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Abstract: The planar (n + 1)-body problem models the motion of n + 1 bodies in the
plane under their mutual Newtonian gravitational attraction forces. When n ≥ 3, the
question about final motions, that is, what are the possible limit motions in the planar
(n + 1)-body problem when t → ∞, ceases to be completely meaningful due to the
existence of non-collision singularities. In this paper we prove the existence of solutions
of the planar (n + 1)-body problem which are defined for all forward time and tend to a
parabolic motion, that is, that one of the bodies reaches infinity with zero velocity while
the rest perform a bounded motion. These solutions are related to whiskered parabolic
tori at infinity, that is, parabolic tori with stable and unstable invariant manifolds which
lie at infinity. These parabolic tori appear in cylinderswhich can be considered “normally
parabolic”. The existence of these whiskered parabolic tori is a consequence of a general
theorem on parabolic tori developed in this paper. Another application of our theorem
is a conjugation result for a class of skew product maps with a parabolic torus with its
normal form generalizing results of Takens (Ann Inst Fourier 23(2):163–195, 1973), and
Voronin (Funktsional Anal i Prilozhen 15(1):1–17, 96, 1981).
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1. Introduction

In the study of the (n +1)-body problem, in celestial mechanics, one important question
is about the possible final motions, i.e., the possible “limit states” of a solution of the
(n +1)-body problem as time goes to ±∞. In the case of the three body problem, Chazy
[Cha22] (see also [AKN88, Chap. 2]) gave a complete classification of the possible
final motions, with seven options: if all the bodies reach infinity, their motion could be
(i) hyperbolic, when all the bodies reach infinity with positive velocity, (ii) hyperbolic-
parabolic, when at least one of the bodies reaches infinity with vanishing velocity and
another does it with positive velocity, or (iii) parabolic, when all the bodies reach infinity
with zero velocity; (iv) parabolic-elliptic and (v) hyperbolic-elliptic are the cases when
one of the bodies reaches infinity with zero or non-zero velocity, resp., while the others
tend to an elliptic motion; (vi) bounded and, finally, (vii) oscillatory, when at least one
body goes closer and closer to infinitywhile always returning to a fixed neighbourhood of
the other two. Chazy knew examples of all these types of motion, except the oscillatory
ones. The existence of the latter, in the case of the restricted three body problem (a
simplified model of the three body problem where one of the masses is assumed to be
zero) was first proven for the Sitnikov problem by Sitnikov [Sit60] and, later, by Moser
[Mos73]. The Sitnikov problem deals with a configuration of the restricted three body
problem where the bodies with non-zero mass, the primaries, describe ellipses while
the third body moves in the line through their center of mass and orthogonal to the
plane where the motion of the primaries takes place. Alexeev, in [Ale69], extended the
result to the non-restricted Sitnikov problem with a third small mass. In the restricted
planar circular three body problem, oscillatory motions were obtained first by Llibre
and Simó in [LS80]. More recently, in the restricted planar circular three body problem,
it was shown in [GMS15] that there are oscillatory motions for all values of the mass
parameter.

The existence of oscillatory motions in all these instances of the restricted or full
planar three body problem is strongly related to some invariant objects at “infinity with
zero velocity”, either fixedpoints or periodic orbits, and their stable andunstable invariant
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manifolds. It is important to remark that these invariant objects, related to parabolic-
elliptic motions, are also “parabolic” in the sense that the linearization of the vector field
on them vanishes identically and thus all its eigenvalues are 0. However, although these
points or periodic orbits are not hyperbolic, they do have “whiskers” in the traditional
sense of hyperbolic invariant objects, that is, stable and unstable invariant manifolds
which locally govern the dynamics close to the invariant object and whose intersections
are in the heart of the global phenomena from which the oscillatory motions arise.
McGehee proved in [McG73] that the parabolic orbits form an analytic manifold in three
instances of the three body problem, the restricted circular planar three body problem,
the Sitnikov problem and the collinear three body problem. See also [Rob84,Rob15].
In the restricted circular and elliptic planar three body problem, the “parabolic infinity”
is foliated by periodic orbits. In both cases, the union of these invariant objects is a
“whiskered parabolic cylinder”. In the planar restricted elliptic three body problem,
it is proven in [DKdlRS14] the existence of Arnold diffusion along this cylinder. In
[GMSS17], oscillatory orbits related to these parabolic periodic orbits are found for
small eccentricity and any value of the mass parameter. Moeckel in [Moe07] uses orbits
between near collisions and the parabolic infinity in the three body problem to find
symbolic dynamics. In [MV09], the authors consider parabolic motions in the n-body
problem, that is, orbits in which the velocity of all the bodies tends to 0 as time goes to
infinity. They prove, using variational methods, that given any initial configuration and
final configuration at infinity, there exists a parabolic orbit joining them. In [BDT17],
the authors consider the n-center problem and prove, also by variational methods, the
existence of parabolic trajectories having prescribed asymptotic forward and backward
directions.

When one considers the (n + 1)-body problem with n ≥ 3, due to the existence of
non-collision singularities, the flow of the system is no longer complete. However, for
solutions which are defined for all forward time, the question about their final motion is
still of interest. Statements on final motions in the (n + 1)-body problem, for n ≥ 3, are
scarce. The most celebrated result in this situation is the existence of bounded motions,
by Arnold [Arn63] in the planar case, later generalized to the spatial case by Herman and
Féjoz [Féj04] and by Chierchia and Pinzari [CP11]. These bounded motions correspond
to KAM tori of maximal dimension.

The purpose of this paper is to study the generalization of the invariant parabolic
points or periodic orbits at infinity and their stable and unstable manifolds to the case
of the planar (n + 1)-body problem, n ≥ 3. We consider “Diophantine parabolic tori” at
“infinity”, for anyn ≥ 3, and show that these tori do have “whiskers”(seeTheorem3.3 for
the precise statement), which are analytic away from the invariant torus. We remark that
these tori are not isolated. On the contrary, they appear as one parameter families, thus
creating parabolic cylinders foliated by Diophantine tori. The invariant manifolds of the
cylinders are the union of the invariant manifolds of the parabolic tori. The importance of
these structures is twofold. On the one hand, it provides the following corollary related
to final motions in the (n + 1)-body problem.

Claim 1.1 (After Theorem 3.3). For any n ≥ 2, the planar (n + 1)-body problem has
parabolic-bounded motions, that is, solutions such that the relative position of one of
the bodies to the center of mass of the others goes to infinity with zero velocity while
the relative positions of the rest of the bodies around their center of mass evolve in a
bounded motion.

In Sect. 3 we clarify the bounded motions the above solutions are related to. Roughly
speaking, these boundedmotions are linked essentially (but not uniquely) to themaximal
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KAM tori given by Arnold’s theorem and, hence one can only assume their existence in
the planetary case, that is, when all except one of the masses are small. Féjoz [Féj14]
announced in 2014 that there are KAM tori for arbitrary masses if the semi-major axes
are chosen appropriately, which would then imply the existence of parabolic-bounded
motions in the planar (n+1)-body problem for all values of the masses. See Remark 3.2.
Other sources of maximal KAM tori are those surrounding normally elliptic periodic
orbits. For instance, among the n-body choreographies [CM00] (see also [Moo93]), there
is numerical evidence that the figure eight orbit in the three body problem is normally
elliptic (see [Sim02]).

On the other hand, although it is outside the scope of this paper, the existence and
regularity we obtain here of these structures allows to quantitatively describe the passage
of an orbit close to infinity, which is a first step to obtain diffusion or oscillatory orbits
along them. It should be noted that in the (n + 1)-body problem it is not possible to find
diffusion orbits along the cylinders we obtain in this paper because each torus lies in a
different level of the full angular momentum (see Remark 3.4). However, this is not an
obstacle to obtain oscillatory orbits. Diffusion would only be possible jumping among
different cylinders. This obstruction is not present in the restricted planar (n + 1)-body
problem, where these tori are also present (see Sect. 3.1 for the precise definition of the
restricted planar (n+1)-body problemwe consider in this paper). An interesting question
is if in the latter case it is possible to find Arnold diffusion or oscillatory orbits along the
parabolic cylinders (when n = 2 this was done in [DKdlRS14] and [GMSS17], resp.,
for small values of the eccentricity).

The proof of this result follows from a general statement on parabolic tori, which
can be applied to the restricted planar and full (n + 1)-body problem, in Sect. 3. More
concretely, the statement applies to analytic maps of the form

f :
⎛
⎝
x
y
θ

⎞
⎠ �→

⎛
⎝

x +O(‖(x, y)‖N )

y +O(‖(x, y)‖N )

θ + ω +O(‖(x, y)‖P )

⎞
⎠ ,

or analogous vector fields, where N , P > 1 are natural numbers, (x, y) belong to a
neighbourhood of the origin in R × R

m , θ ∈ T
d , the d-dimensional torus, and ω ∈ R

d

satisfies a Diophantine condition (condition (1), in the case of maps, (2), for flows). We
will assume that the map depends analytically on parameters. For this kind of maps, the
set T = {x = 0, y = 0} is an invariant d-dimensional torus, and f|T : θ �→ θ + ω

is a rigid rotation. We will give conditions on the terms of degree N and P of f under
which T possesses “whiskers”, that is, (1+d)-dimensional stable and unstablemanifolds
which will parameterize the stable and unstable sets of T in certain regions with T at
their boundary. See (3) for the case of maps and (11), for flows, for the whole set of
hypotheses. With respect to their regularity, the stable and unstable manifolds will be
analytic in some complex domain, with the invariant torus at its boundary, and C∞ at
T .

The proof of the existence of the stable invariant manifold is performed in two
steps and is based on the parameterization method. See [CFdlL03a,CFdlL03b,CFdlL05,
HCF+16] an the references therein for the parameterizationmethod. See also [BFdlLM07,
BFM15a,BFM15b,BFM17] for the application of the parameterization method in the
case of parabolic fixed points.

The first step is presented as an a posteriori result in Theorem 2.1, that is, assuming
that one can find a “close to invariant” manifold satisfying certain hypotheses, then there
is a true invariant manifold nearby. It is worth to remark that this a posteriori result does
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not need the frequency of the rotation on the torus to be Diophantine if some lowest
order terms do not depend on θ , as it is the case in many applications. Under these last
assumptions, the existence of a “close to invariant” manifold implies the existence of a
true manifold even if the frequency vector is resonant.

The second step is devoted to the computation of a “close to invariant” manifold, in
Theorem 2.3. This approximation of the invariant manifold is a polynomial in a one-
dimensional variable with coefficients depending on θ . Of course, there is quite a lot of
freedom in the choice of the coefficients. The Diophantine condition on ω is used at this
point, where a finite number or small divisor equations appear. It should be noted that if
ω is resonant but the cohomological equations can be solved up to a given order, then an
approximation of the invariant manifold can be found to that order. If this order is large
enough, the a posteriori Theorem 2.1 applies and a true manifold is obtained. However,
the degree of regularity of this manifold at the torus will be finite.

The computation of this approximation is simpler if a preliminary normal form pro-
cedure is applied to the original map. Under the standing hypotheses, the map can be
assumed to have amuch simpler form. However, we have chosen to deal with the original
map for two reasons. The first one concerns the size of the domains of analyticity of
the manifolds we obtain. They are essentially those of the map to which one applies the
procedure. Normal form procedures shrink this domain. The second one is to present the
algorithm of the computation of the approximate manifold in its full generality, in a way
that can be implemented numerically in a given system. The algorithm can be useful in
numerical explorations far from perturbative settings and in computer assisted proofs.

As a consequence of our claims and techniques, we obtain the conjugation of a class
of skew product maps with a parabolic torus with its normal form, extending some of
the results by Takens [Tak73] and Voronin [Vor81] to parabolic tori (see Corollary 2.7).

The paper is organized as follows. In Sect. 2 we state the notation and themain results
in this work in both settings, maps and quasiperiodic vector fields. In Sect. 3 we apply
our theory to the restricted and full planar (n +1)-body problem. Next, in Sects. 4 and 5,
we provide the proofs of our results for general maps and quasiperiodic vector fields,
respectively.

2. Statement and Main Results

This section is devoted to enunciate properly the results in this work about the existence
of invariant manifold of normally parabolic invariant tori in a very general setting. For
the sake of completeness we deal with two scenarios: analytic maps in Sect. 2.2 and
analytic quasiperiodic differential equations in Sect. 2.3.

The results we are interested in can be split into two categories: the first one is
the so-called a posteriori results which, assuming good enough approximation of the
invariant object (in our case an invariant parabolic manifold) and certain non-degeneracy
conditions, provide a true invariant object close to the approximated one, the second one
deals with the obtaining of computable algorithms to find the mentioned approximation.

Besides the existence of the invariant manifold, we are also interested in its regularity
with respect to both space variables and parameters. As it is usual in the parabolic case,
at the invariant object, we cannot guarantee analyticity generically. However, we can
prove analyticity on open “sectors” having the invariant object as a vertex.
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2.1. Notation. In this short section we present some common notation to both settings:
maps and flows.

First we introduce the sets we work with and the definition of Diophantine vector:

• Open ball: we represent by Bρ the open ball of center 0 and radius ρ. From the
context it will be clear in which space is contained.

• Complex strip: for a given σ > 0, we introduce

Hσ = {z ∈ C | |Im z| < σ }.
• Real and complex d-torus: the real torus isTd = (R/Z)d . Given σ > 0 the complex
torus is

T
d
σ = {θ = (θ1, . . . , θd) ∈ (C/Z)d | |Im θi | < σ }.

• Given U ∈ R
k , we denote by UC a complex neighbourhood of U .

• Open complex sector: given β > 0 and ρ > 0 we introduce

S = S(β, ρ) = {t = reiϕ ∈ C | 0 < r < ρ, |ϕ| < β/2}.
Note that 0 /∈ S(β, ρ). We will omit the parameters β, ρ and σ in S and T

d when
they will be clear from the context.

• ω ∈ R
d is Diophantine if,

(1) in the map context, there exist c > 0 and τ ≥ d such that,

|ω · k − l| ≥ c|k|−τ , for all k ∈ Z
d\{0}, l ∈ Z, (1)

(2) in the flow context, there exist c > 0 and τ ≥ d − 1 such that,

|ω · k| ≥ c|k|−τ , for all k ∈ Z
d\{0}, (2)

where |k| = |k1| + · · · + |kd | and ω · k denotes the scalar product.
Notice thatω ∈ R

d isDiophantine in the senseofflows if andonly if
(
ω2/ω1, . . . , ωd/ω1

)
is Diophantine in the sense of maps.

Concerning averages we introduce the following definition for maps:

• given U ⊂ R
1+m such that 0 ∈ U , 	 ⊂ R

p and h : U × T
d × 	 → R

k we define
the average with respect to θ :

h(z, λ) = avg (h)(z, λ) = 1

vol (Td)

∫
Td

h(z, θ, λ) dθ, (z, λ) ∈ U × 	

and the oscillatory part

h̃(z, θ, λ) = h(z, θ, λ) − h(z, λ).

With respect to the flow case, given U ⊂ R
1+m such that 0 ∈ U , 	 ⊂ R

p and
h : U × T

d × R × 	 → R
k .

• We say that h is quasiperiodic with respect to t if there exist a vector of frequencies
ν = (ν1, . . . , νd ′) and a function ĥ : U × T

d × T
d ′ × 	 → R

k such that

h(z, θ, t, λ) = ĥ(z, θ, νt, λ).

We will refer to ν as the time frequencies of h.
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• We denote the average of h by

h(z, λ) = avg (h)(z, λ) = 1

vol(Td+d ′
)

∫
Td+d′ ĥ(z, θ, θ ′, λ) dθ dθ ′

and the oscillatory part by

h̃(z, θ, t, λ) = h(z, θ, t, λ) − h(z, λ).

Finally we introduce the following general notation and conventions.

• Let U ⊂ R
k × T

d and V ⊂ R
k′ × T

d ′
. If λ ∈ 	 is a parameter, g : U × 	 → V

and h : V × 	 → R
k′′ × T

d ′′
, then f = h ◦ g is defined by

f (ζ, λ) = h(g(ζ, λ), λ).

When dealing with vector fields, sometimes, concerning compositions, t will be
considered as a parameter.

• LetU ⊂ R
1+m , W ⊂ R

m′
and h : U ×W → R


. For l ∈ N∪ {0}, k ∈ (N∪ {0})m ,

hlk(w)xl yk = 1

l! k!∂
l
x∂

k
y h(0, 0, w)xl yk, (x, y) ∈ U ⊂ R

1+m, w ∈ W,

the corresponding monomial in its expansion around (x, y) = (0, 0) using the stan-
dard convention k! = k1! . . . km !.

• Let U ⊂ R
1+m , W ⊂ R

m′
and h : U × W → R


. We write h(z, w) = O(‖z‖l) if
and only if h(z, w) = O(‖z‖l) uniformly in w. We also write h = O(‖z‖l).

• If Z = (x, y, θ) ∈ R×R
m ×T

d or Z is a function taking values in R1+m ×T
d , we

will write Zx , Zy, Zθ , the projection over the subspaces generated by the variables
x, y, θ respectively. Also we will use the notation Zx,y = (Zx , Zy) as well as the
analogous notation for any other combination of the variables (x, y, θ). Analogously
for functions Z(x, y, θ, τ ).

• We will omit, to avoid cumbersome notation, the dependence of the functions we
will work with on some of the variables when there is no danger of confusion.

• We also make the convention that if p > q, the sum
∑q

l=p is void.

2.2. Results formaps. Firstwe introduce themaps under consideration. LetU ⊂ R×R
m

be an open neighbourhood of 0 = (0, 0) ∈ U and 	 ⊂ R
p. We consider F : U × T

d ×
	 −→ R × R

m × T
d , the maps defined by

F

⎛
⎜⎝
x
y
θ

λ

⎞
⎟⎠ =

⎛
⎝

x − a(θ, λ)xN + fN (x, y, θ, λ) + f≥N+1(x, y, θ, λ)

y + xN−1B(θ, λ)y + gN (x, y, θ, λ) + g≥N+1(x, y, θ, λ)

θ + ω + hP (x, y, θ, λ) + h≥P+1(x, y, θ, λ)

⎞
⎠ (3)

with

(i) N , P are integer numbers,
(ii) N ≥ 2, P ≥ 1,
(iii) ω ∈ R

d ,
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(iv) fN (x, y, θ, λ) and gN (x, y, θ, λ) are homogeneous polynomials of degree N in the
variables x, y with coefficients depending on (θ, λ) ∈ T

d × 	. In the same way,
hP is a homogeneous polynomial of degree P in the variables x, y. We also assume
that fN (x, 0, θ, λ) = 0, gN (x, 0, θ, λ) = 0 and ∂ygN (x, 0, θ, λ) = 0,

(v) f≥N+1 and g≥N+1 have order N + 1 (the function and its derivatives with respect to
(x, y) vanish up to order N at (0, 0, θ, λ)) and h≥P+1 has order P + 1.

It is clear that the set

T d := {(0, 0, θ) ∈ U × T
d} (4)

is an invariant torus of F , i.e. for anyλ ∈ 	, F(T d , λ) ⊂ T d , and all its normal directions
are parabolic. In thisworkwewant to studywhether this parabolic torus has an associated
invariant manifold. To do so we will use the parameterization method, see [CFdlL03a,
CFdlL03b,CFdlL05,BFdlLM07,HCF+16,BFM15a,BFM15b]. This method consists in
looking for K (x, θ, λ), R(x, θ, λ) such that K (0, θ, λ) = (0, 0, θ) ∈ R × R

m × T
d ,

R(0, θ, λ) = 0 and satisfying the invariance equation

F(K (x, θ, λ), λ) = K (R(x, θ, λ), λ).

We will restrict ourselves to obtain one dimensional attracting manifolds so that we will
consider Kx (x, θ, λ) = x + O(|x |2) where x is a one dimensional variable. To obtain
one dimensional repelling manifolds we have just to deal with the inverse map.

The first claim is an a posteriori result.

Theorem 2.1 (A posteriori result). Let F be a real analytic map having the form (3)
satisfying conditions (i)–(v). Assume that

(1) P ≥ N,
(2) either ω is Diophantine or the functions a, B do not depend on θ .
(3) a(λ) > 0 for λ ∈ 	,
(4) Re Spec B(λ) > 0 for λ ∈ 	.

Let Q ≥ N and assume that, for some β0, ρ0, σ0 > 0 and 	C ⊂ C
p, there exist

K≤ : S(β0, ρ0)×T
d
σ0

×	C → C
1+m×T

d
σ0
and R≤ : S(β0, ρ0)×T

d
σ0

×	C → C×T
d
σ0
,

satisfying

‖K≤
x (x, θ, λ) − x‖ ≤ C |x |2, ‖K≤

y (x, θ, λ)‖ ≤ C |x |2, ‖K≤
θ (x, θ, λ) − θ‖ ≤ C |x |

and

R≤
x (x, θ, λ) = x − a(λ)xN +O(|x |N+1), R≤

θ (x, θ, λ) = θ + ω,

with C > 0, and such that, in the complex domain S(β0, ρ0) × T
d
σ0

× 	C:

E≤ = (E≤
x , E≤

y , E≤
θ ) := F ◦ K≤ − K≤ ◦ R≤

= (O(|x |Q+N ),O(|x |Q+N ),O(|x |Q+N−1)).

(We are implicitly assuming that β0, ρ0 are small enough so that the analytic extension
of F is well defined on K≤(

S(β0, ρ0) × T
d
σ0

× 	C

)
. In addition, as it is proven in

Remark 4.6, if β0, ρ0 are small enough, the composition K≤ ◦ R≤ is well defined.)
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Then, for any 0 < σ < σ0, there exist β, ρ > 0, an open set 	′
C

⊂ 	C and a unique
analytic function �,

� : S(β, ρ) × T
d
σ × 	′

C
→ C

1+m × T
d
σ , � = (�x ,�y,�θ ),

satisfying

�x,y = O(|x |Q+1), �θ = O(|x |Q),

such that

F ◦ (K≤ + �) = (K≤ + �) ◦ R≤ in S(β, ρ) × T
d
σ × 	′

C
.

The proof of this result is postponed to Sect. 4.2.

Remark 2.2. For the sake of generality we have considered the case that a and the matrix
B depend on both, angles θ and parameters λ. However, in the celestial mechanics
examples we work with in Sect. 3, they are constants.

The following theorem is devoted to the computationof an approximationof a solution
of the semiconjugation condition F ◦ K = K ◦ R when F is of the form (3). The
solution is certainly not unique. We have chosen a structure for the terms that appear in
the approximation which makes it suitable for the application of Theorem 2.1. There is
a lot of freedom for obtaining the terms of K and R. This freedom is seen when solving
the cohomological equations at each order. Our main motivation has been to show that
such approximation actually exists and is computable. We refer to the reader to Sect. 4.3
for the computation algorithm. Next we state the result.

Theorem 2.3 (A computable approximation). Let F be a real analytic map of the form
(3) satisfying conditions (i)–(v). Assume also

(1) ω is Diophantine,
(2) a(λ) 
= 0 for λ ∈ 	,
(3) B(λ) + ja(λ)Id is invertible for j ≥ 2 and λ ∈ 	.

Let UC × T
d
σ × 	C be a complex domain to which F can be analytically extended.

Then, for any j ≥ 1 there exist real analytic functions K ( j) = (K ( j)
x , K ( j)

y , K ( j)
θ ),

R( j) = (R( j)
x , R( j)

θ ) of the form

K ( j)
x (x, θ, λ) = x +

j∑
l=2

K
l
x (λ)xl +

j∑
l=1

K̃ l+N−1
x (θ, λ)xl+N−1, (5)

K ( j)
y (x, θ, λ) =

j∑
l=2

K
l
y(λ)xl +

j∑
l=2

K̃ l+N−1
y (θ, λ)xl+N−1, (6)

K ( j)
θ (x, θ, λ) = θ +

j−1∑
l=1

K
l
θ (λ)xl +

j−1∑
l=1

K̃ l+P−1
θ (θ, λ)xl+P−1, (7)

R( j)
x (x, θ, λ) =

{
x − a(λ)xN , 1 ≤ j ≤ N − 1,
x − a(λ)xN + b(λ)x2N−1, j ≥ N ,

R( j)
θ (x, θ, λ) = θ + ω +

min{ j−1,N−P}∑
l=1

Rl+P−1
θ (λ)xl+P−1, (8)
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such that E ( j) = (E ( j)
x , E ( j)

y , E ( j)
θ ) := F ◦ K ( j) − K ( j) ◦ R( j)

satisfies

E ( j)
x,y = O(|x | j+N ), E ( j)

θ = O(|x | j+P−1, |x | j+N−1). (9)

Notice that, as a consequence, K ( j) − K ( j−1) = O(|x | j ).
Concerning the complex domain of these functions, for any σ ′ < σ , there exists an

open set 	′
C

⊂ 	C such that the functions b(λ), K
l
(λ), Rl+P−1(λ) are analytic on 	′

C

and K̃ l+N−1(θ, λ) can be analytically extended to Td
σ ′ × 	′

C
.

Remark 2.4. Assuming that F is a Cr+1 map and that for all l, k ∈ N such that l + k ≤ r ,
Flk(θ, λ) are real analytic with analytic continuation to T

d
σ × 	C, we obtain the same

result as the one stated in Theorem 2.3 for j ≤ r . In this case hypothesis (3) is only
needed for j ≤ r .

When F is a Cr+1 map, the existence of K ( j) and R( j) satisfying (9) is also guaranteed
up to some value j = r∗ < r . However, we lose regularity with respect to θ .

Remark 2.5. In Theorem 2.3 we need not to assume P ≥ N , unlike what happens in
Theorem 2.1. The reason is that our proof of Theorem 2.1 is performed through a suitable
fixed point scheme in a space of analytic functions, which is not well defined if P < N .
However, we believe that the same scheme may work in the differentiable case, which
is not included in this paper.

Combining Theorems 2.1 and 2.3 we obtain easily checkable conditions for the
existence of a stable invariant manifold associated to the invariant torus T d defined
in (4). In Sect. 4.4 we provide the proof of the next corollary.

Corollary 2.6. Let F be a real analytic map, having the form (3) and satisfying condi-
tions (i)–(v). Assume that

(1) P ≥ N,
(2) ω is Diophantine,
(3) a(λ) > 0 for all λ ∈ 	,
(4) Re Spec B(λ) > 0 for all λ ∈ 	.

Let UC × T
d
σ × 	C be the complex set where F can be analytically extended. Then, for

any σ ′ < σ , there exist 	′
C

⊂ 	C, β, ρ > 0 and two real analytic functions

K : S(β, ρ) × T
d
σ ′ × 	′

C
→ C

1+m × T
d
σ ′ , R : S(β, ρ) × T

d
σ ′ × 	′

C
→ S(β, ρ) × T

d
σ ′

such that they satisfy the invariance equation F ◦ K − K ◦ R = 0.
In addition, they are of the form

K (x, θ, λ) = (x, 0, θ +O(|x |)) +O(|x |2),
R(x, θ, λ) = (x − a(λ)xN + b(λ)x2N−1, θ + ω).

(10)

Concerning regularity at x = 0, the parameterization K is C∞ on [0, ρ) × T
d × 	.

Given λ ∈ 	, the local stable invariant set

W s
ρ(λ) = {(x, y, θ) ∈ U × T

d | Fk(x, y, θ, λ) ∈ (
Bρ × T

d) ∩ {x > 0}, ∀k ≥ 0},
associated to the normally parabolic invariant torus T d defined in (4), satisfies W s

ρ(λ) =
K ([0, ρ) × T

d × {λ}).
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Applying the previous results in the case m = 0 (that is, the map does not depend on
the y-variable) we obtain the following conjugation theorem:

Corollary 2.7 (Conjugation result for maps). Let F be a real analytic map of the
form (3), with m = 0, that is:

F(x, θ, λ) = (x − a(θ, λ)xN + f≥N+1(x, θ, λ), θ + ω + h≥P (x, θ, λ))

being f≥N = fN + f≥N+1, h≥P = hP + h≥P+1 satisfying the corresponding conditions
(i)–(v). Assume that

(1) P ≥ N,
(2) ω is Diophantine,
(3) a(λ) > 0 for λ ∈ 	.

LetUC×T
d
σ ×	C be such that F can be analytically extended to it. Then for any σ ′ < σ

there exist β, ρ > 0, an open set 	′
C

⊂ 	C and a real analytic function b : 	′
C

→ C

such that the map F is analytically conjugated to

R(x, θ, λ) = (x − a(λ)xN + b(λ)x2N−1, θ + ω),

on S(β, ρ) × T
d
σ ′ for any λ ∈ 	′

C
.

In addition the conjugation is C∞ on [0, ρ) × T
d × 	.

This conjugation result extends some of the results by Takens [Tak73] and Voronin
[Vor81] to parabolic tori.

2.3. Results for flows. We consider an autonomous vector field X (x, y, θ, t, λ) depend-
ing quasiperiodically on time, having the form

ẋ = −a(θ, t, λ)xN + fN (x, y, θ, t, λ) + f≥N+1(x, y, θ, t, λ)

ẏ = xN−1B(θ, t, λ)y + gN (x, y, θ, t, λ) + g≥N+1(x, y, θ, t, λ)

θ̇ = ω + hP (x, y, θ, t, λ) + h≥P+1(x, y, θ, t, λ),

(11)

with (x, y) ∈ R
1+m , θ ∈ T

d and λ ∈ 	. The functions involved in the definition of the
vector field X , i.e. a, B, fN , gN , hP , f≥N+1, g≥N+1, h≥P+1 and the numbers N , P, ω,
satisfy the same conditions as the ones imposed to the functions involved in the case of
maps in Sect. 2.2 (see conditions (i)–(v) below (3)). The periodic and autonomous cases
are included as particular cases when d ′ = 1 and d ′ = 0 respectively. We recall that d ′
is the number of frequencies associated to the quasiperiodicity dependence with respect
to t . See Sect. 2.1.

As in the map case, the torus T d = {0}× {0}×T
d is an invariant object such that all

its normal directions are parabolic. Again, we look for invariant manifolds associated
to it by means of the parameterization method. We emphasize that, in the flow case, we
look for K (x, θ, t, λ) and a vector field Y (x, t, θ, λ) such that they satisfy the invariance
condition

X (K (x, θ, t, λ), t, λ) − DK (x, θ, t, λ)Y (x, t, θ, λ) − ∂t K (x, θ, t, λ) = 0,

where D = ∂(x,θ).

The following a posteriori result is proven in Sect. 5.2.
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Theorem 2.8 (A posteriori result). Let X be a real analytic vector field, having the
form (11) and satisfying conditions (i)–(v).

Let ν ∈ R
d ′
be the time frequencies (see Sect. 2.1) of X. If X is an autonomous vector

field, d ′ = 0. Assume that

(1) P ≥ N,
(2) either (ω, ν) = (ω1, · · · , ωd , ν1, · · · , νd ′) is Diophantine or the functions a, B

depend neither on θ nor on t.
(3) a(λ) > 0 for λ ∈ 	,
(4) Re Spec B(λ) > 0 for λ ∈ 	.

Let Q ≥ N and assume that, for some β0, ρ0, σ0 > 0 and 	C ⊂ C
p, there exist

K≤ : S(β0, ρ0) × T
d
σ0

× Hσ0 × 	C → C
1+m × T

d
σ0

and Y≤ : S(β0, ρ0) × T
d
σ0

×
Hσ0 × 	C → C × T

d
σ0

depending quasiperiodically on t with the same frequencies as
X, satisfying

|K≤
x (x, θ, t, λ) − x | ≤ C |x |N , ‖K≤

y (x, θ, t, λ)‖ ≤ C |x |2, ‖K≤
θ (x, θ, t, λ) − θ‖ ≤ C |x |,

Y≤
x (x, θ, t, λ) = −axN +O(xN+1), Y≤

θ (x, θ, t, λ) = ω

for some constant C and such that in the complex domain S(β0, ρ0) ×T
d
σ ×Hσ × 	C,

they satisfy

E≤ := X ◦ K≤ − DK≤Y≤ − ∂t K
≤ = (O(|x |Q+N ),O(|x |Q+N ),O(|x |Q+N−1)).

(12)

Then, for any σ < σ0, there exist β, ρ > 0, an open set 	′
C

⊂ 	C and a unique
analytic function �

� : S(β, ρ) × T
d
σ × Hσ × 	′

C
→ C

1+m × T
d
σ , � = (�x ,�y,�θ ),

satisfying

�x,y = O(|x |Q+1), �θ = O(|x |Q)

and

X ◦ (K≤ + �) − (
DK≤ + �

)
Y≤ − ∂t (K

≤ + �) = 0, in S(β, ρ) × T
d
σ × Hσ × 	′

C
.

Writing K = K≤ + � the infinitesimal invariance equation is equivalent to

�(t; s, K (x, θ, s, λ), λ) = K (ψ(t; s, x, θ, λ), t, λ)

with �(t; s, x, y, θ, λ) and ψ(t; s, x, θ, λ) being the flows of X and Y≤ respectively.
Finally, if the vector field X is autonomous, that is d ′ = 0, and the approximated

parameterization K≤ does not depend on t, then � is also independent of t .

As we did for the case of real analytic maps, we provide an effective algorithm to
compute an approximation K≤ and a vector field Y≤ satisfying (12). The following
result gives the form of these functions. In addition, an algorithm to compute them is
provided in Sect. 5.3.

Theorem 2.9 (A computable approximation). Let X be a real analytic vector field of the
form (11) satisfying conditions (i)–(v), with analytic continuation toUC×T

d
σ ×Hσ ×	C

for some σ > 0. Assume in addition that
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(1) (ω, ν) is Diophantine,
(2) a(λ) > 0 for λ ∈ 	,
(3) B(λ) + ja(λ)Id is invertible for j ≥ 2 and λ ∈ 	.

Let ν ∈ R
d ′
be the time frequencies. Then, for any j ≥ 1 there exist a real analytic

function K ( j) = (K ( j)
x , K ( j)

y , K ( j)
θ ), and a real analytic vector field Y ( j) = (Y ( j)

x ,Y ( j)
θ ),

depending quasiperiodically on t with frequency ν, of the form

K ( j)
x (x, θ, t, λ) = x +

j∑
l=2

K
l
x x

l +
j∑

l=1

K̃ l+N−1
x (θ, t)xl+N−1, (13)

K ( j)
y (x, θ, t, λ) =

j∑
l=2

K
l
yx

l +
j∑

l=2

K̃ l+N−1
y (θ, t)xl+N−1, (14)

K ( j)
θ (x, θ, t, λ) = θ +

j−1∑
l=1

K
l
θ x

l +
j−1∑
l=1

K̃ l+P−1
θ (θ, t)xl+P−1, (15)

Y ( j)
x (x, θ, t, λ) =

{
−a(λ)xN 1 ≤ j ≤ N − 1,
−a(λ)xN + b(λ)x2N−1 j ≥ N ,

(16)

Y ( j)
θ (x, θ, t, λ) = ω +

min{ j−1,N−P}∑
l=1

Y l+P−1
θ (λ)xl+P−1, (17)

such that E ( j) = (E ( j)
x , E ( j)

y , E ( j)
θ )� := X ◦ K ( j) − DK ( j)Y ( j) − ∂t K ( j) satisfies

E ( j)
x,y = O(|x | j+N ), E ( j)

θ = (
O(|x | j+P−1),O(|x | j+N−1)). (18)

Notice that, as a consequence, K ( j) − K ( j−1) = O(|x | j ) and Y ( j) does not depend on
(θ, t).

Concerning the complex domain, for any 0 < σ ′ < σ there exists an open set
	′

C
⊂ 	C such that for any σ ′ < σ , all the functions can be analytically extended to

either 	′
C
or Td

σ ′ × Hσ ′ × 	′
C
.

In addition, when the vector field X is autonomous, we can choose K ( j) independent
on t.

Remark 2.10. Assuming that X is a Cr+1 vector field of the form (11) and that for
l, k ∈ N such that l + k ≤ r , Xl,k(θ, t, λ) are real analytic with analytic continuation to
T
d
σ ×Hσ ×	C for some σ > 0 the same result as the one stated in the previous theorem

can be proven.

Remark 2.11. We can consider (11) as an autonomous equation by adding new d ′ angles
(ϕ1, · · · , ϕd ′) and the corresponding equations ϕ̇ j = ν j , 1 ≤ j ≤ d ′. This means to
deal with the frequency vector (ω, ν). However we maintain θ and t separate to find
formulas directly applicable to the examples.

The existence of a parabolic stable manifold for a vector field having the form (11)
is a direct application of the previous results.

Corollary 2.12. Let X be a real analytic vector field, depending quasiperiodically in
time, having the form (11) and satisfying conditions (i)–(v). Let ν ∈ R

d ′
be the time

frequency vector. Assume that
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(1) P ≥ N,
(2) (ω, ν) is Diophantine,
(3) a(λ) > 0 for λ ∈ 	,
(4) Re Spec B(λ) > 0 for λ ∈ 	.

Let UC × T
d
σ × Hσ × 	C be the complex set where X can be analytically extended.

Then, for any σ ′ < σ , there exist an open set 	′
C

⊂ 	C, β, ρ > 0 and two real analytic
functions such that

K : S(β, ρ) × T
d
σ ′ × Hσ ′ × 	′

C
→ C

1+m × T
d
σ ′ , Y : S(β, ρ) × 	′

C
→ S(β, ρ) × T

d
σ ′

and they satisfy the invariance equation X (K , t, λ)−DK ·Y −∂t K = 0, with D = ∂x,θ .
In the autonomous case, both K and Y are independent of t .

Moreover:

K (x, θ, t, λ) = (x, 0, θ +O(|x |)) +O(|x |2), Y (x, λ) = (−a(λ)xN + b(λ)x2N−1, ω).

Concerning the regularity at x = 0, the parameterization K is C∞ on [0, ρ) ×T
d ×

R × 	.
Let λ ∈ 	. The local stable invariant set

W s
ρ(λ) = {(x, y, θ) ∈ U × T

d : �(t; s, x, y, θ, λ) ∈ (
Bρ × T

d) ∩ {x > 0}, ∀t ≥ s}
associate to the normally parabolic invariant torus {0} × {0} × T

d satisfies W s
ρ(λ) =

K ([0, ρ) × T
d × {λ}).

The proof of this corollary is completely analogous to the proof of Corollary 2.6. To
finish we present a conjugation result analogous to Corollary 2.7.

Corollary 2.13 (Conjugation result for flows). Let X be a real analytic vector field of
the form (11) and satisfying conditions (i)–(v) with m = 0, that is we impose X to be
as:

X (x, θ, t, λ) = (−a(θ, t, λ)xN + f≥N+1(x, θ, t, λ), ω + h≥P (x, θ, t, λ))

being h≥P = hP + h≥P+1. Assume that

(1) P ≥ N,
(2) (ω, ν) is Diophantine,
(3) a(λ) > 0 for λ ∈ 	.

Let UC × T
d
σ × Hσ × 	C be such that X can be analytically extended to it. Then for

any σ ′ < σ there exist β, ρ > 0, an open set 	′
C

⊂ 	C and a real analytic function
b : 	′

C
→ C such that the vector field X is analytically conjugated to

Y (x, λ) = (−a(λ)xN + b(λ)x2N−1, ω), (x, λ) ∈ S(β, ρ) × 	′
C

with the conjugation map defined on S(β, ρ) × T
d
σ ′ × Hσ ′ × 	′

C
.

In addition the conjugation is C∞ on [0, ρ) × R × 	.

3. Invariant Manifolds of Infinity in the Planar (n + 1)-Body Problem

In this section we present two examples from celestial mechanics where it is possible
to apply our results to obtain whiskers of families of Diophantine parabolic tori. These
families lie in cylinders, and the invariant manifolds of the parabolic tori give rise to the
invariant manifolds of these “normally parabolic” cylinders.
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3.1. The restricted planar (n + 1)-body problem. The restricted (n + 1)-body problem
models the motion of a massless body under the Newtonian gravitational attraction of n
bodies, the primaries, with masses m j , j = 1, . . . , n, which evolve under their mutual
gravitational attraction. It can be seen as the limit of the (n + 1)-body problem when
the mass of one the bodies is taken 0. The problem is planar when the motion of all the
bodies is confined in a plane.

Here we assume that the primaries move in a quasiperiodic motion, that is, their
positions in the plane in some inertial reference system are given by q j (ωt) where

q j : Td → R
2, j = 1, . . . , n.

We will assume that ω ∈ R
d is Diophantine. Such motions do exist (see Sect. 3.2). The

functions q j are analytic in a complex strip. By the conservation of the linearmomentum,
we can assume that

n∑
j=1

m jq j (ωt) = 0, t ∈ R.

Let q ∈ R
2 be the position of the massless body in the current reference system.

Then, taking the unit of time in which the universal gravitational constant becomes 1,
the restricted planar (n + 1)-body problem is Hamiltonian with Hamiltonian function

H(q, p, t) = 1

2
‖p‖2 −U (q, t), (q, p) ∈ R

2 × R
2,

where

U (q, t) =
n∑
j=1

m j

‖q − q j (ωt)‖ .

It has 2 + d degrees of freedom.
Taking polar coordinates in the plane, q = reiθ , with conjugate momenta p =

yeiθ + iGeiθ /r , the Hamiltonian (we use the same letter to denote it) becomes

H(r, θ, y,G, t) = 1

2

(
y2 +

G2

r2

)
− V (r, θ, t),

where

V (r, θ, t) = U (reiθ , t) =
n∑
j=1

m j

|reiθ − q j (ωt)| .

If we assume that r � q j and use that m1q1 + · · · + mnqn ≡ 0,

V (r, θ, t) = 1

r

n∑
j=1

m j

|1 − e−iθr−1q j (ωt)| =
∑n

j=1m j

r
+O

(
1

r3

)
,

where the remainder O(r−3) depends on (r, θ, t), quasiperiodically on t .
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Let M = m1 + · · · + mn . We consider new variables by setting r = 2/x2 (McGehee
coordinates). This change of variables transforms the 2-form dr ∧ dy + dθ ∧ dG into

−4x−3 dx ∧ dy + dθ ∧ dG.

This means that the equations of motion for the Hamiltonian in the new variables

H̃(x, θ, y,G) = H(2/x2, θ, y,G) = y2/2 + G2x4/4 + Mx2/2 +O(x6)

are

ẋ = − x3

4

∂ H̃

∂y
, ẏ = − x3

4

(
−∂ H̃

∂x

)
, θ̇ = ∂ H̃

∂G
, Ġ = −∂ H̃

∂θ
.

Since the term O(x6) is a function of (x, θ, t), the equations of motion are

ẋ = −1

4
x3y, ẏ = −M

4
x4 +O(x6), θ̇ = 1

2
Gx4, Ġ = O(x6). (19)

It is clear from the above equations that, for any (θ0,G0) ∈ T × R, the set

Tθ0,G0 = {x = 0, y = 0, θ = θ0,G = G0} ∼= T
d

is an invariant torus of the system with frequency vector ω.

Proposition 3.1. For each (θ0,G0) ∈ T × R, Tθ0,G0 is a Diophantine parabolic torus
of H̃ with parabolic unstable and stable invariant manifolds Wu,s which admit C∞
parameterizations

Ku,s : [0, δ) × T
d → R

4,

analytic in a complex domain of the form S(β, δ) × T
d
σ ⊃ (0, δ) × T

d .

Proof. Scaling x and y and introducing the new angle α = θ + Gy, Eq. (19) become

ẋ = −1

4
x3y, ẏ = −1

4
x4 +O(x6), α̇ = O(x6), Ġ = O(x6). (20)

Notice that, if we disregard the (θ,G) variables, y = ±x are characteristic directions
of the system above. For this reason, we consider new variables u = (x − y)/2, v =
(x + y)/2. Now, defining z = (θ,G), for any z0 = (θ0,G0) ∈ T × R, we consider the
new variables z̃ = (θ̃ , G̃) = (z − z0)/(u + v). In order to apply Theorem 2.8, we also
introduce φ = ωt . Summarizing, in these new variables, system (20) becomes

u̇ = 1

4
(u + v)3

(
u +O((u + v)3)

)
,

v̇ = −1

4
(u + v)3

(
v +O((u + v)3)

)
,

˙̃z = 1

4
(u + v)2(v − u)z̃ +O((u + v)5),

φ̇ = ω,

which satisfies the hypotheses of Corollary 2.12 with x = v, y = (u, z̃), a = 1/4,
N = 4, B a diagonal matrix with 1/4 as diagonal elements and any P . ��
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3.2. The planar (n + 1)-body problem. Consider n + 1 point masses, mi , i = 0, . . . , n,
evolving in the plane under their mutual Newtonian gravitational attraction. Let qi ∈ R

2,
i = 0, . . . , n, be their coordinates in an inertial frame of reference. Taking the unit of
time in which the universal gravitational constant becomes 1, the equations of motion
are

mi q̈i =
n∑

j=0,i 
= j

mim j
q j − qi

‖q j − qi‖3 = ∂U

∂qi
(q0, . . . , qn), i = 0, . . . , n, (21)

where

U (q0, . . . , qn) =
∑

0≤i< j≤n

mim j

‖q j − qi‖ .

Introducing the momenta pi = mi q̇i , i = 0, . . . , n, and the kinetic energy

T (p0, . . . , pn) =
n∑

i=0

1

2mi
p2i ,

system (21) is Hamiltonian with 2(n + 1) degrees of freedom and Hamiltonian function
H(q, p) = T (p) −U (q), that is, (21) becomes

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
, i = 0, . . . , n.

The (n + 1)-body problem has several well known first integrals besides the energy: the
total linear momentum, p0 + · · · + pn , and the total angular momentum, det(q0, p0) +
· · · + det(qn, pn). Here it will be convenient to reduce the linear momentum. To do so,
we consider the Jacobi coordinates, (q̃, p̃). This set of coordinates is defined as follows:
the position of the j-th body is measured with respect to the center of mass of the bodies
0 to j − 1. Since they are a linear combination of the original variables, the momenta
are also changed through a linear map. The new coordinates satisfy

q̃0 = q0

q̃ j = q j − 1

Mj

∑
0≤
≤ j−1

m
q
, j = 1, . . . , n,

where Mj = ∑ j−1

=0 m
, j ≥ 1, with conjugate momenta

p̃ j = p j +
m j

M j+1

∑
j+1≤
≤n

p
, j = 0, . . . , n − 1,

p̃n = pn .

Once the transformation of the momenta is found, the inverse of the change is deter-
mined.1 It is given by

q0 = q̃0

q j = q̃ j +
∑

0≤
≤ j−1

m


M
+1
q̃
, j = 1, . . . , n.

1 Indeed, the linear change of variables (q̃, p̃) = (Aq, Bp) is symplectic if and only if A�B = Id.
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Now we make the reduction of the total linear momentum. In the new variables, this
first integral is p̃0, which implies that the Hamiltonian does not depend on q̃0. We can
assume p̃0 = 0. Then, it is easy to check that,2 in the new variables, the Hamiltonian
becomes

H̃(q̃1, . . . , q̃n, p̃1, . . . , p̃n) =
∑

1≤ j≤n

1

2μ j
‖ p̃ j‖2 − Ũ (q̃1, . . . , q̃n), (22)

where 1/μ j = 1/Mj + 1/m j and

Ũ (q̃1, . . . , q̃n) =
∑

1≤ j≤n

m0m j∥∥∥q̃ j +
∑

1≤
≤ j−1
m


M
+1
q̃


∥∥∥
+

∑
1≤k< j≤n

mkm j∥∥∥q̃ j +
∑

k≤
≤ j−1
m


M
+1
q̃
 − q̃k

∥∥∥
.

It has 2n-degrees of freedom.
In the following discussion it will be convenient to consider polar coordinates in the

plane for each of the bodies. Let (r j , θ j ) be defined by q̃ j = r j eiθ j , j = 1, . . . , n,
(identifying R

2 with the complex plane in the usual way). Their conjugate momenta,
(y j ,G j ), are given by p̃ j = y j eiθ j + i

G j
r j
eiθ j and satisfy

| p̃ j |2 = y2j +
G2

j

r2j
.

In these coordinates, denoting r = (r1, . . . , rn) and, analogously, θ , y, G, the Hamilto-
nian H̃ in (22) becomes

Ĥ(r, θ, y,G) =
n∑
j=1

1

2μi

(
y2j +

G2
j

r2j

)
− V (r, θ),

where

V (r, θ) = Ũ (r1e
iθ1 , . . . , rne

iθn )

=
∑

1≤ j≤n

m0m j∣∣∣r j eiθ j + ∑
1≤
≤ j−1

m


M
+1
r
eiθ


∣∣∣
+

∑
1≤k< j≤n

mkm j∣∣∣r j eiθ j + ∑
k≤
≤ j−1

m


M
+1
r
eiθ
 − rkeiθk

∣∣∣
.

2 The kinetic energy part of the Hamiltonian, in the new variables, is

T (B−1 p̃) = 1

2
p̃�(B−1)�MB−1 p̃ = 1

2
p̃�AMA� p̃,

where M = diag (1/m0, . . . , 1/mn). When p̃0 = 0, the above expression is diagonal.
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We split this potential as follows, V (r, θ) = V0(r, θ)+V1(r̂ , θ̂ ) where (r̂ , θ̂ ) = (r1, . . . ,
rn−1, θ1, . . . , θn−1) and

V0(r, θ) = m0mn∣∣∣rneiθn + ∑
1≤
≤n−1

m


M
+1
r
eiθ


∣∣∣
+

∑
1≤k≤n−1

mkmn∣∣∣rneiθn + ∑
k≤
≤n−1

m


M
+1
r
eiθ
 − rkeiθk

∣∣∣
,

V1(r̂ , θ̂ ) =
∑

1≤ j≤n−1

m0m j∣∣∣r j eiθ j + ∑
1≤
≤ j−1

m


M
+1
r
eiθ


∣∣∣
+

∑
1≤k< j≤n−1

mkm j∣∣∣r j eiθ j + ∑
k≤
≤ j−1

m


M
+1
r
eiθ
 − rkeiθk

∣∣∣
.

We emphasize that V1 does not depend on the variables (rn, θn) (that is, does not depend
on the last body).

We will assume that we are in a region of the phase space where rn � r j , while
r j = O(1), j = 1, . . . , n − 1. Under this assumption, using that

1

|1 − z| = 1

(1 − z)1/2(1 − z̄)1/2
=

∑

≥0

c
z


∑
k≥0

ck z̄
k =

∑

,k≥0

c
ckz

 z̄k,

where c0 = 1 and c1 = 1/2, and using the definition of Mj , we have that

V0(r, θ) = m0mn

rn
∣∣∣1 + ∑

1≤
≤n−1
m


M
+1

r

rn
ei(θ
−θn)

∣∣∣
+

∑
1≤k≤n−1

mkmn

rn
∣∣∣1 + ∑

k≤
≤n−1
m


M
+1

r

rn
ei(θ
−θn) − rk

rn
ei(θk−θn)

∣∣∣

= mnMn

rn
− m0mn

2

∑
1≤
≤n−1

m


M
+1

r

r2n

(
ei(θ
−θn) + e−i(θ
−θn)

)

− mn

2

∑
1≤k≤n−1

mk

⎛
⎝ ∑

k≤
≤n−1

m


M
+1

r

r2n

(
ei(θ
−θn) + e−i(θ
−θn)

)

− rk
r2n

(
ei(θk−θn) + e−i(θk−θn)

))
+O

(
1

r3n

)

= mnMn

rn
+O

(
1

r3n

)
.

Since we will be interested in the behaviour of the system around rn = ∞ we introduce
the McGehee coordinates

rn = 2

x2n
.
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The canonical form
∑n

j=1(dr j ∧ dy j + dθ j ∧ dG j ) becomes

n−1∑
j=1

(dr j ∧ dy j + dθ j ∧ dG j ) − 4

x3n
dxn ∧ dyn + dθn ∧ dGn, (23)

that is, defining the potential

U(r̂ , xn, θ̂ , θn) = V (r̂ , 2/x2n , θ̂ , θn),

where (r̂ , θ̂ ) = (r1, . . . , rn−1, θ1, . . . , θn−1), and the Hamiltonian

H(r̂ , xn, θ, y,G) = H̃(r̂ , 2/x2n , θ, y,G) =
n∑
j=1

1

2μ j

(
y2j +

G2
j

r2j

)
− U(r̂ , xn, θ̂ , θn),

the equations of motion are

ṙ j = ∂H
∂y j

, ẏ j = −∂H
∂r j

, θ̇ j = ∂H
∂G j

, Ġ j = − ∂H
∂θ j

,

ẋn = − x3n
4

∂H
∂yn

, ẏn = − x3n
4

(
− ∂H

∂xn

)
, θ̇n = ∂H

∂Gn
, Ġn = − ∂H

∂θn
,

where j = 1, . . . , n − 1.
Writing U = U0 + U1, where

U0(r̂ , xn, θ̂ , θn) = V0(r̂ , 2/x
2
n , θ̂ , θn) = mnMn

2
x2n +O

(
x6n

)
,

U1(r̂ , θ̂ ) = V1(r̂ , θ̂ ),

then

H(r̂ , xn, θ̂ , θn, y,G) = H0(r̂ , xn, θ̂ , θn, y,G) +H1(r̂ , θ̂ , ŷ, Ĝ), (24)

where (ŷ, Ĝ) = (y1, . . . , yn−1,G1, . . . ,Gn−1) and

H0(r̂ , xn, θ̂ , θn, y,G) = 1

2μn

(
y2n +

x4G2
n

4

)
− U0(r̂ , xn, θ̂ , θn),

H1(r̂ , θ̂ , ŷ, Ĝ) =
n−1∑
j=1

1

2μ j

(
y2j +

G2
j

r2j

)
− U1(r̂ , θ̂ ).

(25)

Once this notation has been introduced, the equations of motion are:

ṙ j = ∂H
∂y j

= ∂H1

∂y j
, ẏ j = −∂H

∂r j
= −∂H1

∂r j
+O(x6n),

θ̇ j = ∂H
∂G j

= ∂H1

∂G j
, Ġ j = − ∂H

∂θ j
= −∂H1

∂θ j
+O(x6n),

ẋn = − x3n
4

∂H
∂yn

= − 1

4μn
x3n yn, ẏn = − x3n

4

(
− ∂H

∂xn

)
= −mnMn

4
x4n +O(x6n),

θ̇n = ∂H
∂Gn

= 1

4μn
x4nGn, Ġn = − ∂H

∂θn
= ∂U0

∂θn
(r̂ , xn, θ̂ , θn) = O(x6n),
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where 1 ≤ j ≤ n − 1.
It is clear from the above equations that, for all (θ0n ,G0

n) ∈ T × R, the set 	θ0n ,G0
n

=
{xn = 0, yn = 0, θn = θ0n ,Gn = G0

n} is invariant. The restriction of the dynamics of
the system to 	θ0n ,G0

n
is given by the Hamiltonian H1 in (25), of 2(n − 1) degrees of

freedom.

Remark 3.2. Notice that HamiltonianH1, in view of (24), is precisely a n-body problem
in Jacobi coordinates. As a consequence, if n ≥ 4, the flowon	θ0n ,G0

n
is not complete due

to the existence of non-collision singularities. However, by Arnold’s theorem [Arn63],3

at least for an open set of the masses — those corresponding to the planetary configu-
ration, that is, with one mass much larger than the rest —, there are initial conditions
in 	θ0n ,G0

n
corresponding to quasiperiodic motions. More concretely, assuming the con-

ditions on the masses required by Arnold’s theorem, Hamiltonian H1 has Lagrangian
(with respect to the form

∑n−1
j=1(dr j ∧ dy j + dθ j ∧ dG j )) analytic invariant tori (which,

consequently, have dimension 2(n − 1)) with flow conjugated to a rigid rotation with
Diophantine frequency vector. Féjoz [Féj14] announced that the same claim holds for
any values of the masses, giving rise to the existence of KAM tori in regions of the phase
space corresponding to motions close to ellipses of increasingly large semi-axis.

Next theoremapplies to any analytic invariantmaximal tori ofH1 carrying aDiophan-
tine rotation. Arnold’s theorem ensures that the set of such tori is non-empty. Neverthe-
lessH1 may have other Diophantine invariant tori. For instance, those around normally
elliptic periodic orbits ofH1.

Theorem 3.3. Let T be any analytic invariant 2(n − 1)-dimensional torus of H1 with
Diophantine frequency vector ω0 ∈ R

2(n−1). Then, for any (θ0n ,G0
n) ∈ T × R, the set

T̃θ0,G0 = {(r̂ , xn, θ̂ , θn, y,G) | xn = yn = 0, θn = θ0n , Gn = G0
n, (r̂ , θ̂ , ŷ, Ĝ) ∈ T }

is a parabolic 2(n − 1)-dimensional invariant torus of H with dynamics conjugated
to a rigid rotation with frequency vector ω0 and with parabolic stable and unstable
manifolds, Wu,s

θ0n ,G0
n
, which depend analytically on (θ0n ,G0

n). The stable manifold admits

a parameterization of the form

Kθ0n ,G0
n

:
(
u
ϕ

)
∈ [0, u0) × T

2n−1 �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̂(u, ϕ, θ0n ,G0
n)

(mnMn)
1/4u +O∗(u2) +O(u3)
θ̂(u, ϕ, θ0n ,G0

n)

θ0n +O∗(u3) +O(u4)
ŷ(u, ϕ, θ0n ,G0

n)

(mnMn)
−1/2μnu +O∗(u2) +O(u3)
Ĝ(u, ϕ, θ0n ,G0

n)

G0
n +O∗(u3) +O(u4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where O∗(uk) denotes a function of order uk independent of θ0n , G
0
n and ϕ, such that

�t (Kθ0n ,G0
n
(u, ϕ)) = Kθ0n ,G0

n
(�̃t (u; θ0n ,G0

n), ϕ + ωt), t ≥ 0,

3 Although Arnold’s proof is not valid in the spatial case, due to the resonance discovered by Herman
[Féj04], here we deal with the planar case. Another proof of Arnold’s theorem can be found in [CP11].
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where �t is the flow of Hamiltonian H and �̃t is the flow of

u̇ = −1

4
u4 + b(θ0n ,G0

n)u
7,

for some analytic function b(θ0n ,G0
n).

Furthermore, the set

T̂G0
n

=
⋃

θ0n∈T
T̃θ0n ,G0

n

is a parabolic (2n − 1)-dimensional invariant torus of H. It has parabolic Lagrangian
invariant stable and unstable manifolds, Wu,s

G0
n

= ⋃
θ0n∈T Wu,s

θ0n ,G0
n
. The stable manifold

has a parameterization K̃G0
n
(u, θ0n , ϕ) = Kθ0n ,G0

n
(u, ϕ) satisfying

�t (K̃G0
n
(u, θ0n , ϕ)) = K̃G0

n
(�̃t (u; θ0n ,G0

n), θ
0
n , ϕ + ω0t), t ≥ 0.

The analogous claim holds for the unstable manifold.

Remark 3.4. From Theorem 3.3, we obtain one parameter families of tori, G0 �→ T̂G0 ,
which depend analytically on G0

n , with stable and unstable Lagrangian invariant man-
ifolds. It should be noted that in these families Ws T̂G0

n
does not intersect Wu T̂G0

n
′ , if

G0
n 
= G0

n
′
. Indeed, HamiltonianH has an additional conserved quantity, the total angu-

lar momentum, given by G = ∑n
j=1 G j . But Ĝ = ∑n−1

j=1 G j is a conserved quantity of

H1, which, since Ġn|xn=yn=0 = 0, implies that

G|T̂
G0
n

= Ĝ|T + G0
n

and the same happens on the stable and unstable manifolds of T̂G0
n
. Hence, the invariant

manifolds of different tori in a family lie on different level sets of the total angular
momentum.

Proof of Theorem 3.3. Since T is analytic, invariant and its dynamics is conjugated to
a rigid rotation of frequency vector ω0, it is Lagrangian for H1. Then, by Weinstein’s
theorem, there exist analytic symplectic action-angle coordinates (φ, ρ) ∈ T

2(n−1) ×
R
2(n−1) in which T = {ρ = 0}, or, equivalently, H1 in these variables becomes

H1(φ, ρ) = 〈ω0, ρ〉 +O(ρ2).

The change of variables

(φ, xn, θn, ρ, yn,Gn) �→ (r̂(φ, ρ), xn, θ̂ (φ, ρ), θn, ỹ(φ, ρ), yn, G̃(φ, ρ),Gn)

is symplectic (preserves the form (23)). We will denote by H̃ the Hamiltonian in the
new variables. Let H̃0 and H̃1 be

H̃0(φ, xn, θn, ρ, yn,Gn) = H0(r̂(φ, ρ), xn, θ̂ (φ, ρ), θn, ỹ(φ, ρ), yn, G̃(φ, ρ),Gn),

H̃1(φ, ρ) = H1(r̂(φ, ρ), θ̂ (φ, ρ), ŷ(φ, ρ), Ĝ(φ, ρ)) = 〈ω0, ρ〉 +O(ρ2).

We have that H̃ = H̃0 + H̃1.
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Lemma 3.5. There exists a canonical change of variables (with respect to the form (23))
such that in the new variables (which we denote with the same letters as the old ones)
the new Hamiltonian satisfies

∂H̃
∂φ

= O(ρ12) +O(x12n ).

Proof. The change of variables is obtained by successive steps of averaging. To do so,
we use generating functions in the following way. Given a function

S(�, ρ, yn, Xn,�n,Gn) = �ρ + �nGn +
2

X2
n
yn + S(�, ρ, yn, Xn),

if the equations

φ = � +
∂S

∂ρ
(�, ρ, yn, Xn), R = ρ +

∂S

∂�
(�, ρ, yn, Xn),

2

x2n
= 2

X2
n
+

∂S

∂yn
(�, ρ, yn, Xn),

4

X3
n
Yn = 4

X3
n
yn − ∂S

∂Xn
(�, ρ, yn, Xn),

�n = θn, G̃n = Gn,

(27)

define a close to the identity map T : (φ, ρ, xn, yn, θn,Gn) �→ (�, R, Xn,Yn,�n, G̃n),
then T preserves the 2-form

� =
2(n−1)∑
j=1

dφ j ∧ dρ j − 4

x3n
dxn ∧ dyn + dθn ∧ dGn . (28)

Indeed, T preserves � if and only if � − T ∗� = 0. Since � − T ∗� = dσ , where

σ = φ dρ + R d� +
2

x2n
dyn − 4

X3
n
Yn dXn + θn dGn + G̃n d�n,

one has that σ = dS.
Now, assume that the Hamiltonian H̃ has amonomial of the form a(φ)xin y

j
nρk , where

k = (k1, . . . , k2(n−1)). Taking S as

S(�, ρ, yn, Xn) = A(�)Xi
n y

j
nρk,

Eq. (27) do define a close to the identity map. Indeed, Eq. (27) become

φ = � + k A(�)Xi
n y

j
nρk−1, R = ρ + ∇A(�)Xi

n y
j
nρk,

2

x2n
= 2

X2
n
+ j A(�)Xi

n y
j−1
n ρk,

4

X3
n
Yn = 4

X3
n
yn − i A(�)Xi−1

n y j
nρk,

�n = θn, G̃n = Gn .
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They define a close to the identity map near xn = yn = 0, ρn = 0. Hence,

φ = � + k A(�)Xi
nY

j
n R

k−1 +Oi+ j+|k|,

xn = Xn − j

4
A(�)Xi+3

n Y j−1
n Rk +Oi+ j+|k|+3,

θn = �n,

ρ = R − ∇A(�)Xi
nY

j
n R

k +Oi+ j+|k|+1,

yn = Yn +
i

4
A(�)Xi+2

n Y j
n R

k +Oi+ j+|k|+3,

Gn = G̃n,

where Oi+ j+|k| = O(‖(R, Xn,Yn)‖i+ j+|k|) is symplectic with respect to �. Applying

this transformation to H̃, the coefficient of the monomial Xi
nY

j
n Rk is

ω0∇A(�) + a(�).

Since ω0 is Diophantine, we can choose A such that this monomial does not depend on
�. Since the dependence on φ starts at order at least 3, one can proceed recursively. ��

After the change of variables given by Lemma 3.5, the equations of motion of H̃
become

φ̇ = ∂H̃
∂ρ

= ω0 +O(ρ) +O(x6n), ρ̇ = −∂H̃
∂φ

= O(ρ12) +O(x12n ),

ẋn = − x3n
4

∂H̃
∂yn

= − 1

4μn
x3n yn, ẏn = x3n

4

∂H̃
∂xn

= −mnMn

4
x4n +O(x6n),

θ̇n = ∂H̃
∂Gn

= 1

4μn
x4nGn, Ġn = − ∂H̃

∂θn
= O(x6n).

(29)

In the following, we will perform some changes of variables to the system (29) in order
to transform it into a system satisfying the hypotheses of Theorem 2.8. In this way, we
will obtain the stable manifold of the tori. In order to obtain the unstable manifold, first
we change the sign of time and then apply the analogous changes of variables. We start
by rescaling the variables xn , yn and Gn by defining

x̃ = (mnMm)−1/4xn, ỹ = (mnMm)1/2μ−1
n yn, G̃ = μ−1

n Gn .

Then, we introduce α = θn + G̃ ỹ and we define

q = 1

2
(x̃ + ỹ), p = 1

2
(x̃ − ỹ).

Then, denoting z = (α, G̃), Eq. (29) becomes

q̇ = −1

4
(q + p)3

(
q +O((q + p)3)

)
, ṗ = 1

4
(q + p)3

(
p +O((q + p)3)

)
,

ż = O((q + p)6, ρ6), ρ̇ = O((q + p)12, ρ12),

φ̇ = ω0 +O((q + p)6, ρ).
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Finally, we choose α0 and G̃0 (or equivalently, θ0n and G0
n , and, then, α

0 = θ0n , G̃
0 =

μ−1
n G0

n), define z
0 = (α0, G̃0) and introduce for q + p > 0 (equivalently, for xn > 0)

z̃ = 1

q + p
(z − z0), ρ̃ = ρ

6(q + p)6
.

After this last change, denoting w = (z̃, ρ̃), Eq. (29) become

q̇ = −1

4
(q + p)3

(
q +O((q + p)3)

)
, ṗ = 1

4
(q + p)3

(
p +O((q + p)3)

)
,

ẇ = 1

4
(q + p)2(q − p)Cw +O((q + p)5), φ̇ = ω0 +O((q + p)6),

(30)

where C is a diagonal matrix with diagonal (6, . . . , 6). This system satisfies the hy-
potheses of Corollary 2.12 with λ = (α0, G̃0), N = 4, a(φ, λ) = 1/4, B(φ, λ) the
diagonal matrix with diagonal (1/4, 6/4, . . . , 6/4) and P = 6. Hence, the invariant
torus {q = p = 0, w = 0} has parabolic stable invariant manifolds parameterized by
some embedding Ks(u, ϕ, λ), analytic with respect to (u, ϕ, λ) in some complex domain
containing (0, δ0) × T × {(α0, G̃0)}, C∞ at {u = 0}, with Ks(0, φ̃, λ) = (0, 0, 0, φ̃),
∂uK s(0, φ, λ) = (0, 1, 0, 0)�. Moreover, taking into account that the dependence of
the (q, p) components of the vector field defined by (30) on (w, φ, λ) starts at order 6,
while N = 4, we have that the parameterization of the stable manifold has the form

(q, p, w, φ) = Ks(u, ϕ, λ) =

⎛
⎜⎜⎝

O∗(u2) +O(u3)
u +O∗(u2) +O(u3)

O(u2)
ϕ +O(u)

⎞
⎟⎟⎠ , (u, φ) ∈ [0, u0) × T

2n−1,

whereO∗(u2) denotes a function of order u2 independent of ϕ and λ. Going back to the
variables (φ, xn, θn, ρ, yn,Gn) in which (29) is written, we have that

Ks(u, ϕ, θ0n ,G0
n) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ϕ +O(u)

(mnMn)
1/4u +O∗(u2) +O(u3)

θ0n +O(u3)
O(u8)

(mnMn)
−1/2μnu +O∗(u2) +O(u3)

G0
n +O(u3)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (31)

where (θ0n ,G0
n) are parameters. The embedding Ks satisfies the invariance equation

�t ◦ Ks(u, ϕ, θ0n ,G0
n) = Ks(�̃t (u, θ0n ,G0

n), ϕ + ω0t, θ0n ,G0
n), (32)

where �t is the flow of (29) and �̃t is the flow of the equation

u̇ = −1

4
u4 + b(θ0n ,G0

n)u
7,

obtained by applying Theorem 2.9 to (30). Going back to the original variables, we
obtain expression (26).

It only remains to check that, for each G0
n , the parameterization

K : (u, θ0n , ϕ) �→ Ks(u, ϕ, θ0n ,G0
n)
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of the stable manifold of T̂G0
n
defines a Lagrangian manifold, that is, that the 2-form �

in (28) vanishes identically on T̂G0
n
. We will check that

�(∂uK , ∂θ0n
K ) = �(∂uK , ∂ϕi K ) = �(∂θ0n

K , ∂ϕi K ) = �(∂ϕ j K , ∂ϕi K ) = 0,

where 1 ≤ i, j ≤ 2(n−1).We check the equality for�(∂uK , ∂θ0n
K ), being the argument

for the rest identical.
First we remark that, since G0

n is fixed and θ0n ∈ T, for any a− < 1/4 < a+ and any
0 < α < 1, there exists u0 > 0 such that for all u ∈ [0, u0) and t ≥ 0,

u

(1 + 3a+u3t)1/3
≤ �̃t (u, θ0n ,G0

n) ≤ u

(1 + 3a−u3t)1/3
,

1

(1 + 3a+u3t)1/(3α)
≤ ∂u�̃t (u, θ0n ,G0

n) ≤ 1

(1 + 3a−u3t)α/3 .

(33)

Since �∗
t � = �, taking derivatives at (32) and (31), we have that, for all t ≥ 0,

|�(∂uK (u, θ0n , ϕ), ∂θ0n
K (u, θ0n , ϕ))|

= |�(∂uK (�̃t (u), θ0n , ϕ + ω0t)∂u�̃t (u, θ0n ,G0
n), ∂θ0n

K (�̃t (u), θ0n , ϕ + ω0t))|

≤ C

(∣∣∣∣
∂u�̃t (u, θ0n ,G0

n)

�̃t (u, θ0n ,G0
n)

∣∣∣∣ |�̃t (u, θ0n ,G0
n)| + |�̃t (u, θ0n ,G0

n)|2 + |�̃t (u, θ0n ,G0
n)|8

)
.

Hence, by (33), we have that

�(∂uK (u, θ0n , ϕ), ∂θ0n
K (u, θ0n , ϕ)) = lim

t→∞ �∗
t �(∂uK (u, θ0n , ϕ), ∂θ0n

K (u, θ0n , ϕ)) = 0.

��

4. Proofs of the Results. Map Case

Here we prove the results stated in Sect. 2. We first need to introduce some technical
notation and preliminary considerations. This is done in Sect. 4.1 below. With respect
to the proofs of results, in Sect. 4.2 we prove the existence and regularity results of
invariant parabolic manifolds associated to normally parabolic tori for analytic maps,
Theorem 2.1. Then, in Sect. 4.3, we deal with obtaining formal (or approximated) man-
ifolds, Theorem 2.3. Finally, in Sect. 4.4 we prove Corollary 2.6.

4.1. Notation and the small divisors equation. In the proofs of the main results, when
doing steps of averaging and when solving cohomological equations we will encounter
the so-called small divisors equation. In the setting of maps the equation we find is

ϕ(θ + ω) − ϕ(θ) = h(θ),

with h : Td → R
k and ω ∈ R

d . When k = 1 this is a scalar equation but we can also
consider vector or matrix equations choosing ϕ accordingly.

We will find this equation depending on parameters. We are mainly interested in the
analytic case, but this equation can also be considered for differentiable functions. To
be concrete we consider h : Td

σ × 	C → C
k and we want to find a solution ϕ(θ, λ) of

ϕ(θ + ω, λ) − ϕ(θ, λ) = h(θ, λ), (34)
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in a suitable domain. We develop h in Fourier series

h(θ, λ) =
∑

k∈Zd

hk(λ)e2π ik·θ , k · θ = k1θ1 + · · · + kdθd .

If h has zero average and k · ω /∈ Z for all k 
= 0, Eq. (34) has a formal solution

ϕ(θ, λ) =
∑

k∈Zd

ϕk(λ)e2π ik·θ , ϕk(λ) = hk(λ)

1 − e2π ik·ω
, k 
= 0.

All coefficients ϕk are uniquely determined except ϕ0 which is free.
We quote the well-known result

Theorem 4.1 (Small divisors lemma). Let h : Td
σ × 	C → C

k be analytic with zero
average and ω Diophantine with τ ≥ d (see the notation in Sect. 2.1).

Then there exists a unique analytic solution ϕ : Td
σ × 	C → C

k of (34) with zero
average and

sup
(θ,λ)∈Td

σ−δ×	C

‖ϕ(θ, λ)‖ ≤ Cδ−τ sup
(θ,λ)∈Td

σ ×	C

‖h(θ, λ)‖, 0 < δ < σ,

where C depends on τ and d but not on δ.

Two analytic soluctions of (34) differ by a function of λ. The proof with close to
optimal estimates is due to Russmann [Rüs75]. See also de la Llave [dlL01] and Figueras
et al [FHL18] for a proof with explicit and very sharp estimates for applications in
Computer Assisted Proofs. For the proof in presence of parameters one only has to take
into account that

hk(λ) =
∫
Td

h(θ, λ)e−2π ik·θ dθ

and proceed as in the usual proof.
We will denote by SD(h) the unique solution of Eq. (34) with zero average.
To finish this introductory section, we set the Banach spaces wewill workwith. Given

k ∈ N, β, ρ, σ > 0 and 	C a complex extension of 	, we introduce for q ∈ R,

Xq =
{
� : S(β, ρ) × T

d
σ × 	C → C

k | analytic, sup
(x,θ,λ)∈S×Td

σ ×	C

|�(x, θ, λ)|
|x |q < ∞

}

endowed with the norm

‖�‖q = sup
(x,θ,λ)∈S×Td

σ ×	C

|�(x, θ, λ)|
|x |q .

We recall that, as we pointed out in Sect. 2.1, we omit the parameters β, ρ in S. In
addition, from now on we will omit the dependence on λ of our notation.
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4.2. Existence of a stable manifold. Proof of Theorem 2.1. In this section we assume
that F is analytic in a neighbourhood of the origin having the form (3) with P = N . The
case P > N is also included since hN ≡ 0 fits in our setting. We will prove that, given
an approximated parameterization of an invariant manifold up to some order Q ≥ N ,
there is a parameterization of a true invariant manifold whose expansion coincides with
that of the approximation until order (O(|x |Q),O(|x |Q),O(|x |Q−1)).

More concretely, we assume that there exists K≤ = (K≤
x , K≤

y , K≤
θ ) and R≤ =

(R≤
x , R≤

θ ) such that

E≤ := F ◦ K≤ − K≤ ◦ R≤ (35)

satisfies

E≤ = (E≤
x , E≤

y , E≤
θ ) = (O(|x |Q+N ),O(|x |Q+N ),O(|x |Q+N−1)).

We assume that the domain of K≤ and R≤ is S(β0, ρ0)×T
d
σ ′ ×	C for some β0, ρ0, σ

′ >

0.
According to the parameterization method, to obtain the invariant manifold and the

other conclusions of Theorem 2.1, we look for� = (�x ,�y,�θ ) ∈ XQ+1×XQ+1×XQ
such that, for some β, ρ > 0 and	′

C
⊂ 	C a complex extension of	 (to be determined

along the proof), we have that:

F ◦ (K≤ + �) = (K≤ + �) ◦ R≤, in S(β, ρ) × T
d
σ ′ × 	′

C
. (36)

That is, we slightly modify K≤ while maintaining the same reparameterization R≤.
We cannot guarantee that the domain of � is the same as the one for K≤, however we
maintain the same width in the complex strip for θ and the same parameter set 	C.

4.2.1. Preliminary reductions To determine the existence of �, it is convenient to per-
form some changes of variables to F to put it in a more suitable form to deal with the
estimates. These changes are two steps of averaging to kill the dependence on θ of the
coefficients a(θ), B(θ), one scaling to make a(λ) independent of λ, a linear change of
the variable y to transform B to a close to diagonal matrix and a rescaling of the y
variables. Since the dependence on λ is a local property, we will work with some 	′

C

that will be a small neighbourhood of a fixed value λ = λ0. However, we will put no
conditions on λ0, apart from being real.

Lemma 4.2. Let F be a map of the form (3) satisfying the hypotheses of Theorem 2.1
having an analytic extension to UC × T

d
σ , λ0 ∈ 	 and 0 < δ < 1. Then, there exists a

real analytic change of variables T (x, y, θ), depending on δ, T : C1+m ×T
d
σ ′ × 	′

C
→

C
1+m × T

d
σ ′ such that F, in the new variables, has the form

⎛
⎝
x
y
θ

⎞
⎠ �→

⎛
⎝

x − xN + f δ
N (x, y, θ) + f δ≥N+1(x, y, θ)

y + xN−1 J y + gδ
N (x, y, θ) + gδ≥N+1(x, y, θ)

θ + ω + hδ
N (x, y, θ) + hδ≥N+1(x, y, θ)

⎞
⎠ (37)

with

(1) J = J (λ) is close to the Jordan form of B(λ0) with arbitrary small terms off the
diagonal.



Whiskered Parabolic Tori in the Planar (n + 1)-Body Problem 91

(2) f δ
N , gδ

N , hδ
N arehomogeneouspolynomials of order N with f δ

N (x, 0, θ) = 0, gδ
N (x, 0,

θ) = 0, ∂ygδ
N (x, 0, θ) = 0, and f δ≥N+1, h

δ≥N+1 = O(‖(x, y)‖N+1).

(3) Themonomial f δ
N−1,1(θ)xN−1y of f δ

N has the form δ fN−1,1(θ)xN−1y,with fN−1,1(θ)

independent of δ.
(4) The terms gδ

N (x, y, θ) and gδ≥N+1(x, y, θ) behave as

gδ
N (x, y, θ) = δ‖y‖2O(‖(x, y)‖N−2),

gδ≥N+1(x, y, θ) = δ−1O(|x |N+1) + ‖y‖O(|x |N ) + δO(‖(x, y)‖N+1).
(38)

Proof. Let 0 < σ ′ < σ . A change of the form T1(x, y, θ) = (x + c1(θ)xN , y, θ) with
c1 : Td

σ ′ → C, applied to F preserves the terms of order N of Fx , Fy and the ones of
order P = N of Fθ except the monomial −a(θ)xN of Fx which becomes

[
c1(θ) − c1(θ + ω) − a(θ)

]
xN .

We kill the oscillating part ã of a by applying the small divisors lemma (Theorem 4.1).
We choose c1 = SD(̃a), hence the corresponding term becomes −axN .

In the same way, the change T2(x, y, θ) = (x, y + C2(θ)xN−1y, θ) transforms the
term xN−1B(θ)y of Fy to

xN−1[C2(θ) − C2(θ + ω) + B(θ)
]
y

while keeping unchanged the other terms of order N (of Fx , Fy) and order P = N
(of Fθ ). We choose C2 = SD(B̃) defined on T

d
σ ′ , so that the mentioned term becomes

xN−1By.
To simplify the proof, we make a independent of the parameter λ. For that we scale

the x-variable by T3(x, y, θ) = (μx, y, θ) with μ = (a(λ))−α and α = 1/(N − 1).
We obtain the new constant a = 1. We emphasize that, when λ ∈ 	 ⊂ R

p, a(λ) > 0,
therefore, for a suitable complex extension 	′

C
of 	, Re (a(λ)) > 0 if λ ∈ 	′

C
and the

rescaling is well defined. Note that the change T3 transforms B to [a(λ)]−1B which also
satisfies that the real part of the spectrum is positive. We denote this new matrix again
by B.

Next, let D ∈ L(Rm,Rm) and the change T4(x, y, θ) = (x, Dy, θ). The transformed
map is

⎛
⎝
x
y
θ

⎞
⎠ �→

⎛
⎝

x − xN + fN (x, Dy, θ) + f≥N+1(x, Dy, θ)

y + xN−1D−1BDy + D−1gN (x, Dy, θ) + D−1g≥N+1(x, Dy, θ)

θ + ω + hN (x, Dy, θ) + h≥N+1(x, Dy, θ)

⎞
⎠ .

We choose D as the linear change that transforms B(λ0) to its Jordan form, J (λ0),
with arbitrarily small terms off the diagonal. Therefore, taking 	′

C
as a small complex

neighbourhood of λ0, J (λ) = D−1B(λ)D will be close to J (λ0).
Finally we make the change T5(x, y, θ) = (x, δy, θ). The transformed map is

⎛
⎝
x
y
θ

⎞
⎠ �→

⎛
⎝

x − xN + fN (x, δDy, θ) + f≥N+1(x, δDy, θ)

y + xN−1 J y + δ−1D−1gN (x, δDy, θ) + δ−1D−1g≥N+1(x, δDy, θ)

θ + ω + hP (x, δDy, θ) + h≥P+1(x, δDy, θ)

⎞
⎠ .

To finish, recalling that fN (x, 0, θ) = 0, gN (x, 0, θ) = 0 and ∂ygN (x, 0, θ) = 0, we
obtain the conclusions for f δ

N , gδ
N . The expression for gδ≥N+1 follows immediately.

The claimed change of variables is the composition T = T5 ◦ T4 ◦ T3 ◦ T2 ◦ T1. ��
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Remark 4.3. The first two terms of gδ≥N+1 in (38) will be controlled by working in a

small sector such that |x | < ρ and δ−1ρN+1 is small.

Let us denote by F1 the transformed map: F1 = T−1 ◦ F ◦ T . Assume that K≤ and R≤
satisfy the conditions of Theorem 2.1. From

T−1 ◦ F ◦ T ◦ T−1 ◦ K≤ = T−1 ◦ (K≤ ◦ R≤ + E≤),

we write

F1 ◦ K≤
1 = K≤

1 ◦ R≤ + E≤
1 ,

where

K≤
1 = T−1 ◦ K≤, E≤

1 = T−1 ◦ (K≤ ◦ R≤ + E≤) − T−1 ◦ K≤ ◦ R≤.

Since E≤
1 = DT−1(K≤◦R≤)E≤+O(‖E≤‖2)we have that the components of E≤

1 have
the same order as the ones of E≤. However, the first component of K≤

1 isμ−1x +O(|x |2)
instead of x + O(|x |2). For that reason we define K≤

2 (x, θ) = K≤
1 (μx, θ) and

R≤
2 (x, θ) = μ−1R≤(μx, θ)

= x − a(λ)μN−1xN +O(|x |N+1) = x − xN +O(|x |N+1)

and we observe that

F1 ◦ K≤
2 (x, θ) − K≤

2 ◦ R≤
2 (x, θ) = F1 ◦ K≤

1 (μx, θ) − K≤
1 ◦ R≤(μx, θ) = E≤

1 (μx, θ)

which again has the same orders as the ones of E≤. Also notice that the y-component
of E≤

1 has a factor δ−1.
We notice that, if F, K≤, R≤ are under the conditions of Theorem 2.1, the same

happens for F1, K
≤
2 and R≤

2 . Then if we can find �2 ∈ XQ+1 × XQ+1 × XQ such that

F1 ◦ (K≤
2 + �2) = (K≤

2 + �2) ◦ R≤
2 ,

defining �1(x, θ) = �2(μ
−1x, θ), the condition

F ◦ T ◦ (T−1 ◦ K≤ + �1)(μx, θ) = T ◦ (T−1 ◦ K≤ + �1) ◦ R≤(μx, θ)

would imply that the pair T ◦ (T−1 ◦ K≤ +�1), R≤ is a solution of the semiconjugation
equation F ◦ K = K ◦ R. The map

� := T ◦ (T−1 ◦ K≤ + �1) − K≤ = DT (T−1 ◦ K≤)�1 +O(‖�1‖2)
belongs toXQ+1 ×XQ+1 ×XQ and provides the correction to K≤ that makes F ◦ (K≤ +
�) = (K≤ + �) ◦ R≤.

This justifies that from now on we assume that F has the form (37).

Remark 4.4. As we pointed out along the proof of Lemma 4.2, the parameter μ =
(a(λ))−α is well defined if we choose the complex extension of 	 to be a small neigh-
bourhood of λ0.Moreover, the scalingμx of the independent variable x implies a change
of the parameters β and ρ of the complex sector S(β, ρ)where the function� is defined.

To finish this section,we present a result which is a rewording of Lemma7.1 of [BFM17].
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Lemma 4.5. Let R be an analytic map in a neighbourhood of the origin of the form
R(x) = x − axN + O(|x |N+1) with a > 0. For 0 < η < a, let Rη : [0,∞) → R be
defined by

Rη(s) = s

[1 + (a − η)(N − 1)sN−1]α , α = 1

N − 1
.

Then, for any 0 < η < a, there exists β, ρ > 0 such that R maps S(β, ρ) into itself and
its k-th iterate satisfies

|Rk(x)| ≤ Rk
η(|x |) = |x |

[1 + k(a − η)(N − 1)|x |N−1]α , x ∈ S(β, ρ), k ≥ 0.

Remark 4.6. If a is a real analytic function on λ ∈ 	, being 	 relatively compact and
satisfying that a(λ) > 0 on 	, it can be proven that there exists an open set 	′

C
⊂ C

p

such that

|Rk(x)| ≤ Rk
η(|x |) = |x |

[1 + k(|a(λ)| − η)(N − 1)|x |N−1]α , x ∈ S(β, ρ), k ≥ 0.

Indeed, to prove this remark, we only need to apply Lemma 4.5 to R̃(x) = μ−1R(μx)
with μ = (

a(λ))−α .

4.2.2. Invertibility of an auxiliary linear operator. Let

M(x, θ) =
⎛
⎝
1 0 0
0 Id + (K≤

x (x, θ))N−1 J 0
0 0 Id

⎞
⎠ .

We introduce the linear operator

L� = M� − � ◦ R≤

and we rewrite condition (36) as:

L� = −(F ◦ K≤ − K≤ ◦ R≤) − (F ◦ (K≤ + �) − F ◦ K≤ − M�).

We introduce the operator E

E(�) = F ◦ (K≤ + �) − F ◦ K≤ − M� (39)

and we recall the definition of E≤ = F ◦K≤ −K≤ ◦ R≤ in (35). To solve the invariance
condition (36), we will deal with the equivalent fixed point equation

� = G(�) := −L−1E≤ − L−1E(�). (40)

For that we have to study the invertibility of L and to obtain bounds of ‖L−1‖.
We have

(L�)x,θ = �x,θ − �x,θ ◦ R≤, (L�)y = (Id + (K≤
x (x, θ))N−1 J )�y − �y ◦ R≤.

The estimates forL andL−1 will follow from the next lemma applied to each component
of L working in the appropriate space Xq with either J = 0 or J 
= 0.
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Lemma 4.7. Let q ≥ N ≥ 2, m ≥ 1, a > 0, ω ∈ R
d , R : S(β0, ρ0) × T

d
σ ′ ×

	′
C

→ S(β0, ρ0) × T
d
σ ′ of the form R(x, θ) = (Rx (x, θ), θ + ω) with Rx (x, θ) =

x −axN +O(|x |N−1) uniformly in (θ, λ) and κ : S(β0, ρ0)×T
d
σ ′ ×	′

C
→ C satisfying

|κ(x, θ) − x | ≤ C |x |2 for some constant C.
Let B : 	′

C
→ L(Rm,Rm) be real analytic such that either Re Spec (B) > 0 or

B = 0 and let L : Xq → Xq be the operator defined by

L� = (Id + κN−1B)� − � ◦ R.

Then,

(1) L is a bounded operator and ‖L‖ ≤ 2 + C ′ρN−1 for some C ′ > 0.
(2) If B is close enough to a diagonal matrix, then given 0 < η < a there exist β, ρ > 0

such that L has a right inverse S : Xq+N−1 → Xq acting on functions with domain
S(β, ρ) × Tσ ′ × 	′

C
, and

‖S‖ ≤ 1

(a − η)q
+ ρN−1.

Proof. (1) follows directly from the definition of L . To prove (2) we first note that an
expression for S is given by

SH =
∞∑
j=0

[
Id + κN−1B

]−1 · · · [Id + (κ ◦ R j )N−1B
]−1

H ◦ R j .

By Lemma 4.5, the images of the iterates R j belong to the domain of κ . When B 
= 0,
the eigenvalues of Id + (κ ◦ R j )N−1B are 1 + (κ ◦ R j )N−1μ with μ ∈ Spec B. The
quantity (κ ◦ R j )N−1 belongs to κ(S(β, ρ)) ⊂ S(β ′, ρ′) with β ′ = β + O(ρ) and
ρ′ = ρ +O(ρ2). Since Reμ > 0 and B is as close as we need to a diagonal matrix, for
all v ∈ R

m ,
∥∥[
Id + (κ ◦ R j )N−1B

]
v
∥∥ > ‖v‖ which implies

∥∥[
Id + (κ ◦ R j )N−1B

]−1∥∥ ≤ 1, j ≥ 0.

Then in both cases, B = 0 and B 
= 0, under our hypotheses,

‖SH(x, θ)‖ ≤
∞∑
j=0

‖H(R j (x, θ))‖ ≤ ‖H‖q+N−1

∞∑
j=0

|R j
x (x, θ)|q+N−1

≤‖H‖q+N−1

∞∑
j=0

|x |q+N−1

(
1 + j (a − η)(N − 1)|x |N−1

)α(q+N−1)

≤‖H‖q+N−1|x |q+N−1

(
1 +

∫ ∞

0

ds(
1 + s(a − η)(N − 1)|x |N−1

)α(q+N−1)

)

≤‖H‖q+N−1|x |q+N−1
(
1 +

α

(a − η)|x |N−1

∫ ∞

0

du

(1 + u)α(q+N−1)

)

≤‖H‖q+N−1|x |q
(

|x |N−1 +
1

(a − η)q

)
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and hence

‖SH‖q ≤
(

ρN−1 +
1

(a − η)q

)
‖H‖q+N−1.

��

4.2.3. Estimates for the operator G in (40). Now we introduce the product spaceX×
q =

Xq × Xq × Xq−1, q ≥ 2, with the product norm

‖K‖×
q = max

{‖Kx‖q , ‖Ky‖q , ‖Kθ‖q−1
}
,

and we denote by B
×
q (0, r) the centered at the origin closed ball of radius r in X×

q .
Consider E(�) defined in (39) as an operator acting on � and let Ex , Ey and Eθ be
its components. Notice that this operator depends, among other things, on the scaling
parameter δ. Henceforth C will denote a generic constant.

Lemma 4.8. Let r > 0. Given æ, δ > 0 there exist ρ > 0 small and C > 0 such
that the Lipschitz constants of the operators Ex , Ey : B

×
Q+1(0, r) → XQ+N and Eθ :

B
×
Q+1(0, r) → XQ+N−1 are bounded by

Lip Ex ≤ N (1 + æ) + C(ρ + δ), Lip Ey ≤ Cρδ−1, Lip Eθ ≤ Cρ.

Proof. We take �, �̃ ∈ B
×
Q+1(0, r). Since |�x (x, θ)| ≤ |x |Q+1‖�‖Q+1 and analogous

bounds for the other components of � and the ones of �̃, if ρ is small, all compositions
involved in (39) make sense.

We decompose
(
E(�) − E(�̃)

)
x,y = Z1

x,y + Z2
x,y + Z3

x,y,
(
E(�) − E(�̃)

)
θ

= Z1
θ + Z2

θ

with

Z1
x = −(K≤

x + �x )
N + (K≤

x + �̃x )
N ,

Z2
x = f δ

N (K≤ + �) − f δ
N (K≤ + �̃), Z3

x = f δ≥N+1(K
≤ + �) − f δ≥N+1(K

≤ + �̃),

Z1
y = (K≤

x + �x )
N−1 J (K≤

y + �y) − (K≤
x + �̃x )

N−1 J (K≤
y + �̃y)

− (K≤
x )N−1 J (�y − �̃y),

Z2
y = gδ

N (K≤ + �) − gδ
N (K≤ + �̃), Z3

y = gδ≥N+1(K
≤ + �) − gδ≥N+1(K

≤ + �̃),

Z1
θ = hδ

N (K≤ + �) − hδ
N (K≤ + �̃), Z2

θ = hδ≥N+1(K
≤ + �) − hδ≥N+1(K

≤ + �̃).

Then

Z1
x = −N

∫ 1

0

[
K≤
x + �̃x + s(�x − �̃x )

]N−1
(�x − �̃x ) ds

and, since |K≤
x + �̃x + s(�x − �̃x )| ≤ |x |(1 +C1ρ +C2ρ

Qr) with C1, C2 independent
of θ ,

|Z1
x | ≤ N

[|x |(1 + Cρ)
]N−1‖�x − �̃x‖Q+1|x |Q+1

≤ N (1 + æ)‖�x − �̃x‖Q+1|x |Q+N
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if ρ < æ/C . Concerning Z2
x ,

Z2
x =

∫ 1

0

[
∂x f

δ
N (�x − �̃x ) + ∂y f

δ
N (�y − �̃y) + ∂θ f

δ
N (�θ − �̃θ )

]
ds,

where the partial derivatives are evaluated at K≤ + �̃ + s(� − �̃). Then

|Z2
x | ≤ C |x |N‖�x − �̃x‖Q+1|x |Q+1 + C |x |N+1‖�θ − �̃θ‖Q |x |Q

+
[‖ f δ

N−1,1(θ)‖|x |N−1 +O(|x |N )
] · ‖�y − �̃y‖Q+1|x |Q+1.

By Lemma 4.2, the term f δ
N−1,1(θ) is of order of the rescaling parameter δ. Then,

‖Z2
x‖Q+N ≤ Cρ‖�x − �̃x‖Q+1 + Cδ‖�y − �̃y‖Q+1 + Cρ‖�θ − �̃θ‖Q

if ρ � δ. We have

Z1
y = [

(K≤
x + �x )

N−1 − (K≤
x )N−1]J (�y − �̃y)

+
[
(K≤

x + �x )
N−1 − (K≤

x + �̃x )
N−1]J (K≤

y + �̃y).

Then

|Z1
y | ≤ C(N − 1)|x |N−2‖�x‖Q+1|x |Q+1‖J‖‖�y − �̃y‖Q+1|x |Q+1

+ C(N − 1)|x |N−2‖�x − �̃x‖Q+1|x |Q+1‖J‖C |x |2

and hence

‖Z1
y‖Q+N ≤ CρQ‖J‖‖�x‖Q+1‖�y − �̃y‖Q+1 + Cρ‖J‖‖�x − �̃x‖Q+1.

The remaining terms are bounded in the same way as for Z2
x . We obtain

‖Z3
x‖Q+N , ‖Z1

θ‖Q+N−1 ≤ Cρ
[‖�x − �̃x‖Q+1 + ‖�y − �̃y‖Q+1 + ‖�θ − �̃θ‖Q

]
,

‖Z2
y‖Q+N ≤ Cρδ

[
ρ‖�x − �̃x‖Q+1 + ‖�y − �̃y‖Q+1 + ρ‖�θ − �̃θ‖Q

]
,

‖Z2
θ‖Q+N−1 ≤ Cρ2[‖�x − �̃x‖Q+1 + ‖�y − �̃y‖Q+1 + ‖�θ − �̃θ‖Q

]
.

However, Z3
y is a little bit special as we pointed out in Remark 4.3. For it we have

‖Z3
y‖Q+N ≤ Cρδ−1[‖�x − �̃x‖Q+1 + δ‖�y − �̃y‖Q+1 + ‖�θ − �̃θ‖Q

]
.

��
The proof of Theorem 2.1 follows immediately from the next lemma and the fixed

point theorem.

Lemma 4.9. There exists r > 0 such that G defined in (40) sends the closed ball
B

×
Q+1(0, r) ⊂ X×

Q+1 into itself and is a contraction on it.
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Proof. Let r0 = ‖L−1E≤‖×
Q+1. Recall that Q + 1 > N . Let æ > 0 and η > 0 such that

N
Q+1

1+æ
1−η

< 1 and γ > 0 such that

N

Q + 1

1 + æ

1 − η
< γ < 1.

We choose r such that r0 + γ r ≤ r . Let �, �̃ ∈ B
×
Q+1(0, r). We apply Lemma 4.8 with

these values of r , æ and η to estimate each component of L−1E(�) − L−1E(�̃). We
have

‖L−1
x (E(�) − E(�̃))x‖Q+1 ≤

(
1

(1 − η)(Q + 1)
+ ρN+1

)

× [
N (1 + æ) + C(ρ + δ)

]‖� − �̃‖×
Q+1,

‖L−1
y (E(�) − E(�̃))y‖Q+1 ≤

(
1

(1 − η)(Q + 1)
+ ρN+1

)
Cρδ−1‖� − �̃‖×

Q+1,

‖L−1
θ (E(�) − E(�̃))θ‖Q ≤

(
1

(1 − η)Q
+ ρN

)
Cρ‖� − �̃‖×

Q+1.

If ρ, δ > 0 are small enough and ρδ−1 is small we get

‖L−1(E(�) − E(�̃))‖×
Q+1 ≤ γ ‖� − �̃‖×

Q+1. (41)

Finally, since G(0) = L−1E≤,

‖G(�)‖×
Q+1 ≤ ‖L−1E≤‖×

Q+1 + ‖L−1(E(�) − E(0))‖×
Q+1 ≤ r0 + γ ‖� − 0‖×

Q+1

≤ r0 + γ r ≤ r,

which proves that G sends the ball B
×
Q+1(0, r) into itself. Moreover, (41) implies that G

is a contraction. ��

4.3. Formal parabolic manifold. Proof of Theorem 2.3. This section is devoted to the
computation of a formal approximation of a solution of the semiconjugation condition
F ◦ K = K ◦ R when F is of the form (3). The solution certainly is not unique. We
have chosen a structure for the terms which appear in the approximation. There is a lot
of freedom for obtaining the terms of K and R. This freedom is seen when solving the
cohomological equations at each order. Our main motivation has been to show that such
approximation actually exists and is computable. In this section we admit P ≥ 1.

We prove by induction over j that there exist K ( j) and R( j). Assuming the form (5),
(6), (7) for K ( j)

x , K ( j)
y , K ( j)

θ respectively, the form R( j)
x (x, θ) = x +

∑ j
l=1 R

l+N−1
x (θ)

xl+N−1 and the form (8) for R( j)
θ , we will prove that at step j we are able to determine

the quantities K
j
x,y , K

j−1
θ , K̃ j+N−1

x,y , K̃ j+P−2
θ , R j+N−1

x (θ) and R j+P−2
θ (θ) so that the

order condition (9) for the remainder E ( j) is fullfilled.
Let us first assume that P ≤ N . We deal with the first step of the induction procedure,

j = 1. We write

K (1)
x (x, θ) = x + K̃ N

x (θ)xN , K (1)
y (x, θ) = 0, K (1)

θ (x, θ) = θ,

R(1)
x (x, θ) = x + RN

x (θ)xN , R(1)
θ (x, θ) = θ + ω,
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and we compute E (1) = F ◦ K (1) − K (1) ◦ R(1). From the form (3) of F we obtain

E (1)
x (x, θ) = [K̃ N

x (θ) − K̃ N
x (θ + ω) − RN

x (θ) − a(θ)]xN +O(|x |N+1),

E (1)
y (x, θ) = O(|x |N+1),

E (1)
θ (x, θ) = O(|x |P ).

To have E (1)
x (x, θ) = O(|x |N+1) we take

R
N
x = −a, R̃N

x (θ) = 0, K̃ N
x (θ) = −SD

(̃
a
)
(θ).

For j ≥ 2, assuming the induction hypothesis, we write K ( j) = K ( j−1) + K( j) and
R( j) = R( j−1) +R( j) with E ( j−1) = F ◦ K ( j−1) − K ( j−1) ◦ R( j−1) satisfying

E ( j−1) = (E j+N−1
x (θ)x j+N−1, E j+N−1

y (θ)x j+N−1, E j+P−2
θ (θ)x j+P−2)

+ (O(|x | j+N ),O(|x | j+N ),O(|x | j+P−1))
(42)

and K( j), R( j) of the form:

K( j) =
⎛
⎜⎝

K
j
x x

j + K̃ j+N−1
x (θ)x j+N−1

K
j
yx

j + K̃ j+N−1
y (θ)x j+N−1

K
j−1
θ x j−1 + K̃ j+P−2

θ (θ)x j+P−2

⎞
⎟⎠ , R( j) =

(
R j+N−1
x (θ)x j+N−1

R j+P−2
θ (θ)x j+P−2

)
.

The error term at the step j , E ( j) = F ◦ K ( j) − K ( j) ◦ R( j), is decomposed as

E ( j) = E ( j−1) +
[
F ◦ K ( j) − F ◦ K ( j−1) − (DF ◦ K ( j−1))K( j)]

+ (DF ◦ K ( j−1))K( j) − K( j) ◦ R( j−1)

− [
K ( j) ◦ R( j) − K ( j) ◦ R( j−1)].

We first compute the terms in E ( j)
x,y that are of order less than O(|x | j+N ) and the terms

in E ( j)
θ of order less than O(|x | j+P−1). By (42) we are done with the term E ( j−1).

To proceed with the other terms we use Taylor’s theorem, that K ( j−1)(x) = (x, 0, θ +
O(|x |)) +O(|x |2), R( j−1)

x (x, θ) = x − axN +O(|x |N+1), R( j−1)
θ = θ +ω +O(|x |) and

that F has the form (3) together with the forms of K( j) and R( j).
By Taylor’s theorem we have that

F ◦ K ( j) − F ◦ K ( j−1) − (DF ◦ K ( j−1))K( j)

= (O(|x | j+N ),O(|x | j+N ),O(|x | j+P−1)).

The computations have to be done carefully, considering the cases P = 1 and P ≥ 2
separately.

Concerning (DF ◦ K ( j−1))K( j),

(DF ◦ K ( j−1))K( j) =
⎛
⎝
1 − Na(θ)xN−1 fN−1,1(θ)xN−1 −∂θa(θ)xN

0 Id + xN−1B(θ) 0
0 0 Id

⎞
⎠K( j) + qe1
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with qe1 = (O(|x | j+N ),O(|x | j+N ),O(|x | j+P−1)). Then, since K̃( j)
x,y = O(|x | j+N−1),

(DF ◦ K ( j−1))K( j) − K( j) =⎛
⎜⎝

−Na(θ)xN−1K( j)
x + fN−1,1(θ)xN−1K( j)

y − ∂θa(θ)xNK( j)
θ

xN−1B(θ)K( j)
y

0

⎞
⎟⎠ + e1

with e1 = (O(|x | j+N ),O(|x | j+N ),O(|x | j+P−1)). In addition, by Taylor’s theorem,

K( j) ◦ R( j−1) = K( j)(x, θ + ω) − axN ∂xK
( j)

(x) + e2

with e2 = (O(|x | j+N ),O(|x | j+N ),O(|x | j+P−1)).
Concerning η( j) := −[

K ( j) ◦ R( j) − K ( j) ◦ R( j−1)
]
, we write it as

−
∫ 1

0

(
∂x K

( j) · R( j)
x (θ) + ∂θK

( j) · R j
θ (θ)

)
ds,

where ∂x K ( j), ∂y K ( j) are evaluated at R( j−1) + sR( j). The computation gives

η( j) = −
⎛
⎝
R j+N−1
x (θ)x j+N−1 + ∂θ K̃ N

x (θ + ω)R j+P−2
θ x j+N+P−2

0
R j+P−2

θ (θ)x j+P−2

⎞
⎠ + e3

with e3 = (O(|x | j+N ),O(|x | j+N ),O(|x | j+P−1)).
From these computations we obtain

E ( j)
x (x, θ) = [

K̃ j+N−1
x (θ) − K̃ j+N−1

x (θ + ω) +
(
ja − Na(θ)

)
K

j
x − R j+N−1

x (θ)

− ∂θa(θ)K
j−1
θ + fN−1,1(θ)K

j
y + E j+N−1

x (θ)
]
x j+N−1 +O(|x | j+N )

− [
∂θ K̃

N
x (θ + ω)R j+P−2

θ + ∂θa(θ)K̃ j+P−2
θ

]
x j+N+P−2, (43)

E ( j)
y (x, θ) = [

K̃ j+N−1
y (θ) − K̃ j+N−1

y (θ + ω) +
(
B(θ) + jaId

)
K

j
y

+ E j+N−1
y (θ)

]
x j+N−1 +O(|x | j+N ), (44)

E ( j)
θ (x, θ) = [

K̃ j+P−2
θ (θ) − K̃ j+P−2

θ (θ + ω) − R j+P−2
θ (θ) + E j+P−2

θ (θ)
]
x j+P−2

+ ( j − 1)aK
j−1
θ x j+N−2 +O(|x | j+P−1). (45)

The condition on the order E ( j), namely (42) for j , provides the so-called cohomological
equations in this setting. Next we solve them distinguishing cases when necessary and
trying to keep R as simple as possible, namely, taking the value 0 forR( j) if it is possible.

We start with (44). We take

K
j
y = −[B + jaId]−1E

j+N−1
y , K̃ j+N−1

y = SD
(
B̃ · K j

y + Ẽ j+N−1
y

)
.

Then from (45), when P < N

R j+P−2
θ = R

j+P−2
θ = E

j+P−2
θ , K

j−1
θ free, K̃ j+P−2

θ = SD
(
Ẽ j+P−2

θ

)
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and if P = N

R j+P−2
θ = 0, K

j−1
θ = − E

j+P−2
θ

( j − 1)a
, K̃ j+P−2

θ = SD
(
Ẽ j+P−2

θ

)
.

Finally, we deal with (43). For that we introduce the already known functions

ϕ( j)(θ) = − ∂θa(θ)K
j−1
θ + fN−1,1(θ)K

j
y + E j+N−1

x (θ)

ψ( j)(θ) =
{

ϕ( j)(θ), P 
= 1,

ϕ( j)(θ) − ∂θ K̃ N (θ + ω)R j+P−2
θ − ∂θa(θ)K̃ j+P−2

θ (θ), P = 1,

and we notice that we have to solve

K̃ j+N−1
x (θ) − K̃ j+N−1

x (θ + ω) +
(
ja − Na(θ)

)
K

j
x − R j+N−1

x (θ) = ψ( j)(θ).

If j = N we take

R j+N−1
x = R

j+N−1
x = ψ

( j)
, K

j
x free, K̃ j+N−1

x = SD
(
ψ̃( j) − NãK

j
x

)

and when j 
= N ,

R j+N−1
x = 0, K

j
x = ψ

( j)

( j − N )a
, K̃ j+N−1

x = SD
(
ψ̃( j) − NãK

j
x

)
.

In this way we have proven that we can always obtain K( j) and R( j) such that (9) is
satisfied.

It only remains to discuss about the case P > N . In this case we simply notice
that we always can take P = N and hP ≡ 0. Notice that when P ≥ N , we can take
R( j)

θ = θ + ω for any j ∈ N.

4.4. The stable manifold of the invariant torus. Proof of Corollary 2.6. The existence
of K and R satisfying the invariance condition F ◦ K − K ◦ R = 0 and (10) is straight-
forwardly guaranteed by Theorems 2.1 and 2.3.

To check that K is C∞ on [0, ρ) × T
d × 	, we first note that, if h is an analytic

function in the sector S such that h = O(|x |M ), then, for t ∈ R ∩ S, we have that its
l-derivative satisfies ∂ lx h = O(|x |M−l). This property is a direct consequence of the
geometry of the set S and Cauchy’s theorem.

Take j = N and let K (N ) and R(N ) be given by Theorem 2.3. Let UC×T
d
σ ×	C be a

complex domain to which F has an analytic extension. Applying Theorem 2.1 we obtain
that there exists a sector S(N ) = S(βN , ρN ) and an analytic function �(N ) = O(|x |N+1)

defined in S(N )×T
d
σ ×	C and satisfying F (N )◦(K (N )+�(N ))−(K (N )+�(N ))◦R(N ) =

0. Then, we have that for x ∈ R ∩ S j

∂ lx�
(N ) = O(|x |N+1−l).

As a consequence the parameterization K (N ) + �(N ) is CN on [0, ρN ) × T
d × 	. Now

we consider j > N and, applying again Theorems 2.3 and 2.1 in the sameway as before,
we obtain K ( j) + �( j) is C j on [0, ρ j ) × T

d × 	. Here we also use R = R(N ).
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As we pointed out in Theorem 2.3, K ( j) − K (N ) = O(|x |N+1). Then, by the unique-
ness of�( j), we have that�(N ) = K ( j) −K (N ) +�( j). Therefore K := K (N ) +�(N ) =
K ( j) + �( j) is C j on [0, ρ j ) × T

d × 	 and CN at [0, ρN ) × T
d × 	. If ρN ≤ ρ j we

are done. Assume then that ρN > ρ j . Since a(λ) > 0, there exists k > 0 such that
Rk
t ([0, ρN ), θ, λ) ⊂ [0, ρ j ). Then, from the invariance equation, we have that

K = F−k ◦ K ◦ Rk,

and therefore we can extend the domain of K from [0, ρ j )×T
d ×	 to [0, ρN )×T

d ×	.
We conclude then that for all j , K is C j in the domain [0, ρN ) × T

d × 	 and the result
is proven.

The property W s
ρ = K ([0, ρ)) can be proven using the same geometric arguments

as the ones in [BH08]. We omit the proof.

5. Proof of the Results. Flow Case

Wewill deduce the a posteriori result about the parabolic stable manifold (Theorem 2.8)
from the corresponding result formaps bymeans of an adequate stroboscopicmap. How-
ever, the result about the approximation of the parabolic manifold (Theorem 2.9) will
be proven directly. The reason is to provide an algorithm to compute such approxima-
tion avoiding the calculation of the stroboscopic map, which would involve the Taylor
expansions of the flow around the origin.

We begin in Sect. 5.1 reminding key facts on the small divisors equation we will
encounter in the vector field setting. In Sects. 5.2 and 5.3 we will prove Theorems 2.8
and 2.9 respectively.

As we did in Sect. 4.1 we omit the parameters β, ρ in S and the dependence on λ of
our notation.

5.1. Small divisors equation. In the setting of differential equations, the small divisors
equation is

∂θϕ(θ, λ) · ω = h(θ, λ), (46)

with h : Td × 	 → R
k and ω ∈ R

d . If h(θ, λ) = ∑
k∈Zd , k 
=0 hk(λ)e2π ik·θ has zero

average and k · ω 
= 0 for all k 
= 0, equation (46) has a formal solution

ϕ(θ, λ) =
∑

k∈Zd

ϕk(λ)e2π ik·θ , ϕk(λ) = hk(λ)

2π ik · ω
, k 
= 0.

Here ϕ0(λ) is free. In this case the analytical result reads as Theorem 4.1, using the
definition of Diophantine vector for vector fields in Sect. 2.1.

As a consequence, if h : Td
σ ×Hσ × 	C → C

k is quasiperiodic in t with frequency
vector ν ∈ R

d ′
, (ω, ν) ∈ R

d+d ′
is Diophantine and has zero average, then, the equation

(∂θϕ(θ, t, λ), ∂tϕ(θ, t, λ)) · (ω, 1) = h(θ, t, λ) (47)

has a unique solution with zero average defined on T
d
σ × Hσ × 	C and bounded in

T
d
σ ′ × Hσ ′ × 	C for any 0 < σ ′ < σ . Indeed, since h(θ, t, λ) = ĥ(θ, νt, λ) with

ĥ : Td+d ′
σ ′ × 	C → C

k , Eq. (47) is equivalent to

(∂θ ϕ̂(θ, τ, λ), ∂τ ϕ̂(θ, τ, λ)) · (ω, ν) = ĥ(θ, τ, λ). (48)
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Now, for the convenience of the reader, we state the vector field version of the small
divisors lemma (analogous to Theorem 4.1).

Theorem 5.1. Let h : T
m
σ × 	C → C

k be analytic with zero average and ω ∈ R
m

Diophantine with τ ≥ m − 1 (see the notation in Sect. 2.1).
Then, there exists a unique analytic solution ϕ : Tm

σ × 	C → C
k of the equation

∂θϕ(θ, λ) · ω = h(θ, λ)

with zero average. Moreover

sup
(θ,λ)∈Tm

σ−δ×	C

‖ϕ(θ, λ)‖ ≤ Cδ−τ sup
(θ,λ)∈Tm

σ ×	C

‖h(θ, λ)‖, 0 < δ < σ,

where C depends on τ and m but not in δ.

Applying Theorem 5.1 to Eq. (48) with frequency vector (θ, λ) we obtain a unique
solution ϕ̂ : Td+d ′

σ ′ × 	C → C
k with zero average. Then, ϕ(θ, t, λ) = ϕ̂(θ, νt, λ) is the

unique solution of Eq. (47) with zero average. We will denote it by SD(h).

5.2. Parabolic manifolds for vector fields depending quasiperiodically on time. The
proof of Theorem 2.8 is split into three main parts, the first one contains preliminary
reductions, the second one consists in applying Theorem 2.1 to the time-1 map obtaining
a parabolic stable manifold for this map, finally the third part concludes the proof of
Theorem2.8 by seeking the parabolic stablemanifold for the vector field X . This strategy
is developed in Sects. 5.2.1, 5.2.2 and 5.2.3 below. It was also used in [BFM15a].

From now on we consider a vector field X (x, y, θ, t) depending quasiperiodically on
time, having the form given in (11) and assume that all the hypotheses in Theorem 2.8
hold true. From now on we will assume P = N since hN ≡ 0 satisfies our conditions.

5.2.1. Preliminary reductions and notation First, we rewrite the vector field as an au-
tonomous skew product vector field

ẋ = −â(θ, τ )xN + f̂N (x, y, θ, τ ) + f̂≥N+1(x, y, θ, τ )

ẏ = xN−1 B̂(θ, τ )y + ĝN (x, y, θ, τ ) + ĝ≥N+1(x, y, θ, τ )

θ̇ = ω + ĥN (x, y, θ, τ ) + ĥ≥N+1(x, y, θ, τ )

τ̇ = ν,

(49)

where â : Td × T
d ′ → C, a(θ, t) = â(θ, νt) and similarly for the other quantities with

hat.
We denote by qX the new vector field:

qX(x, y, θ, τ ) =
(
X̂(x, y, θ, τ )

ν

)
.

We also introduce

qK≤(x, θ, τ ) =
(
K̂≤(x, θ, τ )

τ

)
, qY≤(x, θ, τ ) =

(
Ŷ≤(x, θ, τ )

ν

)
.
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A straightforward computation shows that with this notation, condition (12) on E≤ reads

qE≤ := qX ◦ qK≤ − D qK≤
qY≤ = (O(|x |Q+N ),O(|x |Q+N ),O(|x |Q+N−1), 0), (50)

where D = ∂x,θ,τ .
Next we average to transform â(θ, τ ) to a and B̂(θ, τ ) to B. This is accomplished

with two successive elementary changes of variables:

T1(x, y, θ, τ ) = (x + c1(θ, τ )xN , y, θ, τ ),

T2(x, y, θ, τ ) = (x, xN−1C2(θ, τ )y, θ, τ ).

The first one transforms the monomial −â(θ, t)xN of the first component of the vector
field into

[ − â + ∂θc1 · ω + ∂τ c1 · ν
]
xN

while keeps all other monomials of order N invariant. Recall that we have introduced
the notation (Sect. 2.1) of h̃ = ĥ − h to denote the oscillatory part of a function on a
torus. Then, using the small divisors lemma, we can choose c1 such that

∂θc1 · ω + ∂τ c1 · ν = ã

and hence the monomial becomes −axN .
In an analogous way we choose C2 to transform the monomial xN−1 B̂(θ, τ )y of the

second component of the vector field into xN−1By.

5.2.2. From flows to maps. Let ϕ(t; x, y, θ, τ ) be the solution of the vector field qX and
ψ(t; x, θ, τ ) the one of the vector field qY≤. We define the maps

F(x, y, θ, τ ) = ϕ(1; x, y, θ, τ ), R(x, θ, τ ) = ψ(1; x, θ, τ ).

Lemma 5.2. We have that

(1) F is analytic in UC × T
d+d ′
σ × 	C where UC is a neighbourhood of (0, 0) ∈ C

1+m,
(θ, τ ) ∈ T

d+d ′
σ and 	C ⊂ C

p a complex extension of 	.
(2) F has the form

F

⎛
⎜⎝
x
y
θ

τ

⎞
⎟⎠ =

⎛
⎜⎜⎝

x − axN + qfN (x, y, θ, τ ) + qf≥N+1(x, y, θ, τ )

y + xN−1By + qgN (x, y, θ, τ ) + qg≥N+1(x, y, θ, τ )

θ + ω + qhN (x, y, θ, τ ) + qh≥N+1(x, y, θ, τ )

τ + ν

⎞
⎟⎟⎠ . (51)

(3) R has the form

R(x, θ, τ ) = (x − axN +O(|x |N+1), θ + ω, τ + ν).
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Proof. Let z = (x, y, θ, τ ), η≥N := qhN + qh≥N+1 and φ(t; z) := ϕ(t; z) − γ (t) where

γ (t) = (x, y, θ + ωt, τ + νt)�.

Then, denoting by Lip qX the Lipschitz constant of qX in the domain UC,

‖φ(t; z)‖ ≤
∫ t

0

∥∥∥(
qXx (γ (s)), qXy(γ (s)), η≥N (γ (s)), 0

)∥∥∥ ds +
∫ t

0
Lip qX ‖φ(s; z)‖ ds.

By Gronwall’s lemma we get ‖φ(t; z)‖ ≤ C‖(x, y)‖N etLip qX and hence

ϕ(t; z) = γ (t) +O(‖(x, y)‖N ). (52)

On the other hand, by Taylor’s theorem

ϕ(t; z) = ϕ(0; z) + ϕ̇(0; z)t +
∫ t

0
(t − s)ϕ̈(s; z) ds

= z + qX(z)t +
∫ t

0
(t − s)D qX(ϕ(s; z)) qX(ϕ(s; z)) ds.

(53)

By (52)

‖D qX(ϕ(s; z))‖ ≤ C‖(x, y)‖N−1, ‖ qX(ϕ(s; z)) − (0, 0, ω, ν)�‖ ≤ C‖(x, y)‖N

and then

D qX(ϕ(s; z)) qX(ϕ(s; z)) = D qX(ϕ(s; z))
⎛
⎜⎝

0
0
ω

ν

⎞
⎟⎠ +O(‖(x, y)‖2N−1) =: e.

Since the derivatives ∂θ
qX and ∂τ

qX are of order N the first component of e in the right
hand side contains terms of order N . However, since after the averaging procedure a
depends neither on θ nor on t , there is not amonomial related to xN in the first component
of e. Analogously, there is not a monomial related to xN−1y in the second component
of e.

Taking t = 1 in (53) we get the form (51).
The proof of the third item follows exactly in the same way, just taking into account

that qY≤ has no y component. ��
Lemma 5.3. Let e(t, x, θ, τ ) := ϕ(t; qK≤(x, θ, τ )) − qK≤(ψ(t; x, θ, τ )). We have

e(t, x, θ, τ ) = (
O(|x |Q+N ),O(|x |Q+N ),O(|x |Q+N−1), 0)

uniformly for t ∈ [0, 1] and (θ, τ ) ∈ T
d+d ′
σ .
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Proof. Let v = (x, θ, τ ). From (50) we have that

e(x, v) =
∫ t

0

qX(ϕ(s; qK≤(v))) ds −
∫ t

0
D qK≤(ψ(s; v))qY≤(ψ(s; v)) ds

=
∫ t

0

[
qX(ϕ(s; qK≤(v))) − qX( qK≤(ψ(s; v)))

]
ds +

∫ t

0

qE≤(ψ(s; v)) ds.

Given v = (x, θ, τ ) fixed, we introduce

χ(s) = |x |−(Q+N )|ex (s, v)| + |x |−(Q+N )‖ey(s, v)‖ + |x |−(Q+N−1)‖eθ (s, v)‖.
On the one hand, by the estimates in the proof ofLemma5.2 and (52),‖K≤

x,y(ψ(s; v))‖ ≤
κ|x |, ‖ϕx,y(s; v)‖ ≤ κ|x | and |ψx (s; v)| ≤ κ|x | uniformly in s and v. On the other hand,
‖D qX(u, y, θ, τ )‖ ≤ C1|u|N−1 for (u, y) ∈ B� ⊂ C

1+m uniform with respect to � and
θ, τ . Using these facts and (50) we have that

χ(t) ≤|x |−(Q+N )

∫ t

0

∣∣ qE≤
x (ψ(s; v))

∣∣ ds + |x |−(Q+N )

∫ t

0

∥∥ qE≤
y (ψ(s; v))

∥∥ ds

+ |x |−(Q+N−1)
∫ t

0

∥∥ qE≤
θ (ψ(s; v))

∥∥ ds

+ C1|x |−(Q+N )

∫ t

0

∣∣x |N−1[|ex (s, v)| + ‖ey(s, v)‖ + |x |‖eθ (s, v)‖] ds

≤C + C1|x |N−1
∫ t

0
χ(s) ds ≤ C + C2

∫ t

0
χ(s) ds,

where we have used that |x | is small enough. By Gronwall’s lemma, χ(t) ≤ CeC2t , for
0 ≤ t ≤ 1, and from this inequality we obtain the statement. ��
Remark 5.4. Note that Lemmas 5.2 and 5.3 provide the hypotheses stated in Theorem 2.1
for both F and R.

5.2.3. From maps to flows. Putting t = 1 in Lemma 5.3 we have

F( qK≤(x, θ, τ )) − qK≤(R(x, θ, τ )) = O(|x |Q+N , |x |Q+N , |x |Q+N−1).

Then by Theorem 2.1, there exists � ∈ XQ+1 × XQ+1 × XQ such that

F( qK≤ + �) − ( qK≤ + �) ◦ R = 0, in S(β, ρ) × T
d+d ′
σ ′

for some parameters β, ρ, σ ′. Notice that we have applied Theorem 2.1 with the angles
(θ, τ ). Let

qK = qK≤ + � and Ks(x, θ, τ ) = ϕ(−s; qK (ψ(s; x, θ, τ ))).

Lemma 5.5. Given x, θ, τ belonging to S(β, ρ) × T
d+d ′
σ ′ :

(1) �τ(x, θ, τ ) = 0, qKτ (x, θ, τ ) = τ .
(2) Ks − qK≤ = O(|x |Q+1, |x |Q+1, |x |Q, 0).
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(3) F ◦Ks = Ks ◦R and as a consequence, by the uniqueness statement of Theorem 2.1,
Ks = qK for all s.

Proof. We start with the first item. Since Fτ (x, y, θ, τ ) = ϕτ (1; x, y, θ, τ ), integrating
Eq. (49) we obtain Fτ (x, y, θ, τ ) = τ + ν. In the same way Rτ (x, θ, τ ) = τ + ν. Also

0 = Fτ ◦ ( qK≤ + �) − ( qK≤
τ + �τ) ◦ R = qK≤

τ + �τ + ν − Rτ − �τ ◦ R

= �τ − �τ ◦ R.

From this we have �τ = �τ ◦ R = �τ ◦ R j for all j ≥ 0. Since �τ = O(|x |Q−1) and
(R j )x goes to zero as j → ∞ (see Lemma 4.5) we obtain �τ ≡ 0.

To prove the second item, we decompose

Ks(x, θ, τ ) = ϕ(−s; qK (ψ(s; x, θ, τ ))) = e1 + e2,

where

e1 = ϕ(−s; qK≤(ψ(s; x, θ, τ )))

and

e2 =
∫ 1

0
Dϕ

( − s; qK≤(ψ(s; x, θ, τ )) + ξ�(ψ(s; x, θ, τ ))
)
�(ψ(s; x, θ, τ )) dξ.

By Lemma 5.3 we have

e1 = qK≤(ψ(−s;ψ(s; x, θ, τ ))) + e(−s, ψ(s; x, θ, τ ))

= qK≤(x, θ, τ ) +O(|x |Q+N , |x |Q+N , |x |Q+N−1, 0).

Since ∂θϕx , ∂θϕy, ∂τ ϕx , ∂τ ϕy are O(|x |N ), ∂xϕτ , ∂yϕτ , ∂θψτ ≡ 0 and � ∈ XQ+1 ×
XQ+1 × XQ × {0}, we have that

e2 = O(|x |Q+1, |x |Q+1, |x |Q, 0).

To prove the third item, we compute

F(Ks(x, θ, τ )) = ϕ(−s + 1; qK (ψ(s; x, θ, τ ))) = ϕ(−s; F( qK (ψ(s; x, θ, τ )))

= ϕ(−s; qK (R(ψ(s; x, θ, τ ))) = ϕ(−s; qK (ψ(s + 1; x, θ, τ )))

= ϕ(−s; qK (ψ(s; R(x, θ, τ ))) = Ks(R(x, θ, τ ))

and the result is proven. ��
Finally, we define K (x, θ, t) = qKx,θ (x, θ, νt) and we prove below that it satisfies

the semiconjugation condition for flows, thus providing the parameterization claimed in
Theorem 2.8.

Lemma 5.6. We have

(1) ϕ(s; qK (x, θ, νt)) = qK (ψ(s; x, θ, νt)).
(2) X (K (x, θ, t), νt) = DK (x, θ, t)Y (x, θ, t) + ∂t K (x, θ, t).
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Proof. (1) follows immediately from the definition of Ks and the equality Ks = qK .
For (2) we take derivatives with respect to s on both sides of the equality in (1) and

obtain

X̂(ϕ(s; qK (x, θ, νt))) = Dx,θ qK (ψx,θ (s; x, θ, νt), ψτ (s; x, θ, νt))

× qYx,θ (ψx,θ (s; x, θ, νt), ψτ (s; x, θ, νt))

+ ∂τ
qK (ψ(s; x, θ, νt)) · ν,

where we have used that ψτ (s; x, θ, νt) = ν(s + t).
Taking s = 0, keeping the components with respect to x, y and θ and taking into

account the definitions of X̂ , Ŷ , K̂ and that qKτ (x, θ, τ ) = τ , we finally obtain

X (K (x, θ, t), t) = DK (x, θ, t)Y (x, θ, t) + ∂t K (x, θ, t).

��
Remark 5.7. In the autonomous case, the map F is independent of τ . Then, if K≤ does
not depend on t , the parameterization K is also independent of t .

5.3. Formal parabolic manifold, vector field case. Proof of Theorem 2.9. We will not
write the dependence of the different objects that appear in this section with respect to
λ, but we assume all depend analytically on λ.

We prove by induction over j that there exist K ( j) and Y ( j). Assuming the form (13),
(14), (15), (16) and (17) for K ( j)

x , K ( j)
y , K ( j)

θ , Y ( j)
x and Y ( j)

θ respectively, we will prove

that at the step j we are able to determine the quantities K
j
x,y , K

j−1
θ , K̃ j+N−1

x,y , K̃ j+P−2
θ ,

Y j+N−1
x and Y j+P−2

θ so that the order condition (18) for the remainder E ( j) is fulfilled.
As for maps, the only case we need to take into consideration is P ≤ N , since the

conclusions for the case P > N can be deduced from the former by taking hN = 0.
We first deal with j = 1. We write

K (1)
x (x, θ, t) = x + K̃ N

x (θ, t)xN , K (1)
y (x, θ, t) = 0, K (1)

θ (x, θ, t) = θ,

Y (1)
x (x, θ, t) = Y N

x (θ, t)xN , Y (1)
θ (x, θ, t) = ω,

and we compute E (1) = X ◦ K (1) − DK (1)Y (1) − ∂t K (1). Recall here that D = ∂x,θ .
From the form (11) we obtain

E (1)
x (x, θ, t) = [−a(θ, t) − Y N

x (θ, t) − ∂θ K̃
N
x (θ, t) ω − ∂t K̃

N
x (θ, t)]xN +O(|x |N+1),

E (1)
y (x, θ, t) = O(|x |N+1), E (1)

θ (x, θ, t) = O(|x |P ).

To have E (1)
x (x, θ, t) = O(|x |N+1) we take

Y
N
x = −a, Ỹ N

x = 0, K̃ N
x = −SD(̃a).

For j ≥ 2, assuming the induction hypothesis, we write K ( j) = K ( j−1) + K( j) and
Y ( j) = Y ( j−1) + Y( j) with

K( j) =
⎛
⎜⎝

K
j
x x

j + K̃ j+N−1
x (θ, t)x j+N−1

K
j
yx

j + K̃ j+N−1
y (θ, t)x j+N−1

K
j−1
θ x j−1 + K̃ j+P−2

θ (θ, t)x j+P−2

⎞
⎟⎠ , Y( j) =

(
Y j+N−1
x (θ, t)x j+N−1

Y j+P−2
θ (θ, t)x j+P−2

)
.



108 I. Baldomá, E. Fontich, P. Martín

Using the induction hypothesis

E ( j−1) = (E j+N−1
x (θ, t)x j+N−1, E j+N−1

y (θ, t)x j+N−1), E j+P−2
θ (θ, t)xx+P−2)

+ (O(|x | j+N ),O(|x | j+N ),O(|x | j+P−1))

and proceeding as in Sect. 4.3 we conclude that

E ( j)
x (x, θ, t) = [ − ∂θ K̃

j+N−1
x (θ, t)ω − ∂t K̃

j+N−1
x (θ, t) +

(
ja − Na(θ, t)

)
K

j
x

− Y j+N−1
x (θ, t) − ∂θa(θ, t)K

j−1
θ + fN−1,1(θ, t)K

j
y

+ E j+N−1
x (θ, t)

]
x j+N−1 +O(|x | j+N )

− [
∂θ K̃

N
x (θ, t)Y j+P−2

θ (θ, t) + ∂θa(θ, t)K̃ j+P−2
θ (θ, t)

]
x j+N+P−2,

E ( j)
y (x, θ, t) = [ − ∂θ K̃

j+N−1
y (θ, t)ω − ∂t K̃

j+N−1
y (θ, t) +

(
B(θ, t) + jaId

)
K

j
y

+ E j+N−1
y (θ, t)

]
x j+N−1 +O(|x | j+N ),

E ( j)
θ (x, θ, t) = [ − ∂θ K̃

j+P−2
θ (θ, t)ω − ∂t K̃

j+P−2
θ (θ, t) − Y j+P−2

θ (θ, t)

+ E j+P−2
θ (θ, t)

]
x j+P−2 + ( j − 1)aK

j−1
θ x j+N−2 +O(|x | j+P−1).

We notice that the above formulae correspond to the ones in (43), (44) and (45) for
maps substituting R by the vector field Y and the operator K̃ (θ + ω) − K̃ (θ) by the
corresponding infinitesimal version for flows

∂θ K̃ · ω + ∂t K̃

mentioned in Sect. 5.1. We recall that the notation SD has different meanings whether it
is used in the map or the flow settings, see Sects. 4.1 and 5.1 where the main features of
the small divisors equation in these contexts are exposed. As a consequence, the same
formulae given along Sect. 4.3 apply in this case. We have indeed:

K
j
y = −[B + jaId]−1E

j+N−1
y , K̃ j+N−1

y = SD
(
B̃ · K j

y + Ẽ j+N−1
y

)
.

When P < N

Y j+P−2
θ = Y

j+P−2
θ = E

j+P−2
θ , K

j−1
θ free, K̃ j+P−2

θ = SD
(
Ẽ j+P−2

θ

)

and if P = N

Y j+P−2
θ = 0, K

j−1
θ = − E

j+P−2
θ

( j − 1)a
, K̃ j+P−2

θ = SD
(
Ẽ j+P−2

θ

)
.

Defining

ϕ( j)(θ) = − ∂θa(θ)K
j−1
θ + fN−1,1(θ)K

j
y + E j+N−1

x (θ)

ψ( j)(θ) =
{

ϕ( j)(θ), P 
= 1,

ϕ( j)(θ) − ∂θ K̃ N (θ + ω)Y j+P−2
θ − ∂θa(θ)K̃ j+P−2

θ (θ), P = 1,

if j = N we take

Y j+N−1
x = Y

j+N−1
x = ψ

( j)
, K

j
x free, K̃ j+N−1

x = SD
(
ψ̃( j) − NãK

j
x

)
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and when j 
= N ,

Y j+N−1
x = 0, K

j
x = ψ

( j)

( j − N )a
, K̃ j+N−1

x = SD
(
ψ̃( j) − NãK

j
x

)
.

Moreover all terms depend analytically on λ.
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