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Abstract In this paper we prove the breakdown of a heteroclinic connection in the analytic
versal unfoldings of the generic Hopf-zero singularity in an open set of the parameter space.
This heteroclinic orbit appears at any order if one performs the normal form around the
origin, therefore it is a phenomenon “beyond all orders”. In this paper we provide a formula
for the distance between the corresponding stable and unstable one-dimensional manifolds
which is given by an exponentially small function in the perturbation parameter. Our result
applies both for conservative and dissipative unfoldings.

Keywords Exponentially small phenomena · Splitting of separatrices · Hopf-zero
singularity · Singular perturbation theory

1 Introduction and Main Result

The so-called Hopf-zero (or central) singularity consists in a vector field X∗ : R
3 → R

3,
having the origin as a critical point, and such that the eigenvalues of the linear part at this
point are 0, ±iα∗, for some α∗ �= 0. Hence, after a linear change of variables, we can assume
that the linear part of this vector field near the origin is:

DX∗(0, 0, 0) =
⎛
⎝

0 α∗ 0
−α∗ 0 0

0 0 0

⎞
⎠ .
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In this paper, assuming analyticity and some generic conditions on X∗, we will study some
heteroclinic phenomena which appear in versal analytic unfoldings of this singularity in
an open region of the parameter space. Note that, in the linear setting, it is clear that this
singularity can be met by a generic family of linear vector fields depending on at least two
parameters. Thus, it has codimension two. However, since DX∗(0, 0, 0) has zero trace, it is
reasonable to study it in the context of conservative vector fields. In this case, the singularity
can be met by a generic linear family depending on one parameter, and so it has codimension
one.

Here, we will work in the general setting (that is, with two parameters), since the conser-
vative one is just a particular case of it. Hence, we will study generic analytic families Xμ,ν
of vector fields on R

3 depending on two parameters (μ, ν) ∈ R
2, such that X0,0 = X∗, the

vector field described above. Following [9,10], after some changes of variables we can write
Xμ,ν in its normal form of order two, namely:

dx̄

dt̄
= x̄ (β0ν − β1 z̄)+ ȳ

(
α∗ + α1ν + α2μ+ α3 z̄

) + O3(x̄, ȳ, z̄, μ, ν),

d ȳ

dt̄
= −x̄

(
α∗ + α1ν + α2μ+ α3 z̄

) + ȳ (β0ν − β1 z̄)+ O3(x̄, ȳ, z̄, μ, ν), (1)

dz̄

dt
= −γ0μ+ γ1 z̄2 + γ2(x̄

2 + ȳ2)+ γ3μ
2 + γ4ν

2 + γ5μν + O3(x̄, ȳ, z̄, μ, ν).

Note that the coefficients β1, γ1, γ2 and α3 depend exclusively on the vector field X∗. We
also observe that the conservative setting corresponds to taking ν = 0, γ1 = β1 and imposing
also that the higher order terms are divergence-free.

From now on, we will assume that X∗ satisfies the following generic conditions:

β1 �= 0, γ1 �= 0. (2)

Moreover, we will consider unfoldings satisfying the generic conditions:

β0 �= 0, γ0 �= 0.

Depending on the other coefficients αi and γi , one obtains different qualitative behaviors for
the orbits of the vector field Xμ,ν . The different versal unfoldings have been widely studied
in the past, see for example [4,9,10,18,19]. However, if (μ, ν) belongs to a particular open
set of the parameter space, these unfoldings are still not completely understood. This set is
defined by the following conditions:

γ0γ1μ > 0, |β0ν| < |β1|
√|μ|. (3)

In this paper we will study the unfoldings Xμ,ν with the parameters belonging to the open set
defined by (3). In fact, redefining the parameters μ and ν and the variable z̄, one can achieve:

β0 = γ0 = 1, β1 > 0, γ1 > 0, (4)

and consequently the open set defined by (3) is now:

μ > 0, |ν| < β1
√
μ. (5)
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Moreover, dividing the variables x̄, ȳ and z̄ by
√
γ1, and rescaling time by

√
γ1, redefining the

coefficients and denoting α0 = α∗/√γ1, we can assume that γ1 = 1, and therefore system
(1) becomes:

dx̄

dt̄
= x̄ (ν − β1 z̄)+ ȳ (α0 + α1ν + α2μ+ α3 z̄)+ O3(x̄, ȳ, z̄, μ, ν),

d ȳ

dt̄
= −x̄ (α0 + α1ν + α2μ+ α3 z̄)+ ȳ (ν − β1 z̄)+ O3(x̄, ȳ, z̄, μ, ν), (6)

dz̄

dt
= −μ+ z̄2 + γ2(x̄

2 + ȳ2)+ γ3μ
2 + γ4ν

2 + γ5μν + O3(x̄, ȳ, z̄, μ, ν).

We denote by X2
μ,ν , usually called the normal form of second order, the vector field obtained

considering the terms of (6) up to order two. Therefore, one has:

Xμ,ν = X2
μ,ν + F2

μ,ν, where F2
μ,ν(x̄, ȳ, z̄) = O3(x̄, ȳ, z̄, μ, ν).

Similarly, doing the normal form procedure up to any finite order n, one has:

Xμ,ν = Xn
μ,ν + Fn

μ,ν n ≥ 2,

where Xn
μ,ν(x̄, ȳ, z̄) is a polynomial of degree n and:

Fn
μ,ν(x̄, ȳ, z̄) = On+1(x̄, ȳ, z̄, μ, ν).

Moreover, one can show (see [9,10]) that if μ and ν are small enough:

1. Xn
μ,ν has two critical points S̄n±(μ, ν) = (0, 0, z̄n±(μ, ν)), with:

z̄n±(μ, ν) = ±√
μ+ O((μ2 + ν2)1/2),

with eigenvalues:

λ±
1 = ±2

√
μ+ O

(
(μ2 + ν2)1/2

)
,

λ±
2 = ν ∓ β1

√
μ+ √

μ O((μ2 + ν2)1/2)+ i
(
α0 ± α3

√
μ+ O((μ2 + ν2)1/2)

)
,

λ±
3 = λ±

2 .

Hence, S̄n±(μ, ν) are both of saddle-focus type, S̄n+(μ, ν) having a one-dimensional unsta-
ble manifold and a two-dimensional stable one, and S̄n−(μ, ν) having a one-dimensional
stable manifold and a two-dimensional unstable one.

2. The segment of the z̄-axis between S̄n+(μ, ν) and S̄n−(μ, ν) is a heteroclinic connection.
3. If γ2 > 0 there exists a curve Γn in the (μ, ν)-plane of the form ν = m

√
μ+ O(μ3/2),

such that for (μ, ν) ∈ Γn the two-dimensional invariant manifolds of the points S̄n±(μ, ν)
are coincident. In the conservative setting (where ν = 0), the two-dimensional invariant
manifolds of S̄n±(μ) coincide for all values of μ.

Then, the whole vector field Xμ,ν = Xn
μ,ν + Fn

μ,ν will have two critical points S̄±(μ, ν)
close to S̄n±(μ, ν), which will be also of saddle-focus type. However it is reasonable to expect
that the heteroclinic connections will no longer persist. Moreover, for (μ, ν) close toΓn , what
one might expect is that this breakdown of the heteroclinic connections causes the birth of
homoclinic orbits to the point S+(μ, ν) (or S−(μ, ν)), giving rise to what is known as a
Šil’nikov bifurcation (see [14], and also [15] for the analogous phenomenon for vector fields
in R

4).
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The existence of such Šil’nikov bifurcations for C∞ unfoldings of the Hopf-zero sin-
gularity is studied in [4]. In the first place, in that paper the authors show that, doing the
normal form procedure up to order infinity and using Borel–Ritt theorem, one can write
Xμ,ν = X∞

μ,ν + F∞
μ,ν , where X∞

μ,ν has the same properties 1, 2 and 3 as the vector fields Xn
μ,ν

described above, and Fμ,ν = Fμ,ν(x, y, z) is a flat function at (x, y, z, μ, ν) = (0, 0, 0, 0, 0).
Their main result is that, given a family X∞

μ,ν there exist flat perturbations p∞
μ,ν such that the

family:

Xμ,ν = X∞
μ,ν + p∞

μ,ν (7)

possesses a sequence of Šil’nikov bifurcations, occurring at parameter points (μl , νl), l ∈ N,
which accumulate at (μ, ν) = (0, 0). Moreover, they prove that there is a dense subset of the
unfoldings which do not have a Šil’nikov bifurcation, but in the complement of this set this
Šil’nikov phenomenon occurs densely. Even if the authors give an existence theorem, they do
not provide conditions to check if a concrete family Xμ,ν possesses a Šil’nikov bifurcation.
Moreover, the fields of the family (7), for which they prove the existence of such bifurcations,
are C∞ but not analytic vector fields.

Our final goal will be to study real analytic unfoldings of the singularity X∗ and to provide
specific and explicit conditions over the family Xμ,ν that, under assumptions (4) and when
the parameters belong to the set defined by (5), ensure the existence of a Šil’nikov bifurcation.
We conjecture that a similar phenomenon as the one described in [4] will happen for a generic
analytic singularity X∗ and all unfoldings satisfying these assumptions.

However, before proving the existence of a homoclinic connection, one has to check that
the heteroclinic connections are broken indeed. In this paper we give a generic and numer-
ically checkable condition on X∗ which guarantees the breakdown of the one-dimensional
heteroclinic connection for any universal analytic unfolding satisfying (4) and (5). This is
just a first step towards proving the existence of Šil’nikov bifurcations for universal analytic
unfoldings of the Hopf-zero singularity. Following [6], it remains to find an asymptotic for-
mula for the splitting of the two-dimensional manifolds in order to finish the proof and check
that the hypotheses assumed are indeed satisfied.

The breakdown of this heteroclinic orbit has been proved, in the conservative setting, for
the so-called regular case in [2]. In this problem, the regular case consists in considering
that the terms of order three in system (6) are all divisible by μ. Under this assumption, the
authors give an asymptotic formula of the splitting distance of the one-dimensional invariant
manifolds when they meet the plane z̄ = 0, which is a suitable version of the Melnikov
integral (see [10,12]). Moreover, this distance turns out to be exponentially small with respect
to the perturbation parameter μ. Note that, as we pointed out above, the breakdown of the
heteroclinic orbit cannot be detected in the truncation of the normal form at any finite order and
therefore, as it is usually called, it is a phenomenon beyond all orders. Hence, the exponential
smallness of the splitting distance is in fact what one expected.

Here we deal with a generic X∗ and universal unfoldings, and therefore with the singular
case. We observe that this case is very relevant since the vector field X∗ and the unfoldings
considered in the regular case are not generic. Indeed, on one hand, the fact that the terms
of order three in system (6) must be all divisible by μ implies that the singularity X∗ cannot
have any term of order three, which obviously is not a generic condition. On the other hand,
it also implies that some coefficients of the Taylor expansion of the unfoldings Xμ,ν must be
equal to zero, and hence the result is not valid for generic unfoldings.

In this paper we give an asymptotic formula of the distance between the two one-
dimensional invariant manifolds when they meet the plane z̄ = 0, for generic unfoldings
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and both in the dissipative and conservative settings. This distance is again exponentially
small with respect to the parameter μ. However, Melnikov theory is no longer valid, and
one has to introduce some techniques that were not needed in [2], such as the study of the
so-called inner equation (for other examples of exponentially small phenomena where the
prediction given by Melnikov theory is not true, see for example [7,8,13,20]). Moreover,
from the asymptotic formula we obtain an explicit and checkable condition over the vector
field X∗ (namely, that a given constant C∗ is not zero) which ensures that, for every mem-
ber of the family Xμ,ν satisfying (4) and (5), the one-dimensional invariant manifolds of
S±(μ, ν) are not coincident. This constant C∗, which is usually called the Stokes constant
(see [16,17]), depends on the full jet of X∗ and therefore, up to now, it can only be computed
numerically. This computation is not trivial, and is not the goal of the present paper. It has
been done for particular examples in [11]. A detailed and accurate numerical computation
of the distance between the one-dimensional invariant manifolds (in conservative and non-
conservative settings) has been done in [6]. Moreover, in [6], the authors also provide some
numerical computations of the splitting of the two-dimensional ones, although an asymptotic
formula for it has not yet been rigorously proved.

The main result of the paper is the following:

Theorem Consider system (6), with μ, β1 > 0 and |ν| < β1
√
μ, which has two critical

points S±(μ, ν) of saddle-focus type. Then there exists a constant C∗, depending on the
full jet of X∗, such that the distance d̄u,s between the one-dimensional stable manifold of
S−(μ, ν) and the one-dimensional unstable manifold of S+(μ, ν) when they meet the plane
z̄ = 0 is given asymptotically, as μ → 0, by:

d̄u,s = μ− β1
2 e

− α0π
2
√
μ e

π
2 (α0h0− α1ν√

μ
+α3)

(
C∗ + O

(
1

log(1/μ)

))
,

where −h0 is the coefficient of z̄3 in the third equation of system (6).

Remark In the conservative setting we have ν = 0 and β1 = 1, and hence this distance is
given by:

d̄u,s = μ−1/2e
− α0π

2
√
μ e

π
2 (α0h0+α3)

(
C∗ + O

(
1

log(1/μ)

))
.

Corollary If C∗ �= 0 and μ is sufficiently small, the one-dimensional invariant manifolds of
S+(μ, ν) and S−(μ, ν) do not intersect.

2 Sketch of the Proof

The aim of this section is to give the main ideas of how Theorem 1 is proved.

2.1 Set-up and Notation

First of all we will rescale the variables and parameters so that the critical points are O(1),
and not O(

√
μ) as we had in system (6). We define the new parameters δ = √

μ, σ = δ−1ν,
and the new variables x = δ−1 x̄, y = δ−1 ȳ, z = δ−1 z̄ and t = δt̄ . Then, renaming the
coefficients b = γ2, c = α3 and d = β1, system (6) becomes:
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dx

dt
= x (σ − dz)+

(
α(δσ )

δ
+ cz

)
y + δ−2 f (δx, δy, δz, δ, δσ ),

dy

dt
= −

(
α(δσ )

δ
+ cz

)
x + y (σ − dz)+ δ−2g(δx, δy, δz, δ, δσ ),

dz

dt
= −1 + b(x2 + y2)+ z2 + δ−2h(δx, δy, δz, δ, δσ ),

(8)

where d > 0, f, g and h are real analytic functions of order three in all their variables,
δ > 0 is a small parameter and |σ | < d . Moreover, α(δσ ) is an analytic function such that
α(0) = α0 �= 0 and α′(0) = α1.

Remark 1 Without loss of generality, we can assume thatα0 and c are both positive constants.
In particular, for δ small enough, α(δσ ) will be also positive.

Remark 2 From now on, in order to shorten the notation, we will not write explicitly the
dependence of α with respect to δσ . That is, we will write α instead of α(δσ ). In fact, α will
be treated as a parameter independent of δ and σ , since there exist two constants K1 and K2

such that for δ small enough:

0 < K1 ≤ α(δσ ) ≤ K2,

and both constants are independent of these two parameters.

Below we summarize some properties of the rescaled system (8), which can be deduced
similarly as in [3].

Lemma 1 For any value of δ > 0, the unperturbed system (system (8) with f = g = h = 0)
verifies:

1. It possesses two hyperbolic fixed points S0± = (0, 0,±1) which are of saddle-focus type
with eigenvalues σ ∓ d + |α

δ
± c|i, σ ∓ d − |α

δ
± c|i , and ±2.

2. The one-dimensional unstable manifold of S0+ and the one-dimensional stable manifold of
S0− coincide along the heteroclinic connection {(0, 0, z) : −1 < z < 1}.This heteroclinic
orbit can be parameterized by

Υ0(t) = (0, 0, z0(t)) = (0, 0,− tanh t),

if we require Υ0(0) = (0, 0, 0).

Lemma 2 If δ > 0 is small enough, system (8) has two fixed points S±(δ, σ ) of saddle-focus
type:

S±(δ, σ ) = (x±(δ, σ ), y±(δ, σ ), z±(δ, σ )),

with:

x±(δ, σ ) = O(δ2, δ2σ 3) = O(δ2), y±(δ, σ ) = O(δ2, δ2σ 3) = O(δ2),

z±(δ, σ ) = ±1 + O(δ, δσ 3) = ±1 + O(δ).

S+(δ, σ ) has a one-dimensional unstable manifold and a two-dimensional stable one. Con-
versely, S−(δ, σ ) has a one-dimensional stable manifold and a two-dimensional unstable
one.

Moreover, there are no other fixed points of (8) in the closed ball B(δ−1/3).
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Remark 3 The fact that there are no other fixed points of the system inside the ball B(δ−1/3)

allows us to look for the one-dimensional invariant manifolds of the critical points as bounded
solutions (more precisely, solutions that stay in a ball centered at zero of radius independent
of δ) for positive and negative time respectively.

Next theorem, which we will prove in the following, is the version of Theorem 1 in the
new variables.

Theorem 1 Consider system (8), with δ, d > 0 and |σ | < d. Then there exists a constant
C∗, such that the distance du,s between the one-dimensional stable manifold of S−(δ, σ ) and
the one-dimensional unstable manifold of S+(δ, σ ), when they meet the plane z = 0, is given
asymptotically by:

du,s = δ−(1+d)e− α0π
2δ e

π
2 (α0h0−α1σ+c)

(
C∗ + O

(
1

log(1/δ)

))
,

being α0 = α(0), α1 = α′(0) and h0 = − limz→0 z−3h(0, 0, z, 0, 0).

Remark 4 The asymptotic formula provided in Theorem 1 for the distance du,s has the same
qualitative behavior as the one proved in [2] in the conservative setting for the regular case. The
main difference between both formulae is the constant C∗. While in Theorem 1 this constant
depends on the full jet of f, g, h and (at the moment) can only be computed numerically,
in the regular case C∗ is completely determined by means of the Borel transform of some
adequate analytic functions depending on f (0, 0, u, 0) and g(0, 0, u, 0).

Before we proceed, we introduce some notation that we will use for the rest of the paper.
On one hand, in C

n we will consider the norm |.| as:

|(z1, . . . , zn)| = |z1| + . . .+ |zn |,

where |z| stands for the ordinary modulus of a complex number. On the other hand, B(r0)

will stand for the open ball of any vector space centered at zero and of radius r0. Moreover,

we will write Bn(r0) to denote B(r0)× n)· · · ×B(r0).

2.2 Existence of Complex Parameterizations in the Outer Domains

As it is usual in works where exponentially small phenomena must be detected, the first
thing we have to do in order to prove Theorem 1 is to provide parameterizations of the
one-dimensional invariant manifolds of the critical points S±(δ, σ ). Moreover, these have to
be defined in some complex domains that are close to the singularities of the heteroclinic
connection of the unperturbed system.

However, first we will introduce some changes of variables that will simplify the proof.
The first one consists in performing a change that keeps the corresponding critical point
constant with respect to the parameters. For instance, to prove the existence of a complex
parameterization of the unstable manifold of S+(δ, σ ) we perform the O(δ)-close to the
identity change Cu

1 defined by:

(x̃, ỹ, z̃) = Cu
1 (x, y, z, δ, δσ ) = (x − x+(δ, σ ), y − y+(δ, σ ), z − z+(δ, σ )+ 1), (9)
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obtaining a system of the form:

dx̃

dt
= x̃ (σ − dz̃)+ (

α
δ

+ cz̃
)

ỹ + δ−2 f u(δx̃, δ ỹ, δz̃, δ, δσ ),

d ỹ

dt
= − (

α
δ

+ cz̃
)

x̃ + ỹ (σ − dz̃)+ δ−2gu(δx̃, δ ỹ, δz̃, δ, δσ ),

dz̃

dt
= −1 + b(x̃2 + ỹ2)+ z̃2 + δ−2hu(δx̃, δ ỹ, δz̃, δ, δσ ),

(10)

where f u(0, 0, δ, δ, δσ ) = gu(0, 0, δ, δ, δσ ) = hu(0, 0, δ, δ, δσ ) = 0 for all δ, and hence
has the critical point S+(δ, σ ) fixed at (0, 0, 1). Moreover f u, gu and hu are analytic and of
order three in all their variables.

After that we do the change:

(η, η̄, v) = C2(x̃, ỹ, z̃) = (x̃ + i ỹ, x̃ − i ỹ, z−1
0 (z̃)), (11)

where z0(t) = − tanh t is the third component of the heteroclinic connection Υ0(t) of the
unperturbed system. Then we obtain a system of the form:

dη

dt
= −

(α
δ

+ cz0(v)
)

iη + η (σ − dz0(v))+ δ−2 Fu
1 (δη, δη̄, δz0(v), δ, δσ ),

dη̄

dt
=

(α
δ

+ cz0(v)
)

i η̄ + η̄ (σ − dz0(v))+ δ−2 Fu
2 (δη, δη̄, δz0(v), δ, δσ ),

dv

dt
= 1 + bηη̄ + δ−2 Hu(δη, δη̄, δz0(v), δ, δσ )

−1 + z2
0(v)

,

(12)

where, again, Fu
1 (0, 0, δ, δ, δσ ) = Fu

2 (0, 0, δ, δ, δσ ) = Hu(0, 0, δ, δ, δσ ) = 0 for all δ and
are of order three, since:

Fu
1 (δη, δη̄, δz0(v), δ, δσ ) = f u

(
δ(η + η̄)

2
,
δ(η − η̄)

2
, δz0(v), δ, δσ

)

+ igu
(
δ(η + η̄)

2
,
δ(η − η̄)

2
, δz0(v), δ, δσ

)
,

Fu
2 (δη, δη̄, δz0(v), δ, δσ ) = f u

(
δ(η + η̄)

2
,
δ(η − η̄)

2
, δz0(v), δ, δσ

)

− igu
(
δ(η + η̄)

2
,
δ(η − η̄)

2
, δz0(v), δ, δσ

)
,

Hu(δη, δη̄, δz0(v), δ, δσ ) = hu
(
δ(η + η̄)

2
,
δ(η − η̄)

2
, δz0(v), δ, δσ

)
. (13)

To prove the existence of the stable manifold of S−(δ, σ ), instead of the change Cu
1 defined

in (9), we do the change:

(x̃, ỹ, z̃) = Cs
1(x, y, z, δ, δσ ) = (x − x−(δ, σ ), y − y−(δ, σ ), z − z−(δ, σ )+ 1),

and after that we do the change C2. Then we obtain a system analogous to (12),
where instead of Fu

i and Hu we have functions F s
i , H s such that F s

1(0, 0,−δ, δ, δσ ) =
F s

2(0, 0,−δ, δ, δσ ) = H s(0, 0,−δ, δ, δσ ) = 0 for all δ.
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We will denote:

η± = η±(δ, σ ) = x±(δ, σ )+ iy±(δ, σ ),
η̄± = η̄±(δ, σ ) = η±(δ, σ ), z± = z±(δ, σ ).

(14)

Remark 5 Note that as f, g and h are analytic functions, and since:

δη±, δη̄± = O(δ3), δ(z± ∓ 1) = O(δ2),

there exist some ru,s
0 , independent of δ and σ , such that for δ small enough Fu,s

1 , Fu,s
2 and

Hu,s are analytic whenever (δη, δη̄, δz, δ, δσ ) ∈ B3(ru,s
0 ) × B(δ0) × B(σ0) respectively.

Moreover, using that they are of order three, it is easy to see that if φ = (φ1, φ2, φ3, δ, δσ ) ∈
B3(ru,s

0 )× B(δ0)× B(σ0), then:

|Fu,s
1 (φ)|, |Fu,s

2 (φ)|, |Hu,s(φ)| ≤ K |(φ1, φ2, φ3 ∓ δ, δ, δσ )|3,
respectively.

Finally, thinking of η and η̄ as functions of v we get the following systems, respectively
in the unstable and stable case:

dη

dv
=

−
(α
δ

+ cz0(v)
)

iη + η (σ − dz0(v))+ δ−2 Fu,s
1 (δη, δη̄, δz0(v), δ, δσ )

1+ bηη̄ + δ−2 Hu,s(δη, δη̄, δz0(v), δ, δσ )

−1 + z2
0(v)

,

dη̄

dv
=

(α
δ

+ cz0(v)
)

i η̄ + η̄ (σ − dz0(v))+ δ−2 Fu,s
2 (δη, δη̄, δz0(v), δ, δσ )

1+ bηη̄ + δ−2 Hu,s(δη, δη̄, δz0(v), δ, δσ )

−1 + z2
0(v)

.

(15)

We will look for solutions ζ u,s(v) = (ηu,s(v), η̄u,s(v)) of system (15) such that:

lim
v→−∞ ζ u(v) = (0, 0), lim

v→+∞ ζ s(v) = (0, 0). (16)

After stating Theorem 2 we will justify that, indeed, (ηu,s(v), η̄u,s(v), z0(v)) lead to para-
meterizations of the unstable and stable manifolds of the critical points (0, 0,±1) of system
(10), respectively.

Once we have obtained a suitable system (15), the next step is to prove the existence of
solutions verifying (16). The main idea is that system (15) has a linear part which is dominant.
More precisely, we denote ζ = (η, η̄)T , Fu,s = (Fu,s

1 , Fu,s
2 )T , and we define:

A(v) =
(− (

α
δ

+ cz0(v)
)

i + σ − dz0(v) 0
0

(
α
δ

+ cz0(v)
)

i + σ − dz0(v)

)
, (17)

and:

Ru,s(ζ )(v) =

⎛
⎜⎜⎜⎝

1

1 + bηη̄ + δ−2 Hu,s(δζ, δz0(u), δ, δσ )

−1 + z2
0(u)

− 1

⎞
⎟⎟⎟⎠ A(v)ζ

+ δ−2 Fu,s(δζ, δz0(v), δ, δσ )

1 + bηη̄ + δ−2 Hu,s(δζ, δz0(u), δ, δσ )
−1+z2

0(u)

. (18)
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Fig. 1 The outer domain Dout,u
κ,β

for the unstable case with its subdomains Dout,u
κ,β,T and Dout,u

κ,β,∞

Then, in the unstable case, system (15) joint with (16) can be rewritten as:

dζ

dv
= A(v)ζ + Ru(ζ )(v), lim

v→−∞ ζ u(v) = (0, 0) (19)

and the corresponding for the stable one as:

dζ

dv
= A(v)ζ + Rs(ζ )(v), lim

v→+∞ ζ s(v) = (0, 0). (20)

As we mentioned above, we will need to find parameterizations of the invariant manifolds
defined not just for v ∈ R, but in some complex domains that are close to the first singularities
of the heteroclinic connection Υ0 of the unperturbed system, which in this case are v =
±iπ/2. We will now proceed to introduce these complex domains. We define (see Fig. 1):

Dout,u
κ,β = {v ∈ C : |Im v| ≤ π/2 − κδ log(1/δ)− tan βRe v} ,

where 0 < β < π/2, T > 0 and κ > 0 are constants independent of δ and σ .
For technical reasons we will split the domain Dout,u

κ,β in two subsets, namely:

Dout,u
κ,β,∞ =

{
v ∈ Dout,u

κ,β : Re v ≤ −T
}
, Dout,u

κ,β,T =
{
v ∈ Dout,u

κ,β : Re v ≥ −T
}
. (21)

Analogously, we define:

Dout,s
κ,β = −Dout,u

κ,β , Dout,s
κ,β,∞ = −Dout,u

κ,β,∞, Dout,s
κ,β,T = −Dout,u

κ,β,T .

Theorem 2 Let κ > 0 and 0 < β < π/2 be any fixed constants independent of δ and σ .
Then, if δ > 0 is small enough, problem (19) has a solution ζ u(v) = (ηu(v), η̄u(v)) defined
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for v ∈ Dout,u
κ,β , and (20) has a solution ζ s(v) = (ηs(v), η̄s(v)) defined for v ∈ Dout,s

κ,β .
Moreover there exists a constant K independent of δ and σ such that:

|ζ u(v)| ≤
{

K δ2|z0(v)− 1| if v ∈ Dout,u
κ,β,∞,

K δ2|z0(v)− 1|3 if v ∈ Dout,u
κ,β,T ,

|ζ s(v)| ≤
{

K δ2|z0(v)+ 1| if v ∈ Dout,s
κ,β,∞,

K δ2|z0(v)+ 1|3 if v ∈ Dout,s
κ,β,T .

The proof of this result is postponed to Sect. 3. Now we enunciate the following corollary:

Corollary 1 Let κ and 0 < β < π/2 be two fixed constants independent of δ andσ . Consider
ηu and η̄u the functions given by Theorem 2, and let v(t) be the solution of:

dv

dt
= 1 + bηu(v)η̄u(v)+ δ−2 Hu(δηu(v), δη̄u(v), δz0(v), δ, δσ )

−1 + z2
0(v)

=: 1 + F(v), (22)

such that v(0) = 0. Then, (x̃u(t), ỹu(t), z̃u(t)) defined by:

x̃u(t) = ηu(v(t))+ η̄u(v(t))

2
, ỹu(t) = ηu(v(t))− η̄u(v(t))

2
, z̃u = z0(v(t)),

is a parameterization of the unstable manifold of the critical point (0, 0, 1) of system (10).
For the stable manifold of (0, 0,−1), one has an analogous result.

Proof Indeed, it is clear that (x̃u(t), ỹu(t), z̃u(t)) is a solution of system (10), since it consists
in performing the inverse change of C2, defined in (11), for a particular solution of system
(12). Hence, we just have to check that:

lim
t→−∞(x̃

u(t), ỹu(t), z̃u(t)) = (0, 0, 1).

Note that it is sufficient to prove that:

lim
t→−∞ v(t) = −∞, (23)

since, on the one hand z0(v) = − tanh(v) goes to 1 as v goes to −∞ and, on the other hand,
from Theorem 2 we know that:

lim
v→−∞(η

u(v), η̄u(v)) = (0, 0).

We will prove that (23) holds if v(0) = 0 as follows. Indeed, from (22) it is clear that:

t =
v∫

0

1

1 + F(w)dw := G(v).

Now, from Theorem 2 and the fact that |z0(v)− 1| is bounded for v ∈ Dout,u
κ,β,T ∩ R, it is clear

that for v ∈ Dout,u
κ,β ∩ R:

|ηu(v)|, |η̄u(v)| ≤ K δ2|z0(v)− 1|,

123



J Dyn Diff Equat

for some constant K . Using these bounds, the fact that ev is bounded for v ∈ Dout,u
κ,β ∩ R and

Remark 5, it can be easily seen that:

|F(v)| =
∣∣∣∣∣
bηu(v)η̄u(v)+ δ−2 Hu(δηu(v), δη̄u(v), δz0(v), δ, δσ )

−1 + z2
0(v)

∣∣∣∣∣

≤ K̃

(
δ4|z0(v)− 1|2 + δ|z0(v)− 1|3

| − 1 + z2
0(v)|

)
≤ K̃

(
δ4e2v + δe4v) < 1

2
,

if δ is small enough. Then it is clear that G′(v) = (1 + F(v))−1 satisfies:

G′(v) ≥ 1

1 + 1/2
= 2

3
> 0. (24)

On one hand, the fact that G′(v) is strictly positive implies that G(v) is strictly increasing.
Then G is invertible in Dout,u

κ,β ∩ R, and for v ∈ Dout,u
κ,β ∩ R we can write:

v = G−1(t). (25)

Note that, as G is strictly increasing, so is G−1, and then we have that v(t) ≤ v(0) = 0 for
t ≤ 0. Hence it is clear that v(t) ∈ Dout,u

κ,β ∩ R for all t ≤ 0, and hence (25) has sense for all
t ≤ 0. On the other hand, we also have that:

(G−1)′ = 1

G′ ≤ 3

2
,

which implies that:

v =
t∫

0

(G−1(s)
)′

ds ≤ 3

2
t,

and hence we immediately obtain (23). �

2.2.1 Local Parameterizations of the Invariant Manifolds

Theorem 2 provides us with complex parameterizations of the invariant manifolds, ζ u,s =
(ηu,s, η̄u,s), which are solutions of problems (19) and (20) respectively. However, in order to
study their difference, it is very useful that both manifolds are given by functions that satisfy
the same system in a common domain. We proceed to undo the changes Cu

1 for ζ u and Cs
1

for ζ s.
Consider:

V±(u, δ, σ ) = z−1
0 (z0(u)− z±(δ, σ )± 1)− u.

Let (ηu,s(v), η̄u,s(v)) be solutions of system (15) and:

ξu,s(u)=ηu,s(u + V±(u, δ, σ ))+ η±(δ, σ ),
ξ̄u,s(u)= η̄u,s(u + V±(u, δ, σ ))+ η̄±(δ, σ ).

(26)
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Then wherever V±(u, δ, σ ) is defined we have that (ξu,s, ξ̄u,s) are solutions of the following
system:

dξ

du
=

−
(α
δ

+ cz0(u)
)

iξ + ξ (σ − dz0(u))+ δ−2 F1(δξ, δξ̄ , δz0(u), δ, δσ )

1+ bξ ξ̄ + δ−2 H(δξ, δξ̄ , δz0(u), δ, δσ )

−1 + z2
0(u)

,

d ξ̄

du
=

(α
δ

+ cz0(u)
)

i ξ̄ + ξ̄ (σ − dz0(u))+ δ−2 F2(δξ, δξ̄ , δz0(u), δ, δσ )

1+ bξ ξ̄ + δ−2 H(δξ, δξ̄ , δz0(u), δ, δσ )

−1 + z2
0(u)

,

(27)

where:

F1(δξ, δξ̄ , δz0(v), δ, δσ ) = f

(
δ(ξ + ξ̄ )

2
,
δ(ξ − ξ̄ )

2
, δz0(v), δ, δσ

)

+ ig

(
δ(ξ + ξ̄ )

2
,
δ(ξ − ξ̄ )

2
, δz0(v), δ, δσ

)
,

F2(δξ, δξ̄ , δz0(v), δ, δσ ) = f

(
δ(ξ + ξ̄ )

2
,
δ(ξ − ξ̄ )

2
, δz0(v), δ, δσ

)

− ig

(
δ(ξ + ξ̄ )

2
,
δ(ξ − ξ̄ )

2
, δz0(v), δ, δσ

)
,

H(δξ, δξ̄ , δz0(v), δ, δσ ) = h

(
δ(ξ + ξ̄ )

2
,
δ(ξ − ξ̄ )

2
, δz0(v), δ, δσ

)
. (28)

Remark 6 From (28), it is clear that F1(φ), F2(φ) and H(φ) are of order three and analytic
whenever φ = (φ1, φ2, φ3, φ4, φ5) ∈ B3(r0) × B(δ0) × B(σ0). Then we have that there
exists some constant K , independent of δ and σ , such that:

|F1(φ)|, |F2(φ)|, |H(φ)| ≤ K |(φ1, φ2, φ3, φ4, φ5)|3. (29)

Theorem 3 Let κ > 0 and 0 < β < π/2 be any constants independent of δ and σ . Then
the one-dimensional invariant manifolds of S±(δ, σ ) can be parameterized respectively by:

ξ = ξu,s(u), ξ̄ = ξ̄u,s(u), z = z0(u), u ∈ Dout,∗
κ,β,T ,

where ∗ = u, s respectively, and ϕu,s(u) = (ξu,s(u), ξ̄u,s(u)) are solutions of system (27).
Moreover, there exists a constant K , independent of δ and σ , such that:

|ϕu(u)| ≤ K δ2|z0(u)− 1|3, u ∈ Dout,u
κ,β,T ,

|ϕs(u)| ≤ K δ2|z0(u)+ 1|3, u ∈ Dout,s
κ,β,T .

The proof of this result can be found in Sect. 4.

2.3 The Inner System

As we mentioned before, our study requires the knowledge of the asymptotics of the para-
meterizations ϕu,s(u), given in Theorem 3, for u near the singularities ±iπ/2. However, for
u ∼ iπ/2 one has that ϕu,s(u) ∼ δ−1, so that they are no longer perturbative (recall that,
in the variables (ξ, ξ̄ ), the heteroclinic orbit of the unperturbed system is (ξ, ξ̄ ) = (0, 0)).
Hence, it is natural to look for good approximations of system (27) near ±iπ/2 in a different
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way. Here we will focus on the singularity iπ/2, but similar results (which we will also state
explicitly) can be proved near the singularity −iπ/2.

To study the solutions of system (27) near iπ/2, we define the new variables (ψ,ψ, s) =
C3(ξ, ξ̄ , u, δ) by:

ψ = δξ, ψ = δξ̄ , s = u − iπ/2

δ
. (30)

Recalling that z0(u) = − tanh u, we can write:

z0(iπ/2 + δs) = −1

δs
+ l(δs), with l(0) = 0,

(−1 + z2
0(iπ/2 + δs))−1 = δ2s2 + δ3s3m(δs), with m(0) = 0.

(31)

We note that both l and m are analytic if |δs| < 1. Then system (27) after performing the
change C3 becomes:

dψ

ds
= − [

α+c(−s−1+δl(δs))] iψ−ψ(δσ−ds−1+δdl(δs))+F1(ψ,ψ,−s−1+δl(δs), δ, δσ )
1+[

bψψ+H(ψ,ψ,−s−1+δl(δs), δ, δσ )] (s2+δs3m(δs))
,

dψ

ds
=

[
α+c(−s−1+δl(δs))] iψ−ψ(δσ−coe f s−1+δdl(δs))+F2(ψ,ψ,−s−1+δl(δs), δ, δσ )

1+[
bψψ+H(ψ,ψ,−s−1+δl(δs), δ, δσ )] (s2+δs3m(δs))

.

(32)

If we set δ = 0 in this system, we obtain the inner system:

dψ

ds
= − (

α − cs−1
)

iψ + dψs−1 + F1(ψ,ψ,−s−1, 0, 0)

1 + s2
[
bψψ + H(ψ,ψ,−s−1, 0, 0)

] ,

dψ

ds
=

(
α − cs−1

)
iψ + dψs−1 + F2(ψ,ψ,−s−1, 0, 0)

1 + s2
[
bψψ + H(ψ,ψ,−s−1, 0, 0)

] .

(33)

Below, we will expose the results concerning the existence of two solutions Ψ u,s
0 =

(ψ
u,s
0 , ψ

u,s
0 ) of system (33) which, as we will see in Theorem 5, will give good approx-

imations for the invariant manifolds for u near the singularity iπ/2. Moreover, we will
provide an asymptotic expression for the difference Ψ u

0 −Ψ s
0 , which will turn out to be very

useful in Sect. 7.
Given β0, ρ > 0, we define the following inner domains (see Fig. 2):

Din,u
β0,ρ

= {s ∈ C : |Im s| ≥ tan β0Re s + ρ}, Din,s
β0,ρ

= −Din,u
β0,ρ

. (34)

and:

Eβ0,ρ = Din,u
β0,ρ

∩ Din,s
β0,ρ

∩ {s ∈ C : Im s < 0}. (35)

Remark 7 The inner domain Din,u
β0,ρ

expressed in the outer variables is:

Din,u
β0,ρ

= {u ∈ C : |Im (u − iπ/2)| ≥ tan β0Re u + ρδ}.

It is easy to check that for all 0 < β0, β < π/2, if δ is small enough one has that Dout,u
κ,β ⊂

Din,u
β0,ρ

. Analogously, we also have that Dout,s
κ,β ⊂ Din,s

β0,ρ
, where Din,s

β0,ρ
= −Din,u

β0,ρ
.
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Fig. 2 The inner domain, Din,u
β0,ρ

Theorem 4 Let β0 > 0 and ρ big enough. Then:

1. System (33) has two solutions Ψ u,s
0 (s) = (ψ

u,s
0 (s), ψ

u,s
0 (s)) defined for s ∈ Din,∗

β0,ρ
, with

∗ = u, s respectively. Moreover there exists a constant K , such that:

|Ψ u,s
0 (s)| ≤ K |s|−3.

2. Consider the difference:

ΔΨ0(s) = Ψ u
0 (s)− Ψ s

0 (s), s ∈ Eβ0,ρ .

There exists Cin ∈ C and a function χ : Eβ0,ρ → C
2 such that:

ΔΨ0(s) = sde−i(αs−(c+αh0) log s)
((

Cin

0

)
+ χ(s)

)
, (36)

where h0 = limRe s→∞ s3 H(0, 0,−s−1, 0, 0) and χ = (χ1, χ2) satisfies:

|χ1(s)| ≤ K |s|−1, |χ2(s)| ≤ K |s|−2.

Moreover, Cin �= 0 if and only if ΔΨ0 �= 0.

The inner system corresponding to system (27) with d = 1 was exhaustively studied in
[3]. Moreover, the authors used an extra parameter ε (not necessarily small) which we take
ε = 1. Since the proof for the case where d is a free parameter and ε = 1 is completely
analogous, we will give just the main ideas of how Theorem 4 can be proved for this case
without going into details. These can be found in Sect. 5.

Remark 8 The change (30) allows us to study some approximations of the invariant manifolds
and their difference near the singularity iπ/2. However, if we want to approximate these
manifolds and their difference near the singularity −iπ/2, instead of change (30) one has to
introduce the following change:

ψ = δξ, ψ = δξ̄ , s = u + iπ/2

δ
. (37)
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Fig. 3 The matching domains in the outer variables

In this case, one can prove the existence of two solutions Ψ̃ u,s
0 (s) of the inner system obtained

after doing change (37), which are defined for s ∈ Din,∗
β0,ρ

, with ∗ = u, s, where:

Din,∗
β0,ρ

= {s ∈ C : s ∈ Din,∗
β0,ρ

}.
Moreover, for:

s ∈ Eβ0,ρ := Din,u
β0,ρ

∩ Din,s
β0,ρ

∩ {s ∈ C : Im s > 0},

the difference between these two solutions, ΔΨ̃0(s), is given asymptotically by:

ΔΨ̃0(s) = sdei(αs−(c+αh0) log s)
((

0
Cin

)
+ χ̃ (s)

)
,

where Cin is the conjugate of the constant Cin in Theorem 4 and χ̃ = (χ̃1, χ̃2) satisfies that
|χ̃1(s)| ≤ |s|−2 and |χ̃2(s)| ≤ |s|−1.

2.4 Study of the Matching Error

Let us recall the domains Dout,u
κ,β,T and Dout,s

κ,β,T , defined in (21), where the parameterizations
ϕu,s of the invariant manifolds given by Theorem 3 are defined, for some fixed κ > 0 and
0 < β < π/2. We also recall the domains Din,u

β0,ρ
and Din,s

β0,ρ
, defined in (34), with ρ > 0 and

0 < β0 < π/2 fixed, where the solutions Ψ u,s
0 given in Theorem 4 are defined. Now we take

β1, β2 two constants independent of δ and σ , such that:

0 < β1 < β < β2 < π/2. (38)

We define u j ∈ C, j = 1, 2 as the two points that satisfy (see Fig. 3):

• Im u j = − tan β j Re u j + π/2 − κδ log(1/δ),
• |u j − i(π/2 − κδ log(1/δ))| = δγ , where γ ∈ (0, 1) is a constant independent of δ

and σ ,
• Re u1 < 0,Re u2 > 0.
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We also consider the following domains (see Fig. 3):

Dmch,u
κ,β1,β2

=
{

u ∈ C : Im u ≤ − tan β1Re u + π/2 − κδ log(1/δ),

Im u ≤ − tan β2Re u + π/2 − κδ log(1/δ),

Im u ≥ Im u1 − tan

(
β1 + β2

2

)
(Re u − Re u1)

}
,

and:

Dmch,s
κ,β1,β2

=
{

u ∈ C : −u ∈ Dmch,u
κ,β1,β2

}
.

We note that there exist two constants K1 and K2, independent of δ and σ , such that:

K1δ
γ ≤ |u j − iπ/2| ≤ K2δ

γ , j = 1, 2.

Moreover, for all u ∈ Dmch,∗
κ,β1,β2

, ∗ = u, s, we have:

κ cosβ1δ log(1/δ) ≤ |u − iπ/2| ≤ K2δ
γ . (39)

Note that from (38) and (39) we have Dmch,u
κ,β1,β2

⊂ Dout,u
κ,β,T and Dmch,s

κ,β1,β2
⊂ Dout,s

κ,β,T , if δ is small
enough.

We also define the matching domains in the inner variables:

Dmch,∗
κ,β1,β2

= {s ∈ C : iπ/2 + sδ ∈ Dmch,∗
κ,β1,β2

}, ∗ = u, s (40)

and:

s j = u j − iπ/2

δ
, j = 1, 2. (41)

It is clear that:

K1δ
γ−1 ≤ |s j | ≤ K2δ

γ−1, j = 1, 2, (42)

and that for all s ∈ Dmch,∗
κ,β1,β2

, where ∗ = u, s, we have:

κ cosβ1 log(1/δ) ≤ |s| ≤ K2δ
γ−1.

Using that Dmch,∗
κ,β1,β2

⊂ Dout,∗
κ,β,T and Remark 7 it is clear that Dmch,∗

κ,β1,β2
⊂ Din,∗

β0,ρ
if δ is small

enough, ∗ = u, s.
The main result of this section is the following.

Theorem 5 Let Ψ u,s(s) = δϕu,s(δs + iπ/2), where ϕu,s are the parameterizations given by
Theorem 3. Then, if s ∈ Dmch,∗

κ,β1,β2
, for ∗ = u, s, one has Ψ u,s(s) = Ψ

u,s
0 (s)+ Ψ

u,s
1 (s), where

Ψ
u,s
0 (s) are the two solutions of the inner system (33) given by Theorem 4, and there exists

a constant K , independent of δ and σ , such that:

|Ψ u,s
1 (s)| ≤ K δ1−γ |s|−2.

This Theorem is proved in Sect. 6. From this result, the following corollary is clear:

Corollary 2 For u ∈ Dmch,∗
κ,β1,β2

, where ∗ = u, s, we have that:

ϕu,s(u) = 1

δ

(
Ψ

u,s
0

(
u − iπ/2

δ

)
+ Ψ

u,s
1

(
u − iπ/2

δ

))
,
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where Ψ u,s
0 are the two solutions of the inner system (33) given by Theorem 4 and:

∣∣∣∣Ψ u,s
1

(
u − iπ/2

δ

)∣∣∣∣ ≤ K δ1−γ
∣∣∣∣
u − iπ/2

δ

∣∣∣∣
−2

,

for some constant K . Note that, as for u ∈ Dmch,∗
κ,β1,β2

, |u − iπ/2| ≥ K δ log(1/δ), from this
last inequality we obtain:

∣∣∣∣Ψ u,s
1

(
u − iπ/2

δ

)∣∣∣∣ ≤ K δ1−γ

log2(1/δ)
,

and since γ ∈ (0, 1) we obtain that Ψ u,s
0 are good approximations of ϕu,s in Dmch,u

κ,β1,β2
and

Dmch,s
κ,β1,β2

respectively.

Remark 9 Theorem 5 and, more precisely, Corollary 2 provide us with a bound of the dif-
ference between the invariant manifolds ϕu,s(u) of Theorem 3 and the functions Ψ u,s

0 ((u −
iπ/2)/δ) given by Theorem 4, when u is near the singularity iπ/2. One can proceed similarly
to study this difference near the singularity −iπ/2 as we pointed out in Remark 8. In this
case, defining:

Dmch,∗
κ,β1,β2

= {s ∈ C : s ∈ Dmch,∗
κ,β1,β2

}, for ∗ = u, s

we would obtain that for u ∈ Dmch,∗
κ,β1,β2

, one has:

ϕu,s(u) = 1

δ

(
Ψ̃

u,s
0

(
u + iπ/2

δ

)
+ Ψ̃

u,s
1

(
u + iπ/2

δ

))
,

where Ψ̃ u,s
0 are the two solutions of the inner system derived from the change (37) in Remark

8, and:
∣∣∣∣Ψ̃ u,s

1

(
u + iπ/2

δ

)∣∣∣∣ ≤ K δ1−γ
∣∣∣∣
u + iπ/2

δ

∣∣∣∣
−2

,

for some constant K .

2.5 Asymptotic Formula for the Splitting Distance

Theorem 6 Let ϕu and ϕs be the parameterizations given by Theorem 3. For u ∈ Dout,u
κ,β,T ∩

Dout,s
κ,β,T , we define its difference:

Δϕ(u) = ϕu(u)− ϕs(u). (43)

Let Cin ∈ C be the constant in Theorem 4. If Cin �= 0, then:

Δϕ(0) = δ−(1+d)e− α0π
2δ e

π
2 (c+α0h0−α1σ)

×
⎛
⎝
⎛
⎝Cine

−i
(
σπ
2 + α0h0

2 +(c+α0h0) log δ
)

Cine
i
(
σπ
2 + α0h0

2 +(c+α0h0) log δ
)

⎞
⎠ + O

(
1

log(1/δ)

)⎞
⎠ ,

where h0 = − limz→0 z−3 H(0, 0, z, 0, 0), α0 = α(0) and α1 = α′(0).
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Remark 10 Note that from Theorem 6, doing the inverse of change C2 (defined in (11)) and
taking norms, we obtain Theorem 1, with C∗ = |Cin|.

In this subsection we will give the main ideas of how Theorem 6 can be proved. The full
proof can be found in Sect. 7.

First of all recall that both ϕu and ϕs satisfy equations (27). We will decompose system
(27) in a more convenient form. For that we define:

A(u) = 1

1 − δh0z3
0(u)

−1+z2
0(u)

⎛
⎝−

(α
δ

+ cz0(u)
)

i + σ−dz0(u) 0

0
(α
δ

+ cz0(u)
)

i + σ − dz0(u)

⎞
⎠, (44)

R(ϕ)(u) = δ−2 F(δϕ, δz0(u), δ, δσ )

1 + bξ ξ̄+δ−2 H(δϕ,δz0(u),δ,δσ )
−1+z2

0(u)

+
⎛
⎜⎝ 1

1 + bξ ξ̄+δ−2 H(δϕ,δz0(u),δ,δσ )
−1+z2

0(u)

− 1

1 − δh0z3
0(u)

−1+z2
0(u)

⎞
⎟⎠A(u)ϕ. (45)

Then, system (27) can be written as:

dϕ

du
= A(u)ϕ + R(ϕ)(u). (46)

Since ϕu and ϕs satisfy system (46), it is clear that its difference Δϕ = ϕu − ϕs satisfies:

dΔϕ

du
= A(u)Δϕ + R(ϕu)(u)− R(ϕs)(u).

Following [13], using the mean value theorem we can still rewrite this equation as the fol-
lowing linear equation:

dΔϕ

du
= A(u)Δϕ + B(u)Δϕ, (47)

with:

B(u) =
1∫

0

DR((1 − λ)ϕs − λϕu)(u)dλ. (48)

We observe that we can think of the matrix B as just depending on u, because the existence
of ϕu and ϕs has been already proved in Theorem 3.

The point of writing the system for Δϕ as (47) is that, as we shall see, we split it into a
dominant part, the one corresponding to the matrix A(u), and a small perturbation, which
corresponds to the the matrix B(u). This will allow us to find an asymptotic expression for
Δϕ(u), with its dominant term given by the solution of the system:

dΔϕ

du
= A(u)Δϕ. (49)

Lemma 3 For u ∈ Dout,u
κ,β,T ∩ Dout,s

κ,β,T , a fundamental matrix of the homogeneous system (49)
is:

M(u) =
(

m1(u) 0
0 m2(u)

)
, (50)
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with:

m1(u) = coshd ue−αiu/δeσue
αh0i

[
− 1

2 sinh2 u+log cosh u
]
eic log cosh u

(
1+O

(
1

log(1/δ)

))
,

m2(u) = coshd ueαiu/δeσue
−αh0i

[
− 1

2 sinh2 u+log cosh u
]
e−ic log cosh u

(
1+O

(
1

log(1/δ)

))
.

(51)

The proof of Lemma 3 will be given in Sect. 7.
In the following we shall give an heuristic idea of how the asymptotic formula given in

Theorem 6 can be found. For simplicity, we will focus just on the first component of Δϕ,
that is Δξ .

Let us omit the influence of B, that is assume that B(u) ≡ 0. Then, any solutionΦ of (47)
can be written as:

Φ(u) = M(u)

(
c1

c2

)
,

for certain c1, c2, and its first component is m1(u)c1. Hence,Δξ(u) = m1(u)c1 for a certain
c1. The main idea is that Δξ(u) is bounded when u ∈ Dout,u

κ,β,T ∩ Dout,s
κ,β,T . The first thing we

observe is that from the asymptotic expression of m1(u) in Lemma 3 we can already see that
Δξ(u) has an exponentially small bound if u ∈ R. Indeed, it is clear that when u ∼ iπ/2 we
have that m1(u) ∼ e

απ
2δ , that is exponentially big. Then, c1 has to be ∼e− απ

2δ forΔξ(u) to be
bounded, i.e. it must be exponentially small. As a consequence, when u ∈ R we have that
Δξ(u) = m1(u)c1 is exponentially small.

However, we do not want a bound ofΔξ but an asymptotic formula. Thus we have to find
the constant c1 that corresponds to Δξ , or more concretely a good approximation c0

1 of it.
We recall that near the singularity iπ/2 we have a good approximationΔψ0 ofΔξ given by
the study of the inner equation in Theorem 4. Then, if we consider the point:

u+ = i
(π

2
− κδ log(1/δ)

)
,

it is clear that the initial condition c1 satisfies:

c1m1(u+) = Δξ(u+) ≈ δ−1Δψ0

(
u+ − iπ/2

δ

)
.

From Theorem 4 we know that:

δ−1Δψ0

(
u+ − iπ/2

δ

)
= (−iλ)d

δ
e−λα−(c+αh0) log(−iλ)(Cin + χ1(−iλ)),

where λ = κ log(1/δ), and therefore:

c1 = m1(u+)−1Δξ(u+) ≈ m−1
1 (u+)δ−1Δψ0

(
u+ − iπ/2

δ

)

≈ m−1
1 (u+)

(−iλ)d

δ
e−αλ+i(c+αh0) log(−iλ)Cin,

so that taking:

c0
1 = m−1

1 (u+)
(−iλ)d

δ
e−αλ+i(c+αh0) log(−iλ)Cin,

we obtain a good approximation Δξ0(u) of Δξ(u) defined by:

Δξ0(u) := m1(u)c
0
1.
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Using the bound of the matching error given in Theorem 5, it can be proved that Δξ0(u) is
the dominant part of Δξ(u). Then, computing explicitly the asymptotic formula of Δξ0(0)
one obtains the first component of the dominant term of the formula given in Theorem 6. As
we will see in Sect. 7, c0

1 does not depend on κ .
For the second component,Δξ̄ , we can repeat the same arguments, but using the singularity

−iπ/2. Finally, this procedure can be adapted to the whole system (47) using the fact that,
indeed, B(u) is small.

3 Proof of Theorem 2

In this section we will prove Theorems 2 and 3. However, in order to do that, first we need
to define suitable Banach spaces in which we will work, which are the following:

X out,∗ =
{
φ : Dout,∗

κ,β → C : φ analytic, ‖ φ ‖∗
out< ∞

}
,

where ∗ = u, s, and the norm ‖ . ‖u,s
out defined as:

‖ φ ‖s
out = sup

v∈Dout,s
κ,β,∞

|(z0(v)+ 1)−1φ(v)| + sup
v∈Dout,s

κ,β,T

|(z0(v)+ 1)−3φ(v)|,

‖ φ ‖u
out = sup

v∈Dout,u
κ,β,∞

|(z0(v)− 1)−1φ(v)| + sup
v∈Dout,u

κ,β,T

|(z0(v)− 1)−3φ(v)|. (52)

In the product space X out,∗ × X out,∗, with ∗ = u, s, we take the norm:

‖ (φ1, φ2) ‖u,s
out,×=‖ φ1 ‖u,s

out + ‖ φ2 ‖u,s
out, (φ1, φ2) ∈ X out,∗ × X out,∗.

Below we will introduce some notation that will allow us to see ζ u,s as fixed points of a certain
operator. Given α and c, we define the linear operators acting on functions φ1 ∈ X out,∗, with
∗ = u, s respectively:

Lu,s
α,c(φ1)(v) = coshd v

0∫

∓∞

1

coshd(v + r)
eiαr/δeσr gu,s

c (v, r)φ1(v + r)dr , (53)

where − corresponds to u and + to s, and:

gu
c (v, r) = eic(r+log((1+e2v)/2)−log((1+e2(v+r))/2),

gs
c(v, r) = eic(−r+log((1+e−2v)/2)−log((1+e−2(v+r))/2),

Remark 11 One might think that instead of taking gc, it would be more natural to take:

ĝc(v, r) = eic(log cosh v−log cosh(v+r)).

Although gu
c (v, r) = gs

c(v, r) = ĝc(v, r) if v, r ∈ R, this is not the case when v, r ∈ C. In
particular, one can see that if v, r ∈ Dout,∗

κ,β , ∗ = u, s, the function ĝc is not well defined. On

the contrary, the function gu
c is always well defined for v, r ∈ Dout,u

κ,β and gs
c is well defined

for v, r ∈ Dout,s
κ,β .
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Now, given a function φ = (φ1, φ2) ∈ X out,∗ × X out,∗ we define the linear operator:

Lu,s(φ) = (Lu,s
α,c(φ1), Lu,s

−α,−c(φ2)). (54)

The following lemma can be easily proved.

Lemma 4 With the above notation, if a bounded and continuous function ζ u,s : Dout,∗
κ,β →

C
3, with ∗ = u, s respectively, satisfies the fixed point equation

ζ u,s = Lu,s ◦ Ru,s(ζ u,s), (55)

then it is a solution of (19), (20) respectively.

In the rest of this section we will prove the following result, which implies straightfor-
wardly Theorem 2.

Proposition 1 Let κ > 0 and 0 < β < π/2 be any fixed constants independent of δ and σ .
Then, if δ > 0 is small enough, problem (19) has a solution ζ u defined in Dout,u

κ,β , and (20)

has a solution ζ s defined in Dout,s
κ,β , both satisfying that ζ u,s = ζ

u,s
0 + ζ

u,s
1 with the following

properties:

1. ζ u,s
0 = Lu,s ◦ Ru,s(0) ∈ X out,∗ × X out,∗ and there exists a constant K independent of δ

and σ such that:

‖ ζ u,s
0 ‖u,s

out,×≤ K δ2.

2. ζ u,s
1 ∈ X out,∗ × X out,∗, and there exists a constant K independent of δ and σ such that:

‖ ζ u,s
1 ‖u,s

out,×≤ K

log(1/δ)
‖ ζ u,s

0 ‖u,s
out,×

where ∗ = u, s respectively.

From Proposition 1 we obtain solutions ζ u and ζ s of systems given in (19) and (20) respec-
tively. Note that by the definitions of X out,u and X out,s, and since ζ u ∈ X out,u and ζ s ∈ X out,s,
we know that:

lim
Re v→−∞ ζ u(v) = (0, 0), lim

Re v→+∞ ζ s(v) = (0, 0).

From now on, we will focus just on the parameterization of the unstable manifold, ζ u,
being the proof for the stable one completely analogous. For this reason, if there is no danger
of confusion, we will omit the superindices −u− of ζ,X out, Dout

κ,β , etc. Moreover, we will not

write explicitly the dependence on v of ζ (or any function belonging to X out). Finally, in the
rest of the paper, if no confusion is possible, we will denote by K any constant independent
of δ and σ . Obviously, these constants K will depend on κ and β, which we will consider
fixed.

Before proving Proposition 1 we will present some technical results.

Lemma 5 Let φ1, φ2 ∈ C
n, such that |φ1|, |φ2| < 1/2. Then:
∣∣∣∣

1

1 + φ1
− 1

1 + φ2

∣∣∣∣ ≤ 4|φ1 − φ2|.
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Lemma 6 Let f : C
n → C be any function that is analytic in some open ball B(r1

0 ) ×
· · · × B(rn

0 ) ⊂ C
n, and assume that there exists some φ∗ ∈ C

n such that for all φ ∈
B(r1

0 )× · · · × B(rn
0 ):

| f (φ)| ≤ K |φ − φ∗|k, (56)

for some constants K > 0 and k ∈ N. Take φ ∈ B(r1
0/2)× · · · × B(rn

0 /2) and assume that
φ − φ∗ ∈ B(r1

0 )× · · · × B(rn
0 ). Then there exists a constant K̃ such that:

|D j f (φ)| ≤ K̃ |φ − φ∗|k−1, (57)

where D j denotes the derivative with respect to the j th component φ j .

Corollary 3 Let Fu
1 , Fu

2 and Hu the functions defined in (13). If ζ ∈ X out × X out is such
that ‖ ζ ‖out,×≤ δ2C for some constant C, we have that for δ small enough:

|D j Fu
i (δζ, δz0(v), δ, δσ )|, |D j Hu(δζ, δz0(v), δ, δσ )|

≤
{

K δ2 if v ∈ Dout
κ,β,∞,

K δ2|z0(v)− 1|2 if v ∈ Dout
κ,β,T .

(58)

Proof We will prove this result just for D1 Fu
1 , being the other cases analogous. Note that

for δ small enough (δζ, δz0(v)) ∈ B3(ru
0/2) since by the fact that ‖ ζ ‖out,×≤ δ2C and the

definition (52) of the norm ‖ . ‖out,× we have:

|δζ(v)| ≤

⎧⎪⎨
⎪⎩

Cδ3|z0(v)− 1| ≤ δ3C < ru
0/2 if v ∈ Dout

κ,β,∞,

Cδ3|z0(v)− 1|3 ≤ C K

log3(1/δ)
< ru

0/2, if v ∈ Dout
κ,β,T ,

(59)

and:

|δz0(v)| ≤
⎧⎨
⎩

K δ < ru
0/2 if v ∈ Dout

κ,β,∞,
K

log(1/δ)
< ru

0/2, if v ∈ Dout
κ,β,T ,

Then we just have to take φ = (δζ, δz0(v), δ, δσ ) and φ∗ = (0, 0, 0, 0, 0) in Lemma 6.
Indeed, it is clear that φ = φ − φ∗ ∈ B3(ru

0 ) × B(δ0) × B(σ0). Then, since Fu
1 is of order

three and analytic in B3(ru
0 )× B(δ0)× B(σ0), we have:

|Fu
1 (δζ, δz0(v), δ, δσ )| ≤ K |(δζ, δz0(v), δ, δσ )|3 = K |φ − φ∗|3,

and then we have:

|D1 Fu
1 (δζ, δz0(v), δ, δσ )| = |D1 Fu

1 (φ)| ≤ K |φ − φ∗|2 = K |(δζ, δz0(v), δ, δσ )|2
≤ K |(δζ, δ(z0(v)− 1), δ, δσ )|2. (60)

Moreover, since, by (59), |δζ | ≤ δ3C |z0(v)− 1| if v ∈ Dout
κ,β,∞ and |δζ | ≤ δ3C |z0(v)− 1|3

if v ∈ Dout
κ,β,T , it is clear that:

|(δζ, δ(z0(v)− 1), δ, δσ )| ≤
{

K δ if v ∈ Dout
κ,β,∞,

K δ|z0(v)− 1| if v ∈ Dout
κ,β,T ,

for some constant K . With this bound and (60) we obtain immediately bound (58). �
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Corollary 4 Let Fu
1 , Fu

2 and Hu the functions defined in (13). If δ is small enough and
‖ ζ ‖out,×≤ δ2C for some constant C, there exists a constant K independent of δ and σ such
that, for i = 1, 2:

|Fu
i (δζ, δz0(v), δ, δσ )|, |Hu(δζ, δz0(v), δ, δσ )| ≤

{
K δ3|z0(v)− 1| if v ∈ Dout

κ,β,∞,
K δ3|z0(v)− 1|3 if v ∈ Dout

κ,β,T .

Proof Again, we will do the proof for Fu
1 . Reasoning as in the proof of Corollary 3, we know

that (δζ, δz0(v)) ∈ B3(ru
0 ) if δ is sufficiently small. Then, by the mean value theorem we

have:

|Fu
1 (δζ, δz0(v), δ, δσ )| = |Fu

1 (δζ, δz0(v), δ, δσ )− Fu
1 (0, 0, δ, δ, δσ )|

≤
1∫

0

|DFu
1 (λδζ, δ + λδ(z0(v)− 1), δ, δσ )|dλ · |δζ(v), δ(z0(v)− 1)|, (61)

since Fu
1 (0, 0, δ, δ, δσ ) = 0. By inequality (59) and the fact that, for v ∈ Dout

κ,β,T , δ|z0(v)−
1| ≤ K , one can easily deduce that |δζ(v)| ≤ K |δ(z0(v)− 1)|. Using this fact and reasoning
as in the proof of Corollary 3 to bound |DFu

1 (λδζ, δ+λδ(z0(v)−1), δ, δσ )|, inequality (61)
yields:

|Fu
1 (δζ, δz0(v), δ, δσ )| ≤

{
K δ3|z0(v)− 1| if v ∈ Dout

κ,β,∞,
K δ3|z0(v)− 1|3 if v ∈ Dout

κ,β,T ,

and the claim is proved. �
Lemma 7 Let w ∈ Dout

κ,β . Then:

1. If w ∈ Dout
κ,β,∞, one has:

| coshw| ≥ e|Rew|

4
.

2. If w ∈ Dout
κ,β , then:

|e±ic log((1+e2w)/2)| < ecπ .

Lemma 8 There exist constants K1, K2, K3 and K4, independent of δ and σ , such that

1. If w ∈ Dout
κ,β,T and Imw ≥ 0, then:

(a) K1|w − iπ/2| ≤ | coshw| ≤ K2|w − iπ/2|,
(b) K3|w − iπ/2| ≤ |z0(w)− 1|−1 ≤ K4|w − iπ/2|,

2. If w ∈ Dout
κ,β,T and Imw ≤ 0, then:

(a) K1|w + iπ/2| ≤ | coshw| ≤ K2|w + iπ/2|,
(b) K3|w + iπ/2| ≤ |z0(w)− 1|−1 ≤ K4|w + iπ/2|,

Lemma 9 If v ∈ Dout
κ,β and w = v + rei(π−s), with r ∈ R, r ≥ 0 and s ∈ (0, β/2], then

there exists a constant K �= 0 independent of δ and σ such that:

|w ± iπ/2| ≥ K |v ± iπ/2|.
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Lemma 10 If v ∈ Dout
κ,β and w = v + rei(π−s), with r ∈ R, r ≥ 0 and s ∈ (0, β/2], then

there exists a constant K independent of δ and σ such that:

1. (a) | cosh v| ≤ K | coshw|.
(b) Moreover, if w ∈ Dout

κ,β,∞ then:

| cosh v|
| coshw| ≤ K e−|r cos(π−β/2)|.

2. |z0(w)− 1| ≤ K |z0(v)− 1|.
Lemma 11 Let R > 0 be a constant large enough, and v ∈ Dout

κ,β . We define the complex
path:

Γ R
1 = {w ∈ C : w = rei(π−β/2), r ∈ [0, R]}, (62)

Then, if α, c, δ > 0, the linear operator Lα,c defined in (53) can be rewritten as:

Lα,c(φ) = − lim
R→+∞

∫

Γ R
1

fc(v,w)φ(v + w)dw,

where φ ∈ X out and:

fc(v,w) = coshd v

coshd(v + w)
eiαw/δeσweic

[
w+log((1+e2v)/2)−log((1+e2(v+w))/2)

]
(63)

Remark 12 For L−α,−c(φ) we get the same result but in curves of the form Γ
R
1 :={

w ∈ C : w ∈ Γ R
1

}
.

With these previous lemmas we can prove the following proposition, which characterizes
how the operator L = (Lα,c, L−α,−c), defined in (54), acts on X out × X out.

Lemma 12 The operator L : X out × X out → X out × X out is well defined and there exists
a constant K independent of δ and σ such that for all φ ∈ X out × X out:

‖ L(φ) ‖out,×≤ K δ ‖ φ ‖out,× .

Proof We just need to bound ‖ Lα,c(φ) ‖out, since the case for ‖ L−α,−c(φ) ‖out is com-
pletely analogous. Note that by Lemma 11 we have that:

|Lα,c(φ)(v)| =
∣∣∣∣ lim

R→+∞

∫

Γ R
1

fc(v,w)φ(v + w)dw

∣∣∣∣,

where Γ R
1 was defined in (62) and fc was defined in (63). Now, parameterizing the curve

Γ R
1 by γ (r) = rei(π−β/2), with r ∈ [0, R], we get:

|Lα,c(φ)(v)| =
∣∣∣∣∣∣

lim
R→+∞

R∫

0

ei(π−β/2) fc(v, rei(π−β/2))φ(v + rei(π−β/2))dr

∣∣∣∣∣∣

=
∣∣∣∣∣∣
coshd v

+∞∫

0

ei(π−β/2)e iαrei(π−β/2)
δ eσre(π−β/2)

coshd(v + rei(π−β/2))
g̃c(v, r)φ(v + rei(π−β/2))dr

∣∣∣∣∣∣
,
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where:

g̃c(v, r) = gc(v, rei(π−β/2)) = eic(rei(π−β/2)+log((1+e2v)/2)−log((1+e2(v+rei(π−β/2)))/2)).

First we will see that there exists a constant K such that:

∣∣∣∣∣
coshd v eσre(π−β/2)

coshd(v + rei(π−β/2))

∣∣∣∣∣ ≤ K . (64)

On one hand, if rei(π−β/2) ∈ Dout
κ,β,∞ then by part 1b of Lemma 10 we have that:

∣∣∣∣∣
coshd v eσre(π−β/2)

coshd(v + rei(π−β/2))

∣∣∣∣∣ ≤ K e−d|r cos(π−β/2)||eσre(π−β/2) | ≤ K e(|σ |−d)|r cos(π−β/2)| ≤ K ,

because |σ | − d < 0. On the other hand, if rei(π−β/2) ∈ Dout
κ,β,T it implies that r ≤ r∗ for

some r∗ < +∞ independent of δ and σ . Then, by part 1a of Lemma 10, we have that:

∣∣∣∣∣
coshd v eσre(π−β/2)

coshd(v + rei(π−β/2))

∣∣∣∣∣ ≤ K |eσre(π−β/2) | ≤ K e|σ ||r cos(π−β/2)|

≤ K e|σ ||r∗ cos(π−β/2)| ≤ K ed|r∗ cos(π−β/2)|.

This finishes the proof of (64).
Now, to bound g̃c(v, r) we just use item 2 of Lemma 7:

|g̃c(v, r)| = |eic(rei(π−β/2)+log(1+e2v)−log(1+e2(v+rei(π−β/2))))|
≤ e−cIm rei(π−β/2)

e2cπ = e−cr sin(β/2)e2cπ ≤ e2cπ . (65)

Hence, using bounds (64) and (65) we have, for v ∈ Dout
κ,β

|Lα,c(φ)(v)| ≤ K e2cπ

+∞∫

0

∣∣∣eiαrei(π−β/2)/δ
∣∣∣ |φ(v + rei(π−β/2))|dr. (66)

Now we distinguish between the cases v ∈ Dout
κ,β,∞ and v ∈ Dout

κ,β,T . On one hand, if

v ∈ Dout
κ,β,∞ we have v + rei(π−β/2) ∈ Dout

κ,β,∞ and then by part 2 of Lemma 10:

|Lα,c(φ)(v)| ≤ K e2cπ ‖ φ ‖out,×
+∞∫

0

e−αr sin(π−β/2)/δ|z0(v + rei(π−β/2))− 1|dr

≤ K e2cπ ‖ φ ‖out,× |z0(v)− 1|
+∞∫

0

e−αr sin(π−β/2)/δdr. (67)
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On the other hand, if v ∈ Dout
κ,β,T , let r∗ be the value such that v + rei(π−β/2) ∈ Dout

κ,β,∞ ∩
Dout
κ,β,T . Then:

|Lα,c(φ)(v)| ≤ K e2cπ ‖ φ ‖out,×

⎛
⎝

r∗∫

0

e−αr sin(π−β/2)/δ|z0(v + rei(π−β/2))− 1|3dr

+
+∞∫

r∗
e−αr sin(π−β/2)/δ|z0(v + rei(π−β/2))− 1|dr

⎞
⎠

≤ K e2cπ ‖ φ ‖out,×

⎛
⎝

r∗∫

0

e−αr sin(π−β/2)/δ|z0(v)− 1|3dr

+
+∞∫

r∗
e−αr sin(π−β/2)/δ|z0(v)− 1|dr

⎞
⎠ ,

where we have used part 2 of Lemma 10 again. Now, since for v ∈ Dout
κ,β,T we have that

|z0(v)− 1| ≤ K |z0(v)− 1|3, this last inequality yields:

|Lα,c(φ)(v)| ≤ K e2cπ ‖ φ ‖out,× |z0(v)− 1|3
∞∫

0

e−αr sin(π−β/2)/δdr. (68)

Hence, from (67) and (68) we can write:

|Lα,c(φ)(v)| ≤ K e2cπ ‖ φ ‖out,× |z0(v)− 1|ν
∞∫

0

e−αr sin(π−β/2)/δdr,

where ν = 1 if v ∈ Dout
κ,β,∞ and ν = 3 otherwise.

If we compute the last integral explicitly we get that:

|Lα,c(φ)(v)| ≤ δ
K e2cπ

α sin(β/2)
‖ φ ‖out,× |z0(v)− 1|ν,

and then, by definition (52) of the norm ‖ . ‖out, the result is clear. �
With Lemma 12, the first part of Proposition 1 will be proved. Concretely, we will prove

the following:

Lemma 13 The function ζ0 = L ◦ R(0), where R was defined in (18) and L in (54), belongs
to X out × X out, and there exists a constant K independent of δ and σ such that:

‖ ζ0 ‖out,×≤ K δ2.

Proof By Lemma 12 it is clear that we just need to prove that ‖ R(0) ‖out,×≤ K δ. Again,
we will just bound the norm of the first component of R(0), that is R1(0), being the second
one analogous.

By (18) we have:

|R1(0)(v)| = δ−2|Fu
1 (0, δz0(v), δ, δσ )|∣∣∣∣1 + δ−2 Hu(0,δz0(v),δ,δσ )

−1+z2
0(v)

∣∣∣∣
≤ δ−2|Fu

1 (0, δz0(v), δ, δσ )|∣∣∣∣1 −
∣∣∣∣ δ

−2 Hu(0,δz0(v),δ,δσ )

−1+z2
0(v)

∣∣∣∣
∣∣∣∣
.
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First we will prove that, for v ∈ Dout
κ,β :

1∣∣∣∣1 −
∣∣∣∣ δ

−2 Hu(0,δz0(v),δ,δσ )

−1+z2
0(v)

∣∣∣∣
∣∣∣∣

≤ 2. (69)

Indeed, if v ∈ Dout
κ,β,∞, by Corollary 4:

∣∣∣∣∣
δ−2 Hu(0, δz0(v), δ, δσ )

−1 + z2
0(v)

∣∣∣∣∣ ≤ K δ|z0(v)− 1|
| − 1 + z2

0(v)|
= 2K δ|ev cosh v| ≤ K δ <

1

2
, (70)

where we have used that 2ev cosh v = e2v +1 is bounded in Dout
κ,β,∞ and that δ is sufficiently

small. Otherwise, if v ∈ Dout
κ,β,T , again by Corollary 4 we have:

∣∣∣∣∣
δ−2 Hu(0, δz0(v), δ, δσ )

−1 + z2
0(v)

∣∣∣∣∣ ≤ K δ|z0(v)− 1|3
| − 1 + z2

0(v)|
= 8K δe3v

| cosh v| .

Now, using Lemma 8 we have:

1

| cosh v| ≤ 1

K1|v ∓ iπ/2| ≤ 1

K1δ log(1/δ)
,

since |v ∓ iπ/2| ≥ K δ log(1/δ) in Dout
κ,β . Moreover, for v ∈ Dout

κ,β,T it is clear that e3v is
bounded. Therefore it is straightforward to see that:

∣∣∣∣∣
δ−2 Hu(0, δz0(v), δ, δσ )

−1 + z2
0(v)

∣∣∣∣∣ ≤ K

log(1/δ)
<

1

2
(71)

if δ is small enough. Then, from (70) and (71), bound (69) holds true.
Finally, from (69) and using again Corollary 4 it is clear that:

|R1(0)(v)| ≤ 2|δ−2 Fu
1 (0, δz0(v), δ, δσ )| ≤

{
K δ|z0(v)− 1| if v ∈ Dout

κ,β,∞,
K δ|z0(v)− 1|3 if v ∈ Dout

κ,β,T ,

and then from the definition (52) of the norm ‖ . ‖out we obtain the statement immediately.�
We enunciate the following technical lemma, due to Angenent [1], which will simplify

the proof of the second part of Proposition 1.

Lemma 14 [1] Let E be a complex Banach space, and let f : Br → Bθr be a holomorphic
mapping, where Bρ = {x ∈ E :‖ x ‖< ρ}.

If θ < 1/2, then f|Bθr
is a contraction, and hence has a unique fixed point in Bθr .

The following result will allow us to finish the proof of Proposition 1.

Lemma 15 Let F := L ◦ R and B(r) be the ball of X out × X out centered at the origin of
radius r = 8 ‖ ζ0 ‖out,×. Then, F : B(r) → B(r/4) is well defined. Moreover, there exists
a constant K independent of δ and σ such that if ζ ∈ B(r):

‖ F(ζ )− ζ0 ‖out,×≤ 1

log(1/δ)
K ‖ ζ ‖out,×.
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Proof Note that it is sufficient to prove the inequality. Indeed, suppose that it holds, then
taking ζ ∈ B(r) and δ sufficiently small we have:

‖ F(ζ ) ‖out,× ≤ ‖ F(ζ )− ζ0 ‖out,× + ‖ ζ0 ‖out,×≤ 1

log(1/δ)
K ‖ ζ ‖out,×

+ ‖ ζ0 ‖out,×≤ 1

8
r + 1

8
r = 1

4
r,

that is F(ζ ) ∈ B(r/4).
Now, recall that:

F(ζ )− ζ0 = L ◦ R(ζ )− L ◦ R(0) = L ◦ (R(ζ )− R(0)),

where R was defined in (18). In order to make the proof clearer, we will decompose R as:

R(ζ )(v) = S(ζ )(v)+ T (ζ )(v) · ζ(v),
where:

S(ζ )(v) = δ−2 Fu(δζ, δz0(v), δ, δσ )

1 + bηη̄ + δ−2 Hu(δζ, δz0(v), δ, δσ )
−1+z2

0(v)

,

T (ζ )(v) =

⎛
⎜⎜⎜⎝

1

1 + bηη̄ + δ−2 Hu(δζ, δz0(v), δ, δσ )

−1 + z2
0(v)

− 1

⎞
⎟⎟⎟⎠ A(v).

Then we have that:

R(ζ )(v)− R(0)(v) = S(ζ )(v)− S(0)(v)+ T (ζ )(v) · ζ(v).
Now we shall bound these two last terms separately. We will begin by S(ζ )− S(0). We will
prove that:

‖ S(ζ )− S(0) ‖out,×≤ K

δ log2(1/δ)
‖ ζ ‖out,×, (72)

and we shall do it using the mean value theorem:

S(ζ )(v)− S(0)(v) =
1∫

0

DS(λζ )(v)dλ · ζ(v).

So let us bound DS(λζ )(v) with λ ∈ [0, 1]. We claim that:

|DS(λζ )(v)| ≤
{
δK if v ∈ Dout

κ,β,∞,
δK |z0(v)− 1|2 if v ∈ Dout

κ,β,T

}
≤ K

δ log2(1/δ)
. (73)

The second inequality is clear from the definition of Dout
κ,β , so we just have to check that the

first one holds. For simplicity we will bound just one entry of the matrix DS, being the other
three analogous. For instance we consider:
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DηS1(λζ )(v) = δ−1 DηFu
1 (δλζ, δz0(v), δ, δσ )

1 + λ2bηη̄+δ−2 Hu(δλζ,δz0(v),δ,δσ )

−1+z2
0(v)

− δ−2 Fu
1 (δλζ, δz0(v), δ, δσ )(

1 + λ2bηη̄+δ−2 Hu(δλζ,δz0(v),δ,δσ )

−1+z2
0(v)

)2

[
λbη̄ + δ−1 DηHu(δλζ, δz0(v), δ, δσ )

−1 + z2
0(v)

]
.

Our first claim is that, if ζ ∈ B(r) ⊂ X out × X out, then for δ sufficiently small:
∣∣∣∣∣1+ λ

2bηη̄+δ−2 Hu(δλζ, δz0(v), δ, δσ )

−1 + z2
0(v)

∣∣∣∣∣

≥
∣∣∣∣∣1 −

∣∣∣∣∣
λ2bηη̄+δ−2 Hu(δλζ, δz0(v), δ, δσ )

−1 + z2
0(v)

∣∣∣∣∣

∣∣∣∣∣ ≥ 1

2
. (74)

Indeed, by definition (52) of ‖ . ‖out,× and Lemma 13 we have that:

|λζ(v)| ≤ λK ‖ ζ ‖out,× |z0(v)− 1|ν ≤ Kr |z0(v)− 1|ν
= 8K ‖ ζ0 ‖out,× |z0(v)− 1|ν ≤ 8K δ2|z0(v)− 1|ν, (75)

with ν = 1 if v ∈ Dout
κ,β,∞ and ν = 3 if v ∈ Dout

κ,β,T . Then it is easy to see that for δ sufficiently
small:

λ2|b||η||η̄|
| − 1 + z2

0(v)|
≤ K

log(1/δ)
≤ 1

4
, (76)

if v ∈ Dout
κ,β . Moreover, (75) implies that ‖ δλζ ‖out,×≤ K δ3 ≤ K δ2. Then, using Corollary

4 one can see that: ∣∣∣∣∣
δ−2 Hu(δλζ, δz0(v), δ, δσ )

−1 + z2
0(v)

∣∣∣∣∣ ≤ K

log(1/δ)
≤ 1

4
(77)

for v ∈ Dout
κ,β and δ sufficiently small. Using bounds (76) and (77) one can straightforwardly

see that (74) holds.
Our second claim, which is in fact Corollary 3, is that:

|δ−1 DηFu
1 (δλζ(v), δz0(v), δ, δσ )| ≤

{
K δ if v ∈ Dout

κ,β,∞,
K δ|z0(v)− 1|2 if v ∈ Dout

κ,β,T .
(78)

Finally, it only remains to bound the last term of DS. We claim that:
∣∣∣∣∣δ

−2 Fu
1 (δλζ, δz0(v), δ, δσ )

[
λbη̄ + δ−1 DηHu(δλζ, δz0(v), δ, δσ )

−1 + z2
0(v)

]∣∣∣∣∣

≤
{

K δ if v ∈ Dout
κ,β,∞,

K δ|z0(v)− 1|2 if v ∈ Dout
κ,β,T .

(79)

This can be proved using Corollaries 3 and 4 to bound DηHu and Fu
1 respectively, and

inequality (75) to bound η̄.
In conclusion, from (74), (78) and (79) we obtain:

|DηS1(λζ, v)| ≤
{

K δ if v ∈ Dout
κ,β,∞,

K δ|z0(v)− 1|2 if v ∈ Dout
κ,β,T ,
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and then, doing the same for the rest of the entries of the matrix DS, bound (73) is proved.
Finally, (73) and the mean value theorem yield:

|S(ζ )(v)− S(0)(v)| ≤
1∫

0

|DS(λζ, v)|dλ · |ζ(v)| ≤ K

δ log2(1/δ)
|ζ(v)|,

and that implies bound (72).
Now we shall proceed to bound T (ζ )(v) · ζ(v). We claim that:

‖ T (ζ ) · ζ ‖out,×≤ K

δ log(1/δ)
‖ζ ‖out,× . (80)

Indeed, using (75) and the first inequalities in (76) and (77) with λ = 1, it can be seen that:
∣∣∣∣∣
bηη̄ + δ−2 Hu(δζ, δz0(v), δ, δσ )

−1 + z2
0(v)

∣∣∣∣∣ ≤ K

log(1/δ)
,

if δ is small enough, and consequently it is clear that:
∣∣∣∣∣∣∣

1

1 + bηη̄+δ−2 Hu(δζ,δz0(v),δ,δσ )

−1+z2
0(v)

− 1

∣∣∣∣∣∣∣
≤ K

log(1/δ)
. (81)

Moreover, by the definition (17) of the matrix A it is straightforward to see that |A(v)ζ(v)| ≤
K δ−1|ζ(v)|. Using this fact, bound (81) and the definition (52) of ‖ . ‖out,×, it is clear that
for ν = 1, 3 we have:

|T (ζ )(v) · ζ(v)||z0(v)− 1|ν ≤ K

δ log(1/δ)
‖ζ ‖out,×,

and then (80) is proved.
Finally, using (72) and (80) we have that:

‖ R(ζ )− R(0)‖out,× = ‖ S(ζ )− S(0)+ T (ζ ) · ζ ‖out,×

≤ K ‖ζ ‖out,×
(

1

δ log2(1/δ)
+ 1

δ log(1/δ)

)
≤ K

δ log(1/δ)
‖ζ ‖out,×,

and then by Lemma 12 we obtain the desired bound:

‖ L ◦ (R(ζ )− R(0))‖out,×≤ K δ ‖ R(ζ )− R(0)‖out,×≤ K

log(1/δ)
‖ζ ‖out,× .

�
Proof (End of the proof of Proposition 1) As we already mentioned, the first part of Propo-
sition 1 is proved in Lemma 13.

On the other hand, note that Lemmas 14 and 15 imply that the operator F = L ◦ R has a
unique fixed point ζ u in the ball of X out × X out of radius 8‖ζ u

0 ‖out,×. Then we just need to
define ζ u

1 = ζ u − ζ u
0 . It is clear that ζ u = ζ0 + ζ1 and that by Lemma 15:

‖ζ u
1 ‖out,× = ‖ζ u − ζ u

0 ‖out,×=‖F(ζ u)− F(0) ‖out,×≤ K

log(1/δ)
‖ζ u ‖out,×

≤ K

log(1/δ)
‖ζ u

0 ‖out,×,

and then the second part of Proposition 1 is clear. �
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4 Proof of Theorem 3

Again, we will just focus on the proof for the unstable manifold, ϕu, being the one for the
stable manifold analogous. We will also omit the superindices −u− whenever it does not
lead to confusion.

Lemma 16 Let V±(u, δ, σ ) = z−1
0 (z0(u)− z±(δ, σ )± 1)− u, where z±(δ, σ ) is the third

component of the critical point S±(δ, σ ). Then, for all u ∈ Dout
κ,β,T , there exists a constant C

independent of δ and σ such that:

|V±(u, δ, σ )| ≤ δC.

Moreover, given any constant κ , if u ∈ Dout
κ,β,T , then for δ > 0 sufficiently small:

u + V±(u, δ, σ ) ∈ Dout
κ/2,β .

Proof Consider the function f (t) := z−1
0 (z0(u) + t (−z±(δ, σ ) ± 1)). It is clear that

V±(u, δ, σ ) = f (1) − f (0). Moreover, for any u ∈ Dout
κ,β,T and δ > 0, the function f

is analytic. Using that:
∣∣∣∣∣

1

−1 + z2
0(u)

∣∣∣∣∣ = ∣∣cosh2 u
∣∣ ≤ M if u ∈ Dout

κ,β,T ,

and that, by Lemma 2, | − z±(δ, σ )± 1| ≤ K δ, one can easily see that | f ′(t)| ≤ δC . Then,
by the mean value theorem, the first part of the lemma is proved. Moreover, using the bound
of V±(u, δ, σ ) it is straightforward to check that the second part of the lemma also holds. �
Proof (End of the proof of Theorem 3) We just need to take κ = κ/2. Then, by Lemma 16,
if u ∈ Dout

κ,β,T , u + V±(u, δ, σ ) belongs to Dout
κ/2,β = Dout

κ,β , where we know by Proposition 1
that the parameterizations ζ u and ζ s are defined. Then we just have to define ϕs and ϕu as:

ϕs(u) = ζ s(u + V−(u, δ, σ ))+ ζ−(δ, σ ),
ϕu(u) = ζ u(u + V+(u, δ, σ ))+ ζ+(δ, σ ),

u ∈ Dout
κ,β,T (82)

where ζ±(δ, σ ) = (η±(δ, σ ), η̄±(δ, σ )), and η±, η̄± were defined in (14). As we pointed out
in Sect. 2.2.1, both ϕs(u) and ϕu(u) satisfy system (27), and they are parameterizations of
the stable and unstable manifolds of S−(δ, σ ) and S+(δ, σ ) respectively.

Finally, note that, for u ∈ Dout
κ,β,T , one has:

|ϕu,s(u)||z0(u)− 1|3 ≤ |ζ u,s(u + V±(u, δ, σ ))||z0(u)− 1|3 + |ζ±(δ, σ )||z0(u)− 1|3,
for some constant K . Now, on one hand, by Proposition 1 and using that for u ∈ Dout

κ,β,T :
∣∣∣∣

z0(u)− 1

z0(u + V±(u, δ, σ ))− 1

∣∣∣∣ ≤ 1 + K

log(1/δ)
,

we have:

|ζ u,s(u + V±(u, δ, σ ))||z0(u)− 1|3 ≤ K |ζ u,s(u + V±(u, δ, σ ))||z0(u + V±(u, δ, σ )− 1|3
≤ K ‖ζ u,s ‖u,s

out≤ K δ2.

On the other hand, recall that ζ±(δ, σ ) = (η±(δ, σ ), η̄±(δ, σ )), where η±(δ, σ ) =
x±(δ, σ )+ iy±(δ, σ ), and then by Lemma 2, since | cosh u| is bounded in Dout

κ,β,T , we obtain

|ζ±(δ, σ ) cosh3 u| ≤ K δ2, and thus the last statement of Theorem 3 is clear. �
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5 Sketch of the Proof of Theorem 4

In this section we present the main ideas of how Theorem 4 is proved. As we already men-
tioned, the proof is analogous as the one found in [3], and hence for more details we refer
the reader to that paper.

5.1 Existence of Solutions Ψ u,s
0

First we will introduce the Banach spaces in which we will work. For ∗ = u, s, we define:

X in,∗
ν = {φ : Din,∗

β0,ρ
→ C, φ analytic, ‖φ ‖u,s

in,ν := sup
s∈Din,∗

β0,ρ

|sνφ(s)| < ∞}.

As usual, in the product space X in,∗
ν × X in,∗

ν we will take the norm:

‖(φ1, φ2)‖u,s
in,ν,×=‖φ1 ‖u,s

in,ν + ‖φ2 ‖u,s
in,ν . (83)

Now, if we call Ψ = (ψ,ψ) the solutions of (33), F = (F1, F2) and define:

h0 = lim
Re s→∞ s3 H(0, 0,−s−1, 0, 0), (84)

h̃(Ψ, s) = s2 [bψψ + H(Ψ,−s−1, 0, 0)
]
, (85)

Ã(s) =
(−(α − cs−1)i + ds−1 0

0 (α − cs−1)i + ds−1

)
, (86)

and

R(Ψ )(s) =
(

1

1 + h̃(Ψ, s)
− 1

1 + h0s−1

)
Ã(s)Ψ + F(Ψ,−s−1, 0, 0)

1 + h̃(Ψ, s)
, (87)

then system (33) can be written as:

dΨ

ds
= 1

1 + h0s−1 Ã(s)Ψ + R(Ψ )(s). (88)

Lemma 17 A fundamental matrix of the linear homogeneous system

dΨ

ds
= 1

1 + h0s−1 Ã(s)Ψ,

is:

M(s) =
(

m1(s) 0
0 m2(s)

)
= sd(1 + h0s−1)d

(
e−i(αs+β(s)) 0

0 ei(αs+β(s))
)
, (89)

where β(s) = −(c + αh0) log(s(1 + h0s−1)).

The functional equation that Ψ u,s
0 have to satisfy is the following:

Ψ
u,s
0 (s) = M(s)

0∫

∓∞
M(s + t)−1R(Ψ u,s

0 )(s + t)dt, (90)
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where R was defined in (87), and +∞ corresponds to the stable case and −∞ to the unstable
one. For functions Φ ∈ X in,∗

ν × X in,∗
ν , we introduce the linear operators:

Bu,s(Φ)(s) = M(s)

0∫

∓∞
M(s + t)−1Φ(s + t)dt,

so that the fixed point equation (90) can be written as:

Ψ
u,s
0 = Fu,s(Ψ

u,s
0 ) := Bu,s ◦ R(Ψ u,s

0 ). (91)

The main result in this subsection, which is equivalent to item 1 of Theorem 4, is the
following:

Proposition 2 Given β0 > 0, there exists ρ > 0 big enough such that system (88) has two
solutions Ψ u,s

0 belonging to X in,∗
ν × X in,∗

ν , ∗ = u, s, of the form:

Ψ
u,s
0 = Ψ

u,s
0,0 + Ψ

u,s
0,1 ,

with Ψ u,s
0,0 = Bu,s ◦ R(0) ∈ X in,∗

3 × X in,∗
3 , Ψ

u,s
0,1 ∈ X in,∗

4 × X in,∗
4 , satisfying ‖Ψ u,s

0,1 ‖u,s
in,3,×<

‖Ψ u,s
0,0 ‖u,s

in,3,×.
Moreover, the functionsΨ u,s

0 are the unique solutions of system (88) satisfying the asymp-
totic condition limRe s→∓∞ Ψ

u,s
0 (s) = 0, where − corresponds to u and + to s.

This proposition is proved in [3] in the case d = 1, and the case d �= 1 can be proved
identically.

5.2 Asymptotic Expression for the Difference ΔΨ0

Below we sketch how formula (36) can be found, which is an adaptation of the results of [3]
for the case d �= 1. The first step is to realize that, since Ψ s

0 and Ψ u
0 satisfy equation (88), its

difference ΔΨ0 = (Δψ0,Δψ0) satisfies the following homogeneous linear equation:

dΔΨ

ds
=

[
1

1 + h0s−1 Ã(s)+ R̃(s)
]
ΔΨ, (92)

where R̃ is the matrix defined by:

R̃(s) =
1∫

0

DR(Ψ s
0 (s)+ λ(Ψ u

0 (s)− Ψ s
0 (s)))dλ,

and R was defined in (87). As in [3], one deduces that any analytic solution of equation (92)
that is bounded in the domain Eβ0,ρ , defined in (35), can be written as the following integral
equation.

Δψ0(s) = sd(1 + h0s−1)d

× e−i(αs+β(s))

⎡
⎢⎣κ0 +

s∫

−iρ

ei(αt+β(t))

td(1 + h0t−1)d
〈R̃1(t),ΔΨ0(t)〉dt

⎤
⎥⎦ , (93)
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Δψ0(s) = sd(1 + h0s−1)dei(αs+β(s))
s∫

−i∞

e−i(αt+β(t))

td(1 + h0t−1)d
〈R̃2(t),ΔΨ0(t)〉dt, (94)

where β(s) = −(c + αh0) log(s(1 + h0s−1)).

Now we define the linear operator G by the expression:

G(Φ)(s) = sd(1 + h0s−1)d

(
e−i(αs+β(s)) ∫ s

−iρ
ei(αt+β(t))

td (1+h0t−1)d
〈R̃1(t),Φ(t)〉dt

ei(αs+β(s)) ∫ s
−i∞

e−i(αt+β(t))
td (1+h0t−1)d

〈R̃2(t),Φ(t)〉dt

)

and the function:

ΔΨ0,0(s) = sd(1 + h0s−1)d
(
κ0e−i(αs+β(s))

0

)
.

Then we can rewrite (93) and (94) in the compact form:

ΔΨ0(s) = ΔΨ0,0(s)+ G(ΔΨ0)(s). (95)

Adapting the steps followed in [3], one can see that the operator Id − G is invertible in a
suitable Banach space, and therefore we can write:

ΔΨ0 = (Id − G)−1(ΔΨ0,0) =
∑
n≥0

Gn(ΔΨ0,0). (96)

The last step, once we know thatΔΨ0 can be obtained form formula (96), is to study how
the operator G and its iterates Gn act onΔΨ0,0. What one can prove is that there exists some
constant K (ρ) such that:

π1G(ΔΨ0,0)(s) = sde−i(αs+β(s))(K (ρ)+ O(s−1)).

and that:

π2G(ΔΨ0,0)(s) = O
(

sd−2e−i(αs+β(s))) .
Using standard functional analysis, formula (36) for ΔΨ0 is found, finishing the proof of
Theorem 4.

6 Proof of Theorem 5

Theorem 3 provides parameterizations of the invariant manifolds satisfying the same equation
(27). Nevertheless, it does not give enough information about the behavior of these manifolds
near the singularities ±iπ/2. To obtain this information we will use the solutions Ψ u,s

0 of the
inner equation (33) given in Theorem 4. For this reason, in this section we will deal not with
system (27) but with (32) (which comes from (27) after a change of variables). Moreover,
we will restrict ourselves to the matching domains Dmch,u

κ,β1,β2
and Dmch,s

κ,β1,β2
(see Fig. 3), or

more precisely to these domains in the inner variables, that is Dmch,u
κ,β1,β2

and Dmch,s
κ,β1,β2

(see the
definition 40).

Let us consider the Banach space:

X mch,∗ = {φ : Dmch,∗
κ,β1,β2

→ C, φ analytic, sup
s∈Dmch,∗

κ,β1,β2

|s|2|φ(s)| < ∞}, ∗ = u, s
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with the norm:

‖φ ‖u,s
mch= sup

s∈Dmch,∗
κ,β1,β2

|s|2|φ(s)|,

and we endow the product space X mch,∗ × X mch,∗ with the norm:

‖(φ1, φ2)‖u,s
mch,×=‖φ1 ‖u,s

mch + ‖φ2 ‖u,s
mch .

Now we present the main result of this section, which is equivalent to Theorem 5:

Proposition 3 Let Ψ u,s(s) = δϕu,s(δs + iπ/2), where ϕu,s are the parameterizations given
by Theorem 3. If s ∈ Dmch,∗

κ,β1,β2
, for ∗ = u, s, one has Ψ u,s(s) = Ψ

u,s
0 (s) + Ψ

u,s
1 (s), where

Ψ
u,s
0 are the two solutions of the inner system (33) given by Theorem 4 and:

‖Ψ u,s
1 ‖u,s

mch,×≤ K δ1−γ ,

for some constant K .

Now we shall proceed to prove Proposition 3 for the unstable case. The stable case is
analogous. As usual, we will omit the superindices −u− of the domain Dmch

κ,β1,β2
, the Banach

space X mch and the norm ‖ . ‖mch, whenever there is no danger of confusion.
Before proceeding, we will explain the main steps to prove Proposition 3.

6.1 Notation and Outline of the Proof of Proposition 3

First of all, let us introduce some notation. We will call Ψ = (ψ,ψ) the solutions of (32).
Recalling the definitions (31) of l(δs) and m(δs), (85) of h̃(Ψ, s) and (86) of Ã(s), we define:

h(Ψ, s, δ, σ ) = [
bψψ + H(Ψ,−s−1 + δl(δs), δ, δσ )

]
(s2 + δs3m(δs)), (97)

A(s, δ, σ ) =
(

a1(s, δ, σ ) 0
0 a2(s, δ, σ )

)
(98)

X0(Ψ, s) = 1

1 + h̃(Ψ, s)

[Ã(s)Ψ + F(Ψ,−s−1, 0, 0)
]
, (99)

X1(Ψ, s, δ, σ ) = 1

1 + h(Ψ, s, δ, σ )

[A(s, δ, σ )Ψ + F(Ψ,−s−1 + δl(δs), δ, δσ )
]

− 1

1 + h̃(Ψ, s)

[Ã(s)Ψ + F(Ψ,−s−1, 0, 0)
]
, (100)

where:

a1(s, δ, σ ) = −(α + c(−s−1 + δl(δs))i − δσ + ds−1 − δdl(δs),

a2(s, δ, σ ) = (α + c(−s−1 + δl(δs))i − δσ + ds−1 − δdl(δs) (101)

Note that A(s, 0, σ ) = Ã(s), and h(Ψ, s, 0, σ ) = h̃(Ψ, s).
Then, the full system (32) can be written as:

dΨ

ds
= X0(Ψ, s)+ X1(Ψ, s, δ, σ ), (102)

and the inner system (33) reads:

dΨ

ds
= X0(Ψ, s). (103)

123



J Dyn Diff Equat

Let us considerΨ u defined as the parameterization of the one-dimensional unstable manifold
of system (27) given by Theorem 3 in the inner variables, that is Ψ u(s) = δϕu(δs + iπ/2),
which is a solution of (102). Moreover, consider the solution Ψ u

0 of the inner system (103)
given by Theorem 4. Then, if we define their difference:

Ψ u
1 = Ψ u − Ψ u

0 , (104)

we have that Ψ u
1 satisfies:

dΨ u
1

ds
= X0(Ψ

u
0 + Ψ u

1 , s)+ X1(Ψ
u
0 + Ψ u

1 , s, δ, δσ )− X0(Ψ
u
0 , s)

= 1

1 + h0s−1 Ã(s)Ψ u
1 + R(Ψ u

1 , δ, σ )(s)

where h0 was defined in (84) and:

R(Ψ u
1 , δ, σ )(s) = X0(Ψ

u
0 + Ψ u

1 , s)− X0(Ψ
u
0 , s)− DΨ X0(Ψ

u
0 , s)Ψ u

1

+X1(Ψ
u
0 + Ψ u

1 , s, δ, σ )+
[

1

1 + h̃(Ψ u
0 , s)

− 1

1 + h0s−1

]
Ã(s)Ψ u

1

+ 1

1 + h̃(Ψ u
0 , s)

DΨ F(Ψ u
0 , s−1, 0, 0)Ψ u

1

+DΨ

[
1

1 + h̃(Ψ u
0 , s)

]
(Ã(s)Ψ u

0 + F(Ψ u
0 , s−1, 0, 0))Ψ u

1 . (105)

Now consider the linear operator acting on functions (φ1, φ2) ∈ X mch × X mch:

L(φ1, φ2)(s) = M(s)

(∫
Γ (s1,s)

m−1
1 (w)φ1(w)dw∫

Γ (s2,s)
m−1

2 (w)φ2(w)dw

)
, (106)

where the matrix M(s) was defined in (89), si , i = 1, 2, were defined in (41) and Γ (si , s)
is any curve in Dmch

κ,β1,β2
going from si to s. Note that, since for w ∈ Dmch

κ,β1,β2
the functions

m1(w)
−1φ1(w) and m2(w)

−1φ2(w) are analytic, by Cauchy’s theorem the integrals in (106)
do not depend on the choice of the curves Γ (si , s).

With this notation, it is clear that Ψ u
1 satisfies the fixed point equation:

Ψ u
1 (s) = I(c1, c2)(s)+ L ◦ R(Ψ u

1 , δ, σ )(s), (107)

being:

I(k1, k2)(s) = M(s)

(
k1

k2

)
(108)

and

c1 = m−1
1 (s1)ψ1(s1), c2 = m−1

2 (s2)ψ1(s2). (109)

Now, let us explain the main steps to prove Proposition 3. First of all, we note that the fixed
point equation (107) is equivalent to:

Ψ u
1 = I(c1, c2)+ L ◦ R(0, δ, σ )+ L ◦ [R(Ψ u

1 , δ, σ )− R(0, δ, σ )], (110)
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where:

L ◦ [R(Ψ u
1 , δ, σ )− R(0, δ, σ )]

= M(s)

(∫
Γ (s1,s)

m−1
1 (w)[R1(Ψ

u
1 , δ, σ )(w)− R1(0, δ, σ )(w)]dw∫

Γ (s2,s)
m−1

2 (w)[R2(Ψ
u
1 , δ, σ )(w)− R2(0, δ, σ )(w)]dw

)
.

Note that:

R(Ψ u
1 , δ, σ )(w)− R(0, δ, σ )(w) =

1∫

0

DΨR(λΨ u
1 , δ, σ )(w)dλΨ

u
1 (w)

=
1∫

0

DΨR(λ(Ψ u − Ψ u
0 ), δ, σ )(w)dλΨ

u
1 (w).

Now, since we already proved the existence of both parameterizations Ψ u and Ψ u
0 , we can

think of the integral term as independent of Ψ u
1 , that is:

R(Ψ u
1 , δ, σ )(w)− R(0, δ, σ )(w) = B(w)Ψ u

1 (w),

where the matrix B(w) is given by:

B(w) =
1∫

0

DΨR(λ(Ψ u − Ψ u
0 ), δ, σ )(w)dλ.

Therefore, for Ψ ∈ X mch × X mch, we can define the linear operators:

B(Ψ )(w) = B(w)Ψ (w), G(Ψ )(s) = L ◦ B(Ψ )(s), (111)

and then equation (107) can be rewritten as:

(Id − G) Ψ u
1 = I(c1, c2)+ L ◦ R(0, δ, σ ). (112)

We will proceed to study this equation as follows. First, in Sects. 6.2 and 6.3 we will study
the linear operators L and B respectively. Then, in Sect. 6.4 we will study the independent
term of (112), that is I(c1, c2)+ L ◦ R(0, δ, σ ). Finally, in Sect. 6.5 we will see that joining
the results of the previous subsections allows us to guarantee that the operator Id − G is
invertible in X mch × X mch and to obtain the desired bound for the norm of Ψ u

1 .

6.2 The Linear Operator L

As we already mentioned, in this subsection we will study the operator L. However, before
we present two technical lemmas. The first one is completely analogous to Lemma 9, and
can be proved in the same way.

Lemma 18 Let s ∈ Dmch
κ,β1,β2

and w = s1 + t (s − s1), w̃ = s2 + t (s − s2), with t ∈ [0, 1].
Then there exists K �= 0 independent of δ and σ such that:

|w|, |w̃| ≥ K |s|.
Lemma 19 Let s ∈ Dmch

κ,β1,β2
and w = s1 + t (s − s1), w̃ = s2 + t (s − s2), with t ∈ [0, 1].

Then there exists K independent of δ and σ such that:
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|m1(s)m
−1
1 (w)| ≤ K eα(1−t)Im (s−s1), |m2(s)m

−1
2 (w̃)| ≤ K eα(1−t)Im (s2−s),

where m1 and m2 are defined in (89).

Proof We will do just the case for w. We have:

m1(s)m
−1
1 (w) = sd(1 + h0s−1)d

wd(1 + h0w−1)d
e−i[α(s−w)+β(s)−β(w)].

First of all note that by Lemma 18 we have that:
∣∣∣∣

sd(1 + h0s−1)d

wd(1 + h0w−1)d

∣∣∣∣ ≤ K

∣∣∣∣
1 + h0s−1

1 + h0w−1

∣∣∣∣
d

.

Moreover, for δ small enough we have that |s|, |w| ≥ K log(1/δ) ≥ 2h0 and hence:
∣∣∣∣

sd(1 + h0s−1)d

wd(1 + h0w−1)d

∣∣∣∣ ≤ K

(
1 + |h0s−1|)d

(
1 − |h0w−1|)d

≤ K . (113)

On the other hand, we have that:∣∣∣e−i[α(s−w)+β(s)−β(w)]
∣∣∣ ≤ eαIm (s−w)e|Im β(s)|+|Im β(w)|.

Recall that β(s) = −(c+αh0) log(s +h0) and therefore Im β(s) = −(c+αh0) arg(s +h0),
obtaining for Im β(w) an analogous expression. It is clear that for s ∈ Dmch

κ,β1,β2
we have

Im s ≤ Im s1 < 0, and then, since h0 is real, we also have that Im (s+h0) < 0.Consequently,
we have arg(s + h0) ∈ (π, 2π) and hence:

|Im β(s)|, |Im β(w)| ≤ (c + α|h0|)2π.
Then it is clear that:∣∣∣e−i[α(s−w)+β(s)−β(w)]

∣∣∣ ≤ eαIm (s−w)e4π(c+α|h0|) = eα(1−t)Im (s−s1)e4π(c+α|h0|). (114)

In conclusion, from (113) and (114) we obtain the initial statement. �
The following lemma studies how the linear operator L acts on functions belonging to

X mch × X mch.

Lemma 20 The operator L : X mch ×X mch → X mch ×X mch is well defined and there exists
a constant K such that for any φ ∈ X mch × X mch, then:

‖L ◦ φ ‖mch,×≤ K ‖φ ‖mch,× .
Proof We will check the bound for the first component. We have:

π1L ◦ φ(s) = m1(s)
∫

Γ (s1,s)

m−1
1 (w)φ1(w)dw.

TakingΓ (s1, s) as the segment from s1 to s and parameterizing it by γ (t) = s1+t (s−s1), t ∈
[0, 1], we have:

|π1L ◦ φ(s)| ≤ |s − s1|
1∫

0

|m1(s)m
−1
1 (s1 + t (s − s1))φ1(s1 + t (s − s1))|dt

≤ K |s1 − s| ‖φ1 ‖mch

1∫

0

|m1(s)m
−1
1 (s1 + t (s − s1))|s1 + t (s − s1)|−2dt.
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Using Lemmas 18 and 19 it is clear that:

|π1L ◦ φ(s)| ≤ K |s1 − s| ‖φ1 ‖mch |s|−2

∣∣∣∣∣∣

1∫

0

eα(1−t)Im (s−s1)dt

∣∣∣∣∣∣

= K |s − s1|
α|Im (s1 − s)| ‖φ1 ‖mch |s|−2

∣∣∣1 − eαIm (s−s1)
∣∣∣ .

Finally, we note that as Im (s − s1) ≤ 0 we have that
∣∣1 − eαIm (s−s1)

∣∣ ≤ 1. Moreover,
from the definition of Dmch

κ,β1,β2
, using standard geometric arguments, it is easy to see that

there exists a constant C(β1, β2) such that |s − s1| ≤ C(β1, β2) |Im s − Im s1|. Then it is
clear that |π1L ◦ φ(s)| ≤ K ‖ φ1 ‖mch |s|−2, and consequently ‖ π1L ◦ φ ‖mch≤ K
‖ φ1 ‖mch. �

6.3 The Linear Operator B

Now we proceed to study the operator B, defined in (111). However, before we will need to
study the vector field X1.

Lemma 21 Consider the vector field X1 defined in (100), and let Ψ ∈ X mch × X mch, such
that ‖Ψ ‖mch,×≤ 1. Then there exists a constant K such that for all s ∈ Dmch

κ,β1,β2
:

|X1(Ψ, s, δ, σ )| ≤ K δ|s|−2.

Proof First of all we will rewrite X1, which was defined in (100), in a more convenient way:

X1(Ψ, s, δ, σ ) =
[

1

1 + h(Ψ, s, δ, σ )
− 1

1 + h̃(Ψ, s)

]
[A(s, δ, σ )Ψ

+F(Ψ,−s−1 + δl(δs), δ, σ )
] + 1

1 + h̃(Ψ, s)

[
(A(s, δ, σ )− Ã(s))Ψ

+F(Ψ,−s−1 + δl(δs), δ, σ )− F(Ψ,−s−1, 0, 0)
]
,

where l(δs) was defined in (31), h̃(Ψ, s) in (85), Ã(s) in (86), h(Ψ, s, δ, σ ) in (97) and
A(s, δ, σ ) in (98). In the following we shall bound each term.

Our first claim is that:
∣∣∣∣
[

1

1 + h(Ψ, s, δ, σ )
− 1

1 + h̃(Ψ, s)

]∣∣∣∣ ≤ K δ. (115)

First of all, note that by Remark 6 and the fact that |Ψ (s)| ≤‖Ψ ‖mch,× |s|−2 we have:

|h(Ψ, s, δ, σ )| ≤ (
b ‖Ψ ‖mch,× |s|−4 + K |s|−3) (|s|2 + K δ2|s4|)

≤ K (|s|−2 + |s|−1 + δ2 + δ2|s|)
≤ K

(
1

log2(1/δ)
+ 1

log(1/δ)
+ δ2 + δ1+γ

)
≤ 1

2
. (116)
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Note that this bound is also valid for h̃(Ψ, s) = h(Ψ,−s−1, 0, 0). Then, by Lemma 5 we
obtain:
∣∣∣∣
[

1

1 + h(Ψ, s, δ, σ )
− 1

1 + h̃(Ψ, s)

]∣∣∣∣ ≤ 4|h(Ψ, s, δ, σ )− h̃(Ψ, s)|

≤ 4
∣∣bψψ + H(Ψ,−s−1 + δl(δs), δ, δσ )

∣∣ |δs3m(δs)|
+4

∣∣H(Ψ,−s−1+δl(δs), δ, δσ )−H(Ψ,−s−1, 0, 0)
∣∣ |s|2. (117)

Now, on one hand, we have:
∣∣bψψ + H(Ψ,−s−1 + δl(δs), δ, δσ )

∣∣ |δs3m(δs)| ≤ K
(|s|−4 + |s−3|) δ2|s|4 ≤ K δ. (118)

On the other hand, note that:
∣∣H(Ψ,−s−1 + δl(δs), δ, δσ )− H(Ψ,−s−1, 0, 0)

∣∣

≤ |(δl(δs), δ, δσ )|
1∫

0

|∂(z,δ,σ )H(Ψ,−s−1 + λδl(δs), λδ, λδσ )|dλ.

Since for λ ∈ [0, 1] and for δ small enough one has φ = (Ψ,−s−1 + λδl(δs), λδ, λδσ ) ∈
B3(r0/2)× B(δ0/2)× B(σ0/2), from Remark 6 and applying again Lemma 6 (with φ∗ = 0)
we can bound all the derivatives of H by K |φ|2, and then it is straightforward to see that:
∣∣H(Ψ,−s−1 + δl(δs), δ, δσ )− H(Ψ,−s−1, 0, 0)

∣∣

≤
1∫

0

K |(Ψ,−s−1 + λδl(δs), λδ, λδσ )|2dλ · |(δl(δs), δ, δσ )| ≤ K |s|−2|(δl(δs), δ, δσ )|

≤ K δ|s|−2,

where we have used that |Ψ (s)| ≤ K |s|−2. Hence it is clear that:
∣∣H(Ψ,−s−1 + δl(δs), δ, δσ )− H(Ψ,−s−1, 0, 0)

∣∣ |s|2 ≤ K δ (119)

Substituting (118) and (119) in inequality (117), claim (115) is proved.
Our second claim is that:

|A(s, δ, σ )Ψ + F(Ψ,−s−1 + δl(δs), δ, σ )| ≤ K |s|−2. (120)

This is straightforward to check, since the matrix A(s, δ, σ ) is bounded for s ∈ Dmch
κ,β1,β2

(which is clear from (98) and (101)), Ψ ∈ X mch × X mch and |F(Ψ,−s−1 + δl(δs), δ, σ )| ≤
K |s|−3.

Our third claim is that, since as we already mentioned |h̃(Ψ, s)| ≤ 1/2, then:
∣∣∣∣

1

1 + h̃(Ψ, s)

∣∣∣∣ ≤ 2. (121)

The last claim is that:

|(A(s, δ, σ )− Ã(s))Ψ+F(Ψ,−s−1+δl(δs), δ, σ )−F(Ψ,−s−1, 0, σ )| ≤ K δ|s|−2. (122)

First, we note that:

A(s, δ, σ )− Ã(s) =
(
(−1 − ic)δl(δs)− δσ 0

0 (−1 + ic)δl(δs)− δσ

)
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and since |δl(δs)| = O(δ1+γ ), it is clear that:

|(A(s, δ, σ )− Ã(s))Ψ | ≤ K δ ‖Ψ ‖mch,× |s|−2.

On the other hand, using the mean value theorem and Lemma 6 it is also easy to see that:

|F(Ψ,−s−1 + δl(δs), δ, σ )− F(Ψ,−s−1, 0, σ )|

≤
1∫

0

|D(z,δ)F(Ψ,−s−1 + tδl(δs), tδ, σ )|dt |(δl(δs), δ)| ≤ K δ|s|−2,

so inequality (122) is clear.
In conclusion, from bounds (115), (120), (121) and (122) we obtain:

|X1(Ψ, s, δ, σ )| ≤ K δ|s|−2

�
Now we can proceed to study how the operator B acts on X mch × X mch.

Lemma 22 If γ ∈ (0, 1) and Ψ ∈ X mch × X mch, with ‖ Ψ ‖mch,×≤ 1, then B(Ψ ) ∈
X mch × X mch and there exists a constant K such that:

‖B(Ψ )‖mch,×≤ K

log2(1/δ)
.

Proof Recall that:

R(Ψ, δ, σ )(w) = X0(Ψ
u
0 + Ψ,w)− X0(Ψ

u
0 , w)− DΨ X0(Ψ

u
0 , w)Ψ

+ X1(Ψ
u
0 + Ψ,w, δ, σ )+

[
1

1 + h̃(Ψ u
0 , w)

− 1

1 + h0w

]
Ã(w)Ψ

+ 1

1 + h̃(Ψ u
0 , w)

DΨ F(Ψ u
0 , w

−1, 0, 0)Ψ

+ DΨ

[
1

1 + h̃(Ψ u
0 , w)

]
(Ã(w)Ψ u

0 + F(Ψ u
0 , w

−1, 0, 0))Ψ,

and hence:

DΨR(Ψ, δ, σ )(w) = DΨ X0(Ψ
u
0 + Ψ,w)− DΨ X0(Ψ

u
0 , w)+ DΨ X1(Ψ

u
0 + Ψ,w, δ, σ )

+
[

1

1 + h̃(Ψ u
0 , w)

− 1

1 + h0w

]
Ã(w)+ 1

1 + h̃(Ψ u
0 , w)

DΨ F(Ψ u
0 , w

−1, 0, 0)

+ DΨ

[
1

1 + h̃(Ψ u
0 , w)

]
(Ã(w)Ψ u

0 + F(Ψ u
0 , w

−1, 0, 0)).

We will see that, for w ∈ Dmch
κ,β1,β2

:

|DΨR(Ψ, δ, σ )(w)| ≤ K

log2(1/δ)
. (123)

First of all we claim that:

|DΨ X0(Ψ
u
0 + Ψ,w)− DΨ X0(Ψ

u
0 , w)| ≤ K

log2(1/δ)
. (124)

123



J Dyn Diff Equat

This can be shown using the mean value theorem in each column of the matrix DΨ X0. For
example, we will prove the result for the first one, Dψ X0. Writing Ψλ = Ψ u

0 +λΨ , the mean
value theorem gives us the following bound:

|Dψ X0(Ψ
u
0 + Ψ,w)− Dψ X0(Ψ

u
0 , w)| ≤

1∫

0

∣∣DΨ Dψ X0(Ψλ,w)
∣∣ dλ|Ψ (w)|

≤
1∫

0

∣∣DΨ Dψ X0(Ψλ,w)
∣∣ dλ ‖Ψ ‖mch,× |w|−2

≤
1∫

0

∣∣DΨ Dψ X0(Ψλ,w)
∣∣ dλ

K ‖Ψ ‖mch,×
log2(1/δ)

. (125)

Then it is clear that in order to prove (124) it is only necessary to prove that the integral is
bounded, or equivalently, that the integrand DΨ Dψ X0(Ψλ,w) (which is a 2 × 2 matrix) is
bounded for λ ∈ [0, 1]. Note that, from definition (99) of X0, fixing w ∈ Dmch

κ,β1,β2
it is clear

that X0(φ,w) is bounded and analytic if:

φ ∈ B2(r̃0) ⊂ B2(r0) ∩ {φ ∈ C
2 : |h̃(φ,w)| < 1/2},

for some r̃0. Then, Cauchy’s theorem implies that the derivatives of X0 with respect toψ and
ψ are bounded. Hence, using again the same arguments, we prove that all the derivatives of
order two are also bounded. Since for Ψ ∈ X mch × X mch we have that λΨ (w) ∈ B2(r̃0/2)
for δ small enough and λ ∈ [0, 1], we obtain that DΨ Dψ X0(Ψλ,w) is bounded and thus
(124) is proved.

Our next step will be to prove that:

|DΨ X1(Ψ
u
0 + Ψ,w, δ, σ )| ≤ K δ ≤ K

log2(1/δ)
. (126)

In fact, we will prove the result just for the derivative with respect to ψ , being the one with
respect to ψ analogous. Note that if Ψ + Ψ u

0 = (ψ + ψu
0 , ψ + ψ

u
0) ∈ X mch × X mch, then

(ψ +ψu
0 + |w|−2eiθ , ψ +ψ

u
0) ∈ X mch × X mch too. Then first using Cauchy’s theorem and

later Lemma 21, we have:

|Dψ X1(Ψ
u
0 + Ψ,w, δ, σ )| ≤ 1

2π |w|−2

2π∫

0

|X1(ψ + ψu
0 + |w|−2eiθ , ψ + ψ

u
0, δ, σ )|dθ

≤ 1

2π |w|−2

2π∫

0

K δ|w|−2dθ = K δ,

and the claim is proved.
Now we claim that:

∣∣∣∣∣

[
1

1 + h̃(Ψ u
0 , w)

− 1

1 + h0w−1

]
Ã(w)

∣∣∣∣∣ ≤ K |w|−2 ≤ K

log2(1/δ)
. (127)
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Indeed, on the one hand, note that Ã(w) is bounded. On the other hand, we observe that for
δ small enough:

|h̃(Ψ u
0 , w)| ≤ 1

2
, |h0w|−1 ≤ K

log(1/δ)
≤ 1

2
,

and then by Lemma 5 and definition (84) of h0 we obtain that:
∣∣∣∣∣

1

1 + h̃(Ψ u
0 , w)

− 1

1 + h0w−1

∣∣∣∣∣ ≤ 4|h̃(Ψ u
0 , w)− h0w

−1| ≤ K |w|−2

and then bound (127) is clear.
Our next claim, which can be easily proved using Lemma 6 and the fact that |Ψ u

0 (w)| ≤
K |w|−3, is that:

∣∣∣∣∣
1

1 + h̃(Ψ u
0 , w)

DΨ F(Ψ u
0 , w

−1, 0)

∣∣∣∣∣ ≤ 2K |w|−2 ≤ K

log2(1/δ)
. (128)

Finally, we claim that:
∣∣∣∣∣DΨ

[
1

1 + h̃(Ψ u
0 , w)

]
(Ã(w)Ψ u

0 + F(Ψ u
0 , w

−1, 0))

∣∣∣∣∣ ≤ K |w|−2 ≤ K

log2(1/δ)
. (129)

Indeed, we note that DΨ (1+h(Ψ u
0 , w))

−1 is bounded. We have to use that (1+h(Ψ u
0 , w))

−1

is bounded and analytic in a ball of radius r̃0, and use Cauchy’s theorem in a ball of radius
r̃0/2 (where Ψ0 belongs to) to prove that the derivative with respect to Ψ is bounded. Finally,
(129) follows from the following bounds:

|Ã(w)Ψ u
0 | ≤ K ‖Ψ u

0 ‖mch,× |w|−2, |F(Ψ u
0 , w

−1, 0, 0))| ≤ K |w|−3.

In the second bound we have used Remark 6.
With bounds (124), (126), (127), (128) and (129) we obtain that:

|B(w)Ψ (w)| ≤
1∫

0

|DΨR(λΨ, δ, σ )(w)|dλ|Ψ (w)| ≤ K

log2(1/δ)
|Ψ (w)|,

and then, since ‖Ψ ‖mch,×≤ 1, it is clear that:

‖B(Ψ )‖mch,×≤ K

log2(1/δ)
‖Ψ ‖mch,×≤ K

log2(1/δ)
.

�
6.4 The Independent Term

Finally, in this subsection we will study the independent term I(c1, c2)+L◦R(0, δ, σ ). First
we note that if in Lemma 21 we takeΨ = Ψ u

0 ∈ X mch ×X mch, noting that X1(Ψ
u
0 , s, δ, σ ) =

R(0, δ, σ )(s) (see the definition (105) of R) and that for ρ big enough ‖Ψ0 ‖mch,×≤ 1, we
obtain immediately the following corollary:

Corollary 5 R(0, δ, σ ) ∈ X mch × X mch and there exists a constant K such that:

‖R(0, δ, σ )‖mch,×≤ K δ.
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Lemma 23 I(c1, c2)+ L ◦ R(0, δ, σ ) ∈ X mch × X mch and:

‖L ◦ R(0, δ, σ )‖mch,×≤ K δ.

Moreover:

‖I(c1, c2)+ L ◦ R(0, δ, σ )‖mch,×≤ K δ1−γ .

Proof The first part is a direct consequence of Lemma 20 and Corollary 5. To prove the
second part, recall that:

I(c1, c2)(s) = M(s)

(
c1

c2

)
=

(
m1(s)c1

m2(s)c2

)
,

where M was defined in (89). Focusing on the first component, using (109), we have:

m1(s)c1 = m1(s)

m1(s1)
ψu

1 (s1).

First we claim that:

|ψu
1 (s1)| ≤ K δ3(1−γ ) (130)

Indeed, we have |ψu
1 (s1)| ≤ |ψu(s1)| + |ψu

0 (s1)|, so we just have to check that both terms
satisfy the bound. On the one hand, for δ small enough iπ/2 + s1δ ∈ Dout,u

κ,β,T (see (21) for

the definition of Dout,u
κ,β,T and (41) for s1). Then by Theorem 3:

|ψu(s1)| = |δξu(s1δ + iπ/2)| ≤ K δ3|z0(s1δ + iπ/2)− 1|3 ≤ K δ3|s1δ|−3.

Then using that |s1δ| ≥ K1δ
γ (see (42)) we obtain immediately that:

|ψu(s1)| ≤ K δ3(1−γ ).

On the other hand since, by Proposition 2, ψu
0 ∈ X in,u

3 , from definition (83) of the norm
‖ . ‖u

in,3,× we know that:

|ψu
0 (s1)| ≤‖ψu

0 ‖u
in,3,× |s1|−3 ≤ K δ3(1−γ ),

where we have used (42) again, and then the claim is clear.
Then, by (130) and Lemma 19 we obtain:

|m1(s)c1| ≤ K e−αIm (s1−s)δ3(1−γ ) ≤ K δ3(1−γ ).

For the second component we obtain an analogous bound, and therefore it is clear that:

‖I(c1, c2)‖mch,×≤ sup
s∈Dmch

κ,β1,β2

|s|2 K δ3(1−γ ) ≤ K δ1−γ ,

and the lemma is proved, since δ < δ1−γ . �
6.5 End of the Proof of Proposition 3

From definition (111) of G and using Lemmas 20 and 22, we obtain that ‖ G(Ψ ) ‖mch,×≤
K log−2(1/δ) if ‖Ψ ‖mch,×≤ 1. Hence, we have:

‖G ‖:= max‖Ψ‖mch,×≤1
{‖G(Ψ )‖mch,×} ≤ K

log2(1/δ)
,
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and then it is clear that for δ sufficiently small ‖ G ‖< 1. This fact implies that Id − G is
invertible in X mch × X mch. Then equation (112) and Lemma 23 yield:

‖Ψ u
1 ‖mch,× = ‖(Id − G)−1(I(c1, c2)+ L ◦ R(0, δ, σ ))‖mch,×

≤ ‖(Id − G)−1 ‖‖I(c1, c2)+ L ◦ R(0, δ, σ )‖mch,×≤ K δ1−γ ,

proving thus Proposition 3.

7 Proof of Theorem 6

Let Δϕ be the difference between the parameterizations ϕu,s defined in (43). Our goal now
is to provide a dominant term for this difference, as Theorem 6 enunciates. Note that Δϕ,
being a solution of (47), satisfies:

Δϕ(u) = M(u)

⎡
⎢⎢⎢⎢⎢⎢⎣

(
c1

c2

)
+

⎛
⎜⎜⎜⎜⎜⎜⎝

u∫

u+

m−1
1 (w)π1(B(w)Δϕ(w))dw

u∫

u−

m−1
2 (w)π2(B(w)Δϕ(w))dw

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦
, (131)

where B was defined in (48), M in (50), m1 and m2 in (51), and c1 and c2 are some suitable
constants.

As we did in the previous sections, we first need to introduce suitable complex domains
and Banach spaces in which we will work. First of all, we define:

u+ = i
(π

2
− κδ log(1/δ)

)
= i t+, u− = i

(
−π

2
+ κδ log(1/δ)

)
= i t−.

Now, let E = {i t ∈ C : t ∈ (t−, t+)}. We consider the following Banach spaces:

X spl = {φ : E → C : φ analytic, sup
i t∈E

|eα(π/2−|t |)/δ cos−d(t)φ(i t)| < ∞},

with the norm:

‖φ ‖spl= sup
i t∈E

|eα(π/2−|t |)/δ cos−d(t)φ(i t)|. (132)

As usual, in the product space X spl × X spl we will take the norm:

‖(φ1, φ2)‖spl,×=‖φ1 ‖spl + ‖φ2 ‖spl .

The main result of this section, which implies Theorem 6, is the following:

Proposition 4 Let:

Δϕ0(u) = M(u)

(
c0

1

c0
2

)
,

where M was defined in (50), and:

(
c0

1
c0

2

)
=

(
m−1

1 (u+) (−iλ)d

δ
e−αλ+i(c+αh0) log(−iλ)Cin

m−1
2 (u−) (iλ)

d

δ
e−αλ−i(c+αh0) log(iλ)Cin

)
, (133)
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where λ = κ log(1/δ) and Cin is the constant defined in Theorem 4. Then, if Cin �= 0, we
have that Δϕ = Δϕ0 +Δϕ1, where Δϕ1 is such that:

‖Δϕ1 ‖spl,×≤ K ‖Δϕ0 ‖spl,×
log(1/δ)

,

for some constant K independent of δ and σ .

Now we proceed to prove Lemma 3, which was stated in Sect. 2.5. To do that we will use
the following technical lemma, which we do not prove here (see [5]).

Lemma 24 Let ν > 1. Then there exists a constant K such that, if u ∈ E, then:

∣∣∣∣∣∣

u∫

0

1

| coshw|ν dw

∣∣∣∣∣∣
≤ K

δν−1 logν−1(1/δ)
.

Proof (Proof of Lemma 3) Since M(u) is a fundamental matrix of ż = A(u)z, with A(u) =
diag(a1(u), a2(u)) defined in (44), we have that:

M(u) = e
∫ u

0 A(w)dw =
(

e
∫ u

0 a1(w)dw 0
0 e

∫ u
0 a2(w)dw

)
. (134)

Let us compute just m1(u). We have:

u∫

0

a1(w)dw = −αi

δ

u∫

0

1

1 − δh0z3
0(w)

−1+z2
0(w)

dw + σ

u∫

0

1

1 − δh0z3
0(w)

−1+z2
0(w)

dw

+(−d − ic)

u∫

0

1

1 − δh0z3
0(w)

−1+z2
0(w)

z0(w)dw =: I1(u)+ I2(u)+ I3(u).

Now we shall give an asymptotic expression for each of these integrals separately. Note that:

∣∣∣∣∣
δh0z3

0(u)

−1 + z2
0(u)

∣∣∣∣∣ ≤ K

log(1/δ)
< 1,

if δ small enough, and hence we can write:

1

1 − δh0z3
0(u)

−1+z2
0(u)

=
∞∑

k=0

(
δh0z3

0(u)

−1 + z2
0(u)

)k

.

Hence, we can express I1 as:

I1(u) = −αi

δ

u∫

0

(
1 + δh0z3

0(w)

−1 + z2
0(w)

)
dw − αi

δ

u∫

0

⎛
⎜⎝ 1

1 − δh0z3
0(w)

−1+z2
0(w)

− 1 − δh0z3
0(w)

−1 + z2
0(w)

⎞
⎟⎠ dw.
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Now, note that:
∣∣∣∣∣∣∣
αi

δ

u∫

0

⎛
⎜⎝ 1

1 − δh0z3
0(w)

−1+z2
0(w)

− 1 − δh0z3
0(w)

−1 + z2
0(w)

⎞
⎟⎠ dw

∣∣∣∣∣∣∣
≤ K

δ

u∫

0

δ2h2
0

∣∣∣∣∣
z3

0(w)

−1 + z2
0(w)

∣∣∣∣∣
2

dw

≤ K δ

u∫

0

1

| coshw|2 dw ≤ K

log(1/δ)
,

where in the last inequality we have used Lemma 24. Hence we have:

I1(u) = −αi

δ

u∫

0

(
1 + δh0z3

0(w)

−1 + z2
0(w)

)
dw + O

(
1

log(1/δ)

)

= −αiu

δ
+ αh0i

(
−1

2
sinh2 u + log cosh u

)
+ O

(
1

log(1/δ)

)
. (135)

In the case of I2, we can rewrite it in the following form:

I2(u) = σ

u∫

0

dw + σ

u∫

0

⎛
⎜⎝ 1

1 − δh0z3
0(w)

−1+z2
0(w)

− 1

⎞
⎟⎠ dw.

Now, we have:
∣∣∣∣∣∣∣

u∫

0

⎛
⎜⎝ 1

1 − δh0z3
0(w)

−1+z2
0(w)

− 1

⎞
⎟⎠ dw

∣∣∣∣∣∣∣
≤ K

u∫

0

∣∣∣∣∣
δh0z3

0(w)

−1 + z2
0(w)

∣∣∣∣∣ dw≤ K δ

u∫

0

1

| coshw|dw≤ K

log(1/δ)
,

where we have used that for u ∈ E one has | cosh−1 u| ≤ δ−1 log−1(1/δ) and |u| ≤ π/2.
Then, it is clear that:

I2(u) = σ

u∫

0

dw + O

(
1

log(1/δ)

)
= σu + O

(
1

log(1/δ)

)
. (136)

Finally, I3 can be decomposed as:

I3(u) = (−d − ic)

u∫

0

z0(w)dw + (−d − ic)

u∫

0

⎛
⎜⎝ 1

1 − δh0z3
0(w)

−1+z2
0(w)

− 1

⎞
⎟⎠ z0(w)dw.

Again, we have:
∣∣∣∣∣∣∣
(−d − ic)

u∫

0

⎛
⎜⎝ 1

1 − δh0z3
0(w)

−1+z2
0(w)

− 1

⎞
⎟⎠ z0(w)dw

∣∣∣∣∣∣∣
≤ K

u∫

0

∣∣∣∣∣
δh0z3

0(w)

−1 + z2
0(w)

∣∣∣∣∣ z0(w)dw

≤ K δ

u∫

0

1

| cosh2 w|dw ≤ K

log(1/δ)
,
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where in the last inequality we have used Lemma 24. Then:

I3(u) = (−d − ic)

u∫

0

z0(w)dw + O

(
1

log(1/δ)

)

= (d + ic) log cosh u + O

(
1

log(1/δ)

)
. (137)

In conclusion, from (135), (136) and (137) and the fact that m1(u) = eI1(u)+I2(u)+I3(u),
the asymptotic formula (51) is proved. �

Lemma 25 We have:

m−1
1 (u+) = 1

κdδd+κα logd(1/δ)
e− απ

2δ e−i[ σπ2 + αh0
2 +(c+αh0) log δ]

× e−i(c+αh0) log λ
(

1 + O

(
1

log(1/δ)

))
,

m−1
2 (u+) = 1

κdδd+κα logd(1/δ)
e− απ

2δ ei[ σπ2 + αh0
2 +(c+αh0) log δ]

× ei(c+αh0) log λ
(

1 + O

(
1

log(1/δ)

))
, (138)

where λ = κ log(1/δ).

Proof Again, we will prove the asymptotic expression just for m1(u+), being the other case
analogous. First of all, from Lemma 3 we obtain:

m−1
1 (u+) = cosh−d(u+)e

αiu+
δ e−σu+e

−αh0i
[
− 1

2 sinh2 u++log cosh u+
]

× e−ic log cosh u+
(

1 + O

(
1

log(1/δ)

))
. (139)

Recall that u+ = iπ/2 − iκδ log(1/δ). Then we have:

cosh−d(u+) = 1

κdδd logd(1/δ)
(1 + O(δ log(1/δ)) , (140)

−1

2
sinh2(u+) = 1

2
+ O

(
δ2 log2(1/δ)

)
, (141)

log cosh(u+) = log δ + log(κ log(1/δ))+ O
(
δ2 log2(1/δ)

)
. (142)

Moreover, it is clear that:

eiαu+/δ = e− απ
2δ eακ log(1/δ) = e− απ

2δ
1

δκα
. (143)

Finally, we have:

e−σu+ = e− iσπ
2 (1 + O(δ log(1/δ))). (144)

Substituting (140), (141), (142), (143) and (144) in (139) the claim is proved. �
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In the following we will proceed to prove Proposition 3, which will be possible with the
lemmas below. In order to simplify the process, we will introduce the notation. For k1, k2 ∈ C,
we define:

I(k1, k2)(u) = M(u)

(
k1

k2

)
, (145)

where the matrix M(u) was defined in (134). Note that with this notation we have that
Δϕ0 = I(c0

1, c0
2).

For functions φ ∈ X spl × X spl we define the following operator:

G(φ)(u) =
(G1(φ)(u)

G2(φ)(u)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

m1(u)

u∫

u+

m−1
1 (w)π1(B(w)φ(w))dw

m2(u)

u∫

u−

m−1
2 (w)π2(B(w)φ(w))dw

⎞
⎟⎟⎟⎟⎟⎟⎠
, (146)

where the matrix B(w) is defined in (48), m1(w) and m2(w) are defined in (51).

Lemma 26 Δϕ1 = Δϕ −Δϕ0 satisfies:

Δϕ1(u) = I(c1 − c0
1, c2 − c0

2)(u)+ G(Δϕ0)(u)+ G(Δϕ1)(u). (147)

Moreover,

|c1 − c0
1|, |c2 − c0

2| ≤ K e− απ
2δ

δ1+d log(1/δ)
. (148)

Proof To prove the first statement we just need to realize that the fixed point equation for
Δϕ (131) can be written as:

Δϕ = I(c1, c2)+ G(Δϕ). (149)

Then, since Δϕ = Δϕ0 +Δϕ1 and Δϕ0 = I(c0
1, c0

2), this last equality yields:

Δϕ1 = I(c1, c2)− I(c0
1, c0

2)+ G(Δϕ0 +Δϕ1),

and using that the operators I and G are linear we obtain equality (147).
Now we proceed to prove bound (148). We will just bound c1 − c0

1, since the other
component is analogous. We will write Δϕ = (Δξ,Δξ̄) and Δϕ j = (Δξ j ,Δξ̄ j ), for j =
0, 1.

First note that, since G1(φ)(u+) = 0 for all φ ∈ X spl × X spl, equalities (145) and (149)
yield:

c1 = m−1
1 (u+)Δξ(u+).

Moreover, since by definition Δϕ0(u+) = I(c0
1, c0

2)(u+), we also have:

c0
1 = m−1

1 (u+)Δξ0(u+).

Then it is clear that:

|c1 − c0
1| = |m−1

1 (u+)||Δξ(u+)−Δξ0(u+)|. (150)
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Now, taking into account that u+ ∈ Dmch,u
κ,β1,β2

∩ Dmch,s
κ,β1,β2

, from Corollary 2 we know that:

Δξ(u+) = 1

δ

[
Δψ0

(
u+ − iπ/2

δ

)
+Δψ1

(
u+ − iπ/2

δ

)]
, (151)

where we have written Δψ j = ψu
j − ψ s

j , for j = 0, 1. Here ψu,s
0 is the first component of

the corresponding solution of the inner system (33), Ψ u,s
0 , and ψu,s

1 satisfy:

1

δ

∣∣∣∣ψu,s
1

(
u+ − iπ/2

δ

)∣∣∣∣ ≤ K δ−γ

log2(1/δ)
(152)

for some constant K . From (150) and (151) we have:

|c1−c0
1| ≤ |m−1

1 (u+)|
[∣∣∣∣

1

δ
Δψ0

(
u+ − iπ/2

δ

)
−Δξ0(u+)

∣∣∣∣+
∣∣∣∣
1

δ
Δψ1

(
u+ − iπ/2

δ

)∣∣∣∣
]
. (153)

Now, on one hand, from Lemma 25 it is clear that:

|m−1
1 (u+)| ≤ K e− απ

2δ
1

δd+κα logd(1/δ)
, (154)

where we have used that:
∣∣∣e−i[ σπ2 + αh0

2 +(αh0+c) log δ]e−i(αh0+c)) log λ
∣∣∣ = 1. (155)

On the other hand, from definition (133) of c0
1 and c0

2 and the fact thatΔξ0(u+) = m1(u+)c0
1

it is clear that:

Δξ0(u+) = (−iλ)d

δ
e−αλ+i(c+αh0) log(−iλ)Cin,

where λ = κ log(1/δ). Then, from formula (36) of ΔΨ0 in Theorem 4 and this last equality
we have that:

∣∣∣∣
1

δ
Δψ0

(
u+ − iπ/2

δ

)
−Δξ0(u+)

∣∣∣∣ =
∣∣∣∣
(−iλ)d

δ
e−αλ+i(c+αh0) log(−iλ)χ1(−iλ)

∣∣∣∣ ,

where χ1 is the first component of the function χ in Theorem 4. Now, since by this result we
know that |χ1(s)| ≤ K |s|−1, we have:

∣∣∣∣
1

δ
Δψ0

(
u+ − iπ/2

δ

)
−Δξ0(u+)

∣∣∣∣ ≤ K
λd−1

δ
δκα |ei(c+αh0) log(−iλ)| ≤ K

λd−1

δ
δκα. (156)

Then, bounds (152), (154) and (156) yield:

|m−1
1 (u+)|

(∣∣∣∣
1

δ
Δψ0

(
u+ − iπ/2

δ

)
−Δξ0(u+)

∣∣∣∣ +
∣∣∣∣
1

δ
Δψ1

(
u+ − iπ/2

δ

)∣∣∣∣
)

≤ K e− απ
2δ

(
1

δ1+d log(1/δ)
+ 1

δd+κα+γ log(1/δ)

)
. (157)

Then, taking κ > 0 such that 0 < κα < 1−γ , from (153) and (157) we obtain immediately:

|c1 − c0
1| ≤ K e− απ

2δ
1

δ1+d log(1/δ)
.

�
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Lemma 27 Let k1, k2 ∈ C. Then, I(k1, k2) ∈ X spl × X spl and:

‖I(k1, k2)‖spl,×= (|k1| + |k2|)e απ
2δ

(
1 + O

(
1

log(1/δ)

))
.

Proof We will bound just the norm of the first component of I(k1, k2), that is π1I(k1, k2) =
m1(u)k1. For i t ∈ E , from Lemma 3 we have:

|m1(i t)k1|| cos−d te
α(π/2−|t |)

δ |
= |k1||e

α(π/2+t−|t |)
δ ||eiσ t ||eαh0i[sin2 t/2+log cos t]||eic log cos t |

(
1 + O

(
1

log(1/δ)

))
.

Note that, since t is real and |t | < π/2, we have that log cos t is real. Moreover, since
σ, α, h0 ∈ R, we have that |eiσ t | = |eαh0i[sin2 t/2+log cos t]| = 1, and then:

|m1(i t)k1|| cos−d teα(π/2−|t |)/δ| = |k1|eα(π/2+t−|t |)/δ
(

1 + O

(
1

log(1/δ)

))
.

Then it is clear that:

sup
i t∈E

|m1(i t)k1|| cos−d teα(π/2−|t |)/δ| = |k1|e απ
2δ sup

i t∈E
eα(t−|t |)/δ

(
1 + O

(
1

log(1/δ)

))

= |k1|e απ
2δ

(
1 + O

(
1

log(1/δ)

))
,

and hence:

‖π1I(k1, k2)‖spl= |k1|e απ
2δ

(
1 + O

(
1

log(1/δ)

))
,

obtaining the desired bound. �
Lemma 28

‖Δϕ0 ‖spl,×= 1

δd+1 e
π
2 (c+αh0)

(|Cin| + |Cin|
) (

1 + O

(
1

log(1/δ)

))
.

Proof SinceΔϕ0 = I(c0
1, c0

2), we just have to bound c0
1 and c0

2 and then use Lemma 27. We
will just bound c0

1, being the other case analogous. Recall that:

c0
1 = m−1

1 (u+)
(−iλ)d

δ
e−αλ+i(c+αh0) log(−iλ)Cin,

with λ = κ log(1/δ). On one hand, from formula (138) and (155) it is clear that:

|m−1
1 (u+)| = 1

κdδd+κα logd(1/δ)
e− απ

2δ

(
1 + O

(
1

log(1/δ)

))
. (158)

On the other hand, noting that log(−iλ) = log λ− iπ/2 and e−αλ = e−ακ log(1/δ) = δκα , we
have:

∣∣∣∣
(−iλ)d

δ
e−αλ+i(c+αh0) log(−iλ)

∣∣∣∣ = κd logd(1/δ)

δ
δκαe

π
2 (c+αh0)

∣∣∣ei(c+αh0) log λ
∣∣∣

= κd logd(1/δ)

δ
δκαe

π
2 (c+αh0). (159)
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From (158) and (159) it is clear that:

|c0
1| = 1

δ1+d
e
π
2 (c+αh0)e− απ

2δ |Cin|,
and then the initial claim is proved by Lemma 27. �
Lemma 29 There exists a constant K such that, for all i t ∈ E and l, j = 1, 2, the matrix
B = (bl j ) satisfies:

|bl j (i t) cos2(t)| ≤ K δ.

Proof Recall that:

B(u) =
1∫

0

DR(ϕλ)(u)dλ,

where R was defined in (45). Note that ϕλ = (1 − λ)ϕs − λϕu and hence, by Theorem 3 it
is clear that:

|ϕλ(u)| ≤ K δ2| cosh−3 u|. (160)

We will prove that for j = 1, 2:

|π j DR(ϕλ)(u)| ≤ K δ

| cosh2 u| , (161)

and then from the definition of B and the fact that cosh(i t) = cos t , the statement will be
clear. In fact, we will just do the proof for the first entry of the matrix DR, since all the others
are analogous. If we compute this entry, we get:

DξR1(ϕλ)(u) = Dξ

⎡
⎣ δ−2 F1(δϕλ, δz0(u), δ, δσ )

1 + bξλξ̄λ+δ−2 H(δϕλ,δz0(u),δ,δσ )
−1+z0(u)2

⎤
⎦

+
⎛
⎜⎝ 1

1 + bξλξ̄λ+δ−2 H(δϕλ,δz0(u),δ,δσ )
−1+z2

0(u)

− 1

1 − δh0z3
0(u)

−1+z2
0(u)

⎞
⎟⎠ a1(u)

+ −1(
1 + bξλξ̄λ+δ−2 H(δϕλ,δz0(u),δ,δσ )

−1+z2
0(u)

)2

×bξ̄λ + δ−1 Dξ H(δϕλ, δz0(u), δ, δσ )

−1 + z2
0(u)

a1(u)ξλ(u)

:= DξR1
1(ϕλ)(u)+ DξR2

1(ϕλ)(u)+ DξR3
1(ϕλ)(u).

First we claim that that:
∣∣DξR1

1(ϕλ)(u)
∣∣ ≤ K δ

| cosh2 u| . (162)

This can be proved computing the derivative explicitly and then using bound (160) and
Corollaries 3 and 4. We skip the details since the proof is completely analogous as the one
of bound (73).
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Our next claim is that:

∣∣DξR2
1(ϕλ)(u)

∣∣ ≤ K δ2

| cosh3 u| . (163)

First of all note that for δ small enough:
∣∣∣∣∣
bξλξ̄λ + δ−2 H(δϕλ, δz0(u), δ, δσ )

−1 + z2
0(u)

∣∣∣∣∣ ,
∣∣∣∣∣
δh0z3

0(u)

−1 + z2
0(u)

∣∣∣∣∣ ≤ K

log(1/δ)
<

1

2
, (164)

and then by Lemma 5, we have:
∣∣∣∣∣∣∣

⎛
⎜⎝ 1

1 + bξλξ̄λ+δ−2 H(δϕλ,δz0(u),δ,δσ )
−1+z2

0(u)

− 1

1 − δh0z3
0(u)

−1+z2
0(u)

⎞
⎟⎠

∣∣∣∣∣∣∣

≤ 4

| − 1 + z2
0(u)|

∣∣bξλξ̄λ + δ−2(H(δϕλ, δz0(u), δ, δσ )+ δ3h0z0(u))
∣∣

≤ K

| − 1 + z2
0(u)|

[
b|ξλ||ξ̄λ| + K δ(|ϕ3

λ| + |ϕ2
λz0(u)| + |ϕλz2

0(u)|)
]

(165)

where in the last inequality we have used the definition of h0. It is easy to check that, since
bound (160) holds, for u ∈ E , we have that:

|δϕ3
λ(u)|, |δϕ2

λ(u)z0(u)|, |δϕλ(u)z2
0(u)| ≤ δ3 K

| cosh5 u| .

Moreover, we also have that:

|ξλξ̄λ| ≤ δ4 K

| cosh6 u| ≤ δ3 K

| cosh5 u| ,

and then (165) yields:

∣∣DξR2
1(ϕλ)(u)

∣∣ ≤ K |a1(u)|
| − 1 + z2

0(u)|
δ3

| cosh5 u| ≤ K δ3|a1(u)|
| cosh3 u| .

Finally we just need to note that |a1(u)| ≤ K/δ to obtain bound (163).
Our last claim is:

∣∣DξR3
1(ϕλ)(u)

∣∣ ≤ K δ2

| cosh3 u| . (166)

This is quite straightforward to prove, using inequalities (160) and (164), Lemma 6 and that
|a1(u)| ≤ K/δ.

In conclusion, from bounds (162), (163) and (166) we have:

|DξR1(u)| ≤ K

(
δ

| cosh2 u| + δ2

| cosh3 u|
)

≤ K δ

| cosh2 u| ,

and thus (161) is proved. �
Lemma 30 The operator G : X spl × X spl → X spl × X spl is well defined, and for φ ∈
X spl × X spl:

‖G(φ)‖spl,×≤ K ‖φ ‖spl,×
log(1/δ)

.
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Proof Again, we will bound just the first component:

|G1(φ)(i t)| =
∣∣∣∣∣∣
m1(i t)

t∫

t+

m−1
1 (iw)π1(B(iw)(φ(iw)))dw

∣∣∣∣∣∣
.

Recalling the asymptotic formula (51) for m1(i t) it is clear that:

|m1(i t)| ≤ K cosd teαt/δ, |m−1
1 (iw)| ≤ K cos−d we−αw/δ.

Using these bounds and Lemma 29 we can bound G1(φ)(i t):

|G1(φ)(i t)| ≤ K cosd teαt/δ

t+∫

t

cos−d we−αw/δ K δ

cos2 w
|φ(iw)|dw.

Then, since φ ∈ X spl × X spl, recalling definition (132) of the norm ‖ . ‖spl,× we have:

|φ(iw)| ≤‖φ ‖spl,× cosd we−α(π/2−|w|)/δ

and therefore:

|G1(φ)(i t)| ≤ K δ cosd teαt/δe− απ
2δ ‖φ ‖spl,×

t+∫

t

e−α(w−|w|)/δ 1

cos2 w
dw.

It is not difficult to check that for t ∈ [t−, t+], there exists a constant C independent of δ and
σ such that:

eαt/δ

t+∫

t

e−α(w−|w|)/δ 1

cos2 w
dw ≤ Ceα|t |/δ 1

κδ log(1/δ)
,

and then we obtain the desired bound:

‖G1(φ)‖spl,×≤ K ‖φ ‖spl,×
log(1/δ)

.

�
Proof (End of the proof of Proposition 4) From Lemma 26 we can write:

(I d − G)Δϕ1 = I(c1 − c0
1, c2 − c0

2)+ G(Δϕ0).

We note that, for δ > 0,Δϕ1 ∈ X spl × X spl although a priori its norm is exponentially large
with respect to δ. Indeed, we have Δϕ1 = Δϕ − Δϕ0, and it is clear by Lemma 28 that
Δϕ0 ∈ X spl × X spl. Moreover, we have:

|Δϕ(i t) cos−d teα(π/2−|t |)/δ|≤ (‖ϕu ‖u
out,× +‖ϕs ‖s

out,×)|z0(i t)−1|3| cos−d t |eα(π/2−|t |)/δ

≤ K δ2| cos3−d t |eα(π/2−|t |)/δ ≤ δ−(d+1)e
απ
2δ K < ∞, (167)

and thus it is clear thatΔϕ ∈ X spl ×X spl, and henceΔϕ1 ∈ X spl ×X spl. Since from Lemma
30 we know that ‖G ‖< 1 for δ small enough, the operator I d −G is invertible in X spl ×X spl.
Therefore we can write:

Δϕ1 = (I d − G)−1 [I(c1 − c0
1, c2 − c0

2)+ G(Δϕ0)
]
,
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and consequently we have:

‖Δϕ1 ‖spl,× ≤ ‖ I d − G ‖−1
spl,×

[‖I(c1 − c0
1, c2 − c0

2)‖spl,× + ‖G(Δϕ0)‖spl,×
]

≤ K
(‖I(c1 − c0

1, c2 − c0
2)‖spl,× + ‖G(Δϕ0)‖spl,×

)
. (168)

Now, from (168) we will be able to improve bound (167), realizing that in fact it is not
exponentially large with respect to δ. On one hand, using first Lemma 27 and after Lemma
26, we have:

‖I(c1 − c0
1, c2 − c0

2)‖spl,×≤ K (|c1 − c0
1| + |c2 − c0

2|)e
απ
2δ ≤ K

δd+1 log(1/δ)
. (169)

Then, from Lemma 28 it is clear that, if ‖Δϕ0 ‖spl,×�= 0 (which is equivalent to Cin �= 0),
we have:

‖I(c1 − c0
1, c2 − c0

2)‖spl,×≤ K ‖Δϕ0 ‖spl,×
log(1/δ)

. (170)

On the other hand, from Lemma 30 we have:

‖G(Δϕ0)‖spl,×≤ K ‖Δϕ0 ‖spl,×
log(1/δ)

. (171)

Substituting (170) and (171) in (168) we obtain the desired bound:

‖Δϕ1 ‖spl,×≤ K ‖Δϕ0 ‖spl,×
log(1/δ)

.

�
Proof (End of the Proof of Theorem 6) From Proposition 4, we know thatΔϕ = Δϕ0 +Δϕ1,
with:

|Δϕ1(i t)| ≤ K
‖Δϕ0 ‖spl,×

log(1/δ)
e−α(π/2−|t |)/δ| cosd t |,

and hence by Lemma 28 we obtain:

|Δϕ1(i t)| ≤ K

δd+1 log(1/δ)
e
π
2 (c+αh0)

(|Cin| + |Cin|
)

e−α(π/2−|t |)/δ| cosd t |.

For t = 0 this formula gives the bound:

|Δϕ1(0)| ≤ K

δd+1 log(1/δ)
e
π
2 (c+αh0)

(|Cin| + |Cin|
)

e− απ
2δ . (172)

Moreover, by definition of Δϕ0 it is clear that Δϕ0(0) = (c0
1, c0

2). Then by definition (133)
of c0

1 and c0
2, Lemma 25 and formula (159) we obtain:

c0
1 = 1

δd+1 e− απ
2δ Cine

π
2 (c+αh0)−i

(
σπ
2 + αh0

2 +(c+αh0) log δ
) (

1 + O

(
1

log(1/δ)

))
, (173)

and c0
2 = c0

1. Finally, we just need to realize that, since α = α0 + α1δσ + O(δ2), we have:

e− απ
2δ = e− α0π

2δ − α1σπ
2 (1 + O(δ)),

and:

e
π
2 (c+αh0)−i

(
σπ
2 + αh0

2 +(c+αh0) log δ
)

= e
π
2 (c+α0h0)−i

(
σπ
2 + α0h0

2 +(c+α0h0) log δ
)
(1 + O(δ)),
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so that (173) becomes:

c0
1 = 1

δd+1 e− α0π
2δ Cine

π
2 (c+α0h0−σα1)−i

(
σπ
2 + α0h0

2 +(c+α0h0) log δ
) (

1 + O

(
1

log(1/δ)

))
. (174)

Then, from (172) and (174) and the fact that Δϕ(0) = (c0
1, c0

2)+Δϕ1(0) we obtain:

Δϕ(0)= 1

δd+1 e− α0π
2δ e

π
2 (c+α0h0−σα1)

⎛
⎝
⎛
⎝Cine

−i
(
σπ
2 + α0h0

2 +(c+α0h0) log δ
)

Cine
i
(
σπ
2 + α0h0

2 +(c+α0h0) log δ
)

⎞
⎠+O

(
1

log(1/δ)

)⎞
⎠.

and the theorem is proved. �
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