)
L

.

The so called “anomalies”, the mean anomaly �, the eccentric anomaly u, and the true 
anomaly f , satisfy the well known relations

cos f = cosu− e

1 − e cosu, sin f =
√

1 − e2 sin u

1 − e cosu , u− e sin u = �.

They are nothing but three angular parameters that define a position at the (osculating) 
ellipse. We have also the relations

r = L2(1 − e cosu) and θ̂ = f + ĝ, with θ̂ = θ + t.

We consider now the rotating Delaunay coordinates (�, L, g, G), where the new angle is 
defined as g = ĝ − t (the argument of the pericenter with respect to the line defined by 
the primaries S and J). Then θ = f +g and the unperturbed Hamiltonian Hpol

0 becomes 
Hpol

0 = − 1
2 −G. Moreover, the critical point L3 satisfies θ = � + g = 0 and
2L
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L =
 

dμ
2 − d3

μ

= 1 + O(μ), G = d2
μ = 1 + O(μ), L−G = O(μ2).

Note that the Delaunay coordinates are not well defined for circular orbits (e = 0), 
since the pericenter, and as a consequence the angle g, are not well defined. To “remove” 
this singularity of the Delaunay coordinates, we use the classical Poincaré coordinates 
(λ, L, η, ξ) by means of

λ = � + g, η =
√
L−Geig, ξ =

√
L−Ge−ig.

Even though the Poincaré variables are defined through the Delaunay variables, they are 
analytic when the eccentricity tends to zero (i.e. at L = G), see [45,27]. The Hamiltonian 
equation associated to (A.1), expressed in Poincaré coordinates, defines a Hamiltonian 
system with respect to the symplectic form dλ ∧dL + i dη∧dξ and the Hamiltonian (2.1)
in Section 2. We notice that in Poincaré coordinates, the critical point L3 satisfies 
(0, 1, 0, 0) + O(μ) (see (2.3)) and linearization (2.4).

Proof of Lemma 2.3 We use the formulae for the Poincaré elements and anomalies 
introduced previously. Fix � > 0 and let |(L − 1, ξ, η)| � 1 and |Imλ| ≤ �.

• The result for the angular momentum G is straightforward by the definition of the 
Poincaré elements.

• The radius r satisfies that r = L2(1 − e cosu). In Section 4.1 of [10], it is seen that

e cosu = 1√
2L
(
e−iλη + eiλξ

)
+ O(e−iλη, eiλξ)2

= e−iλ

√
2
η + eiλ√

2
ξ + O(L− 1, η, ξ)2,

e sin u = i√
2L
(
e−iλη − eiλξ

)
+ O(e−iλη, eiλξ)2

= ie−iλ

√
2

η − ieiλ√
2
ξ + O(L− 1, η, ξ)2.

(A.2)

As a result, we obtain the asymptotic expression for r.
• The angle θ satisfies that θ = λ +f−�. Since the eccentric anomaly is given implicitly 

by u − e sin u = �, we have that

θ = λ + f − u + e sin u. (A.3)

The true anomaly f and the eccentricity e satisfy that

sin f =
√

1 − e2 sin u

1 − e cosu , e2 = 1 − G2

L2 = ηξ
(2L− ηξ)

L
. (A.4)
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Then, by (A.2),

sin f = (1 + e cosu) sin u + O(L− 1, η, ξ)2 = sin(u + e sin u) + O(L− 1, η, ξ)2.

By (A.3) and using that |Imλ| ≤ �, one obtains θ = λ +2e sin u +O(L −1, η, ξ)2, and 
applying (A.2) we obtain the corresponding asymptotic formula.

θ = λ + 2e sinu + O(L− 1, η, ξ)2 = λ + i
√

2e−iλη − i
√

2eiλ + O(L− 1, η, ξ)2.

• The linear momentum R satisfies that

− 1
2L2 = 1

2

Å
R2 + G2

r2

ã
− 1

r
.

Then, since r = L2(1 − e cosu) and, by (A.4), G2 = L2(1 − e2), one obtains that

R2 = (e sin u)2

L2(1 − e cosu)2

and applying (A.2) we obtain the statement of the lemma.

Appendix B. Estimates for the invariant manifolds

In this appendix we prove the technical Lemmas 4.4 and 4.8. All these results involve, 
in some sense, estimates for the first and second derivatives of the Hamiltonian Hsep

1 in 
(3.9). However, to obtain estimates for Hsep

1 , we first obtain some properties of HPoi
1 (see 

(2.2)), which can be written as

HPoi
1 = 1

μ
P[0] − 1 − μ

μ
P[μ] − P[μ− 1], (B.1)

where

P[ζ](λ, L, η, ξ) =
Ä
‖q − (ζ, 0)‖−1ä ◦ φPoi. (B.2)

In [10] (see, in particular, Lemma 4.1), we computed the series expansion of P[ζ] in 
powers of (η, ξ). In particular, P[ζ] can be written as

P[ζ](λ, L, η, ξ) = 1√
A[ζ](λ) + B[ζ](λ, L, η, ξ)

, (B.3)

where A and B are of the form
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A[ζ](λ) = 1 − 2ζ cosλ + ζ2, (B.4)

B[ζ](λ, L, η, ξ) = 4(L− 1)(1 − ζ cosλ) + η√
2
(
3ζ − 2e−iλ − ζe−2iλ)

+ ξ√
2
(
3ζ − 2eiλ − ζe2iλ)+ R[ζ](λ, L, η, ξ)

(B.5)

and, for fixed � > 0, R is analytic and satisfies that

|R[ζ](λ, L, η, ξ)| ≤ K(�) |(L− 1, η, ξ)|2 , (B.6)

for |Imλ| ≤ �, |(L− 1, η, ξ)| � 1 and ζ ∈ [−1, 1].
Then, wherever |A[ζ](λ)| > |B[ζ](λ, L, η, ξ)|, P[ζ](λ, L, η, ξ) can be written as

P[ζ](λ, L, η, ξ) = 1√
A[ζ]

+
+∞∑
n=1

Ç
−1

2
n

å
(B[ζ])n

(A[ζ])n+ 1
2
. (B.7)

Remark B.6. The Hamiltonian HPoi = HPoi
0 + μHPoi

1 (see (2.1) and (B.1)) is analytic 
away from the collisions with the primaries, that is zeroes of the denominators of P[μ]
and P[μ − 1]. For 0 < μ � 1, one has

A[μ] = 1 + O(μ), A[μ− 1] = 2 + 2 cosλ + O(μ).

Therefore, in the regime that we consider, collisions with the primary S are not possible 
but collisions with P may take place at λ ∼ π.

We now obtain estimates for HPoi
1 in domains “far” from λ = π.

Lemma B.7. Fix λ0 ∈ (0, π) and μ0 ∈ (0, 12 ) and consider the Hamiltonian HPoi
1

and the potential V introduced in (B.1) and (2.6), respectively. Then, for |λ| < λ0, 
|(L− 1, η, ξ)| � 1 and μ ∈ (0, μ0), the Hamiltonian HPoi

1 can be written as

HPoi
1 (λ, L, η, ξ;μ) − V (λ) =D0(μ, λ) + D1(μ, λ)

(
(L− 1), η, ξ

)
+ D2(λ, L, η, ξ;μ),

such that, for j = 1, 2, 3,

|D0(μ, λ)| ≤ Kμ, |(D1(μ, λ))j | ≤ K, |D2(λ, L, η, ξ;μ)| ≤ K |(L− 1, η, ξ)|2 ,

with K a positive constant independent of λ and μ.

B.1. Estimates in the infinity domain

To prove Lemma 4.4, we need to obtain estimates for Rsep and its derivatives. Let us 
recall that, by its definition in (3.13), for z = (w, x, y) we have
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Rsep[z] =
Ç

f sep
1 (·, z)

1 + gsep(·, z) ,
f2

sep(·, z) − ix
δ2 g

sep(·, z)
1 + gsep(·, z) ,

f3
sep(·, z) + iy

δ2 g
sep

1 + gsep(·, z)

åT

, (B.8)

where gsep = ∂wH
sep
1 and f sep = (−∂uH

sep
1 , i∂yH

sep
1 ,−i∂xH

sep
1 )T .

Therefore, we need to obtain first estimates for the first and second derivatives of 
Hsep

1 , introduced in (3.9), that is

Hsep
1 = H ◦ (φeq ◦ φsep) −

(
w + xy

δ2

)
, (B.9)

where H = H0 + H1 with H0 = Hp + Hosc (see (2.7), (2.11)).
Since (λh, Λh) is a solution of the Hamiltonian Hp and belongs to the energy level 

Hp = −1
2 ,

H0 ◦ φsep = Hp

Å
λh(u),Λh(u) − w

3Λh(u)

ã
+ Hosc(x, y; δ) = −1

2 + w − w2

6Λ2
h(u) + xy

δ2 .

Therefore, by (B.9), the Hamiltonian Hsep
1 can be expressed (up to a constant) as

Hsep
1 = M ◦ φsep − w2

6Λ2
h(u) , (B.10)

where

M(λ,Λ, x, y; δ) = (H ◦ φeq)(λ,Λ, x, y; δ) −H0(λ,Λ, x, y).

In the following lemma we give properties of M .

Lemma B.8. Fix constants � > 0 and λ0 ∈ (0, π). Then, there exists δ0 > 0 such that, 
for δ ∈ (0, δ0), |λ| < λ0, |Λ| < � and |(x, y)| < �δ, the function M satisfies

|∂λM | ≤ Cδ2 |(λ,Λ)| + Cδ |(x, y)| , |∂xM | ≤ Cδ |(λ,Λ, x, y)| ,
|∂ΛM | ≤ Cδ2 |(λ,Λ)| + Cδ |(x, y)| , |∂yM | ≤ Cδ |(λ,Λ, x, y)|

and ∣∣∂2
λM
∣∣ , |∂λΛM | ,

∣∣∂2
ΛM
∣∣ ≤ Cδ2, |∂ijM | ≤ Cδ, for i, j ∈ {λ,Λ, x, y} .

Proof. Applying φeq (see (3.3)) to the Hamiltonian H = H0 + H1, we have that

M = (H0 ◦ φeq −H0) + H1 ◦ φeq

= δ(xLy + yLx) + 3δ2ΛLΛ + δ4
Å
−3

2L
2
Λ + LxLy

ã
+ H1 ◦ φeq.

(B.11)

Then,
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|∂ijM | ≤
∣∣∂ijH1(λ,Λ + δ2LΛ, x + δLx, y + δLy; δ)

∣∣ , (B.12)

for i, j ∈ {λ,Λ, x, y}. Since |Λ| < � and |(x, y)| < �δ, then 
∣∣Λ + δ2LΛ

∣∣ < 2� and ∣∣(x + δ3Lx, y + δ3Ly)
∣∣ < 2�δ, for δ small. By the definition of H1 in (2.9) we have that,

H1(λ,Λ, x, y; δ) = HPoi
1
(
λ, 1 + δ2Λ, δx, δy; δ4)− V (λ) + 1

δ4Fp(δ2Λ),

where HPoi
1 is given in (2.2) (see also (2.5)), V is given (2.6) and Fp is given (2.10) and 

satisfies Fp(s) = O(s3). Since 
∣∣(δ2Λ, δx, δy)

∣∣ < 2�δ2 � 1, we apply Lemma B.7 (recall 
that δ = μ

1
4 ) and Cauchy estimates to obtain∣∣∂2
λH1

∣∣ |∂λΛH1| ,
∣∣∂2

ΛH1
∣∣ ≤ Cδ2, |∂ijH1| ≤ Cδ, for i, j ∈ {λ,Λ, x, y} . (B.13)

Then, (B.12) and (B.13) give the estimates for the second derivatives of M .
For the first derivatives of M , let us take into account that, by Theorem 3.1, 0 is 

a critical point of both Hamiltonians (H ◦ φeq) and H0 and, therefore, also of M =
(H ◦ φeq) −H0. This fact and the estimates of the second derivatives, together with the 
mean value theorem, gives the estimates for the first derivatives of M . �
End of the proof of Lemma 4.4. Let us consider ϕ = (ϕw, ϕx, ϕy)T ∈ X∞

× such that 
‖ϕ‖∞× ≤ �δ3. We estimate the first and second derivatives of Hsep

1 evaluated at (u, ϕ(u))
(recall (B.8)), given by

Hsep
1 (u, ϕ(u); δ) =M

Å
λh(u),Λh(u) − ϕw(u)

3Λh(u) , ϕx(u), ϕy(u); δ
ã

− ϕ2
w(u)

6Λ2
h(u) .

(B.14)

First, let us define

ϕλ(u) = λh(u), ϕΛ(u) = Λh(u) − ϕw(u)
3Λh(u) and Φ = (ϕλ, ϕΛ, ϕx, ϕy).

Since ‖ϕ‖∞× ≤ �δ3 and λh, Λh ∈ X∞
ν (see (4.2)),

‖ϕw‖∞2ν ≤ Cδ2, ‖ϕx‖∞ν , ‖ϕy‖∞ν ≤ Cδ3, ‖ϕλ‖∞ν , ‖ϕΛ‖∞ν ≤ C. (B.15)

Moreover since, by Theorem 3.1, λh(u) �= π for u ∈ Du,∞
ρ1

, we have that

|ϕλ(u)| = |λh(u)| < π, |ϕΛ(u)| ≤ Ce−νρ1 ≤ C, |(ϕx(u), ϕy(u))| ≤ Cδ3e−νρ1 ≤ Cδ3

and, therefore, we can apply Lemma B.8 to (B.14). In the following computations, we 
use generously Lemma 4.1 without mentioning it.
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1. First, we consider gsep = ∂wH
sep
1 . By (B.14), we have that

gsep(u, ϕ(u)) = −∂ΛM ◦ Φ(u)
3Λh(u) − ϕw(u)

3Λ2
h(u) .

Notice that, by Theorem 3.1, |Λh(u)| ≥ C for u ∈ Du,∞
ρ1

. Then, ‖Λ−1
h ‖∞−ν ≤ C. 

Therefore, by Lemma B.8 and estimates (B.15), we have that

‖gsep(·, ϕ)‖∞0 ≤ Cδ
[
δ ‖ϕλ‖∞ν + δ ‖ϕΛ‖∞ν + ‖ϕx‖∞ν + ‖ϕy‖∞ν

]
+ C ‖ϕw‖∞2ν

≤ Cδ2.
(B.16)

To compute its derivative with respect to w, by (B.14), we have that

∂wg
sep(u, ϕ(u)) = ∂2

ΛM ◦ Φ(u)
9Λ2

h(u) − 1
3Λ2

h(u)

and, by Lemma B.8 and estimates (B.15), ‖∂wgsep(·, ϕ)‖∞−2ν ≤ C. Following a similar 
procedure, we obtain ‖∂xgsep(·, ϕ)‖∞−ν ≤ Cδ and ‖∂ygsep(·, ϕ)‖∞−ν ≤ Cδ.

2. Now, we obtain estimates for f sep
1 = −∂uH

sep
1 . By (B.14), we have that

f sep
1 (u, ϕ(u)) = − λ̇h(u)∂λM ◦ Φ(u) − Λ̇h(u)

3Λ3
h(u)ϕ

2
w(u)

−
Ç

Λ̇h(u) + Λ̇h(u)
3Λ2

h(u)ϕw(u)
å
∂ΛM ◦ Φ(u).

Then, since λ̇h, Λ̇h ∈ X∞
ν , by Lemma B.8 and estimates (B.15), we have that 

‖f sep
1 (·, ϕ)‖∞2ν ≤ Cδ2. To compute its derivative with respect to x, by (B.14),

∂xf
sep
1 (u, ϕ(u)) = − λ̇h(u)∂xλM ◦ Φ(u) −

Ç
Λ̇h(u) + Λ̇h(u)

3Λ2
h(u)ϕw(u)

å
∂xΛM ◦ Φ(u)

and, therefore, ‖∂xf sep
1 (·, ϕ)‖∞ν ≤ Cδ. Similarly one can obtain ‖∂wf sep

1 (·, ϕ)‖∞0 ≤ Cδ2

and ‖∂yf sep
1 (·, ϕ)‖∞ν ≤ Cδ.

3. Analogously to the previous estimates, we can obtain bounds for f sep
2 = i∂yH

sep
1

and f sep
3 = −i∂xH

sep
1 . Then, for j = 2, 3, it can be seen that ‖f sep

j (·, ϕ)‖∞ν ≤ Cδ, 
and differentiating we obtain ‖∂wf sep

j (·, ϕ)‖∞−ν ≤ Cδ, ‖∂xf sep
j (·, ϕ)‖∞0 ≤ Cδ and 

‖∂yf sep
j (·, ϕ)‖∞0 ≤ Cδ.

Then, by the definition of Rsep in (B.8) and the just obtained estimates, we complete 
the proof of the lemma. �
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B.2. Estimates in the outer domain

To obtain estimates of Rsep, we write Hsep
1 in (3.9) (up to a constant) as

Hsep
1 = H1 ◦ φeq ◦ φsep − w2

6Λ2
h(u) + δ(xLy + yLx) + 3δ2LΛ

Å
Λh(u) − w

3Λh(u)

ã
,

(see (B.10) and (B.11)). Then, by the definition of H1 in (2.9), we obtain

Hsep
1 = (HPoi

1 − V ) ◦ φsc ◦ φeq ◦ φsep + 1
δ4Fp

Å
δ2Λh(u) − δ2w

3Λh(u) + δ4LΛ

ã
− w2

6Λ2
h(u) + δ(xLy + yLx) + 3δ2LΛ

Å
Λh(u) − w

3Λh(u)

ã
,

where HPoi
1 is given in (B.1), the potential V in (2.6) and Fp in (2.10). The changes of 

coordinates φsc, φeq and φsep are given in (2.5), (3.3) and (3.4), respectively.
Considering z = (w, x, y), we denote the composition of change of coordinates as

(λ, L, η, ξ) = Θ(u, z) = (φsc ◦ φeq ◦ φsep)(u, z). (B.17)

Then, since μ = δ4, the Hamiltonian Hsep
1 can be split (up to a constant) as

Hsep
1 = MP + MS + MR, (B.18)

where

MP (u, z; δ) = −
Å
P[δ4 − 1] − 1√

2 + 2 cosλ

ã
◦ Θ(u, z), (B.19)

MS(u, z; δ) =
Å 1
δ4P[0] − 1 − δ4

δ4 P[δ4] − 1 + cosλ
ã
◦ Θ(u, z), (B.20)

MR(u, z; δ) = − w2

6Λ2
h(u) + δ2LΛ

Å
3Λh(u) − w

Λh(u)

ã
+ δ(xLy + yLx)

+ 1
δ4Fp

Å
δ2Λh(u) − δ2w

3Λh(u) + δ4LΛ

ã (B.21)

and P is the function given in (B.2).
To obtain estimates for the derivatives of MP , MS and MR, we first analyze the 

change of coordinates Θ in (B.17). It can be expressed as

Θ(u, z) =
(
π + Θλ(u), 1 + ΘL(u,w),Θη(x),Θξ(y)

)
, (B.22)

where
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Θλ(u) = λh(u) − π, Θη(x) = δx + δ4Lx(δ),

ΘL(u,w) = δ2Λh(u) − δ2w

3Λh(u) + δ4LΛ(δ), Θξ(x) = δy + δ4Ly(δ).

Next lemma, which is a direct consequence of Theorem 3.1, gives estimates for this 
change of coordinates.

Lemma B.9. Fix � > 0 and δ > 0 small enough. Then, for ϕ ∈ B(�δ3) ⊂ X out
× ,

‖Θλ‖out
0,− 2

3
≤ C, ‖ΘL(·, ϕ)‖out

0, 13
≤ Cδ2, ‖Θη(·, ϕ)‖out

0, 43
≤ Cδ4,

∥∥Θ−1
λ

∥∥out
0, 23

≤ C, ‖1 + ΘL(·, ϕ)‖out
0,0 ≤ C, ‖Θξ(·, ϕ)‖out

0, 43
≤ Cδ4.

Moreover, its derivatives satisfy

‖∂uΘλ‖out
0, 13

≤ C, ‖∂uΘL(·, ϕ)‖out
0, 43

≤ Cδ2, ‖∂wΘL(·, ϕ)‖out
0,− 1

3
≤ Cδ2,

‖∂uwΘL(·, ϕ)‖out
0, 23

≤ Cδ2, ∂xΘη, ∂yΘξ ≡ δ, ∂2
wΘL, ∂

2
xΘη, ∂

2
yΘξ ≡ 0.

In the next lemma we obtain estimates for the derivatives of MP .

Lemma B.10. Fix � > 0, δ > 0 small enough and κ > 0 big enough. Then, for ϕ ∈ B(�δ3)
and ∗ = x, y,

‖∂uMP (·, ϕ)‖out
1,1 ≤ Cδ2, ‖∂wMP (·, ϕ)‖out

1,− 2
3
≤ Cδ2, ‖∂∗MP (·, ϕ)‖out

0, 43
≤ Cδ,

‖∂uwMP (·, ϕ)‖out
1, 13

≤ Cδ2, ‖∂u∗MP (·, ϕ)‖out
0, 73

≤ Cδ,
∥∥∂2

wMP (·, ϕ)
∥∥out

0, 43
≤ Cδ4,

‖∂w∗MP (·, ϕ)‖out
0, 53

≤ Cδ3,
∥∥∂2

∗MP (·, ϕ)
∥∥out

0,2 ≤ Cδ2, ‖∂xyMP (·, ϕ)‖out
0,2 ≤ Cδ2.

Proof. We consider ϕ ∈ B(�δ3) ⊂ X out
× and we estimate the derivatives of P[δ4 − 1] ◦

Θ(u, ϕ(u)). We first we obtain bounds for A[δ4 − 1] and B[δ4 − 1] (see (B.4) and (B.5)). 
To simplify the notation, we define

Ã(u) = A[δ4 − 1](π + Θλ(u)), ‹B(u, z) = B[δ4 − 1] ◦ Θ(u, z). (B.23)

In the following computations we use extensively the results in Lemma 4.5 without 
mentioning them.

1. Estimates of Ã(u): Defining λ̂ = λ − π, by (B.4),

A[δ4 − 1](λ̂ + π) = 2(1 − cos λ̂) − 2δ4(1 − cos λ̂) + δ8.

Then, applying Lemma B.9,
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‖sin Θλ‖out
0,− 2

3
≤ C ‖Θλ‖out

0,− 2
3
≤ C,

∥∥(1 − cosΘλ)−1∥∥out
0, 43

≤ C
∥∥Θ−2

λ

∥∥out
0, 43

≤ C

and, as a result,

‖Ã−1‖out
0, 43

≤ C
∥∥(1 − cosΘλ)−1∥∥out

0, 43
≤ C,

‖∂uÃ‖out
0,− 1

3
≤ C ‖sin Θλ‖out

0,− 2
3
‖∂uΘλ‖out

0, 13
≤ C.

(B.24)

2. Estimates of ‹B(u, ϕ(u)): Considering the auxiliary variables (λ̂, L̂) = (λ − π, L − 1), 
we have that

B[δ4 − 1](π + λ̂, 1 + L̂, η, ξ) = 4L̂(1 − cos λ̂ + δ4 cos λ̂)

+ η√
2
(−3 + 2e−iλ̂ + e−2iλ̂ + δ4(3 + e−2iλ̂))

+ ξ√
2
(−3 + 2eiλ̂ + e2iλ̂ + δ4(3 + e2iλ̂))

+ R[δ4 − 1](π + λ̂, 1 + L̂, η, ξ).

(B.25)

Then, by the estimates in (B.6) and Lemma B.9,

‖‹B(·, ϕ)‖out
1,−2 ≤C

∥∥ΘL(·, ϕ)Θ2
λ

∥∥out
0,−1 + C

δ2 ‖Θη(·, ϕ)Θλ‖out
0, 23

+ C

δ2 ‖Θξ(·, ϕ)Θλ‖out
0, 23

+ C

δ2

∥∥(ΘL,Θη,Θξ)2
∥∥out

0, 23
≤ Cδ2.

(B.26)

Now, we look for estimates of the first derivatives of ‹B(u, ϕ(u)). By its definition 
in (B.23) and the expression of Θ in (B.22), we have that

∂u‹B =
[
∂λB[δ4 − 1] ◦ Θ

]
∂uΘλ +

[
∂LB[δ4 − 1] ◦ Θ

]
∂uΘL,

∂w‹B =
[
∂LB[δ4 − 1] ◦ Θ

]
∂wΘL,

∂x‹B =
[
∂ηB[δ4 − 1] ◦ Θ

]
∂xΘη, ∂y‹B =

[
∂ξB[δ4 − 1] ◦ Θ

]
∂yΘξ.

(B.27)

Differentiating (B.25) and applying Lemma B.9,

∥∥∂λB[δ4 − 1] ◦ Θ(·, ϕ)
∥∥out

1,− 4
3
≤C ‖ΘL(·, ϕ)Θλ‖out

− 1
3

+ C

δ2 ‖Θη(·, ϕ)‖out
0, 43

+ C

δ2 ‖Θξ(·, ϕ)‖out
0, 43

+ Cδ2 ≤ Cδ2,

∥∥∂LB[δ4 − 1] ◦ Θ(·, ϕ)
∥∥out

1,− 7
3
≤C

∥∥Θ2
λ

∥∥out
0,− 4

3
+ C

δ2 ‖ΘL(·, ϕ)‖out
0, 13

+ C

κ
≤ C,

∥∥∂∗B[δ4 − 1] ◦ Θ(·, ϕ)
∥∥out

0,− 2
3
≤C ‖Θλ‖out

0,− 2
3

+ C

κ
≤ C, for ∗ = η, ξ.
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Then, using also (B.27) and taking ∗ = x, y,

‖∂u‹B(·, ϕ)‖out
1,−1, ‖∂w‹B(·, ϕ)‖out

1,− 8
3
≤ Cδ2, ‖∂∗‹B(·, ϕ)‖out

0,− 2
3
≤ Cδ. (B.28)

Analogously, for the second derivatives, one can obtain the estimates

‖∂uw‹B(·, ϕ)‖out
1,− 5

3
≤ Cδ2, ‖∂2

w
‹B(·, ϕ)‖out

0, 23
≤ Cδ4, ‖∂u∗‹B(·, ϕ)‖out

0, 13
≤ Cδ,

‖∂w∗‹B(·, ϕ)‖out
0,− 1

3
≤ Cδ3, ‖∂2

∗‹B(·, ϕ)‖out
0,0 ≤ Cδ2, ‖∂xy‹B(·, ϕ)‖out

0,0 ≤ Cδ2.
(B.29)

Now, we are ready to obtain estimates for MP (u, ϕ(u)) by using the series expansion 
(B.7). First, we check that it is convergent. Indeed, by (B.24) and (B.26), for u ∈ Du,out

κ,d1,ρ2

and taking κ big enough we have that∣∣∣∣∣‹B(u, ϕ(u))
Ã(u)

∣∣∣∣∣ ≤ ‖‹B(·, ϕ)‖out
0,− 4

3
‖Ã−1‖out

0, 43
≤ C

κ2δ2 ‖‹B(·, ϕ)‖out
1,−2 ≤ C

κ2 � 1.

Therefore, by (B.3) and (B.19),

|MP (u, ϕ(u))| ≤
∣∣∣∣∣ 1√

A[δ4 − 1](λh(u))
− 1√

2 + 2 cosλh(u)

∣∣∣∣∣
+ C

|‹B(u, ϕ(u))|
|Ã(u)| 32

.

(B.30)

Then, to estimate MP and its derivatives, it only remains to analyze the u-derivative of 
its first term. Indeed, by the definition of A[δ4 − 1] in (B.4).

∥∥∥∥∥∂u
Ç

1√
A[δ4 − 1](λh(u))

− 1√
2 + 2 cosλh(u)

å∥∥∥∥∥
out

0, 43

≤ Cδ4. (B.31)

Therefore, applying estimates (B.24), (B.26), (B.28), (B.29) and (B.31), to the derivatives 
of MP and using (B.30), we obtain the statement of the lemma. �

Analogously to Lemma B.10, we obtain estimates for the first and second derivatives 
of MS and MR (see (B.20) and (B.21)).

Lemma B.11. Fix � > 0, δ > 0 small enough and κ > 0 big enough. Then, for ϕ ∈ B(�δ3)
and ∗ = x, y, we have

‖∂uMS(·, ϕ)‖out
0, 43

≤ Cδ2, ‖∂wMS(·, ϕ)‖out
0,− 1

3
≤ Cδ2, ‖∂∗MS(·, ϕ)‖out

0,0 ≤ Cδ,

‖∂uwMS(·, ϕ)‖out
0, 23

≤ Cδ2, ‖∂u∗MS(·, ϕ)‖out
0, 13

≤ Cδ,
∥∥∂2

wMS(·, ϕ)
∥∥out

0,− 2
3
≤ Cδ4,

‖∂w∗MS(·, ϕ)‖out
1 ≤ Cδ3,

∥∥∂2MS(·, ϕ)
∥∥out ≤ Cδ2, ‖∂xyMS(·, ϕ)‖out ≤ Cδ2
0,− 3 ∗ 0,0 0,0
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and

‖∂uMR(·, ϕ)‖out
1,1 ≤ Cδ2, ‖∂wMR(·, ϕ)‖out

1,− 2
3
≤ Cδ2, ‖∂∗MR(·, ϕ)‖out

0,0 ≤ Cδ,

‖∂uwMR(·, ϕ)‖out
1, 13

≤ Cδ2, ∂u∗MR(·, ϕ) ≡ 0,
∥∥∂2

wMR(·, ϕ)
∥∥out

0,− 2
3
≤ C,

∂w∗MR(·, ϕ) ≡ 0, ∂2
∗MR(·, ϕ) ≡ 0, ∂xyMR(·, ϕ) ≡ 0.

End of the proof of Lemma 4.8. We start by estimating the first and second derivatives 
of Hsep

1 (u, ϕ(u); δ) in suitable norms. Recall that by (B.18), Hsep
1 = MP + MS + MR. 

Therefore, taking ϕ ∈ B(�δ3) ⊂ X out
× and applying Lemmas B.10 and B.11:

1. For gsep = ∂wH
sep
1 one has

‖gsep(·, ϕ)‖out
1,− 2

3
≤‖∂wMP (·, ϕ)‖out

1,− 2
3

+ C ‖∂wMS(·, ϕ)‖out
0,− 1

3
+ ‖∂wMR(·, ϕ)‖out

1,− 2
3

≤Cδ2

and, in particular, for κ big enough

‖gsep(·, ϕ)‖out
0,0 ≤ Cκ−2 � 1. (B.32)

Analogously, ‖∂wgsep(·, ϕ)‖out
0,− 2

3
≤ C and ‖∂∗gsep(·, ϕ)‖out

0, 53
≤ Cδ3, for ∗ = x, y.

2. For f sep
1 = −∂uH

sep
1 , one has that

‖f sep
1 (·, ϕ)‖out

1,1 ≤ ‖∂uMP (·, ϕ)‖out
1,1 + C ‖∂uMS(·, ϕ)‖out

0, 43
+ ‖∂uMR(·, ϕ)‖out

1,1 ≤ Cδ2,

‖∂wf sep
1 (·, ϕ)‖out

1, 13
≤ Cδ2 and ‖∂∗f sep

1 (·, ϕ)‖out
0, 73

≤ Cδ, for ∗ = x, y.
3. For f sep

2 = i∂yH
sep
1 and f sep

3 = −i∂xH
sep
1 , we can obtain the estimates

‖f2(·, ϕ)‖out
0, 43

≤‖∂yMP (·, ϕ)‖out
0, 43

+ C ‖∂yMS(·, ϕ) + ∂yMR(·, ϕ)‖out
0,0 ≤ Cδ,

‖f3(·, ϕ)‖out
0, 43

≤‖∂xMP (·, ϕ)‖out
0, 43

+ C ‖∂xMS(·, ϕ) + ∂xMR(·, ϕ)‖out
0,0 ≤ Cδ.

(B.33)

Analogously, we have that ‖∂wf sep
j (·, ϕ)‖out

0, 53
≤ Cδ3 and ‖∂∗f sep

j (·, ϕ)‖out
0,2 ≤ Cδ2, for 

j = 2, 3 and ∗ = x, y.

Joining these estimates and taking κ big enough, we complete the proof of the 
lemma. �
Remark B.12. Note that ‹Du,out

κ2,d2,d3
⊂ Du,out

κ,d1,ρ2
and Yout ⊂ X out

0,0 (see (4.9) and (4.5)). 
Then, the proof of Lemma 4.10 is a direct consequence of the estimates for gsep and its 
derivatives in Item 1 above and the fact that, by (3.11) and (4.8),

R[U ](v) = ∂wH
sep
1 (v + U(v), zu(v + U(v))) = gsep (v + U(v), zu(v + U(v))) .



66 I. Baldomá et al. / Advances in Mathematics 430 (2023) 109218
Appendix C. Estimates for the difference

In this section we prove Lemmas 3.16 and 3.19.

C.1. Proof of Lemma 3.16

First, we prove the estimates for the operator Υ given in (3.27). For σ ∈ [0, 1], we 
define zσ = σzu +(1 −σ)zs with zσ = (wσ, xσ, yσ)T . Then, by Theorem 3.3, for u ∈ Dκ,d, 
we have that

|wσ(u)| ≤ Cδ2

|u2 + A2| + Cδ4

|u2 + A2|
8
3
, |xσ(u)| , |yσ(u)| ≤ Cδ3

|u2 + A2|
4
3
. (C.1)

Recalling that Hsep = w + xy
δ2 + Hsep

1 (see (3.8)), one has

|Υ1(u) − 1| ≤ sup
σ∈[0,1]

|∂wHsep
1 (u, zσ(u))| ,

|Υ2(u)| ≤ |yσ(u)|
δ2 + sup

σ∈[0,1]
|∂xHsep

1 (u, zσ(u))| ,

|Υ3(u)| ≤ |xσ(u)|
δ2 + sup

σ∈[0,1]
|∂yHsep

1 (u, zσ(u))| .

Then, by (C.1) and applying (B.32) and (B.33) in the proof of Lemma 4.8 we obtain the 
estimates for Υ1, Υ2 and Υ3.

We also need estimates for the matrix B̃spl given in (3.26), which satisfies

|B̃spl
i,j (u)| ≤ sup

σ∈[0,1]

∣∣∣(DzRsep[zσ](u))i,j
∣∣∣ ,

for zσ = σzu + (1 − σ)zs. Then, by (C.1) and applying Lemma 4.8, for u ∈ Dκ,d,

∣∣∣B̃spl
2,1(u)

∣∣∣ ≤ Cδ

|u2 + A2|
2
3
,

∣∣∣B̃spl
3,1(u)

∣∣∣ ≤ Cδ

|u2 + A2|
2
3
,

∣∣∣B̃spl
2,2(u)

∣∣∣ ≤ C

|u2 + A2|
1
3

+ Cδ2

|u2 + A2|2
,
∣∣∣B̃spl

3,2(u)
∣∣∣ ≤ Cδ2

|u2 + A2|2
,

∣∣∣B̃spl
2,3(u)

∣∣∣ ≤ Cδ2

|u2 + A2|2
,

∣∣∣B̃spl
3,3(u)

∣∣∣ ≤ C

|u2 + A2|
1
3

+ Cδ2

|u2 + A2|2
.

(C.2)

Then, by (3.53) and taking κ big enough,

∣∣∣Bspl
1,1(u)

∣∣∣ ≤ |Υ2(u)|
|Υ (u)|

∣∣∣B̃spl
2,1(u)

∣∣∣ ≤ Cδ2

2 2 2 ,

1 |u + A |
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∣∣∣Bspl
1,2(u)

∣∣∣ ≤ ∣∣∣B̃spl
2,3(u)

∣∣∣+ |Υ3(u)|
|Υ1(u)|

∣∣∣B̃spl
2,1(u)

∣∣∣ ≤ Cδ2

|u2 + A2|2

and analogous estimates hold for Bspl
2,1 and Bspl

2,2.
Finally, we compute estimates for By(u) (see (3.44)) and u ∈ Dκ,d. The estimates for 

Bx(u) can be computed analogously. Let us consider the integration path ρt = u∗ +(u −
u∗)t, for t ∈ [0, 1]. Then

By(u) = exp

Ñ 1∫

0

B̃spl
2,2 (ρt) (u− u∗)dt

é
.

Using the bounds in (C.2), we have that

|logBy(u)| ≤ C |u− u∗|

∣∣∣∣∣∣
1∫

0

1
|ρ2

t + A2|
1
3

+ δ2

|ρ2
t + A2|2

dt

∣∣∣∣∣∣ ≤ C,

which implies C−1 ≤ |By(u)| ≤ C.

C.2. Proof of Lemma 3.19

We only give an expression for By(u+). The result for Bx(u−) is analogous. First, we 
analyze B̃spl

3,3.

Lemma B.13. For δ > 0 small enough, κ > 0 large enough and u ∈ Dκ,d, the function 
B̃spl

3,3 defined in (3.26) is of the form

B̃spl
3,3(u) = −4i

3 Λh(u) + δ2m(u; δ),

for some function m satisfying

|m(u; δ)| ≤ C

|u2 + A2|2
.

Proof. Let us define zτ = τzu + (1 − τ)zs and recall that, for u ∈ Dκ,d,

B̃3,3(u) =
1∫

0

∂yRsep
3 [zτ ](u)dτ. (C.3)

Then, by the expression of Rsep
3 in (B.8), the estimates in the proof of Lemma 4.8 (see 

Appendix B.2) and Theorem 3.3, we have that
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∂yRsep
3 [zτ ](u) = i

δ2 g
sep(u, zτ (u)) + δ2‹m(u; δ),

where |‹m(u; δ)| ≤ C
|u2+A2|2 . In the following, to simplify notation, we denote by ‹m(u; δ)

any function satisfying the previous estimate. Since gsep = ∂wH
sep
1 , by (B.18) one has

gsep(u, zτ (u)) = ∂wMP (u, zτ (u); δ) + ∂wMS(u, zτ (u); δ) + ∂wMR(u, zτ (u); δ),

with MP , MS and MR as given in (B.19), (B.20) and (B.21), respectively. Then, taking 
into account that Fp(s) = 2z3 + O(z4) (see (2.10)) and following the proofs of Lem-
mas B.10 and B.11, it is a tedious but an easy computation to see that,

gsep(u, zτ (u)) = ∂wMP (u, 0, 0, 0; δ) + ∂wMS(u, 0, 0, 0; δ)

− wτ (u)
3Λ2

h(u) − δ2LΛ(δ)
Λh(u) − 2δ2Λh(u) + δ4‹m(u; δ)

and, by (C.3),

B̃3,3(u) = i

δ2 [∂wMP (u, 0, 0, 0; δ) + ∂wMS(u, 0, 0, 0; δ)]

− i
wu(u) + ws(u)

6δ2Λ2
h(u) − i

LΛ(δ)
Λh(u) − 2iΛh(u) + δ2‹m(u; δ).

(C.4)

Next, we study the terms wu,s(u). Since Hsep = w + xy
δ2 + MP + MS + MR (see (3.8)

and (B.18)), one can see that

Hsep(u, zu(u); δ) = Hsep(u, zs(u); δ) = lim
Reu→±∞

Hsep(u, 0, 0, 0; δ) = δ4K(δ),

with |K(δ)| ≤ C, for δ small enough. Then, by Theorem 3.3, for � = u, s,

|w�(u) + MP (u, z�(u); δ) + MS(u, z�(u); δ) + MR(u, z�(u); δ)| ≤ Cδ4

|u2 + A2|
8
3
.

Again, following the proofs of Lemmas B.10 and B.11, one obtains

∣∣w�(u) + MP (u, 0, 0, 0; δ) + MS(u, 0, 0, 0; δ) + δ2Λh(u)(3LΛ + 2Λ2
h(u))

∣∣ ≤ Cδ4

|u2 + A2|
8
3
,

and, by (C.4),

B̃3,3(u) = − 4i
3 Λh(u) + i

δ2

ï
∂wMP (u, 0, 0, 0; δ) + MP (u, 0, 0, 0; δ)

3Λ2
h(u)

ò
+ i

2

ï
∂wMS(u, 0, 0, 0; δ) + MS(u, 0, 0, 0; δ)

2

ò
+ δ2‹m(u; δ).
δ 3Λh(u)
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Therefore, it only remains to check that∣∣∣∣∂wMP,S(u, 0, 0, 0; δ) + MP,S(u, 0, 0, 0; δ)
3Λ2

h(u)

∣∣∣∣ ≤ Cδ4

|u2 + A2|2
.

Indeed, by (B.7) and the definition (B.19) of MP , one has

MP (u,w, 0, 0; δ) = MP

Å
u, δ2Λh(u) − δ2w

3Λh(u) + δ4LΛ(δ)
ã
,

where MP (u, Λ) is an analytic function for u ∈ Dκ,d and |Λ| � 1. Moreover, following 
the proof of Lemma B.10, there exist a0 and a1 such that

|MP (u,Λ) − a0(u; δ) − a1(u; δ)Λ| ≤ CΛ2

|u2 + A2|2
,

with

|a0(u; δ)| ≤ Cδ4

|u2 + A2|
2
3
, |a1(u; δ)| ≤ C

|u2 + A2|
2
3
.

Therefore,∣∣∣∣∂wMP (u, 0, 0, 0; δ) + MP (u, 0, 0, 0; δ)
3Λ2

h(u)

∣∣∣∣ ≤ |a0(u)|
3Λ2

h(u) + δ4LΛ(δ) |a1(u)|
3Λ2

h(u) + Cδ4

|u2 + A2|2

≤ Cδ4

|u2 + A2|2
.

An analogous estimate holds for MS. �
End of the proof of Lemma 3.19. By Lemma B.13 and recalling that u+ = iA − κδ2,

logBy(u+) =
u+∫

u∗

B̃spl
3,3(u)du = −4i

3

iA∫

u∗

Λh(u)du

+ 4i
3

iA∫

u+

Λh(u)du + δ2

u+∫

u∗

m(u; δ).

(C.5)

Then, by Theorem 3.1 and taking into account that κ = κ∗ |log δ| (see Lemma 3.18), we 
obtain ∣∣∣∣∣∣logBy(u+) + 4i

3

iA∫

u∗

Λh(u)du

∣∣∣∣∣∣ ≤ C

κ
+ Cκ

2
3 δ

4
3 + Cδ2

|u∗ − iA| ≤
C

|log δ| .
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Finally, recalling that λ̇h = −3Λh, applying the change of coordinates λ = λh(u) and 
using that λh(iA) = π, we have that

4i
3

iA∫

u∗

Λh(u)du = −4i
9

π∫

λh(u∗)

dλ = −4i
9 (π − λh(u∗)) .

Joining the last statements with (C.5), we obtain the statement of the lemma. �
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