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Abstract. In this work, n-armed Archimedean spiral wave solutions of the complex Ginzburg–
Landau equation are considered. These solutions are shown to depend on two characteristic para-
meters, the so-called twist parameter q and the asymptotic wavenumber k. The existence and
uniqueness of the value of k D k�.q/ for which n-armed Archimedean spiral wave solutions exist
is a classical result, obtained back in the eighties by Kopell and Howard. In this work, we deal
with a different problem, that is, the asymptotic expression of k�.q/ as q ! 0. Since the eighties,
different heuristic perturbation techniques, like formal asymptotic expansions, have conjectured
an asymptotic expression of k�.q/ which is of the form k�.q/ � Cq

�1e�
�

2njqj with a known
constant C . However, the validity of this expression has remained opened until now, despite of
the fact that it has been widely used for more than 40 years. In this work, using a functional
analysis approach, we finally prove the validity of the asymptotic formula for k�.q/, providing a rig-
orous bound for its relative error, which turns out to be k�.q/ D Cq�1e

� �
2nq .1CO.jlogjqjj�1//.

Moreover, such approach can be used in more general equations such as the celebrated � � !
systems.
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1. Introduction

In a wide range of physical, chemical and biological systems of different interacting
species, one usually finds that the dynamics of each species is governed by a diffusion
mechanism along with a reaction term, where the interactions with the other species are
taken into account. For instance, one finds this type of systems in the modelling of chem-
ical reaction processes as a model for pattern formation mechanisms [9], in the description
of some ecological systems [24], in phase transitions in superconductivity [16] or even
to describe cardiac muscle cell performance [13], among many others. Mathematically,
a reaction-diffusion system is essentially a system of ordinary differential equations to
which some diffusion terms have been added,

@�U D D�U C F.U; a/; (1.1)

where U D U.�; Ex/ 2 RN , Ex D .x; y/ 2 R2, � 2 R, D is a diffusion matrix, F is the
reaction term, which is usually nonlinear,�D @xx C @yy is the Laplace operator and a is
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a parameter (for instance, some catalyst concentration in a chemical reaction) or a group
of parameters.

In this paper, we deal with a particular type of reaction-diffusion equations which are
traditionally called oscillatory systems. These are characterized by the fact that they tend
to produce oscillations in homogeneous situations (i.e., when the term D�U vanishes).
Of particular interest are oscillatory reaction-diffusion systems which tend to produce
spatial homogeneous oscillations. These are systems like (1.1) where the dynamical sys-
tem obtained when one neglects the spatial derivatives (i.e., the Laplace operator) has
an asymptotically stable periodic orbit. To be more precise, we refer to dynamical sys-
tems that undergo a non-degenerate supercritical Hopf bifurcation at .U0; a0/. In this
case, one can derive an equation for the amplitude of the oscillations, A 2 C, by taking
"2 D a � a0 > 0 small, t D "2� and writing the modulation of local oscillations with
frequency ! as solutions of (1.1) of the form

U.�; Ex; a/ D U0 C "ŒA.t; Ex/e
i!�v C xA.t; Ex/e�i!�xv�CO."2/;

where bar denotes the complex conjugate. Under generic conditions, performing suitable
scalings and upon neglecting the higher order terms in " (see, for instance, [21, Section 2],
[5], or [22]), the amplitude A.t; Ex/ turns out to satisfy the celebrated complex Ginzburg–
Landau equation (CGL)

@tA D .1C i˛/�AC A � .1C iˇ/AjAj
2; (1.2)

where A.t; Ex/ 2 C and ˛, ˇ are real parameters (depending on F and D). The univer-
sality and ubiquity of CGL have historically produced a large amount of research and
it is one of the most studied nonlinear partial differential systems of equations specially
among the physics community. The CGL equation is also known to exhibit a rich variety
of different pattern solutions whose stability and emergence are still far from being com-
pletely understood (see [7,10,11,27,29,30] for some of the latest achievements and open
problems).

We note that (1.2) has two special features: the solutions are invariant under spatial
translations, i.e., if A.t; Ex/ is a solution, then A.t; Ex C Ex0/ does also satisfy equation (1.2)
for any fixed Ex0 2R2, and it also has gauge symmetry, i.e., zA.t; Ex/D ei�A.t; Ex/ is a solu-
tion for any � 2 R.

In this work, we shall focus on some special rigidly rotating solutions of (1.2) called
Archimedean spiral waves. In order to define these solutions, following [29], we consider
first polar coordinates Ex D .r cos'; r sin'/ 2 R2 in which equation (1.2) reads

@tA D .1C i˛/
�
@2rAC

1

r
@rAC

1

r2
@2'A

�
C A � .1C iˇ/AjAj2; (1.3)

where, abusing notation, we denote by the same letter A.t; r; '/ the solution in polar
coordinates. To define spiral waves, let us first consider the one-dimensional CGL equa-
tion

@tA D .1C i˛/@
2
rAC A � .1C iˇ/AjAj

2; r 2 R; (1.4)

and introduce the notion of wave train.
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Definition 1.1. A wave train of (1.3) is a nonconstant solution A.t; r/ of equation (1.4)
of the form

A.t; r/ D A�.�t � k�r/; (1.5)

where the profile A�.�/ is 2�-periodic,� 2 Rn¹0º is the frequency of the wave train and
k� 2 R is the corresponding (spatial) wavenumber.

The particular case of a single mode wave train, namely A.t; r/ D Cei.�t�k�r/, leads
to the well-known relations

C D

q
1 � k2�; � D �.k�/ D �ˇ C k

2
�.ˇ � ˛/: (1.6)

The last condition on the frequency is the associated dispersion relation. Then, for any
pair of the parameter values .˛;ˇ/ there exists a family of single mode wave trains of (1.4)
of the form given in (1.5) satisfying conditions (1.6), one for each wavenumber k�.

Now we define (see Definition 1.2) an n-armed Archimedean spiral wave which,
roughly speaking, is a bounded solution of (1.3) that asymptotically, as r ! 1, tends
to a particular wave train (see Figure 1). Spiral waves actually emerge from points where
the amplitude is zero which are usually known as defects [5]. By virtue of the translation
invariance of (1.2), in spiral wave solutions with a single defect, one can place the defect
anywhere in space, in particular at the origin, i.e., A.t; E0/ D 0.

The general definition of an n-armed spiral wave solution of the complex Ginzburg–
Landau equation is given in [29].

Definition 1.2. Let n 2 N. The solution A.t; r; '/ is a rigidly rotating Archimedean n-
armed spiral wave solution of equation (1.3) if it is a bounded solution of formA.t;r;'/D

As.r;�t C n'/, defined for r � 0 and ' 2 Œ0; 2�/ satisfying

lim
r!1

max
 2Œ0;2��

jAs.r;  / � A�. � k�r C �.r//j D 0

and
lim
r!1

max
 2Œ0;2��

j@ As.r;  / � A
0
�. � k�r C �.r//j D 0;

where the profile A�.�/ defines a wave train of equation (1.4) through A�.�t � k�r/,
As.r; �/ is 2�-periodic and � is a smooth function such that limr!1 �

0.r/ D 0.
The parameter k� is in this case known as the asymptotic wavenumber of the spiral.

Notice that, in a co-rotating frame given by  D �t C n' and considering r as
the independent variable, spiral wave solutions can be seen as a heteroclinic orbit, as
represented in Figure 1, connecting the equilibrium point AD 0 with the wave train solu-
tion A�.

We will see in Lemma 2.1 that the Ginzburg–Landau equation only possesses wave
trains of a single mode. For this reason, and following the classical literature on spiral
waves in reaction-diffusion equations or ��! systems (see [6,14,15,20,32]), we consider
the following class of Archimedean spiral waves.
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r D 0

r D1

Fig. 1. Representation of the spiral wave solutions of (1.2) as a heteroclinic connection.

Definition 1.3. Let n 2 N. The solution A.t; r; '/ is a rigidly rotating Archimedean n-
armed spiral wave with a unique defect and a single mode if A is a solution of (1.3) of the
form

A.t; r; '/ D f.r/ei.�tCn'C‚.r// (1.7)

with f, ‚ regular (at least C2) for r � 0 satisfying the boundary conditions

f.0/ D 0; lim
r!1

f.r/ D
q
1 � k2�; ‚0.0/ D 0; lim

r!1
‚0.r/ D �k�;

and�, k� satisfy the dispersion equation in (1.6). The parameter k� is called, as in Defin-
ition 1.2, the asymptotic wavenumber of the spiral.

Remark 1.4. The boundary condition f.0/ D 0 comes from the fact that we are search-
ing spiral waves with one defect located at r D 0 (by the translation property, this is not
a restriction), namely jA.t; 0; '/j D 0. The boundary conditions, as r ! 1, are con-
sequence of Definition 1.2 and (1.6).

There is no need to impose any boundary condition on‚ at r D 0 because of the gauge
symmetry of the Ginzburg–Landau solutions. It is a well-known fact [3,14,15,20] that the
regularity at r D 0 of‚ is equivalent to impose‚0.0/D 0 (see also Remark 2.6). We keep
this redundancy in Definition 1.3 just to emphasize the particular boundary conditions we
deal with.

We introduce the so-called twist parameter q, depending on ˛, ˇ,

q D q.˛; ˇ/ D
ˇ � ˛

1C ˛ˇ
(1.8)

which, in particular, is well defined for values of ˛, ˇ such that j˛ � ˇj � 1. As we shall
explain in Section 1.1, the shape of the spiral waves strongly depends on this parameter.
In fact, when q D 0, the solutions of the Ginzburg–Landau equation (1.2) of the form
A.t; Ex/ D e�i˛t yA.t; Ex/ satisfy the “real” Ginzburg–Landau equation

@t yA D � yAC yA � yAj yAj
2; yA.t; Ex/ 2 R:

Our perturbative analysis considers the case in which we are close to the “real” Ginzburg–
Landau equation, that is to say, we deal with values of q which are small.
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The main result of this paper reads as follows.

Theorem 1.5. Fix n 2 N. Then there exist a constant Cn, only depending on n, q0 > 0
small enough and a unique odd function ��W .�q0; q0/! R of the form

��.q/ D
2

q
e
�
Cn

n2
�

e
� �
2njqj .1CO.jlogjqjj�1//; q ¤ 0; (1.9)

with the Euler–Mascheroni constant 
 , such that the complex Ginzburg–Landau equa-
tion (1.3) for q D q.˛; ˇ/ 2 .�q0; q0/ (defined in (1.8)) possesses rigidly rotating Archi-
medean n-armed spiral wave solutions

A.t; r; 'I q/ D f.r I q/ei.�tCn'C‚.rIq//

as in Definition 1.3 if and only if the asymptotic wavenumber of the spiral wave satisfies
k� D ��.q/ as given in (1.9) and the frequency � satisfies (1.6).

In addition, for any q 2 .�q0; q0/, we have that ‚0.r I q/ has constant sign, f.r I q/ is
an increasing function,

f.r I q/ > 0; for r > 0;

and, as a consequence, limr!1 f 0.r I q/ D 0.

Remark 1.6. The Ginzburg–Landau equation (1.3) depends on the parameters ˛; ˇ 2 R.
However, the spiral waves of the form in Definition 1.3 depend only on the twist para-
meter q given in (1.8).

In the literature, the parameter q D q.˛; ˇ/ is often taken positive due to the fact that
if A is a solution of equation (1.3) with parameters ˛, ˇ, then xA (complex conjugate) is
a solution of (1.3) with parameters�˛,�ˇ. Therefore, if ˇ � ˛ < 0, then�ˇ � .�˛/ > 0.
That is, either A or xA is a solution of a Ginzburg–Landau equation with parameters ˛, ˇ
satisfying ˇ � ˛ � 0.

IfA.t; r/DCei.�t�k�r/ is a wave train, thenCei.�tCk�r/ is also a wave train because
the dispersion relation (1.6) does not depend on the sign of k�. That is, if k� is a (spatial)
wavenumber, also �k� is a wavenumber with the same frequency �. By the definition
of asymptotic wavenumber, this fact does not imply that k� and �k� are both asymptotic
wavenumbers of two different Archimedean spiral waves of the same Ginzburg–Landau
equation (1.3) with parameters ˛, ˇ. Instead of this, for spiral waves as in Definition 1.3,
if k� is the asymptotic wavenumber associated to the spiral wave A.t; r; 'I q/ of equa-
tion (1.3) with parameters ˛, ˇ (and qD q.˛;ˇ/), then�k� is the asymptotic wavenumber
associated to the spiral wave xA.t; r;'I�q/ of equation (1.3) with parameters�˛,�ˇ (and
q.�˛;�ˇ/ D �q.˛; ˇ/).

Remark 1.7. We emphasize that the results of Theorem 1.5 ensure the existence of a con-
stant M (depending on q0 and n) such that for all q 2 .�q0; q0/, one hasˇ̌̌q

2
e
Cn

n2
C

e

�
2njqj ��.q/ � 1

ˇ̌̌
�

M

jlogjqjj
:

That is, we rigorously bound the relative error of ��.q/ with respect to its dominant
term.
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The simple description of spiral wave patterns of (1.2) clashes with the complexity of
obtaining rigorous results on their existence, stability or emergence. In fact, the existence
and uniqueness of ��.q/ and, as a consequence, of the rotational frequency of the pat-
tern�, is a classical result that was obtained in the eighties by Kopell and Howard in [20].
At the same time, the physics community started showing interest in this type of phenom-
ena and several authors used formal perturbation analysis techniques to describe spiral
wave solutions (see, for instance, [6, 14] or [32]). More relevantly, Greenberg in [14] and
Hagan in [15] used formal techniques of matched asymptotic expansions to conjecture an
asymptotic formula for k� D ��.q/ when q is small. The conjectured expression (1.9) of
the wavenumber k�.q/, has been widely used in the literature and checked numerically in
innumerable occasions (see, for instance, [5,8,9,23,26] or [31]) but it has never been rig-
orously proven, which is the main purpose of the present paper. Furthermore, and as far as
the authors know, in the previous works where expression (1.9) was formally derived, the
order of the error was either not mentioned or was considered (without proof) to be O.q/.

The precise computation of the constants in the exponentially small terms arising
in (1.9) was already a challenge to overcome when the formal derivation was obtained
and, in fact, 30 years later in [4], a new simpler formal asymptotic scheme was used. It is
therefore not surprising that it has taken more than 40 years to finally obtain a rigorous
proof of expression (1.9) (see Remark 1.7).

The novelty of our approach is to introduce a suitable functional setting which allows
us to prove that a necessary and sufficient condition for the spiral waves to exist is that the
associated wavenumber k� has to be exactly ��.q/ as in (1.9). This functional approach
has furthermore allowed to provide a very detailed description of the structure of the
whole spiral wave solutions, of which several features, such as positivity or monotonicity
among many others, have now been rigorously established.

Archimedean spiral wave patterns are present in some other systems. In particular,
there is another type of reaction-diffusion systems, the so-called � � ! systems, which
have been classically used to investigate rotating spiral wave patterns

@

@t

�
u1
u2

�
D

�
�.f / �!.f /

!.f / �.f /

��
u1
u2

�
C�

�
u1
u2

�
; (1.10)

where u1.t; Ex/; u2.t; Ex/ 2 R and !.�/; �.�/ are real functions of the modulus

f D

q
u21 C u

2
2:

Actually, this system was first introduced by Kopell and Howard in [18] as a model to
describe plane wave solutions in oscillatory reaction diffusion systems. Not much later,
the same authors in [17,19] and [20], under some assumptions on �, !, rigorously proved
the existence and uniqueness of spiral wave solutions of (1.10) with a single mode. Later,
in [3], the authors proved that, in fact, the asymptotic wavenumber k� D k�.q/ has to
be a flat function of the (small) parameter q. The particularity of this system is that the
equations satisfied by spiral waves turn out to be exactly the same as the ones for the
CGL equation when �.z/ D 1� z2 and !.z/ D �C q.1� k2 � z2/, as we show later in
Remark 2.4.
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1.1. Spiral patterns

By Definition 1.2 of Archimedean spiral waves, spiral wave solutions of form (1.7) pro-
vided by Theorem 1.5, have to tend, for any given  D �t C n', as r !1, to

A�.�t C n' � k�r C �.r// D Ce
i.�tCn'�k�rC�.r//

with A�.�/ defining a wave train of (1.4) as in Definition 1.1, that is, C;� 2 R satisfy-
ing (1.6) and � 0.r/! 0 as r!1. As we have mentioned, we will see in Section 2 that, in
fact, these are the only possible wave trains of (1.4), namely, wave trains of equation (1.4)
only have one mode. The contour lines of A�,

Re.A�.�t C n' � k�r/e�i�t / D cos.n' � k�r/ D c

for any real constant c (or equivalently n' � k�r D c0), are Archimedean spirals whose
wavelength L (distance between two spiral arms) is given by

L D
2�n

jk�j
:

The parameter n 2 Z is known as the winding number of the spiral and it represents the
number of times the spiral intersects any given circle of radius r0. In Figure 2, we represent
n-armed Archimedean spirals for different winding numbers n.

(a) n D 1 (b) n D 2

(c) n D 3 (d) n D 4

Fig. 2. Representation of two Archimedean n-armed spiral waves for different winding numbers n.
For a given winding number, these two spirals correspond to the contour lines cos.�k�r C n'/ D
c ¤ ˙1 in Cartesian coordinates. When c D ˙1, only one spiral survives.
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At this point, we must emphasize the role of the parameter q in (1.8) in the shape of
the spiral wave

A.t; r; 'I q/ D f.r I q/ei.�tCn'C‚.rIq//

provided in Theorem 1.5. Recall that the asymptotic wavenumber of the spiral wave is
k� D ��.q/ with ��.q/ defined in (1.9). Let A� be the wave train associated to the spiral
wave A as in Definition 1.2. Then, from (1.6),

lim
r!1

f.r I q/ D
q
1 � k2�:

Moreover, (1.9) shows that limq!0 ��.q/D 0, and therefore limr!1‚
0.r I0/D 0. In fact,

when q D 0, that is, ˛ D ˇ (see (1.8)), again from the dispersion equation (1.6) one has
C D 1 and� D �ˇ. In this case, the solutions of the Ginzburg–Landau equation (1.3) of
the form A.t; r; '/ WD ei�t yA.r; '/ are such that yA satisfies

@2r
yAC

1

r
@r yAC

1

r2
@2'
yAC yA � yAj yAj2 D 0:

For any n 2 N, this equation has a solution of the form yA.r; '/D f.r/ein' with f.0/D 0,
limr!1 f.r/ D 1. Indeed, the equation

f 00 C
1

r
f 0 �

n2

r2
fC f � f3 D 0

is a particular case of the equation studied in [2], proving that there exists a unique solution
satisfying the conditions in Theorem 1.5 when q D 0. For instance, plotting Re. yA.r; '//
for n D 5 with respect to Ex D .r cos '; r sin '/ for r � 1 big enough, one obtains the
surface depicted in the left image of Figure 3.

(a) q D 0 (b) q ¤ 0

Fig. 3. For A.t; r; '/, a spiral wave solution of (1.3) with n D 5, the depicted surfaces represent the
real part of yA.r; '/ D A.t; r; '/ei�t with respect to Ex D .r cos '; r sin '/ if r is big enough. The
vertical axis corresponds to Re. yA.r;'// and the core of both surfaces corresponds to r D r0 with r0
big enough. Observe the arms that can be found emanating from the core of the spirals. Compare
with Figure 2.
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We note that the contour lines of Re. yA.r;'//, namely f.r/ cosn' D c, tend as r!1
to be straight lines emanating from the core of the spiral which correspond to different
arms: when c D ˙1, we have exactly n D 5 straight lines whereas for c ¤ ˙1, we have
2n D 10 of them.

However, if q ¤ 0,‚.r Iq/ is not constant; the contour lines bend and tend, as r!1,
to become the already mentioned Archimedean spirals, as the ones depicted in the right
image of Figure 3, corresponding to n D 5. Again, one can see in the right image of
Figure 3 the different arms emanating from the core of the spiral. This is why q is usually
denoted as the twist parameter of the spiral.

The paper is organized as follows. First, in Section 2 we prove that the only associ-
ated wave trains (Definition 1.1) have a single mode (Lemma 2.1) and obtain a system
of ordinary differential equations that f and ‚ have to satisfy in order for A, as defined
in (1.7), to be a rigidly rotating Archimedean n-armed spiral wave. In addition, we set the
boundary conditions which characterize f and ‚0 (see Lemma 2.3). Finally, we state The-
orem 2.5, about the existence of such solutions, and we prove Theorem 1.5 as a corollary
of Theorem 2.5.

The rest of the paper is devoted to proving Theorem 2.5. First, in Section 3 we explain
the strategy we follow to prove Theorem 2.5 as well as some heuristic arguments which
motivate the asymptotic expression for the asymptotic wavenumber k�. Section 4 is devot-
ed to the proof of Theorem 2.5 using rigorous matching methods. For that, Theorems 4.3
and 4.5 prove the existence of families of solutions and, finally, Theorem 4.7 proves the
desired formula for the asymptotic wavenumber. The more technical Sections 5 and 6 deal
with the proof of Theorems 4.3 and 4.5, respectively.

2. Spiral waves as solutions of ordinary differential equations

The next lemma characterizes the form of the possible wave train solutions of equa-
tions (1.4).

Lemma 2.1. The wave trains associated to (1.3) have a unique mode, namely, they are
of the form A.t; r/ D Cei.�t�k�r/ with k� 2 R, and the constants C;� ¤ 0 satisfy rela-
tions (1.6).

Proof. AssumeA�.�/D
P
`2Z a

Œ`�ei`� , aŒ`� 2C, and letA.t; r/ be the wave train defined
through A�, that is, A.t; r/ D A�. y�t � yk�r/. Since A.t; r/ has to be a solution of (1.4),
we have, for all ` 2 Z,

i` y�aŒ`� D �.1C i˛/yk2�`
2aŒ`� C aŒ`� � .1C iˇ/jAj2aŒ`�

with jAj2 D jA.t; r/j2 D A.t; r/A.t; r/ the complex modulus. Assume aŒ`1�; aŒ`2� ¤ 0 for
some `1, `2. Then

i`1 y� D �.1C i˛/yk
2
�`
2
1 C 1 � .1C iˇ/jAj

2;

i`2 y� D �.1C i˛/yk
2
�`
2
2 C 1 � .1C iˇ/jAj

2:
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This implies

y�`1 D �˛yk
2
�`
2
1 � ˇjAj

2; 0 D �yk2�`
2
1 C 1 � jAj

2;

y�`2 D �˛yk
2
�`
2
2 � ˇjAj

2; 0 D �yk2�`
2
2 C 1 � jAj

2

and as a consequence 0 D �yk2�.`
2
1 � `

2
2/ so, if yk� ¤ 0, `1 D ˙`2. If yk� D 0, then we

have y�.`1 � `2/ D 0 so `1 D `2 and we are done (recall that y� ¤ 0). If `1 D �`2, we
deduce y�`1 D y�`2 D �y�`1 which implies that `1 D 0 and hence A.t; r/ is constant
which is a contradiction with Definition 1.1. Therefore, `1 D `2 and A.t; r/ has only
one mode indexed by `. Defining � D ` y� and k� D `yk�, the wave train is expressed as
A.t; r/ D Cei.�t�k�r/. Imposing that A.t; r/ is a solution of (1.4), we obtain

� D �˛k� � ˇjAj
2; 0 D �k2� C 1 � jAj

2:

Using that jAj D C , we have C D
p
1 � k2� and � D �ˇ C k2�.ˇ � ˛/.

We fix now C , � and k� such that they satisfy the relations in (1.6), namely

C 2 D 1 � k2�; � D �ˇ C k2�.ˇ � ˛/; (2.1)

and the associated wave train is

A�.�t � k�r/ D Ce
i.�t�k�r/:

By Lemma 2.1, in this paper we look for Archimedean n-armed spiral wave with a unique
defect and a single mode satisfying Definition 1.3,

A.t; r; '/ D f.r I q/ei.�tCn'C‚.rIq// (2.2)

with
lim
r!1

f.r I q/ D
q
1 � k2�; lim

r!1
‚0.r I q/ D �k�: (2.3)

Remark 2.2. By Definition 1.2, an Archimedean spiral wave, associated to the wave train
A�.�t � k�r/ D Ce

i.�t�k�r/, satisfies

A.t; r; '/ D As.r;�t C n'/ D
X
`2Z

aŒ`�.r/ei`.�tCn'/ D
X
`2Z

f Œ`�.r/ei`.�tCn'/Ci�`.r/

with f Œ`�.r/ � 0 for all ` 2 Z,

lim
r!1

jf Œ1�.r/ � C j D lim
r!1

jaŒ1�.r/e�i�1.r/ � C j D 0

with �1.r/ such that limr!1 �
0
1.r/ D �k�, and, for ` ¤ 1,

lim
r!1

aŒ`�.r/ D 0:

The spiral waves we are looking for, that is, of the form provided in (2.2) given in Defini-
tion 1.3, are the ones where aŒ`� � 0, for ` ¤ 1. These single mode solutions are the ones
studied in previous works of the authors [3, 14, 15, 20].
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We look for the equations that f and ‚ have to satisfy in order for A.t; r; '/ of the
form in (2.2) to be a solution of (1.3). We recall the definition of q provided in (1.8)

q D
ˇ � ˛

1C ˛ˇ
: (2.4)

Lemma 2.3. Assume that j˛ � ˇj< 1. Let�¤ 0, let k� be constants satisfying (2.1) and
A.t; r; 'I q/ D f.r I q/ei.�tCn'C‚.rIq// for some functions f and ‚. We introduce

a D
� 1C ˛2
1 ��˛

� 1
2

(2.5)

and

f .r I q/ D
� 1C ˛ˇ
1 ��˛

� 1
2 f.ar I q/; �.r I q/ D ‚.ar I q/:

Then A.t; r; 'I q/ is a solution of (1.3) if and only if f and v D �0 satisfy the ordinary
differential equations

f 00 C
f 0

r
� f

n2

r2
C f .1 � f 2 � v2/ D 0; (2.6a)

f v0 C f
v

r
C 2f 0v C qf .1 � f 2 � k2/ D 0 (2.6b)

with k 2 Œ�1; 1� satisfying the relations

q.1 � k2/ D �
�C ˛

1 ��˛
; k� D

k

.1 � ˛q.1 � k2//
1
2

:

Proof. We first note that, for j˛� ˇj< 1, we have 1C ˛ˇ > 0. In addition, 1 ��˛>0.
Indeed, according to (2.1),

1��˛D 1� ˛.�ˇC k2�.ˇ � ˛//D 1C ˛ˇ � ˛ˇk
2
�C ˛

2k2� D 1C ˛ˇ.1� k
2
�/C ˛

2k2�:

Therefore, if ˛ˇ � 0, using that k� < 1 (see again (2.1)), we have 1 � �˛ > 0. When
˛ˇ < 0, since 1C ˛ˇ > 0,

1 ��˛ D 1 � j˛ˇj.1 � k2�/C ˛
2k2� > 1 � j˛ˇj D 1C ˛ˇ > 0:

Consider the rotating frame with the scalings

B.r; '/ D ıe�i�tA.t; ar; '/ D f .r I q/ei.˙n'C�.rIq//; (2.7)

where f .r I q/ D ıf.ar I q/ and �.r I q/ D ‚.ar I q/.
Since A is solution of (1.3), B is a solution of

@2rB C
1

r
@rB C

1

r2
@2'B C a

2 1 � i�

1C i˛
B � ı�2a2

1C iˇ

1C i˛
BjBj2 D 0;

or equivalently

@2rB C
1

r
@rB C

1

r2
@2'B C a

2 1 ��˛ � i.�C ˛/

1C ˛2
B � a2

1C ˛ˇ C i.ˇ � ˛/

ı2.1C ˛2/
BjBj2D 0:
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We define the constants

y� D �a2
�C ˛

.1C ˛2/
D �

�C ˛

1 ��˛
; ı2 D a2

1C ˛ˇ

1C ˛2
D
1C ˛ˇ

1 ��˛
;

where, in the last equalities, we have used definition (2.5) of a. Then, since

a2
ˇ � ˛

ı2.1C ˛2/
D

ˇ � ˛

1C ˛ˇ
D q;

the function B satisfies the equation

@2rB C
1

r
@rB C

1

r2
@2'B C .1C

y�i/B � .1C qi/BjBj2 D 0

and, substituting the form of B in (2.7), we obtain that f and � satisfy the ordinary
differential equations

f 00 C
f 0

r
� f

n2

r2
C f .1 � f 2 � .�0/2/ D 0;

2f 0�0 C f�00 C
1

r
f�0 C y�f � qf 3 D 0:

Notice that, by (2.1),

y� D
.ˇ � ˛/

1 ��˛
.1 � k2�/

and then y� and q have the same sign as ˇ � ˛. Introducing v D �0 and k 2 Œ�1; 1� by the
relation y� D q.1 � k2/, the above equations are the ones in (2.6).

To finish, we deduce the relation between k� and k. First, we note that, using the
definition of q,

1 � y�˛ D 1 � q˛.1 � k2/ D
1C ˛ˇ � ˛.ˇ � ˛/.1 � k2/

1C ˛ˇ

D
1C ˛2.1 � k2/C ˛ˇk2

1C ˛ˇ
> 0:

Then, since

� D �
˛ C y�

1 � ˛ y�
D �

˛ C q.1 � k2/

1 � ˛q.1 � k2/
;

using that � D �ˇ C k2�.ˇ � ˛/,

k2�.ˇ � ˛/ D
ˇ � ˛ˇq.1 � k2/ � ˛ � q.1 � k2/

1 � ˛q.1 � k2/
D
ˇ � ˛ � q.1 � k2/.1C ˛ˇ/

1 � ˛q.1 � k2/
:

When ˛ ¤ ˇ, by definition of q, we have

k2� D
k2

1 � ˛q.1 � k2/
:

When q D 0, we simply define k D k� which is consistent with the above definitions.



M. Aguareles, I. Baldomá, T. M-Seara 14

Remark 2.4. Spiral wave solutions of � � ! systems in (1.10) can be written in terms
of a system of ordinary differential equations by writing system (1.10) in complex form.
That is, denoting

A D u1 C iu2;

it satisfies
@tA D .�.f /C i!.f //AC�A:

Then considering the change to polar coordinates Ex D .r cos '; r sin '/ and looking for
solutions of the form provided in (1.7) yield the following system of ordinary differential
equations:

f 00 C
f 0

r
� f

n2

r2
C f .�.f / � .�0/2/ D 0;

f�00 C f
�0

r
C 2f 0�0 C f .!.f / ��/ D 0:

(2.8)

Equations (2.6) correspond to equations (2.8) in the particular case where

�.z/ D 1 � z2 and !.z/ D �C q.1 � k2 � z2/:

An important observation is that when q D 0 (see (2.4) for the definition of q), equa-
tion (2.6b) simply reads

f v0 C f
v

r
C 2f 0v D

.rf 2v/0

rf
D 0

and therefore rf 2v must be constant. Hence, given that the solutions we are looking for
must be bounded at r D 0, the only possible solution is v � 0. Also, substituting in (2.6a)
one finds that

f .r I 0/ D f0.r/

is the solution of

f 000 C
f 00
r
� f0

n2

2r2
C f0.1 � f

2
0 / D 0: (2.9)

In the previous paper of the first two authors [2] (see also [3]), the existence of solutions
of the above differential equation was stated (in fact, a more general set of differential
equations was considered) under the boundary conditions

f0.0/ D 0; lim
r!1

f0.r/ D 1; (2.10)

satisfying in addition

f0.r/ D 1 �
n2

2r2
CO.r�4/; r !1: (2.11)

Using the previous analysis, we will see that Theorem 1.5 is a straightforward con-
sequence of the following result which, moreover, provides more detailed information
on the constant Cn.
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Theorem 2.5. Let n 2 N. There exist q0 > 0 and a function �W Œ0; q0�! R satisfying
�.0/ D 0, and

�.q/ D
2

q
e
�
Cn

n2
�

e
� �
2njqj .1CO.jlog qj�1//

with the Euler–Mascheroni constant 
 and

Cn D lim
r!1

�Z r

0

�f 20 .�/.1 � f
2
0 .�// d� � n2 log r

�
;

where f0 is the solution of (2.9) and (2.10), such that if k D �.q/, then system (2.6)
subject to the set of boundary conditions

f .0I q/ D v.0I q/ D 0;

lim
r!1

f .r I q/ D
p

1 � k2; lim
r!1

v.r I q/ D �k;

has a solution.
In addition, such a solution satisfies that, for r > 0, v.r I q/ has constant sign, for q

fixed, f .r I q/ is an increasing function, f .r I q/ > 0 and, as a consequence,

lim
r!1

f 0.r I q/ D 0:

Remark 2.6. The extra boundary condition limr!1 f
0.r I q/ D 0 does not need to be

imposed, which, as we will see along the proof of Theorem 2.5, is a consequence of
imposing that the solution satisfies limr!1.f .r I q/; v.r I q// D .

p
1 � k2;�k/.

As we claimed in Remark 1.4, if v.0Iq/ 2R, then v.0Iq/D 0. Indeed, let us first note
that from (2.6a) we have .rf 0/0 D f n2r�1 � rf .1 � f 2 � v2/, and then we deduce that,
for 0 < r � 1, f .r I q/ � f 0.r I q/ > 0. Therefore, rewriting equation (2.6b) as

.rvf 2/0 D �qrf 2.q � f 2 � k2/;

since v is defined at r D 0, we have

v.r I q/ D �
q

rf 2.r I q/

Z r

0

�f 2.�I q/.1 � f 2.�I q/ � k2/ d�:

We conclude from l’Hôpital’s rule that v.0I q/ D 0.

Proof of Theorem 1.5 as a corollary of Theorem 2.5. First, emphasize the fact that equa-
tions (2.6) remain unaltered when .v; q/ is substituted by .�v;�q/. That is, v.r I �jqj/ D
�v.r I jqj/. Then, when q < 0, we can define �.q/ D ��.jqj/ and, as a consequence, � is
an odd function on .�q0;q0/. Therefore, one can consider q� 0without loss of generality.

From property (2.11) of f0 as r !1, it is clear that the constant Cn 2 R.
By Theorem 2.5 and Lemma 2.3, there exists a spiral wave of form (1.7) satisfying

limr!1 f 0.r I q/ D 0, f.0I q/ D ‚0.0I q/ D 0 and

lim
r!1

f.r I q/ D
p
1 � �2.q/

�1 ��˛
1C ˛ˇ

� 1
2

; lim
r!1

‚0.r I q/ D ��.q/
�1 ��˛
1C ˛2

� 1
2

:
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By Lemma 2.3,
��.q/ D �.q/.1 � ˛q.1 � �.q///

� 12 :

Since ��.q/ has the same first-order expression as �.q/ provided q is small enough,
the expression for ��.q/ in Theorem 1.5 follows from the one for �.q/.

To guarantee that f and‚ satisfy the required asymptotic conditions provided in (2.3),
we need to check that k� D ��.q/ and k D �.q/ satisfy

1 � k2� D .1 � k
2/
1 ��˛

1C ˛ˇ
; �k� D �k

�1 ��˛
1C ˛2

� 1
2

;

where expression (2.1) for � has been used to derive the expression for 1 � k2�. Indeed,
from Lemma 2.3 and using definition (2.4) of q, we have, if q ¤ 0,

1 � k2 D �
1

q

˛ � ˇ C k2�.ˇ � ˛/

1 ��˛
D .1 � k2�/

.1C ˛ˇ/

1 ��˛
;

and the first equality is proven. With respect to the second one, we have to prove that

.1 ��˛/.1 � ˛q.1 � k2// D 1C ˛2:

The equality is satisfied for ˛ D 0. When ˛ ¤ 0, we have to prove

0 D �.�C q.1 � k2//C ˛.�q.1 � k2/ � 1/ D �.�C ˛/ � q.1 � k2/.1 ��˛/;

which from Lemma 2.3 is true.
For the uniqueness of the function ��.q/, we use [20, Theorem 3.1] and [3, Lem-

ma 2.1], related to ��! systems as (2.8), with the assumptions �.1/D 0, �0.z/;!0.z/<0,
for z 2 .0; 1� and j!0.z/j D O.jqj/. We note that our case corresponds to �.z/ D 1 � z2

and !.z/ D �C q.1� k2 � z2/ satisfying these conditions. The result in [3] says that if
system (2.8) has a solution with boundary conditions given by

lim
r!1

f .r/ D f1; lim
r!1

f 0.r/ D 0; lim
r!1

v.r/ D v1;

then f1 is such that !.f1/ D � and v21 D �.f1/. The result in [20] states that there
exists a unique value, v1.q/, for q small enough, such that system (2.8) has solution with
boundary conditions

lim
r!1

f .r/ D f1; lim
r!1

f 0.r/ D 0; lim
r!1

�0.r/ D v1.q/;

and f , v regular at r D 0. Applying these results to our case, we obtain f1D
p
1� k2

and v1 D �k and the results in [20] gives the uniqueness result in Theorem 1.5.

After more than forty years, Theorems 2.5 and 1.5 provide a rigorous proof of the
explicit asymptotic expressions widely used for k D �.q/ and k� D ��.q/ as well as
rigorous bounds for their relative errors. Furthermore, the rigorous matching scheme used
in this paper opens the door to showing without much extra effort the equivalent result for
spiral waves in the more general setting of � � ! systems.
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3. Main ideas in the proof of Theorem 2.5

To prove Theorem 2.5, we need to study the existence of solutions of equations (2.6) with
boundary conditions

f .0I k; q/ D v.0I k; q/ D 0;

lim
r!1

f .r I k; q/ D
p

1 � k2; lim
r!1

v.r I k; q/ D �k:
(3.1)

Observe that the functions .f; f 0; v/ satisfy a system of first-order differential equations
of dimension three. It is then natural to expect that no solution exists satisfying the four
boundary conditions (3.1), except for a “privileged” value of k. Theorem 2.5 proves that
this intuition is true.

The strategy of the proof is as follows. We split the domain r � 0 in two regions
limited by a convenient value r0 � 1:

� A far-field (outer region) defined as

r 2 Œr0;1/; where lim
r!1

f .r I k; q/ D
p

1 � k2; lim
r!1

v.r I k; q/ D �k (3.2)

are the only boundary conditions that are imposed.

� A core-field (inner region) defined as

r 2 Œ0; r0�; where f .0I k; q/ D v.0I k; q/ D 0 (3.3)

are the boundary conditions.

The specific value of r0 D r0.q/ D 1p
2
e
�
q with � D . q

jlogqj /
1
3 will be explained in Sec-

tion 4.3.
We shall obtain two families of solutions (see Theorems 4.3 and 4.5), depending on

two free parameters a;b 2 R, namely:

� f out.r; aI k; q/, @rf out.r; aI k; q/, vout.r; aI k; q/ for the outer region satisfying (3.2),
and

� f in.r;bI k; q/, @rf in.r;bI k; q/, vin.r;bI k; q/ for the inner region satisfying (3.3),

which, upon matching them in the common point r D r0 D r0.q/, provides a system with
three equations and three unknowns .a;b; k/:

f in.r0;bI k; q/ D f out.r0; aI k; q/;
@rf

in.r0;bI k; q/ D @rf out.r0; aI k; q/;
vin.r0;bI k; q/ D vout.r0; aI k; q/:

Therefore, having fixed q, this system provides a solution .a�; b�; k�/. See Figure 4 for
a representation of this strategy. Consequently, for the value of k D k�, we have a solution
of system (2.6) defined for all r � 0 as

.f .r I k; q/; v.r I k; q// D

´
.f in.r;b�I k�; q/; vin.r;b�I k�; q// if r 2 Œ0; r0�;

.f out.r; a�I k�; q/; vout.r; a�I k�; q// if r � r0;
(3.4)
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f in.r;bIk; q/

f out.r; aIk; q/

r0 D
1p
2
e
�
q

(a) For a given k ¤ k�, the families of solutions .f out.r;aIk; q/; vout.r;aIk; q// (in light blue) and
.f in.t; bI k; q/; vin.r; bI k; q// (in dark blue). In magenta the horizontal lines f D

p
1 � k2 (for

f -component) and v D �k (for the v-component). Notice that, in general, they do not match in
a smooth way at r D r0.

vin.r;bIk; q/

vout.r; aIk; q/

r0 D
1p
2
e
�
q

f in.r;bIk�; q/

f out.r; aIk�; q/

r0 D
1p
2
e
�
q

(b) For k D k�, the corresponding families of solutions defined in the outer and inner regions,
labelled by a, b, respectively. The solution of the problem, corresponding to a�, b� (and k�), is in
red.

vin.r;bIk�; q/

vout.r; aIk�; q/

r0 D
1p
2
e
�
q

Fig. 4. A schematic representation of the matching procedure. In blue are depicted several
solutions(f in.r; bI k; q/; vin.r; bI k; q/) for different values of b, in the inner region, Œ0; r0�, and
the counterpart for the outer region, namely Œr0;1/, labelled by a. All of them intersect at r D r0,
but there is only one combination of these solutions (in red) that is differentiable at Œ0;1/ which
corresponds to the selected wavenumber k�.

satisfying the boundary conditions (3.1). This proves the existence result in Theorem 2.5
taking �.q/ D k�.

Before stating the main results which provide Theorem 2.5, in Section 4, in the next
subsection we give some intuition about how we obtain the value of k D �.q/.

3.1. The asymptotic expression for k D �.q/

One can find in the literature different heuristic arguments, based on (formal) matched
asymptotic expansions techniques, which motivate the particular asymptotic expression
for the parameter k,

k D �.q/ D
x�

q
e�

�
2nq .1C o.1// (3.5)

with x� 2 R a parameter independent of q (see, for instance, [15]). However, in this sec-
tion we explain the particular deduction that is more consistent with the rigorous proof
provided in the present work which we obtain by performing a change of parameter
k D �

q
e�

�
2nq and finding the value of � that solves the problem. Furthermore, a nov-

elty of our proof is that it also provides that the relative error in expression (3.5) is in fact
O.jlog qj�1/.
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We begin, as we explained at the beginning of Section 3, by looking for solutions of
equations (2.6) which satisfy the boundary conditions (3.2) at r D 1, which we shall
denote as the outer solutions. We introduce a new parameter

" D kq (3.6)

and perform the scaling

R D "r; V .R/ D k�1v
�R
"

�
; F .R/ D f

�R
"

�
(3.7)

to equations (2.6). We obtain

"2
�
F 00 C

F 0

R
� F

n2

R2

�
C F.1 � F 2 � k2V 2/ D 0; (3.8a)

"2
�
V 0 C

V

R
C 2

VF 0

F
� 1

�
C q2.1 � F 2/ D 0: (3.8b)

If "¤ 0, one can use the actual value of 1� F 2 provided by equation (3.8a) to recombine
equations (3.8a) and (3.8b) to obtain the equivalent system

"2
�
F 00 C

F 0

R
� F

n2

R2

�
C F.1 � F 2 � k2V 2/ D 0; (3.9a)

V 0 C
V

R
C V 2 C q2

n2

R2
� 1 D

q2

F

�
F 00 C

F 0

R

�
� 2V

F 0

F
: (3.9b)

By virtue of (3.2), we look for bounded solutions of equations (3.9) satisfying

lim
R!1

F.RI k; q/ D
p

1 � k2; lim
R!1

V.RI k; q/ D �1: (3.10)

Following a similar method to that in Proposition 4.2 one can check that the formal asymp-
totic expansions of bounded solutions when R!1 satisfy

F.RI k; q/ �
p

1 � k2 �
k2

2R
p
1 � k2

CO
� "2
R2

�
as R!1;

V .RI k; q/ � �1 �
1

2R
CO

� "2
R2

�
as R!1:

(3.11)

We note that equation (3.9a) is singular in ". In particular, if " D 0, and therefore k D 0
(recall (3.6)), either F D 0, which is a trivial solution we are not interested in, or 1 �
F 2.R/ D 0, which also gives a noninteresting solution. But, if we write equation (3.9a) as

"2
�
F 00 C

F 0

R

�
C F

�
�
"2n2

R2
C 1 � F 2 � k2V 2

�
D 0;

we observe that the asymptotic expansions (3.11) suggest that the terms "2F 0

R
and "2F 00

are of higher order in k, and therefore in ", than the rest. Therefore, we will take as first
approximation the solution of

�
"2n2

R2
C 1 � F 2 � k2V 2 D 0;
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which gives our candidate to be the main part of the outer solution we are looking for,

F0.R/ D F0.r I k; q/ D

r
1 � k2V 20 .RI q/ � "

2
n2

R2
: (3.12)

Then, neglecting again the terms depending on F 0 and F 00 in equation (3.9b), a natural
definition for V0 is the solution of the Riccati equation

V 00 C
V0

R
C V 20 C q

2 n
2

R2
� 1 D 0; such that lim

R!1
V0.RI q/ D �1: (3.13)

Observe that the boundary condition for V0 gives

lim
R!1

F0.RI k; q/ D
p

1 � k2;

as expected.
A solution of (3.13) is given by (see, for instance, [1])

V0.RI q/ D
K 0inq.R/

Kinq.R/
(3.14)

with Kinq the modified Bessel function of the second kind. It is a well-known fact that
(see [1]),

K�.R/ D

r
�

2R
e�R.1CO.R�1//; as R!1;

for any � 2 C, where O.R�1/ is uniform as � ! 0. Therefore, the functions .F0; V0/
satisfy the boundary conditions (3.10).

We go back to our original variables through scaling (3.7) and define

f out
0 .r I k; q/ D F0."r I k; q/ D F0.kqr I k; q/;

vout
0 .r I k; q/ D kV0."r I q/ D kV0.kqr I q/;

(3.15)

which satisfy

lim
r!1

vout
0 .r I k; q/ D �k; lim

r!1
f out
0 .r I k; q/ D

p

1 � k2: (3.16)

The precise properties of the dominant terms f out
0 , vout

0 will be given in Proposition 4.2.
An important observation if r � 1, but kr is small enough, is that vout

0 .r I k; q/ has
the following asymptotic expansion (a rigorous proof of this fact will be done in Proposi-
tion 4.2, see (4.3)):

vout
0 .r I k; q/ D �

n

r
tan
�
nq log r C nq log kq C

�

2
� �0;nq

�
Œ1CO.q2/�

with �0;nq D arg.�.1C inq// D �
nq CO.q2/, � is the Gamma function, and 
 is the
Euler–Mascheroni constant.

We now deal with the inner solutions of (2.6) departing the origin and satisfying
f .0I k; q/ D v.0I k; q/ D 0. For moderate values of r , the inner problem is perturbative
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with respect to the parameter q. For that reason, to define the dominant term of the inner
solutions we first consider the case q D 0. Let us now recall that in [3] it was proven
that, when q D 0, system (2.6) has a solution .f; v/ with boundary conditions (3.1) if and
only if k D k.0/ D 0. In this case, v D v.r I 0; 0/ D 0 and f0.r/ D f .r I 0; 0/ satisfies the
boundary conditions (2.10) and the second order differential equation (2.9),

f 000 C
f 00
r
� f0

n2

r2
C f0.1 � f

2
0 / D 0; f0.0/ D 0; lim

r!1
f0.r/ D 1: (3.17)

As we already mentioned, the existence and properties of f0 were studied in the previous
work of the first two authors [2].

As v.r I 0; 0/ � 0, we write v.r I k; q/ D qyv.r I k; q/ so system (2.6) reads

f 00 C
f 0

r
� f

n2

r2
C f .1 � f 2 � q2yv2/ D 0;

f yv0 C f
yv

r
C 2yvf 0 C f .1 � f 2 � k2/ D 0:

Let us now consider .f0.r/; v0.r I k//, the unique solution of this system when q D 0

satisfying (3.17) and

v00 C
v0

r
C 2v0

f 00
f0
C .1 � f 20 � k

2/ D 0; v0.0I k/ D 0: (3.18)

In [2], it was proven that f0.r/ > 0 for r > 0 and f0.r/ � ˛0rn, as r ! 0, thus, the
function

v0.r I k/ D �
1

rf 20 .r/

Z r

0

�f 20 .�/.1 � f
2
0 .�/ � k

2/ d� (3.19)

satisfies (3.18) and v0.0Ik/D 0. We then define the functions, whose properties are stated
in Proposition 4.4,

f in
0 .r/ D f0.r/; vin

0 .r I k; q/ D qv0.r I k/: (3.20)

In Proposition 4.4, it will be proven that, if r � 1 but kr is small enough, the function
vin
0 .r I k; q/ has the following asymptotic expansion, see (4.11):

vin
0 .r I k; q/ D �q

n2.1C k2/

r
log r C

qCn

r
�
k2q

2
r C qO.r�3 log r/

C qk2O.r�1/ (3.21)

with Cn defined in Theorem 2.5.
As we emphasize, we expect the functions vout

0 and vin
0 to be the first-order of the

functions vout and vin in the outer and inner domains of r . Therefore, a natural request is
that they “coincide up to first-order” in some large enough intermediate point r0 such that
kr0 and q log r0 are still small enough quantities. With these hypotheses and using the
previous asymptotic expansion (3.21), we obtain

vin
0 .r0I k; q/ D

q

r0
Œ�n2 log r0 C Cn C HOT�;
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where the higher-order terms (HOT) are small provided kr0 is small. With respect to vout
0 ,

using that �0;nq D �
nq CO.q2/, we have

vout
0 .r0I k; q/ D

q

r0

h
�
n

q
tan
�
nq log r0 C nq log kq C

�

2
C nq
 CO.q2/

�
Œ1CO.q2/�

i
:

Observe that if nq logkqC �
2
DO.q/Dmq, upon Taylor expanding the tangent function,

one obtains
vout
0 .r0I k; q/ D �

q

r0
Œn2 log r0 C nmC n2
 C HOT�

and then it is possible to have vout
0 .r0/� v

in
0 .r0/ D 0 because the “large” term n2 log r0 is

cancelled.
The last observation of this section is that taking kqD�e�

�
2nq gives nq logkqC �

2
D

nq log�DO.q/. For this reason, during the proof of Theorem 2.5 in the rest of the paper,
we will rewrite the parameter k using the expression

kq D �e�
�
2nq ; (3.22)

and we will prove that, for q small enough, there exists a value of x� independent of q such
that, for k given by (3.22) with � D x�CO.jlog qj�1/, (2.6) has a solution satisfying the
required asymptotic conditions (3.1).

4. Proof of Theorem 2.5: Matching argument

In order to prove Theorem 2.5 following the strategy explained in Section 3, we provide
the precise statements about the existence of the families of solutions .f out; vout/ in the
outer region (3.2) (Section 4.1) and .f in; vin/ in the inner region (3.3) (Section 4.2).
In addition, since our method relies on finding .f out; vout/ and .f in; vin/ near the dominant
terms .f out

0 ; vout
0 / and .f in

0 ; v
in
0 /, given in (3.15) and (3.20), respectively, we set all the

properties of these dominant terms in Proposition 4.2 and 4.4, respectively. After that,
in Sections 4.3 and 4.4, the rigorous matching of the dominant terms is done. Finally,
in Section 4.5, we finish the proof of Theorem 2.5.

Let us set some conventions that we will use in the sequel.

� We denote by M a generic constant independent of q, k and consequently on "
(see (3.6)), that can (and will) change its value throughout the text.

� When the notation O.�/ is used, it means that the terms are bounded uniformly every-
where the function is studied. That is, if h; hWU0 � R` ! Rl , then, for z 2 U0,

h.z/ D O.h.z// , jh.z/j �M jh.z/j (4.1)

for some constant M that only depends on U0. If it is needed, the domain U0 will be
restricted without special mention.

� If ƒ D ƒ.�/ with ƒ, � real parameters, we will say a function h.z; ƒ/ continuously
depends on � if yh.z; �/ WD h.z; ƒ.�// is continuous with respect to �. For instance,
we will say that vin

0 .r I k; q/ is continuous with respect to � (see (3.22)).
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K�.z/ D

r
�

2z
e�z

�
1C

4�2 � 1

8z
CO

� 1
z2

��
� 2 C jzj � z0, jarg.z/j < 3�

2

I�.z/ D

r
1

2�z
ez
�
1CO

�1
z

��
� 2 C jzj � z0, jarg.z/j < �

2

K�.z/ �
1

2
�.�/

�1
2
z
���

Re � > 0 jzj � z1, z 2 CnŒ�1; 0�

I�.z/ �
1

�.� C 1/

�1
2
z
��

�� … N jzj � z1, z 2 CnŒ�1; 0�

Tab. 1. Asymptotic expansions of the modified Bessel functions K� , I� when z !1 and z ! 0.
The values z0 � 1 and 0 < z1 � 1 depend on �.

The modified Bessel functions I� , K� , see [1], play an important role in our proofs.
We pay special attention to their asymptotic behaviour. Table 1 summarizes the properties
we extensively use along the paper.

Remark 4.1. We stress that for j�j � �0 the O. 1
z
/, O. 1

z2
/ terms in the expansion for

K� , I� , as z !1 in Table 1, are bounded by M
jzj

for jzj � z0, and M , z0 only depend
on �0. With respect to the expansions as z ! 0, we also have that if Re � > 0, then
jI�.z/j �M jzj

� for jzj � z1 with M , z1 depending only on �0.

4.1. Outer solutions

We begin the proof of Theorem 2.5 by studying the dominant terms f out
0 , vout

0 (see (3.15))
in the outer region (see (3.2)).

Proposition 4.2. For any 0 <�0 <�1, there exists q0D q0.�0;�1/ > 0 such that for any
� 2 Œ�0; �1� and q 2 .0; q0�, the functions vout

0 .r Ik; q/ and f out
0 .r Ik; q/ defined in (3.15)

with k D �q�1e�
�
2nq , satisfy the following properties:

(i) There exists R0 > 0 such that for kqr � R0,

vout
0 .r I k; q/ D �k �

1

2qr
C kO

� 1

.kqr/2

�
;

f out
0 .r; k; q/ D

p

1 � k2
�
1 �

k

2qr.1 � k2/

�
CO

� 1

.qr/2

�
:

(4.2)

(ii) For 2e�
�
2nq � kqr � .qn/2, one has

vout
0 .r I k; q/ D �

n

r
tan
�
nq log r C nq log

��
2

�
� �0;nq

�
Œ1CO.q2/� (4.3)

with �0;nq D arg.�.1C inq// D �
nq CO.q2/, where � is the Gamma function
and 
 is the Euler–Mascheroni constant.
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(iii) For 2e�
�
2nq � kqr , one has

@rv
out
0 .r I k; q/ > 0; vout

0 .r I k; q/ < �k; @rf
out
0 .r I k; q/ > 0:

(iv) Let ˛ 2 .0;1/. There exist xq0D xq0.˛;�0;�1/ and a constantM DM.˛;�0; �1/>0
such that if rmin satisfies 2e2e�

�
2qn � kqrmin � .kq/

˛ , then, for r � rmin, vout
0 sat-

isfies

jvout
0 .r I k; q/j; jr@rv

out
0 .r I k; q/j; jr

2@2rv
out
0 .r I k; q/j �Mr�1min;

jr.vout
0 .r I k; q/C k/j; jr

2@rv
out
0 .r I k; q/j; jr

3@2rv
out
0 .r I k; q/j �Mq�1:

With respect to f out
0 , we have

f out
0 .r I k; q/ �

1

2
;

jr2@rf
out
0 .r I k; q/j; jr3@2rf

out
0 .r I k; q/j �Mq�1r�1min;

j1 � f out
0 .r I k; q/j; jr@rf

out
0 .r I k; q/j; jr2@2rf

out
0 .r I k; q/j �Mr�2min:

In addition f out
0 , vout

0 depend continuously on � 2 Œ�0; �1�.

The proof of this proposition is postponed to Appendix A, and it involves a careful
study of some properties of the Bessel functions Kinq .

Once .f out
0 ; vout

0 / are studied, we look for solutions in the outer region satisfying
boundary conditions (3.2). This is the content of the following Theorem 4.3 which gives
the existence and bounds of a one-parameter family of solutions of equations (2.6), which
stay close to the approximate solutions .f out

0 .r I k; q/; vout
0 .r I k; q// given in (3.15) for all

r � r2, r2 being any number such that r2 D O."˛�1/ with " D kq defined in (3.6) and
0 < ˛ < 1 satisfying q�1"1�˛ ! 0 when q ! 0.

Theorem 4.3. For any � > 0, 0 < �0 < �1, there exist q�0 D q
�
0 .�0; �1/ > 0, 0 < q0 D

q0.�0; �1; �/ � q
�
0 .�0; �1/, e0 D e0.�0; �1; �/ > 0 and M D M.�0; �1; �/ > 0 such

that, for any � 2 Œ�0;�1� and q 2 Œ0; q0�, if we take "D �e�
�
2nq and ˛ 2 .0; 1/ satisfying

q�1"1�˛ < e0; (4.4)

taking r2 as
r2 D "

˛�1; (4.5)

k D �q�1e�
�
2nq D "q�1 and

a D yar�
3
2

2 er2
p
2; jyaj � �; (4.6)

equations (2.6) have a family of solutions .f out.r; aI k; q/; vout.r; aI k; q// defined for
r � r2 which are continuous with respect to ya, � and of the form

f out.r; aI k; q/ D f out
0 .r I k; q/C gout.r; aI k; q/;

vout.r; aI k; q/ D vout
0 .r I k; q/C w

out.r; aI k; q/;
(4.7)
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where f out
0 , vout

0 are defined in (3.15). The functions gout, wout satisfy

jr2gout.r; aI k; q/j; jr2@rgout.r; aI k; q/j �M;
jr2wout.r; aI k; q/j �Mq�1.�C q�1"1�˛/:

We can also decompose

gout.r; aI k; q/ D K0.r
p
2/aC gout

0 .r I k; q/C g
out
1 .r; aI k; q/; (4.8)

where K0 is the modified Bessel function of the second kind [1], and gout
0 .r I k; q/ is an

explicit function independent of �. Moreover,

(i) there exists M0 DM0.�0; �1/ such that, for q 2 Œ0; q�0 �,

jr2gout
0 .r I k; q/j; jr

2@rg
out
0 .r I k; q/j �M0"

1�˛q�1; (4.9)

(ii) and for q 2 Œ0; q0�,

jr2gout
1 .r; aI k; q/j; jr

2@rg
out
1 .r; aI k; q/j �M1"

1�˛q�1e�r2
p
2r

3
2

2 jaj; (4.10)

where M1 DM1.�0; �1; �/ depends on �0, �1, and �.

As for wout, it can be decomposed as

wout
D wout

0 C w
out
1

satisfying for q 2 Œ0; q0�,

jr2wout
0 .r; aI k; q/j �M2q

�1e�r2
p
2r

3
2

2 jaj;
jr2wout

1 .r; aI k; q/j �M2"
1�˛q�2

with M2 DM2.�0; �1; �/.

Theorem 4.3 is proven in Section 5 by performing the scaling (3.7) and studying
the solutions of the outer equations (3.9) with boundary conditions (3.10) near the func-
tions F0, V0 given in (3.12) and (3.14). The proof is done through a fixed point argument
in a suitable Banach space.

We emphasize that, when r !1, gout and wout have limit zero, and f out
0 and vout

0

satisfy (3.16), then f out and vout satisfy the boundary conditions (3.1). With this result
in mind, we now proceed with the study of the behaviour of solutions of (2.6) departing
r D 0, here called inner solutions.

4.2. Inner solutions

We now deal with the families of solutions of (2.6) departing the origin, satisfying the
boundary condition f .0/D v.0/D 0 defined for values of r in the inner region (see (3.3)).

We first set the properties of f in
0 , vin

0 , the dominant terms in the inner region defined
in (3.20), that will mostly be used throughout this proof.
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Proposition 4.4. For any 0 < �0 < �1, there exists q0 D q0.�0; �1/ > 0 such that for
any � 2 Œ�0; �1� and q 2 Œ0; q0�, the functions f in

0 .r/; v
in
0 .r I k; q/ defined in (3.20) with

kq D �e�
�
2nq , satisfy the following properties:

(i) For all r > 0, we have f in
0 .r/; @rf

in
0 .r/ > 0 and there exists cf > 0 such that

f in
0 .r/ � cf r

n; r ! 0; f in
0 .r/ D 1 �

n2

2r2
CO.r�4/; r !1;

@rf
in
0 .r/ � ncf r

n�1; r ! 0; @rf
in
0 .r/ D

n2

r3
CO.r�5/; r !1:

(ii) For 0 < r � n

k
p
2

, we have vin
0 .r Ik; q/ < 0 and there exists a positive function of k,

cv.k/ D c
0
v CO.k2/, such that

vin
0 .r I k; q/ � �qcv.k/r; @rv

in
0 .r I k; q/ � �qcv.k/; r ! 0;

jvin
0 .r I k; q/j �Mq

jlog r j
r

; j@rv
in
0 .r I k; q/j �Mq

log r
r2

; 1� r <
n

k
p
2
:

(iii) For 1� r � n

k
p
2

, we have

vin
0 .r I k; q/ D � q

n2.1C k2/

r
log r C

qCn

r
�
k2q

2
r

C qO.r�3 log r/C qk2O.r�1/
(4.11)

with Cn defined in Theorem 2.5 and

@rv
in
0 .r I k; q/ D q

n2

r2
log r C qO.r�2/:

In addition, vin
0 is continuous with respect to � 2 Œ�0; �1�.

The proof of this proposition is referred to Appendix B and mostly relies on previous
works [2, 3].

The following theorem, whose proof is provided in Section 6, states that there exists
a family of solutions of (2.6), satisfying the boundary conditions at the origin, which
remains close to the approximate solutions .f in

0 .r/; v
in
0 .r I k; q// given in (3.20), for all

r 2 Œ0; r1�, where r1 D O.e
�
q / for some � > 0 small enough.

Theorem 4.5. For any � > 0, 0 < �0 < �1, there exist q�0 D q
�
0 .�0; �1/ > 0, 0 < q0 D

q0.�0; �1; �/ � q
�
0 , �0 D �0.�0; �1; �/ > 0 and M D M.�0; �1; �/ > 0 such that for

any � 2 Œ�0; �1�, q 2 Œ0; q0� and
� 2 .0; �0/; (4.12)

taking r1 as

r1 D
e
�
q

p
2
; (4.13)

k D �q�1e�
�
2nq and

b D yb�2r�
3
2

1 e�
p
2r1 ; jybj �

�

.
p
2/
3
2

q2

�2
.log
p
2r1/

2
D

�

.
p
2/
3
2

; (4.14)
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system (2.6) has a family of solutions .f in.r;bIk; q/; vin.r;bIk; q// defined for r 2 Œ0; r1�,
which are continuous with respect to yb, �, and satisfy the boundary conditions (3.3),
that is,

f in.0;bI k; q/ D vin.0;bI k; q/ D 0:

Moreover, these functions satisfy

f in.r;bI k; q/ D f in
0 .r/C g

in.r;bI k; q/;
vin.r;bI k; q/ D vin

0 .r I k; q/C w
in.r;bI k; q/

(4.15)

with f in
0 , vin

0 defined in (3.20). The functions gin, win satisfy, for all r 2 Œ0; r1�,

jgin.r;bI k; q/j �Mq2; jwin.r;bI k; q/j �Mq3;

for 0 � r < 1,

jgin.r;bI k; q/j �Mq2rn; j@rg
in.r;bI k; q/j �Mq2rn�1;

jwin.r;bI k; q/j �Mq3r; j@rw
in.r;bI k; q/j �Mq3;

and for 1� r � r1,

jgin.r;bI k; q/j �Mq2
jlog r j2

r2
; jwin.r;bI k; q/j �Mq3

jlog r j3

r
:

In addition, there exists a function I satisfying

I 0.r1
p
2/Kn.r1

p
2/ � I.r1

p
2/K 0n.r1

p
2/ D

1

r1
p
2
;

jI.r1
p
2/j; jI 0.r1

p
2/j �MI

1
p
r1
er1
p
2;

(4.16)

for some constant MI , and where Kn is the modified Bessel function of the second kind
(see [1]), such that

gin.r;bI k; q/ D I.r
p
2/bC gin

0 .r I k; q/C g
in
1 .r;bI k; q/; (4.17)

where gin
0 .r I k; q/ is an explicit function which is independent of �. Also, for 1� r � r1,

(i) there exists M0.�0; �1/ such that, for q 2 Œ0; q�0 �,

jgin
0 .r I k; q/j; j@rg

in
0 .r I k; q/j �M0q

2 jlog r j2

r2
; (4.18)

(ii) and for q 2 Œ0; q0�,

jgin
1 .r;bI k; q/j; j@rg

in
1 .r;bI k; q/j �M1q

2�2
jlog r j2

r2
;

where M1 DM1.�0; �1; �/ depends on �0, �1, and �.
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4.3. Matching point and matching equations

Observe that, given 0 < �0 < �1, the results of Theorems 4.3 and 4.5 are valid for any
value of k of the form k D "

q
D

�
q
e�

�
2nq , � 2 Œ�0; �1� and q small enough. To finish

the proof of Theorem 2.5, we need to select the value of �, and therefore of k, which
connects an outer solution (given by a particular value of a, and therefore of ya) with an
inner one (given by a particular value of b and therefore of yb). To this end, we need to
have a non-empty matching region, for which we shall impose r2 D r1, that is to say,
"˛�1 D 1p

2
e
�
q . Then, using that " D �e�

�
2qn , one obtains

˛ D ˛.�; �; q/ D 1 �
2n�

�

1 �
q log
p
2

�

1 �
2nq log�

�

: (4.19)

But, according to Theorem 4.3, it is also required that "
1�˛

q
< e0� 1, which is equivalent

to imposing that q, � satisfy
qjlog.e0q

p
2/j < �:

Therefore, fixing any � > 0, since by (4.12), 0 < � < �0, the condition for q, � becomes

q
ˇ̌̌
log
�e0q
p
2

�ˇ̌̌
< � < �0: (4.20)

We rename

r0 WD r1 D r2 D
e
�
q

p
2
D "˛�1 D �˛�1e

�.1�˛/
2qn ; (4.21)

and we take

� D
� q

jlog qj

� 1
3

; (4.22)

which satisfies the required inequalities in (4.20). Therefore, Theorems 4.3 and 4.5 are in
particular valid when taking ˛ and � as given in (4.19) and (4.22), and r1 D r2 as given
in (4.21), since all these values satisfy conditions (4.4), (4.5), (4.12), and (4.13), if we
take any a and b satisfying (4.6), (4.14), provided

q0 D q0.�0; �1; �/

is small enough (we take the minimum of both theorems).
Once we have chosen the parameters � and ˛ and the value of the matching point r0,

the next step is to prove that there exist a, b, k or equivalently, since

a D r�
3
2

0 e
p
2r0ya; b D �2r�

3
2

0 e�
p
2r0yb and k D

"

q
D �e�

�
2qn ;

that there exist ya, yb, �, such that, for q small enough,

f out.r0; aI k; q/ D f in.r0;bI k; q/;
@rf

out.r0; aI k; q/ D @rf in.r0;bI k; q/;
vout.r0; aI k; q/ D vin.r0;bI k; q/:

(4.23)
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We stress that the existence results, Theorems 4.3 and 4.5, depend on the set of con-
stants �0, �1, � not defined yet. We shall fix them, in Section 4.4, as follows:

� First, we match the explicit dominant terms of the outer functions f out, vout (see (4.7)
and (4.8)) with dominant terms of the inner functions f in, vin (see (4.15) and (4.17)):

K0.r0
p
2/a0 C f out

0 .r0I k; q/C g
out
0 .r0I k; q/ D I.r0

p
2/b0 C f in

0 .r0/

C gin
0 .r0I k; q/;

vout
0 .r0I k; q/ D v

in
0 .r0I k; q/

(4.24)

and
p
2K 00.r0

p
2/a0 C @rf out

0 .r0I k; q/C @rg
out
0 .r0I k; q/

D
p
2I 0.r0

p
2/b0 C @rf in

0 .r0/C @rg
in
0 .r0I k; q/: (4.25)

This is done in Section 4.4, where, in Proposition 4.6, we find

a0 D ya0r
� 32
0 e

p
2r0 ; b0 D yb0�2r

� 32
0 e�

p
2r0

and x� such that, taking the approximate value of

k D x�q�1e�
�
2qn ;

equations (4.24) and (4.25) are solved. Moreover, we fix two values 0 < �0 <�1 such
that, x� 2 Œ�0; �1�.

� The obtained solutions a0, b0 satisfy conditions (4.6) and (4.14) for a particular value
of �. We will use these values, �0, �1, � in Theorems 4.3 and 4.5 to obtain families
of solutions f out, vout, f in, vin of equations (2.6).

Finally, the existence of the constants a, b and � (that will be found to be close to a0,
b0, x�) satisfying the matching conditions (4.23) is provided by means of a Brouwer’s
fixed point argument in Section 4.5 (see Theorem 4.7).

4.4. Matching the dominant terms: Setting the constants �0, �1, �

As we explained in the previous section, the purpose of this section is to choose the con-
stants �0, �1, � which appear in Theorems 4.3 and 4.5 to obtain the families of solutions
f out, vout, f in, vin of equations (2.6) satisfying the suitable boundary conditions.

The next proposition gives the existence of solutions of equations (4.24) and (4.25).

Proposition 4.6. Take �0 D e
�
Cn

n2
�
 , �1 D 3e

�
Cn

n2
�
 , where Cn and 
 are given in

Theorem 2.5. Then, there exist q�1 D q
�
1 .�0;�1/ and yM.�0;�1/ such that for 0 < q < q�1 ,

equations (4.24) and (4.25) have a solution .a0;b0; x�/ satisfying

x� 2 Œ�0;�1�; a0Dya0r
� 32
0 er0

p
2; jya0j � yM�2; b0D yb0�2r

� 32
0 e�r0

p
2; jyb0j � yM;

where �, r0 are given in (4.22) and (4.21), respectively.
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Proof. As we pointed out in (4.1), we will say h.q/ D O.h.q// if for some q0 > 0 there
exists a constant M > 0 such that for all q 2 .0; q0�, jh.q/j �M jh.q/j. For instance, by
definitions (4.22) and (4.21),

� D �.q/ D O
�� q

jlog qj

� 1
3
�

and q log.r0/ D q log.r0.q// D O.�/:

We note that, by definitions of r0 and � in (4.21) and (4.22), respectively, we haveˇ̌̌
nq log r0 C nq log

��
2

�
� �0;nq

ˇ̌̌
D O.�/ D O

�� q

jlog qj

� 1
3
�
� 1:

Then, using the asymptotic expressions (4.3) and (4.11) for vout
0 and vin

0 at r D r0 and
recalling that k D "

q
D x�q�1e�

�
2nq , we have

vin
0 .r0I k; q/ � v

out
0 .r0I k; q/

D �qn2
1C k2

r0
log r0 C q

Cn

r0
� q

k2

2
r0 C

n

r0

�
nq log r0 C nq log

�
x�

2

�
� �0;nq

�
C qO

� log r0
r30

�
C qk2O.r�10 /C

1

r0
O
�ˇ̌̌
nq log r0 C nq log

�
x�

2

�
� �0;nq

ˇ̌̌3
; q2

�
D �

n2k2�

r0
C
q

r0

�
Cn C n

2 log
�
x�

2

�
� n�0;nqq

�1
�
� q

k2

2
r0 C q

3O
� .log r0/3

r0

�
C
1

r0
O.q2; qk2/

D
q

r0

�
Cn C n

2 log
�
x�

2

�
� n�0;nqq

�1
�
C
q

r0
O.jlog qj�1/: (4.26)

Therefore, the only possibility for x� to solve vin
0 .r0I k; q/ � v

out
0 .r0I k; q/ D 0 is that

Cn C n
2 log

�
x�

2

�
� n�0;nqq

�1
D O.jlog qj�1/ , x� D 2e

�
Cn

n2
�
CO.jlogqj�1/

;

where we have used �0;nq D �
nq CO.q2/, or equivalently

x� D 2e
�
Cn

n2
�

.1CO.jlog qj�1//:

This last equality suggests that the parameter x� has to belong to Œ�0; �1� with, for in-
stance,

�0 D e
�
Cn

n2
�

; �1 D 3e

�
Cn

n2
�

: (4.27)

For any x� 2 Œ�0; �1�, we introduce now the (independent of �) function

�0.r I k; q/ D f
in
0 .r/ � f

out
0 .r I k; q/C gin

0 .r I k; q/ � g
out
0 .r I k; q/: (4.28)

Then a0, b0 satisfying (4.24) and (4.25) are given by�
a0
b0

�
D

1

d.r0/

0B@ I 0.r0
p
2/�0.r0I k; q/ �

1p
2
I.r0
p
2/�00.r0I k; q/

K 00.r0
p
2/�0.r0I k; q/ �

1
p
2
K0.r0

p
2/�00.r0I k; q/

1CA (4.29)

with d.r0/ D K0.r0
p
2/I 0.r0

p
2/ �K 00.r0

p
2/I.r0

p
2/.
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We first notice that by property (4.16) of the function I and using the asymptotic
expansion in Table 1 forK0.r/ andKn.r/ for r � 1, there exists a constant yM1 such that

0 <
1

d.r0/
D r0
p
2
�
1CO

� 1
r0

��
� r0
p
2C yM1: (4.30)

Now we estimate�0. We first note that, by estimate (4.3) of vout
0 , if q is small enough,

jvout
0 .r0I k; q/j �

yM2

�

r0
�
1

4

with a constant yM2 only depending on �0, �1. Then, by item (i) of Proposition 4.4 along
with definition (3.15) of f out

0 , we have that, for q small enough,

jf in
0 .r0/ � f

out
0 .r0I k; q/j

�

ˇ̌̌̌
1 �

n2

2r20
�

s
1 � .vout

0 .r0I k; q//
2 �

n2

r20

ˇ̌̌̌
C

ˇ̌̌
f in
0 .r0/ � 1C

n2

2r20

ˇ̌̌
� yM3jv

out
0 .r0; k/j

2
C
yM4

r40
� yM5

�2

r20
:

The constant yM5 only depends on �0, �1. Therefore, by bounds (4.9) and (4.18) in The-
orems (4.3) and (4.5),

j�0.r0I k; q/j � jf
in
0 .r0/ � f

out
0 .r0I k; q/j C jg

in
0 .r0I k; q/j C jg

out
0 .r0I k; q/j

� yM5

�2

r20
CM0q

2 jlog r0j2

r20
CM0

"1�˛

qr20
� yM6

�2

r20
; (4.31)

where we have used that

r�10 D "
1�˛
D e�

�
q D e

� 1

q2=3jlog.q/j1=3 D O.q`/; for any ` > 0:

Moreover, since, as established in Theorems 4.3 and 4.5, for 0 < q � q�0 .�0;�1/,M0 only
depends on �0, �1, again, the same happens to yM6. Analogously, one can check that if
0 < q � q�0 .�0; �1/, then

j@r�0.r0I k; q/j � yM7

�2

r20
: (4.32)

By using estimates (4.30), (4.31) and (4.32), estimates (4.16) of I and the fact that if
r � 1, one has jK0.r

p
2/j; jK 00.r

p
2/j � MKe

�r
p
2r�

1
2 , we have, as kD x�q�1e�

�
2nq

with x� 2 Œ�0; �1�, the solution .a0;b0/ of (4.29) has to satisfy, for q small enough,

ja0j � �2
1

r
3
2

0

er0
p
2.
p
2C yM1r

�1
0 /MI

h
yM6 C

1
p
2
yM7

i
;

jb0j � �2
1

r
3
2

0

e�r0
p
2.
p
2C yM1r

�1
0 /MK

h
yM6 C

1
p
2
yM7

i
:
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Taking q small enough, M1r
�1
0 �

p
2 and defining

yM D 2
p
2
h
yM6 C

1
p
2
yM7

i
max¹MI ;MKº;

we conclude that there exist q�1 D q
�
1 .�0; �1/ and yM.q�1 / such that for 0 < q < q�1 ,

ja0j � yM�2r
� 32
0 er0

p
2; jb0j � yM�2r

� 32
0 e�r0

p
2;

where � is given in (4.22). Then, defining ya0 and yb0 as

a0 D ya0r
� 32
0 er0

p
2; b0 D yb0�2r

� 32
0 e�r0

p
2;

we finish the proof.

Proposition 4.6 provides the values a0, b0, x�which we expect will be good candidates
of the approximated values for the solutions a, b, � of the matching equations (4.23).
In particular, we set the constants �0, �1 in (4.27).

Now we are going to set the constant �. We note that, since r0 D r1 D r2, the constants
a0, b0, provided by Proposition 4.6 satisfy conditions (4.6) and (4.14) in Theorems 4.3
and 4.5 for any � � .

p
2/
3
2 yM . Since a0, b0 have to belong to the set of parameters a, b

for which Theorems 4.3 and 4.5 hold true, and some room for our perturbative analysis is
needed, we may set � any value strictly bigger than .

p
2/
3
2 yM , for instance,

� D 2 yM: (4.33)

With this choice of �, the constants ya0, yb0 satisfy

jya0j �
�

2
�2 �

�

2
; jyb0j �

�

2
: (4.34)

4.5. Matching the outer and inner solutions: End of the proof of Theorem 2.5

The main goal of this section is to obtain the parameters a, b (in fact, ya, yb) and � which
solve the matching equations (4.23). Having solved these equations, which is the content
of next Theorem 4.7, we have a value of �, and therefore of k as defined in (3.22), for
which the original system (2.6) has a solution .f; v/ satisfying the required boundary
conditions (3.1). Once this result is proven, in order to prove Theorem 2.5 it will only
remain to check that f is a positive increasing function and that v < 0 (see Proposition 4.8
below).

We begin our construction by considering the families of solutions provided by Theor-
ems 4.3 and 4.5 for the constants �0, �1, �, fixed in the previous section (Section 4.4) and
any values a and b satisfying (4.6) and (4.14). Namely, we consider � 2 Œ�0; �1�, �, r0,
� and ˛ as given in (4.27), (4.33), (4.21), (4.22), and (4.19), respectively, and q 2 Œ0; q0�.
Along this section, we call q0 the minimum value provided by all the previous results,
that is, Propositions 4.2, 4.4, and 4.6 and Theorems 4.3, 4.5.

Next theorem gives the desired result.
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Theorem 4.7. Take �0 D e
�
Cn

n2
�
 , �1 D 3e

�
Cn

n2
�
 , where Cn and 
 are given in The-

orem 2.5 and � as given in (4.33). Then, there exists q� such that for q 2 Œ0; q�� equa-
tions (4.23) have a solution a.q/, b.q/, k.q/ satisfying (4.6) and (4.14) and k.q/ D
�e�

�
2nq with � 2 Œ�0; �1�.

In addition,

ja.q/j � ��2er0
p
2r
� 32
0 ; jb.q/j � ��2e�r0

p
2r
� 32
0 ;

and
� D �.q/ D 2e

�
Cn

n2
�

.1CO.jlog qj�1//:

Proof. We define, as in Theorems 4.3 and 4.5, the parameters

ya WD a e�r0
p
2r

3
2

0 ;
yb WD b er0

p
2r

3
2

0 �
�2; (4.35)

satisfying
jyaj; jybj � �:

We impose that vin.r0;bI k; q/ D vout.r0; aI k; q/ or equivalently

vin
0 .r0I k; q/ � v

out
0 .r0I k; q/ D w

out.r0; aI k; q/ � win.r0;bI k; q/: (4.36)

On the one hand, by the results involving wout, win in Theorems 4.3 and 4.5 we have

jwout.r0; aI k; q/ � win.r0;bI k; q/j � jwout.r0I k; q/j C jw
in.r0I k; q/j

�M
1

qr20
CMq3

jlog r0j3

r0

�M
1

qr20
CM

�3

r20

�M
1

qr20
:

On the other hand, by (4.26),

vin
0 .r0I k; q/ � v

out
0 .r0I k; q/ D

q

r0

�
Cn C n

2 log
��
2

�
� n�0;nqq

�1
COjlog qj�1

�
:

Therefore, since �0;nq D �
nq C O.q2/, vin.r0; bI k; q/ D vout.r0; aI k; q/ (or equival-
ently equality (4.36) holds true) if and only if

log
��
2

�
D �

Cn

n2
� 
 C C3.a;b; kI q/; jC3.a;b; kI q/j �M jlog qj�1;

where C3 contains the remaining terms of vin
0 � v

out
0 and wout � win.

We recall definition (4.35) of ya, yb and introduce the function

H3.ya; yb; �I q/ D 2e
�
Cn

n2
�
 �

eC3.yaer0
p
2r
� 3
2

0
;ybe�r0

p
2r
3
2
0
�2;�q�1e

� �
2nq Iq/

� 1
�
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which, from Theorems 4.3 and 4.5, is continuous with respect to ya, yb, �. It is clear that
equation (4.36) is satisfied if and only if

� D 2e
�
Cn

n2
�

CH3.ya; yb; �I q/; jH3.ya; yb; �I q/j �M �M jlog qj�1: (4.37)

We deal now with the (nonlinear) system,

f out.r0I k; q/ D f
in.r0I k; q/; @rf

out.r0I k; q/ D @rf
in.r0I k; q/;

which can be rewritten, using expressions for f out, f in in Theorems 4.3 and 4.5 as

K0.r0
p
2/a � I.r0

p
2/b D �.r0; a;bI k; q/ D �0.r0I k; q/C�1.r0; a;bI k; q/;

K 00.r0
p
2/a � I 0.r0

p
2/b D

1
p
2
@r�.r0; a;bI k; q/

D
1
p
2
.@r�0.r0I k; q/C @r�1.r0; a;bI k; q//

with �0 defined in (4.28) and

�1.r; a;bI k; q/ D gin
1 .r;bI k; q/ � g

out
1 .r; aI k; q/:

Therefore, a, b satisfy the fixed point equation�
a
b

�
D

�
C1.a;b; kI q/
C2.a;b; kI q/

�
(4.38)

WD
1

d.r0/

0BB@ I 0.r0
p
2/.�.r0; a;bI k; q// �

1
p
2
I.r0
p
2/@r�.r0; a;bI k; q/

�K 00.r0
p
2/�.r0; a;bI k; q/C

1
p
2
K0.r0

p
2/@r�.r0; a;bI k; q/

1CCA :
Using the estimates in Theorems 4.3 and 4.5 for gout

1 , gin
1 , we obtain

j�1.r0; a;bI k; q/j � jgin
1 .r0;bI k; q/j C jg

out
1 .r0; aI k; q/j �M

�4

r20
;

and jr20@r�1.r0; a;bI k; q/j �M�
4, for any a and b satisfying (4.6) and (4.14).

Recalling a0, b0 are defined in (4.29) and using the above bounds for �1 and @r�1
along with (4.16) and Table 1 for I and K0 and bound (4.30) for d.r0/, gives

jC1.a;b; kI q/ � a0j �Mer0
p
2�4r

� 32
0 ;

jC2.a;b; kI q/ � b0j �Me�r0
p
2�4r

� 32
0 :

(4.39)

Recalling the definition of ya, yb in (4.35), we introduce

H1.ya; yb; �I q/ D e�r0
p
2r

3
2

0 C1.yaer0
p
2r
� 32
0 ; yb�2e�r0

p
2r
� 32
0 ; �q�1e�

�
2nq I q/ � ya0;

H2.ya; yb; �I q/ D er0
p
2r

3
2

0 �
�2C2.yaer0

p
2r
� 32
0 ; yb�2e�r0

p
2r
� 32
0 ; �q�1e�

�
2nq I q/ � yb0;
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and the fixed point equation (4.38) becomes 
ya
yb

!
D

 
ya0 CH1.ya; yb; �I q/
yb0 CH2.ya; yb; �I q/

!
: (4.40)

We note that, by Theorems 4.3 and 4.5, H1;2 are continuous functions with respect to ya,
yb, �. Using bound (4.39) of C1, C2

jH1.ya; yb; �I q/j �M�4; jH2.ya; yb; �I q/j �M�4: (4.41)

From (4.40) and (4.37), we have that the constants ya, yb and �must to satisfy the fixed
point equation

.ya; yb; �/ D H.ya; yb; �I q/ WD .ya0; yb0; 2e
�Cn

n2
�

/CH .ya; yb; �I q/ (4.42)

with H D .H1;H2;H3/. We recall that as defined in (4.22), �3 D qjlog qj�1 and the
constants �0, �1 and � were fixed at (4.27) and (4.33), respectively. The function H

satisfies, for jyaj; jybj � � and � 2 Œ�0; �1�,

kH .ya; yb; �I q/k � max¹M�qjlog qj�1;M jlog qj�1º DM jlog qj�1:

As a consequence, since ya0 and yb0 satisfy (4.34), for jyaj; jybj � � and � 2 Œ�0; �1�,

jH1;2.ya; yb; �I q/j �
�

2
CM jlog qj�1 � �;

and, taking �0, �1 as defined in (4.27), one finds

H3.ya; yb; �I q/ D 2e
�Cn

n2
�

CO.jlog qj�1/ 2 Œ�0; �1�:

Therefore, there exists q� small enough such that, if q 2 .0; q��, the map H sends the
closed set

B D ¹.ya; yb; �/ 2 R3 W jyaj; jybj � �; � 2 Œ�0; �1�º

into itself and is continuous with respect to ya, yb, �. Therefore, the Brouwer’s fixed point
theorem provides the existence of the parameters .ya; yb; �/ D .ya.q/; yb.q/; �.q//, defined
for any q 2 Œ0; q��, satisfying the fixed point equation (4.42) and

jyaj � �; jybj � �; � 2 Œ�0; �1�:

In addition, for this solution, using the bounds in (4.41) and (4.34), we have, for q small
enough,

jyaj � jya0j C jH1.ya; yb; �; q/j �
�

2
�2 CM�4jlog qj � ��2;

and from (4.37),

j� � 2e
�
Cn

n2
�

j �M jlog qj�1:

Going back to the original constants a and b using (4.35) completes the proof.
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By Theorem 4.7, we can define the solutions of (2.6) satisfying the boundary condi-
tions (3.1) as in (3.4):

.f .r I q/; v.r I q//

WD

´
.f in.r;b.q/I k.q/; q/; vin.r;b.q/I k.q/; q//; r 2 Œ0; r0�;

.f out.r; a.q/I k.q/; q/; vout.r; a.q/I k.q/; q//; r � r0:
(4.43)

Therefore, in order to prove Theorem 2.5 it only remains to check the additional properties
on the solution .f; v/.

Proposition 4.8. Let .f .r I q/; v.r I q// be the solution of (2.6) defined by (4.43). There
exists q� such that, for q 2 Œ0; q�� and r > 0, f .r I q/ is an increasing function,

0 < f .r I q/ <
p
1 � k2.q/; v.r I q/ < 0:

Proof. We first prove that f .r Iq/ > 0 for r > 0. We start with the outer region. In item (iv)
of Proposition 4.2, we proved that f out

0 .r I k.q/; q/ � 1
2

for r � r0 D 1p
2
e
�
q . Therefore,

by Theorem 4.3, when r � r0,

f .r I q/ � f out
0 .r I k.q/; q/ � jgout.r; a.q/I k.q/; q/j �

1

2
�Mr�2

�
1

2
�Mr�20 > 0: (4.44)

In the inner region, using item (i) of Proposition 4.4 and Theorem 4.5 we deduce that
there exists % small enough but independent of q such that if r 2 Œ0; %�,

f .r I q/ D f in
0 .r/C g

in.r;b.q/I k.q/; q/ D cf rn C o.rn/C q2O.rn/ > 0

since the constant cf is positive. Then, since f in
0 is positive, increasing and independent

of q, again using Theorem 4.5, for % � r � r0,

f .r I q/ � f in
0 .%/ � jg

in.r;b.q/I k.q/; q/j � f in
0 .%/CO.q2/ > 0;

if q is small enough. This finishes the proof of f being positive.
Now we check that f .r Iq/ <

p
1 � k2.q/. We first note that Theorem 4.7 can be used

to bound a.q/. Therefore, by (4.8), (4.9) and (4.10) in Theorem 4.3 we have g.r I q/ WD
f .r I q/ � f out

0 .r; a.q/I k.q/; q/ satisfies, for r � r0,

jr2g.r I q/j � jr2a.q/K0.r/j CM"1�˛q�1 � �2�e�
p
2.r�r0/r

3
2 r
� 32
0 CM"1�˛q�1

�M�2;

where we have used that, from definition (4.22) of �, "1�˛q�1 D q�1
p
2e�

�
q � �2 and

the asymptotic expansion when r � 1 in Table 1 for the Bessel function K0. Therefore,

f .r Iq/�

r
1 � .vout

0 .r I k.q/; q//
2 �

n2

r2
CM�2

1

r2
�

q
1 � .vout

0 .r I k.q/; q//
2 �M

1

r2
;
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where we have used vout
0 .r Ik.q/; q/�Mr�10 DM"1�˛� 1 and �� 1. Then, f .r Iq/�p

1 � .vout
0 .r I k.q/; q//

2 and as a consequence, since vout
0 ! �k.q/ as r !1 and it is

increasing and negative (see item (iii) in Proposition 4.2), we have

f .r I q/ �
p
1 � k2.q/; r � r0:

With respect to the inner region, namely r 2 Œ0; r0�, using Proposition 4.4 there exists
%� 1 independent on q such that for all % � r � r0, .f in

0 /
2.r/ � 1 � n2

2r2
. Then, since

by Theorem 4.5, jgin.r;bI k; q/j �Mq2jlog r j2r�2 for % � r � r0 we have

f 2.r I q/ � 1 �
n2

2r2
CM�2

1

r2
� 1 �

1

2r20
.n2 �M�2/ � 1 �M"2.1�˛/;

where we have used again definition (4.22) of � and that r0 D "˛�1 D 1p
2
e
�
q (see (4.21)).

Then, using definition (4.22) of �, we conclude that 1 �M"2.1�˛/ � 1 � k2.q/, taking
if necessary q small enough. As a consequence, f .r I q/ �

p
1 � k2.q/ if % � r � r0.

It remains to check the property when r 2 Œ0; %�. From the fact that f in
0 .r/ is an increasing

function and using Theorem 4.5,

f .r I q/ D f in
0 .r/C g

in.r Ib.q/I k.q/; q/ � f in
0 .%/CMq2 <

p
1 � k2.q/;

provided f in
0 .%/ < 1, % is independent on q, and q is small enough.

The negativeness of v.r I q/ < 0 for r > 0 is straightforward from the previous prop-
erty, f .r I q/ <

p
1 � k2.q/. Indeed, using that v.0I q/ D 0, from the differential equa-

tions (2.6), we have

v.r I q/ D �q
1

rf 2.r I q/

Z r

0

�f 2.�I q/.1 � f 2.�I q/ � k2.q// d� < 0:

To finish, we prove that @rf .r I q/ > 0. We start with the inner region. From Proposi-
tion 4.4, there exist 0 < %0 � %1 satisfying

@rf
in
0 .r/ �

n

2
cf r

n�1 if r 2 Œ0; %0� and @rf
in
0 .r/ �

n2

2r3
if r 2 Œ%1; r0�:

Let x% 2 Œ%0; %1� be such that @rf in
0 .r/ � @rf

in
0 .x%/ > 0 for all r 2 Œ%0; %1�. Notice that the

values of %0, %1 and x% are independent on q. Therefore, using Theorem 4.5, if r 2 Œ0; %0�,

@rf .r I q/ D @rf
in
0 .r/C @rg

in.r;b.q/I k.q/; q/ �
n

2
cf r

n�1
�Mq2rn�1 > 0:

When r 2 Œ%0; %1�,

@rf .r I q/ D @rf
in
0 .r/C @rg

in.r;b.q/I k.q/; q/ � @rf in
0 .x%/ �Mq2 > 0;

taking, if necessary, q small enough. When r � %1, Theorem 4.5 says

@rf .r I q/ �
n2

2r3
�Mq2

jlog r j2

r2
;
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that is positive if %1 � r � q�2jlog qj�3, if q small enough. In conclusion,

@rf .r I q/ > 0; 0 � r �
1

q2jlog qj3
:

To see that @rf .r I q/ > 0 for bigger values of r , we first need to check

f .r I q/ �
1
p
3
; r �

1

q2jlog qj3
: (4.45)

Indeed, if q�2jlog qj�3 � r � r0, that is, when r belongs to the inner region, from The-
orem 4.5

f .r I q/ � f in
0 .r/ � jg

in.r Ib.q/I k.q/; q/j � 1 �
n2

2r2
CO.r�4/ �Mq2

jlog r j2

r2

� 1 �O.q2jlog qj3/ �
1
p
3
:

When r � r0 (that is, in the outer region), by (4.44), f .r I q/ � 1
3

and (4.45) is proven.
We finish the argument by proving that f is an increasing function for r > 0, by con-

tradiction. Since we have proved that @rf .r I q/ > 0 for r > q�2jlog qj�3 and f 2.r I q/ �
1 � k2.q/ D limr!1 f

2.r I q/, if f has an extreme at r�, it has to have a maximum at
some point less than r�. Let r� � q�2jlog qj�3 be the minimum value such that f .r I q/
has a maximum at r D r�. That is, @rf .r�; q/D 0 and @2rf .r�Iq/� 0. Therefore, since f
is a solution of (2.6), we deduce

f .r�I q/
h
�
n2

r2�
C .1 � f 2.r�I q/ � v

2.r�I q//
i
� 0: (4.46)

Now we use the following comparison result (see [28]).

Lemma 4.9 ([28]). Let .a; b/ be an interval in R, let � D R2 � .a; b/, and let H 2

C1.�;R/. Suppose h 2 C2..a; b// satisfies h00.r/CH .h0.r/; h.r/; r/ D 0. If @hH � 0

on � and if there exist functions M;m 2 C2..a; b// satisfying

M 00.r/CH .M 0.r/;M.r/; r/ � 0 and m00.r/CH .m0.r/;m.r/; r/ � 0;

as well as the boundary conditionsm.a/ � h.a/ �M.a/ andm.b/ � h.b/ �M.b/, then
for all r 2 .a; b/ we have m.r/ � h.r/ �M.r/.

We set .a; b/ D .r�;1/ and define

H .h0; h; r/ D
h0

r
� h

n2

r2
C h.1 � h2 � v2.r I q//; h �

1
p
3
;

with v.r I q/ the solution we have already found, and

H .h0; h; r/ D
h0

r
� h

n2

r2
� hv2.r I q/C

2

3
p
3
; h �

1
p
3
:
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We have H 2 C1.�;R/ and @hH � 0. According to (4.45), for r � r� � q�2jlog qj�3,
f .r I q/ � 1p

3
so that f .r Iq/ is a solution of h00 CH .h0.r/; h.r/; r/D 0. Takingm.r/D

f .r�I q/, we have

lim
r!1

m.r/ D f .r�I q/ � lim
r!1

f .r I q/ D
p

1 � k2

and

m00 CH .m0.r/;m.r/; r/ D �f .r�I q/
n2

r2
C f .r�I q/.1 � f

2.r�I q/ � v
2.r�I q//

� �f .r�I q/
n2

r2�
C f .r�I q/.1 � f

2.r�I q/ � v
2.r�I q// � 0;

where we have used the bound in (4.46) for the last inequality. Then Lemma 4.9 concludes
that f .r�I q/ D m.r/ � f .r I q/ for r � r�. Therefore, r� is not a maximum and we have
a contradiction.

The rest of the work is devoted to proving the results about the existence of families
of solutions in the outer and inner regions. From now on, to avoid cumbersome notation,
we will skip the dependence on the parameters k, q.

5. Existence result in the outer region. Proof of Theorem 4.3

In this section, we prove Theorem 4.3. To do so, by means of a fixed point equation
setting, we look for solutions of equations (3.9) which are written in the outer variables
introduced in Section 3.1 (see (3.7)). Namely, we look for solutions of equations (3.9) with
boundary conditions (3.10) of the form F0 C G, V0 CW with F0, V0 defined in (3.12)
and (3.14), respectively, that is, taking " D kq,

V0.R/ D
K 0inq.R/

Kinq.R/
; F0.R/ D

r
1 � k2V 20 .R/ �

"2n2

R2
: (5.1)

We first introduce the Banach spaces we will work with. For any given Rmin > 0, we
introduce the Banach spaces:

X` D ¹f W ŒRmin;1/! R continuous; kf k` WD sup
R2ŒRmin;1/

jR`f .R/j <1º; (5.2)

being X0 the Banach space of continuous bounded functions with the supremum norm.
Notice that X` D X`.Rmin/ depends on Rmin and so the norm of a function in the

space X` also depends on Rmin. However, if Rmin � R
0
min, X`.Rmin/ � X`.R

0
min/ and

sup
R2ŒRmin;1/

jR`f .R/j � sup
R2ŒR0min;1/

jR`f .R/j:

This fact allows us to take R0min � Rmin, if we are working in X`.Rmin/. We will use this
property along the work without any special mention.
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5.1. The fixed point equation

Our goal in this subsection is to transform equations (3.9a), (3.9b) into a fixed point
equation in suitable Banach spaces. For that, the first step is to write such equations in
a suitable way.

Let F D F0 CG and V D V0 CW . The term F.1� F 2 � k2V 2/ in equation (3.9a)
is the following:

F.1 � F 2 � k2V 2/ D �2F 20G � 3F0G
2
�G3

�W k2Œ2V0F0 C F0W C 2V0G CWG�C .F0 CG/
n2"2

R2
:

Therefore, equation (3.9a) becomes

"2
�
G00 C

G0

R

�
� 2F 20 .R/G D �"

2
�
F 000 .R/C

F 00.R/

R

�
C 3F0.R/G

2
CG3

CW k2Œ2V0.R/F0.R/C F0.R/W C 2V0.R/G CWG�:

In view of (4.2), which in outer variables reads as

F0.R/ D
p

1 � k2
�
1 �

k2

2R.1 � k2/
CO

� k2
R2

��
;

we introduce
F 20 .R/ D 1C

1

2
yF0.R/: (5.3)

Therefore, we may write the above equation for G as

G00 C
G0

R
�G

2

"2
D �"�2N1ŒG;W � (5.4)

with

N1ŒG;W �.R/ D "
2
�
F 000 .R/C

F 00.R/

R

�
� yF0.R/G � 3F0.R/G

2
�G3

�W k2.2V0.R/F0.R/C F0.R/W C 2V0.R/G CWG/: (5.5)

Now we compute the equation for W from (3.9b). We have

W 0 C
W

R
C 2V0.R/W CW

2
C V 00.R/C

V0.R/

R
C V 20 .R/ � 1C

n2

R2
q2

D
q2

F0.R/CG

�
F 000 .R/C

F 00.R/

R
CG00 C

G0

R

�
� 2.V0.R/CW /

F 00.R/CG
0

F0.R/CG
:

We recall that V0 is a solution of (3.13). Then

W 0 C
W

R
C 2V0W D �N2.G;W /.R/ (5.6)
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with

N2ŒG;W �.R/ D W
2
�

q2

F0.R/CG

�
F 000 .R/C

F 00.R/

R
CG00 C

G0.R/

R

�
C 2.V0.R/CW /

F 00.R/CG
0

F0.R/CG
: (5.7)

We define the linear operators

L1ŒG�.R/ D G
00
C
G0

R
�G

2

"2
; L2ŒW �.R/ D W

0
C
W

R
C 2V0.R/W;

and rewrite equations (5.4) and (5.6) as

L1ŒG� D �"
�2N1ŒG;W �; L2ŒW � D �N2ŒG;W �: (5.8)

The strategy to prove the existence of solutions of (5.8) is to write them as fixed point
equation and to prove that the fixed point theorem can be applied in suitable Banach
spaces. For this, first, we need to compute a right inverse of L1, L2.

We start with L1. Assume we have

L1ŒG�.R/ D �h.R/; (5.9)

where h satisfies some conditions that we will specify later. We are interested in solutions
of this equation such that limR!1G.R/ D 0.

Just for doing computations, we perform the scaling

s D
R

"

p
2; g.s/ D G

� s"
p
2

�
;

and (5.9) is transformed into

g00 C
g0

s
� g D �

"2

2
h
� s"
p
2

�
: (5.10)

The homogeneous linear system associated with equation (5.10) has a fundamental matrix�
K0.s/ I0.s/

K 00.s/ I 00.s/

�
;

where K0, I0 are the modified Bessel functions [1] of the second and first kind. The
Wronskian is given byW.K0.s/; I0.s//D s�1 so that the solutions of (5.10) are given by

g.s/ D K0.s/

�
aC

"2

2

Z s

s0

�I0.�/h
� �"
p
2

�
d�
�
C I0.s/

�
b �

"2

2

Z s

s0

�K0.�/h
� �"
p
2

�
d�
�
:

It is well known that K0.s/! 0 and I0.s/!1 as s !1 (see Table 1). Then, in order
to have solutions bounded as s !1, we have to impose

b �
"2

2

Z 1
s0

�K0.�/h
� �"
p
2

�
d� D 0:
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Therefore,

g.s/ D K0.s/

�
aC

"2

2

Z s

s0

�I0.�/h
� �"
p
2

�
d�
�
C
"2

2
I0.s/

Z 1
s

�K0.�/h
� �"
p
2

�
d�;

and, proceeding in the same way,

g0.s/ D K 00.s/

�
aC

"2

2

Z s

s0

�I0.�/h
� �"
p
2

�
d�
�
C
"2

2
I 00.s/

Z 1
s

�K0.�/h
� �"
p
2

�
d�:

Now we undo the change of variables, that is, R D s"p
2

and G.R/ D g.R
p
2

"
/. We obtain

the solution of (5.9)

G.R/ D K0

�Rp2
"

��
aC

Z R

Rmin

�I0

��p2
"

�
h.�/ d�

�
C I0

�Rp2
"

� Z 1
R

�K0

��p2
"

�
h.�/ d�

with Rmin D
s0"p
2

to be determined later.
We introduce the linear operator

�1Œh�.R/ D K0

�Rp2
"

� Z R

Rmin

�I0

��p2
"

�
h.�/ d�

C I0

�Rp2
"

� Z 1
R

�K0

��p2
"

�
h.�/ d�: (5.11)

We have proven the following lemma.

Lemma 5.1. For any a 2 R, we define

G0.R/ D K0

�Rp2
"

�
a: (5.12)

Then, if G is a solution of (5.4) satisfying G.R/! 0 as R!1, then there exists a con-
stant a such that

G D G0 C �1Œ"
�2N �1ŒG;W ��:

Now we compute the right inverse of L2. We consider the linear equation

L2ŒW � D W
0
CW

� 1
R
C 2V0

�
D h: (5.13)

Since V0.R/ D K 0inq.R/Kinq.R/, the solutions are given by

W.R/ D
1

RK2inq.R/

�
c0 C

Z R

R0

�K2inq.�/h.�/ d�
�

for any constant c0. In order for W to be bounded as R!1, it is required that

c0 C

Z 1
R0

�K2inq.�/h.�/ d� D 0:
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Therefore,

W.R/ D
1

RK2inq.R/

Z R

1

�K2inq.�/h.�/ d�:

As a result, we have the following lemma.

Lemma 5.2. Any solution of (5.13) bounded as R!1 is of the form W D �2Œh� with

�2Œh� D
1

RK2inq.R/

Z R

1

�K2inq.�/h.�/ d�: (5.14)

From Lemmas 5.1 and 5.2, we can rewrite (5.8) as a fixed point equation .G;W / D
F ŒG;W � defined by

G D F1ŒG;W � WD G0 C �1Œ"
�2N1ŒG;W ��;

W D F2ŒG;W � WD ��2ŒN2ŒG;W ��;

where G0 linearly depends on a constant a (see (5.12)). Notice that the nonlinear oper-
ator N2 defined in (5.7) involves the derivatives G0, G00. In order to avoid working with
norms involving derivatives, we will take advantage of the differential properties of F1,
and using that G D F1ŒG;W � we rewrite the fixed point equation as

G D F1ŒG;W � WD G0 C �1Œ"
�2N1ŒG;W ��;

W D F2ŒG;W � WD ��2ŒN2ŒF1ŒG;W �;W ��;
(5.15)

where �1 is defined in (5.11), �2 in (5.14), N1 in (5.5) and N2 in (5.7).
In Section 5.2, we study the linear operators �1 and �2 (see (5.11) and (5.14)) and

prove that they are bounded operators in X` for ` � 0.
Our goal is now to prove the following result which is a reformulation of Theorem 4.3.

Theorem 5.3. Let � > 0, 0 < �0 < �1 and take " D �e�
�
2nq with �0 � � � �1. There

exist

q0 D q0.�0; �1; �/ > 0; e0 D e0.�0; �1; �/ > 0 and M DM.�0; �1; �/ > 0

such that, for any q 2 Œ0; q0�, ˛ 2 .0; 1/ satisfying

q�1"1�˛ < e0;

and for any constant a satisfying

a D "
3
2 ."˛/�

3
2 e

p
2

"1�˛ ya; jyaj � �; (5.16)

there exists a family of solutions .G.R; a/; W.R; a// of the fixed point equation (5.15)
defined for R � R�min D "

˛ which satisfy

kGk2 C "kG
0
k2 C "kW k2 �M"2:
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Moreover, G.R;a/D G0.R/CG1.R;a/ andW.R;a/DW 0.R;a/CW 1.R;a/ are
continuous with respect to �, ya and they satisfy the following properties:

(i) there exist q�0 D q
�
0 .�0; �1/ > 0 and M0 DM0.�0; �1/ such that, for q 2 Œ0; q�0 �,

kG0k2 C "k.G
0/0k2 �M0"

3�˛q�1;

(ii) for q 2 Œ0; q0�, we can decompose G1.R; a/ D K0.R
p
2

"
/aC yG1.R; a/ with

k yG1k2 C "k. yG
1/0k2 �M

"1�˛

q




K0�Rp2
"

�



2
jaj �M1"

2;

(iii) and for q 2 Œ0; q0�,

"kW 0
k2 �M




K0�Rp2
"

�



2
jaj �M1"

2; "kW 1
k2 �M1

"3�˛

q
;

where M1 DM1.�0; �1; �/ depends on �0, �1, and �.

The rest of this section is devoted to proving this theorem. In Section 5.2, we prove
that the linear operators �1 and �2, defined in (5.11) and (5.14), are bounded in X`,
` � 0. In Section 5.3, we study F Œ0; 0� and in Section 5.4, we check that the operator F

is Lipschitz in a suitable ball. Finally, in order to find the suitable decomposition of G,
we refine the previous results in Section 5.5.

It is worth mentioning that the more technical part in this procedure comes from the
study of the function V0 (and Kinq) done in Proposition 4.2.

From now on, we fix �, �0, �1, we will take ", q as small as needed, and a satisfy-
ing (5.16). We also will denote by M any constant independent of ", q.

5.2. The linear operators

We prove that �1, �2 are bounded operators in the Banach spaces X` defined in (5.2)
along with important properties of such operators.

5.2.1. The operator �1. In this subsection, we prove that �1WX` ! X` is a bounded
operator. In addition we also provide bounds for .�1Œh�/0; .�1Œh�/00.

Lemma 5.4. Take Rmin �
"z0p
2

with z0 given in Table 1 corresponding to K0, I0, and
` � 0. Then, if " is small enough, the linear operator �1WX` ! X` defined in (5.11) is
a bounded operator. Moreover, there exists a constant M > 0 such that for h 2 X`,

k�1Œh�k` �M"2khk`:

Proof. Since Rmin is such that Rmin
p
2

"
> z0, by the asymptotic expansion in Table 1, for

any R � Rmin,

K0

�Rp2
"

�
D

r
�"

2
p
2R
e�

R
p
2

"

�
1CO

� "
R

��
; (5.17)
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and

I0

�Rp2
"

�
D

r
"

2
p
2R�

e
R
p
2

"

�
1CO

� "
R

��
:

Let now h 2 X`, that is, jh.�/j � ��`khk`. Then

jR`�1Œh�.R/j

� CR`�
1
2

� "
p
2

�
khk`

�
e�

R
p
2

"

Z R

Rmin

e
�
p
2
"

�`�
1
2

d� C e
R
p
2

"

Z 1
R

e
��
p
2

"

�`�
1
2

d�
�

� C
�Rp2

"

�`� 12 � "
p
2

�2
khk`

�
e�

R
p
2

"

Z R
p
2

"

z0

et

t`�
1
2

dt C e
R
p
2

"

Z 1
R
p
2

"

e�t

t`�
1
2

dt
�

D C
� "
p
2

�2
khk`M

�Rp2
"

�
;

for some constant C , where

M.z/ D z`�
1
2

�
e�z

Z z

z0

et

t`�
1
2

dt C ez
Z 1
z

e�t

t`�
1
2

dt
�

and one can easily see that limz!1M.z/ D 1. Therefore, there exists a constant M > 0

such that jM.z/j �M for z � z0 and consequently,

jR`�1Œh�.R/j � CM"2khk`:

Corollary 5.5. Let Rmin�
1p
2
"z0 and ` � 0. Then for " small enough and h 2 X`,

the function �1Œh� belongs to C2.ŒRmin;1//. In addition, there exists a constant M > 0

such that
k.�1Œh�/

0
k` �M"khk`; k.�1Œh�/

00
k` �Mkhk`:

Proof. Let ' D �1.h/. We have

'0.R/ D

p
2

"

�
K 00

�Rp2
"

� Z R

Rmin

�I0

��p2
"

�
h.�/ d�

C I 00

�Rp2
"

� Z 1
R

�K0

��p2
"

�
h.�/ d�

�
which implies that ' is differentiable if h is continuous (by definition). Moreover, since
K 00.z/, I

0
0.z/ have the same asymptotic expansions as K0, I0 (in Table 1) performing the

same computations as in the proof of Lemma 5.4, we obtain the result for '0.
We note that '0 is differentiable if h is continuous (again simply by definition). Then '

is C2. Moreover,

'00 C
'0

R
� 2

'

"2
D �h;

and therefore
jR`'00.R/j �Mkhk`

�
3C

"

R

�
�Mkhk`:
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5.2.2. The operator �2. Let us first provide a technical lemma.

Lemma 5.6. There exists q0 > 0, such that for any 0 < q < q0, if R � 2e2e�
�
2qn ,

1

K2inq.R/

Z 1
R

K2inq.�/ d� �
1

2
:

Proof. The proof is straightforward from item (iii) of Proposition 4.2. Indeed, we first
recall that V0.R/ D vout

0 .
R
"
/ and hence V0.R/ < �1. Then, we consider the function

 .R/ D
R1
R
K2inq.�/ d� � 1

2
K2inq.R/ and point out that we just need to prove  .R/ � 0

if R � 2e2e�
�
2nq . We have

 0.R/ D �K2inq.R/ �Kinq.R/K
0
inq.R/ D �K

2
inq.R/

h
1C

K 0inq.R/

Kinq.R/

i
D �K2inq.R/Œ1C V0.R/�:

Therefore, since V0.R/ < �1 for R � 2e2e�
�
2nq , then  0.R/ > 0 and using that  .R/ �

limR!1  .R/ D 0 the result is proven.

The following lemma, provides bounds for the norm of the linear operator �2, defined
in (5.14).

Lemma 5.7. There exists q0 > 0 such that for any 0 < q < q0, taking Rmin � 2e
2e�

�
2qn ,

the operator �2WX`!X`, defined in (5.14), is bounded for all `� 1. Moreover, if h2X`,
` D 1; 2,

k�2Œh�k` �
1

2
khk`:

In addition, when h 2 X3,
k�2Œh�k2 � khk3: (5.18)

Proof. Let ` � 1 and h 2 X`. Then, by Lemma 5.6

jR`�2Œh�.R/j �
R`�1khk`

K2inq.R/

Z 1
R

K2inq.�/

�`�1
d� �

khk`

K2inq.R/

Z 1
R

K2inq.�/ d� �
1

2
khk`:

When h 2 X3, then since Kinq > 0 and decreasing,

jR2�2Œh�.R/j �
Rkhk3

K2inq.R/

Z 1
R

K2inq.�/

�2
d� � khk3R

Z 1
R

1

�2
d� � khk3:

Because in the definition of the operator N2 (see (5.7)), there are some derivatives
involved, we need a more accurate control on how the operator �2 acts on a special
type of functions. In particular, we shall need to control �2ŒhV0�, where we recall that
V0 D K

0
inq.R/.Kinq.R//

�1. For this reason, we study first the auxiliary linear operator
defined by

AŒh�.R/ D �2ŒhV0�.R/ D
1

RK2inq.R/

Z R

1

�h.�/K 0inq.�/Kinq.�/ d�: (5.19)
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Lemma 5.8. With the same hypotheses as in Lemma 5.7, for any h 2 X`,

kAŒh�k` �
1

2
khk`:

Proof. Let h 2 X`. Then

jR`AŒh�.R/j �
R`�1khk`

K2inq.R/

Z 1
R

.�K 0inq.�/Kinq.�//
1

�`�1
d�

�
khk`

K2inq.R/

Z 1
R

.�K 0inq.�/Kinq.�// d� D
1

2
khk`:

Lemma 5.9. Let h1, h2 be bounded differentiable functions. Then

�2Œh1h
0
2�.R/ D h1.R/h2.R/ � �2Œh

0
1h2� � �2Œyh�.R/ � 2AŒh1h2�.R/;

where yh.R/ D h1.R/h2.R/R�1. If .� yh1/0 D � yh2 and h is a differentiable bounded func-
tion, then

�2Œyh2h�.R/ D yh1.R/h.R/ � �2Œh
0yh1�.R/ � 2AŒyh1h�.R/:

Proof. We prove both properties by integrating by parts. Indeed, since h1, h2 are bounded
functionsZ R

1

�h1.�/h
0
2.�/K

2
inq.�/ d�

D Rh1.R/h2.R/K
2
inq.R/ �

Z R

1

h2.�/
�
h1.�/K

2
inq.�/C �h

0
1.�/K

2
inq.�/

C 2�h1.�/K
0
inq.�/Kinq.�/ d�

�
:

Therefore,

�2Œh1h
0
2�.R/ D

1

RK2inq.R/

Z R

1

�h1.�/h
0
2.�/K

2
inq.�/ d�

satisfies the statement.
With respect to the second equality, again by doing an integration by parts,

�2Œyh2h�.R/

D
1

RK2inq.R/

Z R

1

.� yh1.�//
0h.�/K2inq.�/ d�

D yh1.R/h.R/ �
1

RK2inq.R/

Z R

1

� yh1.�/Œh
0.�/K2inq.�/C2h.�/K

0
inq.�/Kinq.�/� d�:

5.3. The independent term

We study now the independent term of the fixed point equation (5.15), that is, F Œ0; 0� D

.F1Œ0; 0�;F2Œ0; 0�/. We recall that

F1Œ0; 0� D G0 C �1Œ"
�2N1Œ0; 0��; F2Œ0; 0� D ��2ŒN2ŒF1Œ0; 0�; 0�� (5.20)

and N1, N2, G0, �1, �2 are defined in (5.5) and (5.7), (5.12), (5.11), (5.14), respectively.
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Before starting with the study of F Œ0; 0� in (5.20), we state a straightforward corollary
of items (iii) and (iv) of Proposition 4.2 about the behaviour of F0, V0 (see (5.1)).

Corollary 5.10. Let Rmin D "
˛ with ˛ 2 .0; 1/. Then there exist q0 > 0 and a constant

M > 0 such that for any 0 < q < q0 and R 2 ŒRmin;C1/, V 00.R/ > 0, V0.R/ < �1,

jkV0.R/j; jkV
0
0.R/Rj; jkV

00.R/R2j �M"1�˛

with k D "q�1, and

jR.V0.R/C 1/j; jR
2V 00.R/j; jR

3V 000 .R/j �M:

With respect to F0, we have F0.R/ � 1
2

, F 00.R/ > 0 and

jF 00.R/R
2
j; jF 000 .R/R

3
j � Ck"1�˛; j1� F0.R/j; jF

0
0.R/Rj; jF

00
0 .R/R

2
j � C"2.1�˛/:

From now on, we then take Rmin D "
˛ with 0 < ˛ < 1 satisfying "1�˛

q
small enough.

These conditions will ensure that "
Rmin
� 1. The following proposition provides the size

of F Œ0; 0� in (5.20).

Lemma 5.11. Let 0<�0 <�1 and take "D�e�
�
2nq with�0 ����1. There exist q�0 D

q�0 .�0; �1/ > 0, M D M.�0; �1/ > 0 such that, for any q 2 Œ0; q�0 � and ˛ 2 .0; 1/ sat-
isfying "1�˛

q
< 1, Rmin D "

˛ , given � > 0 and a satisfying (5.16) in the definition of G0

provided in (5.12), we have

(1) Let G0 D F1Œ0; 0�. Then the following bound holds:

kG0k2 C "kG
0
0k2 C "

2
kG000k2 � kG0k2 CM"4�2˛ �M.1C �/"2: (5.21)

As a consequence, there exists q�1 .�0; �1; �/ � q
�
0 .�0; �1/ such that if q 2 Œ0; q�1 �,

then F0.R/CG0.R/ � 1
4

.

(2) Let W0 D F2Œ0; 0�. Then there exists q�2 .�0; �1; �/ � q
�
1 .�0; �1; �/ such that for

q 2 Œ0; q�2 �,
kW0k2 �M"2�˛q�1 CM�" �M.1C �/":

Remark 5.12. SinceM DM.�0;�1/ does not depend on �, we have that q�1 .�0;�1; 0/,
q�2 .�0; �1; 0/ > 0. In other words, Lemma 5.11 can be also applied for � D 0.

We divide the proof of this lemma into two parts, the first one, in Section 5.3.1, corres-
ponds to the bound for G0 and the second one, in Section 5.3.2 corresponds to the bound
for W0.

5.3.1. A bound for the norm ofG0 and its derivatives. Recall thatG0 D F1Œ0; 0� as given
in (5.20). We start bounding kG0k2, kG00k2, kG000k2 with G0 given in (5.12). By (5.17),
it is clear that, for R � Rmin D "

˛ ,

jR2G0.R/j D
ˇ̌̌
R2K0

�Rp2
"

�
a
ˇ̌̌
�M jaj

p
"R

3
2

mine
�
Rmin
p
2

" �M jaj
p
"."˛/

3
2 e
�

p
2

"1�˛ ;
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if 0 < q < q�0 , for q�0 D q�0 .�0; �1/. Here we have used that "1�˛ � Mq. Therefore,
using that a satisfies (5.16), we conclude that kG0k2 �M�"2. In addition, it is clear that
"kG00k2 C "

2kG000k2 �MkG0k2 �M�"2, and thus

kG0k2 C "kG00k2 C "
2
kG000k2 �M�"2: (5.22)

To deal with �1Œ"
�2N1Œ0; 0�� (see (5.5)), we first bound

F0.R/ D N1Œ0; 0�.R/ D "
2
�
F 000 .R/C

F 00.R/

R

�
:

By Corollary 5.10,
jR2"�2F0.R/j �M"2.1�˛/;

and applying Lemma 5.4, we obtain k�1."�2F0.R//k2 � C"4�2˛ , which gives

kG0k2 � kG0k2 CM"4�2˛ �M.�"2 C "4�2˛/ �M.1C �/"2:

Using Corollary 5.5, we obtain the bounds for the derivatives,

"kG00k2 C "
2
kG000k2 �M.�"

2
C "4�2˛/ �M.1C �/"2; (5.23)

and (5.21) is proved.
To finish, we notice that by Corollary 5.10, there exists q�1 .�0; �1; �/ such that if

q 2 Œ0; q�1 �,

F0.R/CG0.R/ �
1

2
�M.1C �/

"2

R2
�
1

2
�M.1C �/"2.1�˛/ �

1

4
: (5.24)

5.3.2. A bound for kW0k2. We recall that W0 D �2ŒN2ŒF1Œ0; 0�; 0�� D �2ŒN2ŒG0; 0��,
where N2 is defined in (5.7), namely

N2ŒG0; 0� D 2V0
F 00 CG

0
0

F0 CG0
� q2

1

F0 CG0

�
F 000 CG

00
0 C

F 00 CG
0
0

R

�
:

By definition (5.19) of A,

�2

h
V0
F 00 CG

0
0

F0 CG0

i
D A

hF 00 CG00
F0 CG0

i
:

Therefore, for 0 < q < q�1 .�0;�1; �/, using Lemma 5.8, Corollary 5.10 and bounds (5.24)
and (5.23),


�2

h
V0
F 00 CG

0
0

F0 CG0

i



2
�




F 00 CG00
F0 CG0





2
�M.k"1�˛ C "3�2˛ C "�/

�M."2�˛q�1 C "3�2˛ C "�/ �M."2�˛q�1 C "�/;

where we have used that k"1�˛ D "q�1"1�˛ � ". In the rest of the proof, we will reduce
the value of q�1 , if necessary, without changing the notation. In addition, by Corollary 5.10
since

q2
ˇ̌̌
R3

1

F0 CG0

�
F 000 C

F 00
R

�ˇ̌̌
�Mq2k"1�˛ DMq"2�˛;
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we also have by inequality (5.18) in Lemma 5.7,

q2



�2

h 1

F0 CG0

�
F 000 C

F 00
R

�i



2
�Mq"2�˛:

To bound the last term in W0, we use the second statement of Lemma 5.9 with

h D
1

F0 CG0
; yh2 D G

00
0 C

G00
R
; yh1 D G

0
0:

Then


�2

h 1

F0 CG0

�
G000 C

G00
R

�i



2
�




 G00
F0 CG0





2
C k�2Œh

0G00�k2 C 2



A
h G00
F0 CG0

i



2
:

By bounds (5.23) and (5.24),


 G00
F0 CG0





2
�M�"CM"3�2˛;

and as a consequence, by Lemma 5.8,


A
h G00
F0 CG0

i



2
�M�"CM"3�2˛:

By bound (5.24) and since R � Rmin D "
˛ ,

jG00.R/h
0.R/j � jG00.R/j

jF 00.R/j C jG
0
0.R/j

jF0.R/CG0.R/j2

�M
�"3�2˛ C �"

R2

�"2�˛q�1 C "3�2˛ C �"
R2

�
M

R3
."4�3˛ C �"2�˛/;

where we have used that "
1�˛

q
� 1. Then, using Lemma 5.7, k�2Œh0G00�k2 � kh

0G00k3 and
therefore, kq2�2Œh0G00�k2 �M.q

2"4�3˛ C q2�"2�˛/. We conclude that

kW0k2 �M"2�˛q�1 CM�" �M.1C �/":

5.4. The contraction mapping

In Lemma 5.11, we have proven that the independent term .G0; W0/ D F Œ0; 0� (defined
in (5.20)) satisfies kG0k2C "kW0k2 �M.1C �/"2. In other words, the independent term
belongs to the Banach space X2 �X2 endowed with the norm

T.G;W /U D kGk2 C "kW k2:

Let
�0 D �0.�0; �1; �/ D T.G0; W0/U"�2; (5.25)

then we get the following assertion.
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Lemma 5.13. Let � > 0, 0 < �0 < �1 and take " D �e�
�
2nq with �0 � � � �1. Take

� � 2�0, where �0 is defined in (5.25), and a satisfying condition (5.16). There exist
q0 D q0.�0; �1; �/ > 0 and M D M.�0; �1; �/ > 0 such that, for any q 2 Œ0; q0� and
˛ 2 .0; 1/ satisfying q�1"1�˛ < 1, taking Rmin � "

˛ , if .G1; W1/; .G2; W2/ 2 X2 �X2

with T.G1; W1/U;T.G2; W2/U � �"2, then

TF ŒG1; W1� � F ŒG2; W2�U �M"1�˛q�1T.G1; W1/ � .G2; W2/U; (5.26)

where the operator F is defined in (5.15).
If moreover kG01k2; kG

0
2k2 � �", then

"k�2Œ N2ŒG1; W1�� � �2ŒN2ŒG2; W2��k2

�M"2�˛kW1 �W2k2 CM"1�˛kG1 �G2k2 CM"kG01 �G
0
2k2 (5.27)

with �2 defined in (5.14) and N2 in (5.7). Also,

"k.F1ŒG1; W1� � F1ŒG2; W2�/
0
k2 �M"1�˛q�1T.G1; W1/ � .G2; W2/U: (5.28)

Next subsection is devoted to proving Theorem 5.3 from the above results and Lem-
ma 5.13. We postpone the proof of this lemma to Section 5.6.

5.5. Proof of Theorem 5.3

Lemma 5.13, for 0 < q < q0, gives us the Lipschitz constant of F with the norm T�U
on B�"2 , the closed ball of X2 � X2 of radius �"2. Indeed, the Lipschitz constant is
M"1�˛q�1 � 1

2
if "1�˛q�1 < e0 WD 1

2M
. Then the operator F is a contraction. Moreover,

recalling the definition of �0 given in (5.25), if .G;W / 2 B�"2 , it is clear that

TF ŒG;W �U � TF ŒG;W � � F Œ0; 0�UC TF Œ0; 0�U

�
1

2
T.G;W /UC �0"2 �

1

2
�"2 C

�

2
"2 � �"2:

Then, the existence of a solution of the fixed point equation (5.15), namely .G; W / D
F ŒG;W �, belonging to B�"2 is guaranteed by the Banach fixed point theorem.

Moreover, as
kGk2 D kF1ŒG;W �k2 � �"

2;

using (5.28) and Lemma 5.11 to bound the norm of .F1Œ0; 0�/0, one can easily see, for
some constant M ,

kG0k2 D k
�
F1ŒG;W �/

0
k2 � k.F1ŒG;W � � F1Œ0; 0�/

0
k2 C k.F1Œ0; 0�/

0
k2 �M":

The continuity with respect to� and ya D "� 32 ."˛/ 32 e�
p
2

"1�˛ a can be proven as follows.
It is clear that from definition (5.12) of G0 and Table 1, we have

G0.R/ D K0

�Rp2
"

�
a D K0

�Rp2
"

�
"
3
2 ."˛/�

3
2 e

p
2

"1�˛ ya DW K.R/ya
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with jK.R/j �M if R � R�min D "
˛ . Moreover, by construction,

.G;W / D lim
k!1

.G.k/; W .k//; .G.k/; W .k// D F ŒG.k�1/; W .k�1/�;

.G.0/; W .0// D .0; 0/:

Therefore, using that the operator F defined in (5.15) is continuous with respect to � 2
Œ�0;�1� and depends on ya through G0, so the operator F is also continuous with respect to
ya 2 Œ��;��, we deduce that .G;W / is continuous with respect to ya, � since the operator F

is a contraction uniformly on these parameters.
We introduce now the auxiliary operator

yF ŒG;W � D . yF1; yF2/ŒG;W � WD ."
�2�1ŒN1ŒG;W ��;��2ŒN2Œ yF1ŒG;W �;W ��/:

Observe that yF ŒG;W �D F ŒG;W � for aD 0. We denote by .G0;W 0/ the solution of the
fixed point equation .G; W / D yF ŒG; W �, and we emphasize that, since a D 0, G0 � 0

(see (5.12)). We point out that, applying Lemma 5.11 with �! 0 (see Remark 5.12) and
recalling that "1�˛ � q

2M
, for 0 < q � q�0 .�0; �1/, we have

T yF Œ0; 0�U �M."4�2˛ C "3�˛q�1/ �M"3�˛q�1:

Therefore, in this case, x�0 D �0.�0;�1; 0/D "�2T yF Œ0; 0�U�M"1�˛q�1 with �0 defined
in (5.25), and this implies

T.G0; W 0/U � 2x�0"2 � 2M"3�˛q�1:

Denoting by M0 D 2M (which only depends on �0, �1), the proof of first item of The-
orem 5.3 is done.

Let now .G;W / be the solution for a given a satisfying (5.16). We have

G D F1ŒG;W � D G0 C
yF1ŒG;W �;

W D F2ŒG;W � D ��2ŒN2ŒF1ŒG;W �;W ��

D ��2ŒN2ŒG0 C
yF1ŒG;W �;W ��C �2ŒN2Œ yF1ŒG;W �;W �� � yF2ŒG;W �:

Therefore, using that .G0; W 0/ D yF ŒG0; W 0�, we have, using (5.26) and (5.27),

T.G;W / � .G0; W 0/U � kG0k2 C T yF ŒG;W � � yF ŒG0; W 0�U

C "k�2ŒN2ŒG0 C
yF1ŒG;W �;W �� � �2ŒN2Œ yF1ŒG;W �;W ��k2

� kG0k2 CM"1�˛q�1T.G;W / � .G0; W 0/U

CM"1�˛kG0k2 CM"kG00k2
�MkG0k2 CM"kG00k2 CM"1�˛q�1T.G;W / � .G0; W 0/U:

As a consequence, using that, by (5.22), kG0k2 C "kG00k2 �M"2, we obtain

T.G;W / � .G0; W 0/U �M"2:
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Then

kG �G0 �G
0
k2 D k

yF1ŒG;W � � yF1ŒG
0; W 0�k2 �M"1�˛q�1T.G;W / � .G0; W 0/U

�M"3�˛q�1:

The bounds for k.G0/0k2 and kG0 � .G0/0 � G00k2 follow from bound (5.28) and
an analogous expression for yF1, along with expression (5.23). Denoting by yG1 D G �

G0 �G0, Theorem 5.3 is proven.

5.6. Proof of Lemma 5.13

The proof of Lemma 5.13 is divided into two parts. In Section 5.6.1, we prove inequality
(5.26) and (5.28). In Section 5.6.2, we prove (5.27).

5.6.1. The Lipschitz constant of F1. Let .G1; W1/; .G2; W2/ 2 X2 �X2 belonging to
the closed ball of radius �"2, that is, k.G1; W1/k; k.G1; W1/k � �"2. We have, using
Lemma 5.4,

kF1ŒG1; W1� � F1ŒG2; W2�k2 D "
�2
k�1ŒN1ŒG1; W1� �N1ŒG2; W2��k2

�MkN1.G1; W1/ �N1.G2; W2/k2:
(5.29)

Then to compute the Lipschitz constant of F1, it is enough to deal with the Lipschitz
constant of N1.

Now we write �.�/ D .1 � �/.G1; W1/C �.G2; W2/ and, for any R � Rmin D "
˛ ,

N1ŒG2; W2�.R/ �N1ŒG1; W1�.R/ D

Z 1

0

@GN1Œ�.�/�.R/.G2.R/ �G1.R// d�

C

Z 1

0

@WN1Œ�.�/�.R/.W2.R/ �W1.R// d�:

Then, since k�.�/k2 � �"2, to bound the Lipschitz constant of N1, it is enough to bound
j@GN1ŒG;W �j and j@WN1ŒG;W �j for k.G;W /k2 � �"2.

We now recall that yF0 in (5.3) is defined as F 20 D 1 C
yF0
2

. Then, since by Corol-
lary 5.10 jkV0.R/j � M"1�˛ and F 20 D 1 � k2V 20 � "

2n2R�2, we have, using that
R � Rmin D "

˛ ,

j yF0.R/j �Mk2jV 20 .R/j CM"2R�2 �M"2�2˛: (5.30)

Then, if jG.R/j � �"2R�2 �M"2�2˛ , using "1�˛ �Mq,

jF0.R/CG.R/j �

s
1C

yF0.R/

2
C jG.R/j � 1CO."2�2˛/ � 1CO.q2/ � 2 (5.31)

if q is small enough.
We claim that if k.G;W /k2 � �"2, then

j@GN1ŒG;W �.R/j �M"2�2˛; j@WN1ŒG;W �.R/j �Mk"1�˛: (5.32)
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Indeed, we have

@GN1.G;W / D � yF0 � 6F0G � 3G
2
� 2k2W V0 � k

2W 2;

where N1 is given in (5.5). Then, using (5.30), jG.R/j � �"2R�2 and jW.R/j � �"R�2,
we get

j@GN1ŒG;W �j �M
�
"2�2˛ C �

"2

R2
C �2

"4

R4
C �k2jV0.R/j

"

R2
C �2k2

"2

R4

�
�M."2�2˛ C �"2�2˛ C �2"4�4˛ C �k"�˛"2�2˛ C �2k2"�2˛"2�2˛/

�M"2�2˛
�
1C � C �2"2�2˛ C �

"1�˛

q
C �2q�2"2�2˛

�
�M"2�2˛;

where we have used again that "
1�˛

q
� 1. With respect to @WN1ŒG;W �, we have

@WN1ŒG;W � D �2k
2V0.F0 CG/ � 2k

2W.F0 CG/:

Then, using (5.31),

j@WN1ŒG;W �j �M
�
k"1�˛C k2

"

R2

�
�M

�
k"1�˛C k2"1�2˛

�
�Mk"1�˛

�
1C

"1�˛

q

�
;

provided "1�˛

q
< 1, and (5.32) is proven.

Finally, using bounds (5.32) of @WN1, @GN2,

jN1ŒG2; W2�.R/ �N1ŒG1; W1�.R/j

�M"2�2˛jG1.R/ �G2.R/j CMk"1�˛jW1.R/ �W2.R/j;

and therefore, recalling that k D "q�1,

kN1ŒG2; W2� �N1ŒG1; W1�k2 �M"2�2˛kG1 �G2k2 CMk"1�˛kW1 �W2k2

�M"1�˛q�1T.G1; W1/ � .G2; W2/U:

This bound and (5.29) lead to the Lipschitz constant of F1, which is M "1�˛

q
.

From these computations, we also deduce expression (5.28) using Corollary 5.5.

5.6.2. The Lipschitz constant of F2. Now we deal with F2ŒG;W � which is defined by

F2ŒG;W � D �2.N2ŒF1ŒG;W �;W �/:

Recall that N2 was introduced at (5.7),

N2ŒG;W �.R/ D W
2
�

q2

F0.R/CG.R/

�
F 000 .R/CG

00.R/C
F 00.R/CG

0.R/

R

�
C 2.V0.R/CW /

F 00.R/CG
0.R/

F0.R/CG.R/
;
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We have to deal with each term of the difference

�2ŒN2ŒF1ŒG1; W1�; W1� �N2ŒF1ŒG2; W2�; W2��

separating in a similar way as we did for computing the norm of W0 in Lemma 5.11.
In this proof, we will use without special mention the first item of Lemma 5.13 (already
proven) and the bounds in (5.28).

Take .G1; W1/; .G2; W2/ 2 X2 �X2 satisfying T.G1; W1/U; T.G2; W2/U � �"2 and
kG01k2; kG

0
2k2 � �". We first prove

"k�2Œ N2ŒG1; W1�� � �2ŒN2ŒG2; W2��k2

�M""1�˛kW1 �W2k2 CMq"kG01 �G
0
2k2 CMq2"1�˛kG1 �G2k2: (5.33)

We define G� D .1 � �/G2 C �G1 and W� D .1 � �/W2 C �W1, and we notice that the
operator N2 can be written as

N2ŒG;W � D zN2ŒG;G
0; G00; W �:

By the mean’s value theorem,

N2ŒG1; W1� �N2ŒG2; W2� D .W1 �W2/

Z 1

0

@W zN2ŒG�; G
0
�; G

00
�; W�� d�

C .G1 �G2/

Z 1

0

@G zN2ŒG�; G
0
�; G

00
�; W�� d�

C .G01 �G
0
2/

Z 1

0

@G0 zN2ŒG�; G
0
�; G

00
�; W�� d�

C .G001 �G
00
2 /

Z 1

0

@G00 zN2ŒG�; G
0
�; G

00
�; W�� d�

DW N1 CN2 CN3 CN4:

We start with "�2ŒN1�. We have @W zN2ŒG; G
0; G00; W � D 2W C 2

F 0
0
CG0

F0CG
and therefore,

using the bounds for F0, F 00 in Corollary 5.10,

"jN1.R/j � "kW1 �W2k2

�"M
R4
C
"1�˛k

R4

�
� "kW1 �W2k2

�"M
R4
C
"2�˛q�1

R4

�
�M"kW1 �W2k2

"1�˛

R3
;

where we have used that "
1�˛

q
< 1. Then, by Lemma 5.7,

"k�2ŒN1�k2 � "MkN1k3 �M""1�˛kW1 �W1k2:

We follow with N2. It is clear that

"j@G zN2ŒG;G
0; G00; W �.R/j

D
"

.F0.R/CG.R//2

ˇ̌̌
q2F 000 .R/CG

00.R/C q2
F 00.R/CG

0.R/

R

� 2.V0.R/CW.R//.F
0
0.R/CG

0.R//
ˇ̌̌
:
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We use now that k"1�˛ � " and "R�2 � "1�2˛ � "1�˛k�1 and obtain

"jR2@G zN2ŒG;G
0; G00; W �.R/j

�M"Œq"2.1�˛/ C q2 C "1�˛q2 C "2�2˛ C q"1�˛ C q�1"3�3˛ C "2�2˛�

�M"q2;

where again we have used that "1�˛ � q. This gives

"jR@G zN2ŒG;G
0; G00; W �.R/j �M"1�˛q2:

Therefore,
"jR3N2.R/j �Mq2"1�˛kG1 �G2k2;

and we obtain "kj�2ŒN2�kj2 � "kN2k3 �M"1�˛q2kG1 �G2k2.
With respect to N3, we have

@N�.R/ WD @G0 zN2ŒG�; G
0
�; G

00
�; W��.R/ � 2

V0.R/

F0.R/CG�.R/

D �
q2

R.F0.R/CG�.R//
C 2

W�.R/

F0.R/CG�.R/
:

Then

"j@N�.R/j �
Mq2"

R
C
M"2

R2
�M".q2 C "1�˛/

1

R
�M"q

1

R
;

which implies that

"jR3@N�.R/jjG
0
1.R/ �G

0
2.R/j �M"qkG01 �G

0
2k2;

and therefore

"





�2

�
.G01 �G

0
2/

Z 1

0

@N� d�
�




2

� "





.G01 �G02/ Z 1

0

@N� d�





3

�M"qkG01 �G
0
2k2: (5.34)

We point out that

�2

�
V0.R/.G

0
1 �G

0
2/

Z 1

0

1

F0 CG�
d�
�
D A

�
.G01 �G

0
2/

Z 1

0

1

F0 CG�
d�
�
;

and then

"





�2

�
V0.R/.G

0
1 �G

0
2/

Z 1

0

1

F0 CG�
d�
�




2

� "kG01 �G
0
2k2: (5.35)

Bounds (5.34) and (5.35) imply "k�2ŒN3�k2 �M"kG01 �G
0
2k2.

Finally, we deal with N4. Using Lemma 5.9 with

h.R/ D

Z 1

0

d�
F0 CG�

; yh2.R/ D G
00
1 �G

00
2 ;
yh1 D G

0
1 �G

0
2;
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we have

"k�2ŒN4�k2 � "q
2
khyh1k2 C "q

2
kj�2Œh

0yh1�k2 C 2"q
2
kAŒyh1h�k2:

Then, we obtain
"q2khyh1k2 �M"q2kG01 �G

0
2k2;

and by Lemma 5.8,
"q2kAŒyh1h�k2 �M"q2kG01 �G

0
2k2:

In addition,

"jh0.R/yh1.R/j � "jG
0
1.R/ �G

0
2.R/j

Z 1

0

jF 00.R/j C jG
0
�
.R/j

jF0.R/CG�.R/j2
d�

�M"
k"1�˛ C "

R4
kG01 �G

0
2k2 �M"q

1

R3
kG01 �G

0
2k2:

Then, using Lemma 5.7, k�2Œh0yh1�k2 � kh0yh1k3, and we obtain

"k�2ŒN4�k2 �M"qkG01 �G
0
2k2;

which finishes the proof of bound (5.33).
Now we define '1 D F1ŒG1; W1�, '2 D F1ŒG2; W2�. By bound (5.33), using that

the Lipschitz constant of F1 is M "1�˛

q
and also (5.28), we have

"k�2ŒN2Œ'1; W1�� � �2ŒN2Œ'2; W2��k2

�M"1�˛T.G1; W1/ � .G2; W2/UC "1�˛k'1 � '2k2 C "k'01 � '
0
2k2

�M"1�˛T.G1; W1/ � .G2; W2/UC "1�˛q�1T.G1; W1/ � .G2; W2/U;

and the proof of Lemma 5.13 is finished.

6. Existence result in the inner region. Proof of Theorem 4.5

We want to find solutions of equations (2.6) departing the origin that remain close to
.f in
0 .r/; v

in
0 .r// D .f0.r/; qv0.r// defined by (3.20), where we recall that f0.r/ is the

unique solution of (3.17) and v0.r/ is the solution of (3.18),

f 000 C
f 00
r
� f0

n2

r2
C f0.1 � f

2
0 / D 0; f0.0/ D 0; lim

r!1
f0.r/ D 1;

v00 C
v0

r
C 2v0

f 00
f0
C .1 � f 20 � k

2/ D 0; v0.0/ D 0:

(6.1)

Then v0 can be expressed (see (3.19)) as a function of f0.r/ by writing

v0.r/ D �
1

rf 20 .r/

Z r

0

�f 20 .�/.1 � f
2
0 .�/ � k

2/ d�:
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The asymptotic and regularity properties of f0, v0 are given in Proposition 4.4 and
will be used along the proof of Theorem 4.5. Again, as in Section 5, the proof of such
result relies on a fixed point argument.

Let us now introduce the Banach spaces we shall be working with. For any 0 < s1 and
c > 0, we define w.s/ D f 00.

sp
2
/ > 0, w0.s/ D v20.s/f0.s/ > 0 and

X D
°
 W Œ0; s1�! R;  2 C0.Œ0; s1�/; sup

s2Œ0;s1�

ˇ̌̌  .s/

w.s/C cw0.s/

ˇ̌̌
<1

±
; (6.2)

endowed with the norm

k k D sup
s2Œ0;s1�

ˇ̌̌  .s/

w.s/C cw0.s/

ˇ̌̌
:

We stress that in X, the norm k�k and

k kaux D sup
s2Œ0;s��

j .s/j

sn�1
C sup
s2Œs�;s1�

� 1
s3
C c
jlog sj2

s2

��1
j .s/j;

for any given s� 2 .0; s1/ are equivalent (see Lemma 4.4). We also introduce the Banach
space

Y D ¹ W Œ0; s1�! R;  2 C0.Œ0; s1�/; k kn <1º;

where the norm k�kn is defined by

k kn D sup
s2Œ0;s��

j .s/j

sn
C sup
s2Œs�;s1�

� 1
s3
C c
jlog sj2

s2

��1
j .s/j;

which satisfies that Y � X.
Finally, for any fixed m; l; � > 0, we define

Zl;�m D ¹ W Œ0; s1�! R;  2 C0.Œ0; s1�/; k k
l;�
m <1º;

and the norm

k kl;�m D sup
s2Œ0;s��

j .s/j

sm
C sup
s2Œs�;s1�

j .s/jsl

jlog sj�
:

From now on, we will fix s� (independent of q and k) as the minimum value which
guarantees that, for s � s�, f0.s/� 1

2
and the asymptotic expression forKn, In as s!1

in Table 1 is satisfied for s � s�, namely

Kn.s/ D

r
�

2s
e�s

�
1CO

�1
s

��
;

In.s/ D

r
1

2�s
es
�
1CO

�1
s

�� (6.3)

with s � s�.
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6.1. The fixed point equation

We denote by yv D v
q

and we shall derive a system of two coupled fixed point equations
equivalent to

f 00 C
f 0

r
� f

n2

r2
C f .1 � f 2 � q2yv2/ D 0; (6.4a)

f yv0 C f
yv

r
C 2yvf 0 C f .1 � f 2 � k2/ D 0: (6.4b)

We thus start by noting that since q is small, we may write .f; yv/ as a perturbation around
.f0.r/; v0.r// of the form .f; yv/ D .f0.r/C g; v0.r/C w/. Therefore, using that f0, v0
are solutions of (6.1), equation (6.4a) can be expressed as

g00 C
g0

r
� g

n2

r2
C g.1 � 3f 20 .r// D

yHŒg;w�; (6.5)

with
yHŒg;w�.r/ D g3 C 3g2f0.r/C q

2.v0.r/C w/
2.g C f0.r//;

along with the initial condition g.0/D 0. We also have that equation (6.4b) can be written
like

w0 C
w

r
C w

f 00
f0
D g.g C 2f0/ �

v0 C w

f0.f0 C g/
.f0g

0
� f 00g/; (6.6)

along with w.0/ D 0.
We now write the differential equations (6.5) and (6.6) as a fixed point equation.

We start by pointing out that, equivalently to what happens for the outer equations, one
cannot explicitly solve the homogeneous linear problem associated to (6.5). However,
we shall conveniently modify equation (6.5) to obtain a set of dominant linear terms at
the left-hand side for which we will have explicit solutions.

We first note that, as shown in [2], f0.r/ very rapidly approaches the value of 1.
Inspired by this, we define

yEŒg� WD g00 C
g0

r
� g

n2

r2
C 3g.1 � f 20 .r//;

and therefore, equation (6.5) reads yEŒg� � 2g D yHŒg;w�.r/, which motivates to perform
the change

g D �
yHŒ0; 0�

2
C�g

into (6.5). Denoting by

h0 D �
yHŒ0; 0�

2
D
1

2
q2v20f0;

�g is found to satisfy

�g00 C
�g0

r
��g

n2

r2
� 2�g D yHŒh0 C�g� � yHŒ0; 0� � yEŒh0� � 3�g.1 � f

2
0 .r//;
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along with �g.0/ D 0. Now we perform the change s D
p
2r and we denote by ıg.s/ D

�g. sp
2
/, ıv.s/Dw. sp

2
/, zf0.s/D f0. sp

2
/, zv0.s/D v0. sp

2
/ and zh0.s/D h0. sp

2
/. There-

fore,

ıg00 C
ıg0

s
� ıg

�
1C

n2

s2

�
D N1Œıg; ıv�; (6.7)

where

N1Œıg; ıv�.s/ D �
3

2
.1 � zf 20 .s//ıg C

1

2
.HŒıg C zh0; ıv� �HŒ0; 0�/ �

1

2
EŒzh0� (6.8)

with

HŒg; ıv�.s/ D g3 C 3g2 zf0.s/C q
2.zv0.s/C ıv/

2. zf0.s/C g/;

EŒzh0�.s/ D yEŒh0�.s
p
2/ D 2

�
zh000 C

zh00
s
�
n2

s2
zh0

�
C 3zh0.1 � zf

2
0 .s//:

The homogeneous linear equation associated to (6.7), namely

ıg00 C
ıg0

s
� ıg

�
1C

n2

s2

�
D 0;

has solutions Kn, In, the modified Bessel functions. They satisfy the property that their
Wronskian is 1

s
. Therefore, equation (6.7) may also be written, for any s1 > 0, like

ıg.s/ D Kn.s/

�
c1 C

Z s

s1

�In.�/N1Œıg; ıv�.�/ d�
�

C In.s/

�
c2 �

Z s

s1

�Kn.�/N1Œıg; ıv�.�/ d�
�
;

ıg0.s/ D K 0n.s/

�
c1 C

Z s

s1

�In.�/N1Œıg; ıv�.�/ d�
�

C I 0n.s/

�
c2 �

Z s

s1

�Kn.�/N1Œıg; ıv�.�/ d�
�
;

where c1, c2 are so far free parameters. It is well known (see expansions in Table 1 as
s ! 0) that Kn.s/! 1 and In.s/ is zero as s ! 0, if n � 1. Then, in order to have
solutions bounded at s D 0, we have to impose

c1 �

Z s1

0

�In.�/N1Œıg; ıv�.�/ d� D 0:

Therefore,

ıg.s/DKn.s/

Z s

0

�In.�/N1Œıg; ıv�.�/d� C In.s/
�
c2C

Z s1

s

�Kn.�/N1Œıg; ıv�.�/d�
�
:

For any s1 > 0, we introduce the linear operator

y�1Œ �.s/ D Kn.s/

Z s

0

�In.�/ .�/ d� C In.s/
Z s1

s

�Kn.�/ .�/ d�:

We have proven the following result.
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Lemma 6.1. For any b 2 R, we define

ıyg0.s/ D In.s/b:

Then, if ıg is a solution of (6.7) satisfying ıg.0/ D 0, there exists b such that

ıg D ıyg0 C y�1 ıN1Œıg; ıv�: (6.9)

We emphasize that N1, given in (6.8), has linear terms in ıg. In fact, we decompose

N1Œıg; ıv� D LŒıg�CR1Œıg; ıv�

with
LŒıg�.s/ D �

3

2
.1 � zf 20 .s//ıg.s/;

R1Œıg; ıv�.s/ D
1

2
.HŒıg C zh0; ıv� �HŒ0; 0�/ �

1

2
EŒzh0�:

(6.10)

Therefore, equation (6.9) is rewritten as

ıg D ıyg0 C y�1 ıLŒıg�C y�1 ıR1Œıg; ıv� (6.11)

with ıyg0 defined in Lemma 6.1.

Lemma 6.2. There exist 0 < c, L � 1 such that for any 0 < s� < s1, the linear operator
T WD y�1 ıL satisfies T WX!X with 0 < c < 1 the constant defining the norm k�k of X

(see (6.2)) and kT k � L < 1. As a consequence, Id � T is invertible.

Proof. In [3], it is proven that the linear operator

zT Œh�.s/ WD
3

2
Kn.s/

Z s

0

�In.�/.1 � zf
2
0 .�//h.�/ ds

C
3

2
In.s/

Z 1
s

�Kn.�/.1 � zf
2
0 .�//h.�/ ds;

is contractive in the Banach space defined by

zX D
°
 W Œ0;1/! R;  2 C 0Œ0;1/; k kw WD sup

s�0

j .s/j

w.s/
<1

±
:

The proof is based on the fact that

j zT Œh�.s/j �
3

2
Kn.s/

Z s

0

�In.�/.1 � zf
2
0 .�//khkww.�/ d�

C
3

2
In.s/

Z 1
s

�Kn.�/.1 � zf
2
0 .�//khkww.�/ d� � khkwT .s/;

where the function T is defined by

T .s/ WD
3

2
Kn.s/

Z s

0

�In.�/.1 � zf
2
0 .�//w.�/ d�

C
3

2
In.s/

Z 1
s

�Kn.�/.1 � zf
2
0 .�//w.�/ d�

and satisfies kT kw D zL < 1.
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Let now h 2 X,

jT Œh�.s/j �
3

2
Kn.s/khk

Z s

0

�In.�/.1 � zf
2
0 .�//.w.�/C cw0.�// d�

C
3

2
In.s/khk

Z s1

s

�Kn.�/.1 � zf
2
0 .�//.w.�/C cw0.�// d�

� khk.T .s/CR.s//; (6.12)

where

R.s/ D
3c

2
Kn.s/

Z s

0

�In.�/.1 � zf
2
0 .�//w0.�/ d�

C
3c

2
In.s/

Z s1

s

�Kn.�/.1 � zf
2
0 .�//w0.�/ d�:

When s 2 Œ0; s��,

R.s/ � cM

�
s�n

Z s

0

�2nC3 d� C sn
Z s�

s

�2 d� C sn
Z 1
s�

�Kn.�/
jlog �j2

�2
d�

�
� cMsn:

For s 2 Œs�; s1�, using 1 � f 20 .s/ D O.s�2/,

R.s/ � cM

�
e�s
p
s

Z s�

0

�2nC3 d� C
e�s
p
s

Z s

s�

e�
jlog �j2

�
7
2

d� C
es
p
s

Z s1

s

e��
jlog �j2

�
7
2

d�
�

� cM
�e�s
p
s
C
jlog sj2

s4

�
� cM

1

s3
� cM.w.s/C cw0.s//:

Therefore, using (6.12) one obtains kT Œh�k� khk.zLC cb0/, where b0 is a constant which
is independent of c.

Taking c � min¹1; 1�zL
2b0
º so that L WD zLC cb0 �

zLC1
2

< 1, the proof is finished.

As a consequence of this lemma, equation (6.11) can be expressed as

ıg D ıg0 C �1 ıR1Œıg; ıv�;

ıg0 WD .Id � T /�1Œıyg0�; �1 WD .Id � T /�1 ı y�1;
(6.13)

and we recall that ıyg0 was defined in Lemma 6.1.

Lemma 6.3. There exists a function I.s/ satisfying

I 0.s1/Kn.s1/ � I.s1/K
0
n.s1/ D

1

s1
; jI.s1/j; jI

0.s1/j �M
1
p
s1
es1 ;

such that ıg0.s/ D I.s/b.

Proof. Recall that (see Lemma 6.2 for the definition of T )

T Œh�.s/ D �
3

2
Kn.s/

Z s

0

�In.�/.1 � zf0.�//h.�/ d�

�
3

2
In.s/

Z s1

s

�Kn.�/.1 � zf0.�//h.�/ d�:
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Since ıg0 D .Id � T /�1Œıyg0�, by definition of the operator T it is clear that

ıg0.s/ D
X
m�0

T mŒıyg0�.s/;

and therefore, using that the operator T is linear and ıyg0.s/ D In.s/b, we conclude

ıg0.s/ D
X
m�0

T mŒıyg0�.s/ D
�X
m�0

T mŒIn�.s/
�

b DW I.s/b:

Notice that if bD 0, one can take I.s/D In.s/ and we are done. Assume then that b¤ 0.
Then, from ıg0 � T Œıg0� D ıyg0 D In.s/b, one deduces that

In.s/ D I.s/ �
3

2
Kn.s/

Z s

0

�In.�/.1 � zf0.�//I.�/ d�

�
3

2
In.s/

Z s1

s

�Kn.�/.1 � zf0.�//I.�/ d�;

I 0n.s/ D I
0.s/ �

3

2
K 0n.s/

Z s

0

�In.�/.1 � zf0.�//I.�/ d�

�
3

2
I 0n.s/

Z s1

s

�Kn.�/.1 � zf0.�//I.�/ d�:

Therefore,
I 0.s1/Kn.s1/ � I.s1/K

0
n.s1/ D s

�1
1 :

To finish, we observe that kıg0k � Mkıyg0k D MkInkb for some positive constant M .
That is, kIk � MkInk. Then, from the asymptotic expression of In in (6.3), we deduce
that In.s/.w.s/C cw0.s//�1 is an increasing function and then we have kInkD .w.s1/C
cw0.s1//

�1In.s1/ and then

j.w.s1/C cw0.s1//
�1I.s1/j �M.w.s1/C cw0.s1//

�1In.s1/;

which implies jI.s1/j �MIn.s1/ �Ms
� 12
1 es1 . The bound for jI 0.s1/j comes from (6.3)

and the fact that I 0.s1/ D Œs�11 C I.s1/K
0
n.s1/�.Kn.s1//

�1.

Now we deal with equation (6.6) which, along with the initial condition w.0/ D 0, is
equivalent to

w.r/ D
1

rf 20 .r/

Z r

0

�f 20 .�/
h
g.g C 2f0/ �

v0 C w

f0.f0 C g/
.f0g

0
� f 00g/

i
d�:

Therefore, recalling that g D h0 C�g, the function ıv.s/ D w. sp
2
/ satisfies

ıv.s/ D �2 ıR2Œıg; ıv� (6.14)

with

�2Œ �.s/ D

p
2

2s zf 20 .s/

Z s

0

� zf 20 .�/ .�/ d� (6.15)
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and

R2Œıg; ıv�.s/ D .zh0 C ıg/.2 zf0 C zh0 C ıg/

C
zv0 C ıv

zf0. zf0 C zh0 C ıg/
Œ zf0.zh

0
0 C ıg

0/ � zf 00.
zh0 C ıg/�: (6.16)

In view of (6.13) and (6.14), we are looking for solutions of the associated fixed point
equation. However, as for the outer region, for several technical reasons, we consider
instead the equivalent version of the fixed point equation given by

.ıg; ıv/ D F Œıg; ıv�; (6.17)

where F D .F1;F2/ with

F1 D ıg0 C �1 ıR1; F2Œıg; ıv� D �2 ıR2ŒF1Œıg; ıv�; ıv�: (6.18)

Remark 6.4. This strategy of using F1, the first component of the fixed point operator,
to compute F2 reminds of the Gauss-Seidel method for solving linear systems. One could
say then that the operator F is a Gauss-Seidel fixed point operator.

Remark 6.5. We note that we need to guarantee that zf0.s/ C zh0.s/ C ıg.s/ > 0 for
s 2 Œ0; s1�, in order for the operator R2 to be well defined. The following bounds, which
are a straightforward consequence of Proposition 4.4, will be crucial to guarantee the
well-posedness of R2:

jzh0.s/j �Mq2snC2; s ! 0; jzh0.s/j �Mq2
jlog sj2

s2
; s � 1;

EŒzh0�.s/ �Mq2sn; s ! 0; jEŒzh0�.s/j �Mq2
jlog sj2

s4
�Mq2

1

s3
; s � 1:

Moreover, jzh00.s/j �Mq2jlog sj2s�3 for s � 1.

In what follows, we simplify the notation by dropping the symbol z of zf0, zv0 and zh0.
Now we reformulate Theorem 4.5 to adapt it to the fixed point setting.

Theorem 6.6. Let � > 0, 0 < �0 < �1 and take " D �e�
�
2nq with �0 � � � �1. There

exist q0 D q0.�0; �1; �/ > 0 and �0 D �0.�0; �1; �/ > 0, M DM.�0; �1; �/ > 0 such
that, for any q 2 Œ0; q0� and

0 < � < �0;

taking s1 as
s1 D e

�
q ;

if b satisfies

b D s�
3
2

1 e�s1�2yb; jybj � �; (6.19)

then there exists a family of solutions .ıg.s;b/; ıv.s;b// of the fixed point equation (6.17)
which is continuous with respect to � and yb, defined for 0 � s � s1 and satisfies

kıgk C kıg0k C kıvk
1;3
1 �Mq2:
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The function ıg can be decomposed as

ıg.s;b/ D ıg0.s;b/C ıg1.s;b/

with ıg0.s; b/ D I.s/bC eıg0.s/ and I.s/ satisfies I 0.s1/Kn.s1/ � I.s1/K 0n.s1/ D s
�1
1 .

Moreover,

(i) there exist q� D q�.�0; �1/ and M0 DM0.�0; �1/ such that for q 2 Œ0; q0��,

keıg0k C keıg00k �M0q
2;

(ii) and for q 2 Œ0; q0�,
kıg1k; kıg

0
1k �Mq2�2:

As we did in the outer region, we prove this proposition in three main steps. We first
study the continuity of the linear operators �1, �2 in Section 6.2 in the defined Banach
spaces. After that, in Section 6.3 we study F Œ0; 0� and finally, in Section 6.4 we prove
that the operator F is Lipschitz.

From now on, we fix �, �0, �1, we will take q0, �0 as small as we need and b a con-
stant satisfying (6.19). As a convention, in the proof there appear a number of different
constants, depending on �, �0, �1 but independent of q which, to simplify the notation,
will all be simply denoted as M .

6.2. The linear operators

The following results provide bounds and differentiability properties of the linear operat-
ors �1, �2 defined in (6.13) and (6.15).

Lemma 6.7. Let s1, c be such that 0 < s� < s1 and 0 < c � 1, and let  2X. Then, the
function �1Œ � is a differentiable function in .0; s1/ such that �1Œ � 2 Y �X, �1Œ �

0 2X

and
k�1Œ �kn �Mk�1Œ �k �Mk k; k�1Œ �

0
k �Mk k

for M a constant independent of s1, s0, c.

Proof. Let  2 X. One has

j�1Œ �.s/j �Mk k

�
Kn.s/

Z s

0

�In.�/.w.�/C cw0.�// d�

C In.s/

Z s1

s

�Kn.�/.w.�/C cw0.�// d�
�
;

where we have used that k.Id � T /�1k �M . If s 2 Œ0; s��, then

jKn.s/j �Ms�n; jIn.s/j �Msn; w.s/C cw0.s/ �Msn�1;

and therefore,

j�1Œ �.s/j �Mk k

�
s�n

Z s

0

�2n d� C sn
Z s�

s

1 d� C sn
Z s1

s�

�Kn.�/ d�
�
�Mk ksn;
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where we have used thatZ s1

s�

�Kn.�/ d� �
Z 1
s�

�Kn.�/ d� �M:

When s 2 Œs�; s1�,

j�1Œ �.s/j �Mk k

�
e�s
p
s

Z s�

0

�2n d� C
e�s
p
s

Z s

s�

p
�e�

� 1
�3
C c

.log �/2

�2

�
d�

C
es
p
s

Z s1

s

p
�e��

� 1
�3
C c

.log �/2

�2

�
d�
�

�Mk k
� 1
s3
C c
jlog sj2

s2

�
�Mk k.w.s/C cw0.s//;

which easily follows upon using that for any �; l 2 N,Z s

s�

e�
jlog �jl

��
d� �Mes

jlog sjl

s�
;

Z s1

s

e��
jlog �jl

��
d� �Me�s

jlog sjl

s�
:

Therefore, k�1Œ �kn �Mk k.
As for �1Œ �

0, we notice that

.Id � T / ı �1Œ �
0.s/ D K 0n.s/

Z s

0

�In.�/ .�/ d� C I 0n.s/
Z s1

s

�Kn.�/ .�/ d�;

and so analogous computations as the ones for �1Œ � lead to the result.

Lemma 6.8. Let us fix s1 such that 0 < s� < s1. Then if  2 Z
2;l
0 , the function �2Œ �,

defined in (6.15), is a differentiable function in .0; s1/ such that �2Œ � 2 Z
1;lC1
1 and

k�2Œ �k
1;lC1
1 �Mk k

2;l
0 :

In addition, if 2Z
�;l
0 with � > 2, the function �2Œ � is a differentiable function in .0; s1/

such that �2Œ � 2 Z
1;0
1 and

k�2Œ �k
1;0
1 �Mk k

�;l
0 :

The constant M > 0 does not depend on s1.

Proof. Let  2 Z
2;l
0 . When s 2 Œ0; s��, we have

j�2Œ �.s/j �

p
2

2sf 20 .s/

Z s

0

�f 20 .�/j .�/jd� �Mk k
2;l
0

1

s2nC1

Z s

0

�2nC1 d� �Mk k2;l0 s:

When s 2 Œs�; s1�,

j�2Œ �.s/j �
1

sf 20 .s/

Z s�

0

�f 20 .�/j .�/j d� C
1

sf 20 .s/

Z s

s�

�f 20 .�/j .�/j d�

�
M

s
k k

2;l
0 C

M

s
k k

2;l
0

Z s

s�

.log �/l

�
d� �Mk k2;l0

�1
s
C
jlog sjlC1

s

�
:
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Finally, let  2 Z
�;l
0 with � > 2. Then for s 2 Œ0; s��,

j�2Œ �.s/j �
1

sf 20 .s/

Z s

0

�f 20 .�/j .�/j d� �Mk k
�;l
0

1

s2nC1

Z s

0

�2nC1 d�

�Mk k
�;l
0 s;

and if s 2 Œs�; s1�,

j�2Œ �.s/j �
1

sf 20 .s/

Z s�

0

�f 20 .�/j .�/j d� C
1

sf 20 .s/

Z s

s�

�f 20 .�/j .�/j d�

�
M

s
k k

�;l
0 C

M

s
k k

�;l
0

Z s

s�

.log �/l

���1
d� � k k�;l0

M

s
:

6.3. The independent term

We now deal with the first iteration of the fixed point procedure given by equation (6.17),
namely we study F Œ0; 0�.

Lemma 6.9. Let 0 < c � 1 as in Lemma 6.2, let 0 < �0 < �1, and take "D �e�
�
2nq with

�0 � � � �1. There exist q� D q�.�0; �1/ > 0 and M DM.�0; �1/ > 0 such that, for
any q 2 Œ0; q�� and 0 < � < �

2n
, for 0 < s� < s1 � e

�
q , given � > 0 and b satisfying (6.19),

the function .ıg0; ıv0/ D F Œ0; 0� belongs to X � Z
1;3
1 , ıg0 is a differentiable function

belonging to X and

kıg00k; kıg0k �M.1C �/q
2; kıv0k

1;3
1 �M.1C �/q

2:

Furthermore, ıg0 2 Y with kıg0kn �M.1C �/q2, and ıv0 2Z
1;1
1 with kıv0k

1;1
1 �M�

2.

Proof. Notice that s1k < 1 if q is small enough. We have ıg0 D ıg0 C �1 ıR1Œ0; 0�.
We recall that

ıg0.s/ D .Id � T /�1Œıyg0�;

where ıyg0.s/ D In.s/b. Using that In is an increasing positive function, the norms k�k,
k�kaux are equivalent and In.s/ D O.sn/ as s ! 0,

kıg0kn �Mkıyg0k �M jbjIn.s1/.w.s1/C cw0.s1//�1

�M jbjIn.s1/
� 1
s31
C c
jlog s1j2

s21

��1
:

Since s1 > s�, the asymptotic expression (6.3) for In.s1/ applies and then, since b satis-
fies (6.19), we conclude that kıg0k �M�q2.

We now compute R1Œ0; 0� (see (6.10)):

R1Œ0; 0� D �
1

2
EŒh0�C

1

2
.HŒh0; 0� �HŒ0; 0�/

D �
1

2
EŒh0�C

1

2
.h30 C 3h

2
0f0 C q

2v20h0/:
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Therefore, using the estimates for f0, v0, h0 and EŒh0� in Proposition 4.4 and Remark 6.5,
we have

sup
s2Œ0;s��

jR1Œ0; 0�.s/j �Mq2sn; sup
s2Œs�;s1�

jR1Œ0; 0�.s/j �M
q2jlog sj2

s4
CM

q4jlog sj4

s4
:

Using that for any l 2 Z, jlog sjls�1 is bounded if s 2 .2; s1/ and s�3 �Mw.s/, we have

sup
s2Œs�;s1�

jR1Œ0; 0�.s/j �Mq2
1

s3
�Mq2.w.s/C cw0.s//:

As a consequence, R1Œ0; 0� 2 Y �X, kR1Œ0; 0�k � Cq
2 and using Lemmas 6.2 and 6.7,

we obtain

k�1ŒR1Œ0; 0��kn �Mk�1ŒR1Œ0; 0��k �MkR1Œ0; 0�k �Mq2:

Moreover, k�1ŒR1Œ0; 0��
0k �Mq2.

We deal now with ıv0. First, we notice that f0 C h0 C ıg0 > 0. Indeed, we have, for
s 2 Œ0; s��, f0.s/ �M jsjn for some positive constantM (see Proposition 4.4). Therefore,
if q is small enough,

f0.s/C h0.s/C ıg0.s/ � Cs
n
�Mq2jsjnC2 �Mq2jsjn > 0:

For s � s�, since f0.s/ � 1
2

, taking q small enough,

f0.s/C h0.s/C ıg0.s/ �
1

2
�Mq2

jlog sj2

s2
�Mq2

1

s3
�Mq2

jlog sj2

s2
>
1

4
:

We conclude then that ıv0 is well defined. Now we are going to prove that it belongs
to Z

1;3
1 . By definition, ıv0 D F2Œ0; 0� D �2 ıR2Œıg0; 0� with R2 defined by (6.16),

R2Œıg0; 0� D .h0 C ıg0/.2f0 C h0 C ıg0/C
v0Œf0.h

0
0 C ıg

0
0/ � f

0
0.h0 C ıg0/�

f0.f0 C h0 C ıg0/
:

Therefore, using that ıg0 2 Y, for s 2 Œ0; s�� we have

jR2Œıg0; 0�.s/j �M.1C �/
2.s2n C 1/ �M.1C �/q2:

On the other hand, for s 2 Œs�; s1�,

jR2Œıg0; 0�.s/j �M.1C �/
q2jlog sj2

s2
CM.1C �/

q2jlog sj3

s3
�M.1C �/

q2jlog sj2

s2
:

As a consequence, R2Œıg0; 0� 2 Z
2;2
0 with norm kR2Œıg0; 0�k

2;2
0 �M.1C �/q

2. There-
fore, by Lemma 6.8 ıv0 2 Z

1;3
1 with norm kıv0k

1;3
1 � M.1 C �/q

2, and thus, for s �
s1 � e

�
q

jıv0.s/j �M.1C �/q
2 jlog sj3

s
�M.1C �/�2

jlog sj
s

:
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6.4. The contraction mapping

In what follows, we shall show that the fixed point equation (6.17) is a contraction in
a suitable Banach space. We define the norm

T.ıg; ıv/U D kıgk C kıvk1;31

in the product space X � Z
1;3
1 , and we notice that, under the conditions of Lemma 6.9,

we have proved that T.ıg0; ıv0/U � �0q2, where �0 D �0.�0; �1; �/.

Lemma 6.10. Let �0, �1, �, b and � be as in Lemma 6.9, and take " D �e�
�
2nq with

�0 � � � �1. There exist q0 D q0.�0; �1; �/ > 0 andM DM.�0; �1; �/ > 0 such that,
for any q 2 Œ0; q0�, 0 < � < �

2n
and 0 < s� < s1 � e

�
q , we have if .ıg1; ıv1/; .ıg2; ıv2/ 2

X �Z
1;3
1 satisfying T.ıg1; ıv1/U;T.ıg2; ıv2/U � 2�0q2, then

(1) with respect to F1,

kF1Œıg1; ıv1� � F1Œıg2; ıv2�k �Mq2kıg1 � ıg2k CMc
�1�2kıv1 � ıv2k

1;3
1 ;

(2) and for F2,

kF2Œıg1; ıv1��F2Œıg2; ıv2�k�Mq2kıg1 � ıg2kCM.�
2c�1C q2/kıv1� ıv2k

1;3
1 :

The remaining part of this section is devoted to prove Theorem 6.6 (Section 6.5
below) and Lemma 6.10 whose proof is divided into two technical sections, Sections 6.6.1
and 6.6.2.

6.5. Proof of Theorem 6.6

The proof of the result is a straightforward consequence of the previous analysis. We de-
fine B D ¹.ıg; ıv/ 2X �Z

2;3
1 ;T.ıg; ıv/U � 2�0q2º. The Lipschitz constant of F in B,

lip F , satisfies the inequality

lip F �M.�0; �1; �/max¹q2; c�1�2º �
1

2
;

provided q is small enough and c�1�2 < 1
2

, so that F is a contraction. In addition,
if T.ıg; ıv/U � 2�0q2, then

TF Œıg; ıv�U � TF Œ0; 0�UC TF Œıg; ıv� � F Œ0; 0�U � �0q2 C
1

2
T.ıg; ıv/U

� �0q
2
C
1

2
2�0q

2
� 2�0q

2:

Therefore, the operator F sends B to itself. The fixed point theorem assures the existence
of solutions .ıg; ıv/ 2 B, consequently satisfies,

T.ıg; ıv/U D TF Œıg; ıv�U � 2�0q2;
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and, if .ıg; ıv/ D F Œıg; ıv�, then ıg1 D F1Œıg; ıv� � F1Œ0; 0� satisfies

kF1Œıg; ıv� � F1Œ0; 0�k �Mq2kıgk CMc�1�2kıvk
1;3
1 �Mc

�1�2q2;

provided q � �. The bound for kıg01k follows from the previous bound and Lemma 6.7.
Therefore, also using Lemma 6.3, to prove Theorem 6.6 only remains to check the con-
tinuity with respect to the parameters �, yb which is proven as follows. From Lemma 6.3
and Table 1,

ıg0 D I.s/b DW yI .s/yb

with j yI .s/j �M if s 2 Œ0; s1�. By construction,

.ıg; ıv/ D lim
k!1

.ıg.k/; ıv.k//; .ıgk ; ıvk/ D F Œıg.k�1/; ıv.k�1/�

with initial seed .ıg.0/; ıv.0//D .0;0/. Using that the operator depends continuously on�
(through k D �e�

�
2nq ) and on yb (through ıg0) along with the fact that it is a contraction

which is uniform with respect to � 2 Œ�0; �1�, yb 2 Œ��; ��, we conclude that .ıg; ıv/ is
also continuous with respect to �, yb.

6.6. Proof of Lemma 6.10

6.6.1. The Lipschitz constant for F1. Let .ıg1; ıv1/, .ıg2; ıv2/ belonging to X � Z
1;3
1 ,

be such that T.ıg1; ıv1/U;T.ıg2; ıv2/U � 2�0q2.
From the definition of F1 in (6.18), definition of R1 in (6.10) and by Lemma 6.7, we

have

kF1Œıg1; ıv1� � F1Œıg2; ıv2�k �MkHŒh0 C ıg1; ıv1� �HŒh0 C ıg2; ıv2�k:

Let ıg.�/ D ıg2 C �.ıg1 � ıg2/ and ıv.�/ D ıv2 C �.ıv1 � ıv2/. Using the mean’s
value theorem,

HŒh0 C ıg1; ıv1�.s/ �HŒh0 C ıg2; ıv2�.s/

D

Z 1

0

@1HŒh0 C ıg.�/; ıv.�/�.s/.ıg1.s/ � ıg2.s// d�

C

Z 1

0

@2HŒh0 C ıg.�/; ıv.�/�.s/.ıv1.s/ � ıv2.s// d�: (6.20)

We have kıg.�/k � Aq2, kıv.�/k1;31 � Bq
2 and

@1HŒh0 C ıg.�/; ıv.�/�.s/ D 3.h0.s/C ıg.�/.s//
2
C 6.h0.s/C ıg.�/.s//f0.s/

C q2.v0.s/C ıv.�/.s//
2;

@2HŒh0 C ıg.�/; ıv.�/�.s/ D 2q
2.v0.s/C ıv.�/.s//.f0.s/C h0.s/C ıg.s//:

Then, recalling that kh0k
2;2
nC2 �Mq2, we obtain, if s 2 Œ0; s��,

j@1HŒh0 C ıg.�/; ıv.�/�.s/j �Mq4s2n�2 CMq2sn�1 CMq2s2 �Mq2;

j@2HŒh0 C ıg.�/; ıv.�/�.s/j �Mq2sn;
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and for s 2 Œs�; s1�, noticing that

jv0.s/C ıv.�/.s/j �M
�
jlog sj
s
C q2

jlog sj3

s

�
�M

jlog sj
s

.1C �2/ �M
jlog sj
s

:

Then

j@1HŒh0 C ıg.�/; ıv.�/�.s/j �Mq4
jlog sj4

s4
CMq2

jlog sj2

s2
CMq2

jlog sj2

s2

�Mq2
jlog sj2

s2
;

j@2HŒh0 C ıg.�/; ıv.�/�.s/j �Mq2
jlog sj
s

:

Using all these bounds in (6.20), one finds that, for s 2 Œ0; s��, denoting ıg0j D
h0 C ıgj , j D 1; 2,

jHŒıg01; ıv1�.s/ �HŒıg02; ıv2�.s/j

�Mq2sn�1kıg1 � ıg2k CMq2snC1kıv1 � ıv2k
1;3
1

�Mq2sn�1.kıg1 � ıg2k C kıv1 � ıv2k
1;3
1 /

�Mq2.kıg1 � ıg2k C kıv1 � ıv2k
1;3
1 /;

and for s 2 Œs�; s1�, using again the notation ıg0j D h0 C ıgj , j D 1; 2,

jHŒıg01; ıv1�.s/ �HŒıg02; ıv2�.s/j

�Mq2
jlog sj2

s2
.w.s/C cw0.s//kıg1 � ıg2k CMq2

jlog sj4

s2
kıv1 � ıv2k

1;3
1 :

Notice that, for s� < s < s1,

jlog sj2

s2
.w.s/C cw0.s//

�1
�M

jlog sj2

s2

� 1
s3
C c
jlog sj2

s2

��1
�M

� 1

sjlog sj2
C c

��1
�
M

c
:

In addition, if s1 � e
�
q , then q2jlog sj2 � �2. Therefore, since jlog sj2 �Ms2,

jHŒh0 C ıg1; ıv1�.s/ �HŒh0 C ıg2; ıv2�.s/j

�M.w.s/C cw0.s//q
2
kıg1 � ıg2k CMc

�1�2.w.s/C cw0.s//kıv1 � ıv2k
1;3
1 ;

which proves the first item in Lemma 6.10.

Remark 6.11. As a consequence, using Lemma 6.2, if ıg; ıv 2 X � Z
1;3
1 with kıgk �

2�0q
2, kıvk1;31 � 2�0q

2,

kF1Œıg; ıv�k � kF1Œ0; 0�k C kF1Œıg; ıv� � F1Œ0; 0�k

� �0q
2
CMq2kıgk CMc�1�kıvk

1;3
1 � 2�0q

2;

if q is small enough. The bound for the derivative is a consequence of Lemma 6.7.
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6.6.2. The Lipschitz constant for F2. We recall that F2Œıg;ıv�D �2 ıR2ŒF1Œıg;ıv�;ıv�,
where the operator R2 is defined in (6.16). We rewrite R2 D P CP1 �P2 with

P Œıg; ıv� D .h0 C ıg/.2f0 C h0 C ıg/;

P1Œıg; ıv� D
v0 C ıv

f0.f0 C h0 C ıg/
;

P2Œıg� D f0.h
0
0 C ıg

0/ � f 00.h0 C ıg/:

For .ıg1; ıv1/, .ıg2; ıv2/ such that T.ıg1; ıv1/U;T.ıg2; ıv2/U� 2�0q2, we denote ıgj D
F1Œıgj ; ıvj �, j D 1; 2.

We recall that kh0k
2;2
nC2 �Mq2, and we shall deal separately with P , P1 �P2. Starting

with P ,

jP Œıg1; ıv1�.s/ �P Œıg2; ıv2�.s/j

� Œ2jıg1.s/ � ıg2.s/j � jf0.s/C h0.s/j C jıg1.s/C ıg2.s/j � jıg1.s/ � ıg2.s/j�:

Therefore, when s 2 Œ0; s��,

jP Œıg1; ıv1�.s/ �P Œıg2; ıv2�.s/j �Mkıg1 � ıg2ks
2n�2

�Mkıg1 � ıg2k

and for s 2 Œs�; s1�

jP Œıg1; ıv1�.s/ �P Œıg2; ıv2�.s/j �Mkıg1 � ıg2k.w.s/C cw0.s//

�Mkıg1 � ıg2k
� 1
s3
C c
jlog sj2

s2

�
:

As a consequence,

kP Œıg1; ıv1� �P Œıg2; ıv2�k
2;2
0 �Mkıg1 � ıg2k;

and by Lemma 6.8 and the first item of Lemma 6.10,

k�2ŒP Œıg1; ıv1�� � �2ŒP Œıg2; ıv2��k
1;3
1

�Mq2kıg1 � ıg2k CMc
�1�2kıv1 � ıv2k

1;3
1 :

(6.21)

Now we deal with yP WDP1 �P2. Using the mean value theorem, as described in (6.20),
yields

yP Œıg1; ıv1� �
yP Œıg2; ıv2�

D P1Œıg1; ıv1�.P2Œıg1� �P2Œıg2�/CP2Œıg2�.P1Œıg1; ıv1� �P1Œıg2; ıv2�/

D P1Œıg1; ıv1�.f0.ıg
0

1 � ıg
0

2/ � f
0
0.ıg1 � ıg2//

CP2Œıg2�

�
.ıg1 � ıg2/

Z 1

0

@1P1Œıg.�/; ıv.�/� d�

C .ıv1 � ıv2/

Z 1

0

@2P1Œıg.�/; ıv.�/�

�
d�; (6.22)
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where we denote by ıg.�/D �ıg1C .1� �/ıg2 and analogously for ıv.�/. We emphas-
ize now that ıgj is a differentiable function since ıgj DF1Œıgj ; ıvj �D �1 ıR1Œıgj ; ıvj �

and by Lemma 6.7, the linear operator �1 converts continuous functions into differentiable
ones. Moreover, ıgj 2 Y and this implies that for s 2 Œ0; s��,

f0.s/C h0.s/C ıg.s/ �Msn;

while for s 2 Œs�; s1�, using that f0.s/ � 1
2

, we have f0.s/C h0.s/C ıg.s/ � 1
4

if q is
small enough. Taking this into account, one can now bound the terms in (6.22).

For s 2 Œ0; s��,

jP1Œıg1; ıv1�.s/f0.s/.ıg
0

1.s/ � ıg
0

2.s//j �Mkıg
0

1 � ıg
0

2k �Mkıg1 � ıg2k;

jP1Œıg1; ıv1�.s/f
0
0.s/.ıg1.s/ � ıg2.s//j �Mkıg1 � ıg2k;

andˇ̌̌̌
P2Œıg2�.s/.ıg1.s/ � ıg2.s//

Z 1

0

@1P1Œıg.�/; ıv.�/�.s/ d�
ˇ̌̌̌
�Mq2kıg1 � ıg2k;ˇ̌̌̌

P2Œıg2�.s/.ıv1.s/ � ıv2.s//

Z 1

0

@2P1Œıg.�/; ıv.�/�.s/ d�
ˇ̌̌̌
�Mq2kıv1 � ıv2k

1;3
1 :

Then for s 2 Œ0; s��, recalling that yP WD P1 �P2,

j yP Œıg1; ıv1�.s/ �
yP Œıg2; ıv2�.s/j �Mkıg1 � ıg2k CMq2kıv1 � ıv2k

1;3
1 : (6.23)

When s 2 Œs�; s1�, using that s1 D e
�
q and

jıvj .s/j � 2�0q
2
jlog sj3s�1 � 2�0�2jlog sjs�1;

we obtain

jP1Œıg1; ıv1�.s/f0.s/.ıg
0

1.s/ � ıg
0

2.s//j �M
jlog sj3

s3
kıg
0

1 � ıg
0

2k

�M
jlog sj3

s3
kıg1 � ıg2k;

jP1Œıg1; ıv1�.s/f
0
0.s/.ıg1.s/ � ıg2.s//j �M

jlog sj3

s6
kıg1 � ıg2k;

and ˇ̌̌̌
P2Œıg2�.s/.ıg1.s/ � ıg2.s//

Z 1

0

@1P1Œıg.�/; ıv.�/�.s/ d�
ˇ̌̌̌

�Mq2
jlog sj5

s5
kıg1 � ıg2k;ˇ̌̌̌

P2Œıg2�.s/.ıv1.s/ � ıv2.s//

Z 1

0

@2P1Œıg.�/; ıv.�/�.s/ d�
ˇ̌̌̌

�Mq2
jlog sj5

s3
kıv1 � ıv2k

1;3
1 :
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Then for s 2 Œs�; s1�, increasing s�, if necessary

j yP Œıg1; ıv1�.s/ �
yP Œıg2; ıv2�.s/j

�
M

s
5
2

kıg1 � ıg2k CMq2
1

s
5
2

kıv1 � ıv2k
1;3
1 : (6.24)

By bounds (6.23) and (6.24), we have

k yP ŒF1Œıg1; ıv1�; ıv1� � yP ŒF1Œıg2; ıv2�; ıv2�k
5
2 ;0

0

�Mkıg1 � ıg2k CMq2kıv1 � ıv2k:

We use now Lemma 6.8, that k�k1;31 � k�k
1;0
1 and again the first item in Lemma 6.10 to

conclude

k�2Œ yP ŒF1Œıg1; ıv1�; ıv1�� � �2Œ yP ŒF1Œıg2; ıv2�; ıv2��k
1;3
1

�Mq2kıg1 � ıg2k CM.�
2c�1 C q2/kıv1 � ıv2k

1;3
1 :

Finally, also by the bound in (6.21), since R2 D P C yP , the second item of Lemma 6.10
is proven.

Appendix A. The dominant solutions in the outer region. Proof of Proposition 4.2

Along this appendix, we will work with outer variables (see (3.7)) namely R D kqr and,
according to definition (3.15) and (3.6),

F0.R/ D F0.RI k; q/ D f
out
0

�R
"

�
; V0.R/ D V0.RI q/ D k

�1vout
0

�R
"

�
; " D kq:

We also recall that, V0.R/ D
K0
inq

.R/

Kinq.R/
(see (3.14)), and F0 was defined in (3.12).

Remark A.1. Since k D �q�1e�
�
2nq with � 2 Œ�0; �1�, where �1 > �0 > 0, the con-

tinuity of vout
0 , f out

0 with respect to � directly follows from the continuity of Kinq , K 0inq
with respect to R.

The proof of Proposition 4.2 requires a thorough analysis, among other things, of the
Bessel function Kinq . We separate it into different subsections which correspond to the
different items in the proposition.

A.1. The asymptotic behaviour of the dominant outer solution

This short appendix corresponds to the first item in Proposition 4.2. That is, we study
f out
0 , vout

0 for kqr � 1. Consider q < 1
2

, using the asymptotic expansions when R!1
in Table 1 for Kinq , we have, as R!1,

V0.R/ D
K 0inq.R/

Kinq.R/
D �

1C c1
R
CO. 1

R2
/

1C c1
R
CO. 1

R2
/
D �1 �

c1

R
C
c1

R
CO

� 1
R2

�
(A.1)
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with

c1 � c1 D
4.inq/2 � 1

8
�
4.inq/2 C 3

8
D �

1

2
;

and the claim is proved. This expansion is valid for R � R0 with R0 independent of q.
The expansion for F0 is

F0.R/ D

r
1 � k2V 20 � "

2
n2

R2
D

r
1 � k2

�
1C

1

R
CO

� 1
R2

��
� "2

n2

R2

D

p

1 � k2

s
1 �

k2

R.1 � k2/
CO

� k2
R2

�
D

p

1 � k2
�
1 �

k2

2R.1 � k2/
CO

� k2
R2

��
;

where we have also used that k D "
q

is small (compare with (3.11)). Going back to the
original variables, we obtain the result.

A.2. The behaviour of vout
0 in an intermediate region

Now we deal with the asymptotic expression of vout
0 in (4.3) (item (ii)) for values of r

satisfying e�
n
2nq � kqr � .qn/2. In outer variables, it reads as

V0.R/ D
nq

R
cot
�
nq log

�R
2

�
� �0;nq

�
Œ1CO.q2/�; 2e�

�
2nq � R � q2n2; (A.2)

with �0;nq D arg�.1C inq/ D �
nq CO.q2/ and 
 the Euler–Mascheroni constant.
Let � D nq. We first recall some properties ofKi� with � > 0, see [12,25]. For x 2 R

(in fact, the formula is also satisfied for some complex domains), we have

Ki�.x/ D �
�i

2 sinh.��/
ŒI�i�.x/ � Ii�.x/�;

I�.x/ D
�x
2

��X
k�0

�x2
2

�k 1

kŠ�.�C k C 1/
;

(A.3)

where �.z/ is the Gamma function

�.z/ D

Z 1
0

tz�1e�t dt:

Using

�.1C k C i�/ D .k C i�/ � � � .1C i�/�.1C i�/; j�.1˙ i�/j2 D
��

sinh.��/
(A.4)

and denoting �k;� D arg.�.1C k C i�//, from (A.3) we deduce that

Ki�.x/ D �
1

�

� ��

sinh��

� 1
2
X
k�0

�x2
2

�k sin.� log.x
2
/ � �k;�/

kŠŒ.k2 C �2/ � � � .1C �2/�
1
2

: (A.5)

By convention, when k D 0, kŠŒ.k2 C �2/ � � � .1C �2/�
1
2 D 1.



M. Aguareles, I. Baldomá, T. M-Seara 76

By formula (A.4), we have

arg.�.1C k C �i// D
kX
lD1

arg.l C �i/C arg.�.1C �i//:

Now we notice that

��0;� D � arg�.1C �i/ D 
� CO.�2/; (A.6)

being the Euler–Mascheroni constant 
 . Indeed, it is well known (see [1]) that

log�.1C z/ D � log.1C z/C z.1 � 
/CO.z2/:

Then

�.1C i�/ D
1

1C i�
ei�.1�
/CO.�2/

D .1 � i� CO.�2//.1C i�.1 � 
/CO.�2//

D 1 � 
i� CO.�2/;

and henceforth, arg�.1C i�/ D �
� CO.�2/ as we wanted to check.
We use expansion (A.5) for Ki� which has a decomposition

Ki�.x/ D
1

�

h ��

sinh ��

i 1
2
°
� sin

�
� log

�x
2

�
� �0;�

�
C h.x/

±
(A.7)

with h.x/ satisfying jh.x/j � C jxj2, jh0.x/j � C jxj and jh00.x/j � C . Therefore,

K 0i�.x/ D
h ��

sinh ��

i 1
2
°
�
1

x
cos
�
� log

�x
2

�
� �0;�

�
C
h0.x/

�

±
; (A.8)

and as a consequence

V0.R/ D
nq

R

cos.nq log.R
2
/ � �0;nq/ � .nq/

�1Rh0.R/

sin.nq log.R
2
/ � �0;nq/ � h.R/

with jh.x/j; jxh0.x/j � Cx2 and �0;nq D arg�.1C inq/ D �nq
 CO.q2/.
We notice now that when 2e�

�
2� � x � �2,

�
�

2
C �
 CO.�2/ � � log

�x
2

�
��0;� � �2�jlog �j.1CO.jlog �j�1//:

Then, taking � D nq we deduce that, for 2e�
n
2nq � R � .qn/2,

a.R/ WD
Rh0.R/

nq cos.nq log.R
2
/ � �0;nq/

� C.nq/4
1

.nq/2

.1CO.q2//

� C.nq/2;

jb.R/j WD
ˇ̌̌ h.R/

sin.nq log.R
2
/ � �0;nq/

ˇ̌̌
� C.nq/4

1

qjlog qj
.1CO.jlog qj�1//

� C.nq/3

(A.9)
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and therefore

V0.R/ D
nq

R
cotan

�
nq log

�R
2

�
� �0;nq

�1 � a.R/
1 � b.R/

: (A.10)

The result in (A.2) (and consequently item (ii) of Proposition 4.2) follows from (A.10)
and (A.9).

A.3. Monotonicity of the dominant outer solution

This appendix is devoted to proving item (iii) in Proposition 4.2. First, we will see that
vout
0 , f out

0 are increasing functions for 2e�
n
2nq � kqr . It is equivalent to prove that V 00.R/,

F 00.R/ are increasing functions in the corresponding domain 2e�
n
2nq � R.

We begin with V0. Using the expansion for Kinq in Table 1 and the corresponding
expansions for K 0inq , K 00inq , we have, for R� 1,

V 00.R/ D
1

2R2
CO

� 1
R3

�
;

so that V 00.R/ > 0 if R� 1.
Assume then that there exists R� > 2e�

n
2nq such that V 00.R�/ D 0 and take the lar-

ger R� critical point. That is, V 00.R/ ¤ 0 if R > R�. Notice that, using that V0.R/! �1
as R !1 and V 00.R/ > 0 if R � R� we deduce that V0.R�/ < �1 and V 000 .R�/ � 0,
indeed, if V 000 .R�/ < 0, it should be a maximum which is a contradiction. Then, since V0
is solution of (3.13),

V0.R�/

R�
C V 20 .R�/C

q2n2

R2�
� 1 D 0;

or equivalently

V0.R�/ D v˙.R�/ WD
1

2

�
�
1

R�
˙

s
1

R2�
C 4

�
1 �

q2n2

R2�

��
D
1

2

�
�
1

R�
˙

s
1

R2�
.1 � 4q2n2/C 4

�
:

Note that, when q is small enough, v˙.R/ are defined for all R > 0, and

lim
R!0

v˙.R/ D �1; lim
R!1

vC.R/ D 1; lim
R!1

v�.R/ D �1;

v�.R/ < vC.R/ for all R > 0. We also have

V0.R/ < �1; v�.R/ < V0.R/ < vC.R/ if R� 1:

We emphasize that, differentiating equation (3.13), we obtain

V 000 .R/C
V 00.R/

R
�
V0.R/

R2
C 2V0V

0
0 � 2

q2n2

R3
D 0:
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Evaluating at R D R�, we have

V 000 .R�/ �
V0.R�/

R2�
� 2

q2n2

R3�
D 0 , V 000 .R�/ D

V0.R�/

R2�
C 2

q2n2

R3�
:

That is, assuming that V0.R�/ D v�.R�/, we obtain

V 000 .R�/ D
1

2R2�

�
�
1

R�
�

s
1

R2�
C 4

�
1 �

q2n2

R2�

��
C 2

q2n2

R3�
;

and it is clear that, if q is small enough, V 000 .R�/ < 0, and therefore we have a contradiction
with the fact that R� cannot be a maximum. We conclude then that V0.R�/ D vC.R�/.
In this case, V0.R�/ < �1 if and only if

�1C
1

2R�
>
1

2

s
1

R2�
C 4

�
1 �

q2n2

R2�

�
;

which implies that R� < 1
2

and

1 �
1

R�
> 1 �

q2n2

R2�
, R� < q

2n2:

We recall that V 000 .R�/ > 0. Therefore, using again

V 000 .R�/ D
V0.R�/

R2�
C 2

q2n2

R3�
> 0) V0.R�/ > �2

q2n2

R�
: (A.11)

Since 2e�
�
2nq < R� < q

2n2, using (A.10), we rewrite V0.R�/ as

V0.R�/ D
nq

R�

cos.nq log.R�
2
/ � �0;nq/

sin.nq log.R�
2
/ � �0;nq/

1C a.R�/

1C b.R�/
:

Using (A.9) and that the function cos.x/
sin.x/ is a decreasing function if x 2 Œ��

2
; 0�, we have

V0.R�/ �
nq

R�

1C a.R�/

1C b.R�/

cos.nq log. .nq/
2

2
/ � �0;nq/

sin.nq log. .nq/
2

2
/ � �0;nq/

D
nq

R�

1

2nq log.nq/
.1CO.q2jlog qj2// D �

1

2R�jlog.nq/j
.1CO.q2jlog qj2//

which is a contradiction with (A.11). Then we conclude that V 00.R/ > 0 for 2e�
�
2nq < R.

Note that since we have proved that V 00.R/ > 0 forR� 2e�
�
2� , then by (A.1) V0.R/D

�1 � 1
2R
C O. 1

R2
/ if R� 1 which implies that V0.R/! �1 when R!1 and hence

V0.R/ < �1 in the same domain.
Differentiating the expression for F0 (see, for instance, A.1) and using that V 00.R/ > 0,

we easily obtain F 00.R/ > 0.
Going back to the original variables, item (iii) of Proposition 4.2 is proven.
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A.4. Bounding the dominant outer solutions

This appendix is devoted to proving the bounds for vout
0 and f out

0 and its derivatives given
in item (iv) of Proposition 4.2.

Let us first provide a technical lemma whose proof is postponed to the end of this
section.

Lemma A.2. There exists q0 > 0 such that if 0 < q < q0, the modified Bessel function
Kinq.R/ satisfies

Kinq.R/ > 0; K 0inq.R/ < 0; K 00inq.R/ > 0; for all R � 2e2e�
�
2qn :

We point out that, in outer variables, in order to prove the bounds in items (iii) and (iv),
it is enough to prove the following result (see also Corollary 5.10).

Lemma A.3. Let ˛ 2 .0; 1/. There exist q0 D q0.˛/ > 0 and a constantM > 0 such that
for any 0 < q < q0 and R 2 ŒRmin;C1/ with Rmin satisfying 2e2e�

�
2qn � Rmin � "

˛ ,
where " D kq, one has

jkV0.R/j; jkV
0
0.R/Rj; jkV

00.R/R2j �M"R�1min;

and
jR.V0.R/C 1/j; jR

2V 00.R/j; jR
3V 000 .R/j �M:

With respect to F0, we have F0.R/ � 1
2

and

jF 00.R/R
2
j; jF 000 .R/R

3
j �Mk"R�1min; j1�F0.R/j; jF

0
0.R/Rj; jF

00
0 .R/R

2
j �M"2R�2min:

Proof. Because of item (iii) of Proposition 4.2, one deduces that V0 is an increasing
and negative function on Œ2e�

�
2qn ;1� and therefore in ŒRmin;1/. Therefore, we have

jkV0.R/j � kjV0.Rmin/j. We notice that, from (A.7) and (A.8),

V0.Rmin/ D
K 0inq.Rmin/

Kinq.Rmin/
D �

�
1
Rmin

cos.nq log.Rmin
2
/ � �0;nq/C

h0.Rmin/
nq

1
nq
¹� sin.nq log.Rmin

2
/ � �0;nq/C h.Rmin/º

D
nq

Rmin

cos.nq log.Rmin
2
/ � �0;nq/ �Rmin

h0.Rmin/
nq

sin.nq log.Rmin
2
/ � �0;nq/ � h.Rmin/

with h.R/ satisfying jh.R/j � M jRj2 and jh0.R/j � M jRj. We recall that " D kq D

�e�
�
2nq and ��0;nq D 
nq CO.q2/. Then, since Rmin � "

˛ � q,

jkV0.Rmin/j � k
nq

Rmin

1CO.Rmin/

jsin.��˛
2
CO.q//j CO.R2min/

�M"R�1min:

Define now the function g.R/ D RV0.R/. We want to see that, for R � Rmin,
g0.R/¤ 0. Assume that, for some R�, the function has a critical point, namely, g0.R�/D
R�V

0
0.R�/C V0.R�/ D 0. Then using equation (3.13) satisfied by V0, we get

V 20 .R�/ � 1C
q2n2

R2�
D 0 , V 20 .R�/ D 1 �

q2n2

R2�
;
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which is a contradiction with the fact that V0.R/ < �1. Therefore, g0.R/ D RV 00.R/C
V0.R/ ¤ 0 for R � Rmin.

Recall that, for R� 1,

V0.R/ D �1 �
1

2R
CO

� 1
R2

�
:

As a consequence,

g0.R/ D �1 �O.R�2/! �1; as R!1

and therefore, g0.R/ < 0 for all R � Rmin.
Then g.R1/�g.R2/ ifR1�R2, and using that g.R/<0, we conclude that jg.R2/j �

jg.R1/j when R1 � R2. On the other hand, jR.V0.R/C 1/j �M when R � R0 if R0 is
big enough (but independent of q). Thus, if Rmin � R � R0,

jR.V0.R/C 1/j D jRV0.R/j �R � RjV0.R/j � R0jV0.R0/j �M"R�1min:

With respect to V 00.R/, we have jR2V 00.R/j �M ifR �R0 withR0 big enough. Take
now Rmin � R � R0. We recall that

V0.R/ D
K 0inq.R/

Kinq.R/
< 0;

and we notice that

0 < V 00.R/ D
K 00inq.R/

Kinq.R/
�

�K 0inq.R/
Kinq.R/

�2
�
K 00inq.R/

Kinq.R/
:

The modified Bessel function Kinq satisfies the linear differential equation

K 00inq C
K 0inq.R/

R
�Kinq.R/

�
1 �

n2q2

R2

�
D 0:

Then, using that, by Lemma A.2, for R � Rmin � 2e
2e�

�
2nq we know that Kinq.R/ > 0,

K 0inq.R/ < 0 and K 00inq.R/ > 0 and therefore

0 < K 00inq.R/ D �
K 0inq.R/

R
CKinq.R/

�
1 �

n2q2

R2

�
� �

K 0inq.R/

R
CKinq.R/:

Hence, if Rmin � R � R0,

jR2V 00.R/j D R
2V 00.R/ � �R

K 0inq.R/

Kinq.R/
CR2 D RjV0.R/j CR

2

� R0jV0.R0/j CR
2
0 �M:

In addition, using that V0 satisfies equation (3.13), we have

0 < kRV 00.R/ D �kV0.R/ � kR.V
2
0 .R/ � 1/ � k

q2n2

R
� �kV0.R/ �M"R�1min:
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Now we deal with V 000 .R/. We have, when R � R0 with R0 big enough (but inde-
pendent of q), jR3V 000 .R/j �M . For Rmin � R � R0,

V 000 .R/ D
V0

R2
�
V 00
R
C 2V0V

0
0.R/C

n2q2

R3
:

Therefore, using that jRV0.R/j and jR2V 00.R/j �M for Rmin � R � R0, we obtain

jR3V 000 .R/j �M:

Moreover, using that kqR�1min � "
1�˛ ,

jkR2V 000 .R/j � jkV0.R/j C jkRV
0
0.R/j C 2kjV0.R/jjR

2V 00.R/j C k
n2q2

R
�M"R�1min:

Now we deal with the properties of F0 and its derivatives. Since jkV0.R/j �M"1�˛

and F0.R/ D
p
1 � k2V 20 � "

2n2R�2, we have

F0.R/ D 1 �
X
n�1

anB0.R/
n; an > 0;

with

B0.R/ D k
2V 20 .R/C

"2n2

R2
:

Then

F 00.R/ D �
X
n�1

nanB
n�1
0 .R/B 00.R/;

F 000 .R/ D �
X
n�1

nanŒ.n � 1/B
n�2
0 .R/.B 00.R//

2
C Bn�10 .R/B 000 .R/�:

Using the properties for V0, we deduce from the above expression, the corresponding ones
for F0.

To finish the proof of Proposition 4.2, we prove Lemma A.2.

Proof of Lemma A.2. We take � D nq � �0. Besides expression (A.5) of Ki� , we also
have the integral expression

Ki�.x/ D

Z 1
0

e�x cosh t cos.�t/ dt; x > 0; (A.12)

from which we deduce that Ki�.x/ is real if x > 0.
Notice that, from Remark 4.1, there exists x0 only depending on �0 such that8x � x0,

Ki�.x/ D

r
�

2x
e�x

�
1CO

� 1
x

��
> 0;

K 0i�.x/ D �

r
�

2x
e�x

�
1CO

� 1
x

��
< 0;

(A.13)

therefore, we only need to prove that K 00i�.x/ > 0.
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We first claim that K 00i�.x/ > 0 if x � �2 and � > 0. Indeed, differentiating twice
expression (A.12),

K 00i�.x/ D

Z 1
0

e�x cosh t cosh2 t cos.�t/ dt:

For 0� �t � �
4

, we have cos.�t/�
p
2
2

and then, also using that et � 2 cosh t � et C 1�
2et for t � 0, we obtain

K 00i�.x/ �

p
2

2

Z �
4�

0

e�x cosh t cosh2 t dt �
Z 1
�
4�

e�x cosh t cosh2 t dt

�

p
2

8

Z �
4�

0

e�x
etC1
2 e2t dt �

Z 1
�
4�

e�x
et

2 e2t dt

D

p
2

8
e�

x
2

Z �
4�

0

e�
x
2 e
t

e2t dt �
Z 1
�
4�

e�
x
2 e
t

e2t dt:

Note that, performing the obvious change u D et ,Z
e�x

et

2 e2t dt D
Z
e�

x
2 uu du D �

2

x
e�

x
2 uuC

2

x

Z
e�

x
2 u du

D �
2

x
e�

x
2 uu �

4

x2
e�

x
2 u D �

2

x
e�

x
2 e
t

et �
4

x2
e�

x
2 e
t

D �
2

x2
e�

x
2 e
t

Œxet C 2� DW �F.t/:

We obtain then

K 00i�.x/ �
h
F.0/ � F

� �
4�

�ip2
8
e�

x
2 � F

� �
4�

�
:

In order to check that K 00i�.x/ > 0, we have to prove the inequality

F.0/ > F
� �
4�

�h
1C

8
p
2
e
x
2

i
:

Since x � 0, it is enough to check that

2 > e�
x
2 .e

�
4� �1/.xe

�
4� C 2/

�
1C

8
p
2
e
x
2

�
:

On one hand, x � �2 with � small enough, implies 2 � �2e
�
4� � xe

�
4� . On the other

hand, it is clear that 1 � e
x
2 if x > 0 and x � ex . Therefore, the above inequality is

satisfied if

2 > 6
8
p
2
e�

x
2 .e

�
4� �1/exe

�
4� e

x
2 ,

p
2

24
> e�

x
2 .e

�
4� �4/C �

4� ;
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for all x � �2. Thus, we need � to satisfy
p
2

24
> e�

�2

2 .e
�
4� �4/C �

4� ;

which is true if � is small enough.
In conclusion, we have proven that, for � > 0 small enough and x � �2, the func-

tion K� satisfies K 00i�.x/ > 0. It remains to prove that K 00i�.x/ > 0 if x � �2. From (A.7)
and (A.8), we have

K 00i�.x/ D
h ��

sinh ��

i 1
2
° �
x2

sin
�
� log

�x
2

�
� �0;�

�
C

1

x2
cos
�
� log

�x
2

�
� �0;�

�
C
h00.x/

�

±
: (A.14)

For 2e2e�
�
2� � x � �2, it is clear from (A.6)

� log
�x
2

�
� �0;� < 2� log � C .
 � log 2/� CO.�2/ < 0;

� log
�x
2

�
� �0;� > 2� �

�

2
C 
� CO.�2/ > �

�

2

if we take � small enough. Therefore, if � is small enough,

cos
�
� log

�x
2

�
� �0;�

�
� cos

�
�
�

2
C 2� C 
� CO.�2/

�
D sin..2C 
/� CO.�2// �

�
1C




2

�
�;

sin
�
� log

�x
2

�
� �0;�

�
� �1:

Then, from expression (A.14) of K 00i�.x/,

K 00i�.x/ �
h ��

x4 sinh ��

i 1
2
°�
1C




2

�
� � � � C

x2

�

±
�

h ��

x4 sinh ��

i 1
2
°

2
� � C�3

±
> 0

if � is small enough. Therefore, we have just shown thatK 00i�.x/� 0 if x � 2e2e�
�
2� . This

result along with the asymptotic expressions (A.13) provides the sign forK 0i� andKi� .

Appendix B. The dominant solutions in the inner region. Proof of Proposition 4.4

We now prove the asymptotic properties of f in
0 , vin

0 defined in (3.20). As we have already
pointed out, the properties of f0 D f in

0 and @rf in
0 are all provided in [2]. With respect to

the properties of vin
0 .r/D qv0.r/, with v0 in (3.19), in the second item, in [3] the function

v0.r/ D �
1

rf 20 .r/

Z r

0

�f 20 .�/.1 � f
2
0 .�// d�;

was considered and the same asymptotic properties of v0 was considered as the ones
stated in the second item but for all r > 0. We introduce

�v0.r I k/ WD v0.r I k/ � v0.r/ D k
2 1

rf 20 .r/

Z r

0

�f 20 .�/ d�:



M. Aguareles, I. Baldomá, T. M-Seara 84

Remark B.1. Since vin
0 .r Ik/D qv0.r Ik/D qv0.r/C q�v0.r Ik/ and k D �q�1e�

�
2nq ,

the continuity with respect to � 2 Œ�0; �1� is clear.

Note that, if 0 < r � 1, using that f0.r/ � ˛0rn,

�v0.r I k/ �
1

2nC 2
k2r; @r�v0.r I k/ � k

2c;

for some constant c. Then it is clear that, for 0 < r � 1, the properties of vin
0 .r I k; q/ are

deduced from the analogous ones for v0.r/ proven in [3].
When kr � np

2
and r � 1, we have 1

2
� f0.r/ � 1. Then

j�v0.r I k/j �Mk2r:

As a consequence, j�v0.r Ik/j �M n2

2r
�M jlog r jr�1 if kr � np

2
. In [2], it was already

proved that jv0.r/j � M jlog r jr�1. Therefore, this property (and analogously the one
for v00) is satisfied.

It only remains to check that v0 < 0. From its definition (3.19), it is enough to check
the inequality 1� k2 � f 20 .r/ > 0 for 0� r � n

k
p
2

. We first notice that there exists r0� 1

such that

1 � f 20 .r/ �
n2

2r2
; r � r0:

Therefore, for kr � np
2

and r� r0, we have 1� k2� f 20 .r/� 0. Since f0 is an increasing
function, we have 1 � k2 � f 20 .r/ � 0 for all r � 0 such that kr � np

2
.

Now we prove the third item. We first deal with the asymptotic expression of vin
0 Dqv0.

We use the asymptotic expressions of f0.r/ already proven in the first item, namely

f0.r/ D 1 �
n2

2r2
CO.r�4/ as r !1:

We write

v0.r/ D �
1

rf 20 .r/

Z r

0

�f 20 .�/.1 � f
2
0 .�// d� C

k2

rf 20 .r/

Z r

0

�f 20 .�/ d�

DW v10.r/C v
2
0.r/:

We take r� � 1. It is clear that

k2

rf 20 .r/

Z r

0

�f 20 .�/ d� D
k2

rf0.r/

Z r�

0

�f 20 .�/ d� C
k2

rf0.r/

Z r

r�

�f 20 .�/ d�:

Notice that
k2

rf0.r/

Z r�

0

�f 20 .�/ d� D k2O.r�1/;

and, using f 20 .r/ D 1 �
n2

r2
CO.r�4/ if r; r� � 1,

k2

rf0.r/

Z r

r�

�f 20 .�/ d� D k2
r2 � r2�
2r

�
k2n2 log r

r
C k2O.r�1/:



A rigorous derivation of the asymptotic wavenumber in spiral wave solutions 85

Consider now r� � 1 and let us define

�v0.r; r�/ WD v
1
0.r/C

n2

rf 20 .r/
log
� r
r�

�
C

1

rf 20 .r/

Z r�

0

�f 20 .�/.1 � f
2
0 .�// d�

D
1

rf 20 .r/

Z r�

r

�f 20 .�/.1 � f
2
0 .�// d� C

n2

rf 20 .r/
log
� r
r�

�
:

It is clear, using again that f 20 .r/ D 1 �
n2

2r2
CO.r�4/

�v0.r; r�/ D
1

rf 20 .r/

Z r�

r

n2

�
CO

� 1
�3

�
d� C

n2

rf 20 .r/
log
� r
r�

�
D O.r�3/CO.r�1r�2� /:

Therefore, taking r� !1, we have

O.r�3/ D v10.r/C
n2

rf 20 .r/
log r

C
1

rf 20 .r/
lim
r�!1

�
�n2 log r� C

Z r�

0

�f 20 .�/.1 � f
2
0 .�// d�

�
D v10.r/C

1

rf 20 .r/
.n2 log r C Cn/ D v10.r/C

1

r
.n2 log r C Cn/.1CO.r�2//

D v10.r/C
n2

r
log r C

Cn

r
CO.r�3 log r/

with Cn as defined in Theorem 2.5. Collecting all these estimates, the proof of (4.11) is
complete.
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