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Abstract. In this work, n-armed Archimedean spiral wave solutions of the complex Ginzburg—
Landau equation are considered. These solutions are shown to depend on two characteristic para-
meters, the so-called twist parameter q and the asymptotic wavenumber k. The existence and
uniqueness of the value of k = k4 (g) for which n-armed Archimedean spiral wave solutions exist
is a classical result, obtained back in the eighties by Kopell and Howard. In this work, we deal
with a different problem, that is, the asymptotic expression of k«(g) as ¢ — 0. Since the eighties,
different heuristic perturbation techniques, like formal asymptotic expansions, have conjectured
an asymptotic expression of ksx(q) which is of the form k«(q) ~ C q_le_ﬁ\ql with a known
constant C. However, the validity of this expression has remained opened until now, despite of
the fact that it has been widely used for more than 40 years. In this work, using a functional
analysis approach, we finally prove the validity of the asymptotic formula for k«(¢), providing a rig-
orous bound for its relative error, which turns out to be k«(¢q) = Cq~'e™2na (1 + O(|loglq||~1)).
Moreover, such approach can be used in more general equations such as the celebrated A — w
systems.

Keywords: spiral Archimedean waves, complex Ginzburg—Landau equation, asymptotic
wavenumber.

Maria Aguareles: Departament d’Informatica, Matematica Aplicada i Estadistica, Universitat de
Girona, Edifici P4 C/ de la Universitat de Girona, 6, Campus Montilivi, 17003 Girona, Spain;
maria.aguareles @udg.edu

Inmaculada Baldoma4 (corresponding author): Departament de Matematiques, IMTech, Universitat
Politecnica de Catalunya, ETSEIB, Avda. Diagonal 645, 08028 Barcelona; Centre de Recerca
Matematica, Edifici C, Campus UAB, Carrer de I’ Albareda, Bellaterra, 08193 Barcelona, Spain;
immaculada.baldoma@upc.edu

Tere M-Seara: Departament de Matematiques, IMTech, Universitat Politécnica de Catalunya,
ETSEIB, Avda. Diagonal 645, 08028 Barcelona; Centre de Recerca Matematica, Edifici C,
Campus UAB, Carrer de I’ Albareda, Bellaterra, 08193 Barcelona, Spain; tere.m-seara@upc.edu

Mathematics Subject Classification 2020: 35B36 (primary); 34B15, 34B16, 34B40 (secondary).


mailto:maria.aguareles@udg.edu
mailto:immaculada.baldoma@upc.edu
mailto:tere.m-seara@upc.edu

M. Aguareles, 1. Baldom4, T. M-Seara 2

Contents
1. Introduction . ....... ... .. ... ... 2
LI, Spiral Patterns . . .. ... u ittt e e e e 8
2. Spiral waves as solutions of ordinary differential equations . . . ... ............... 10
3. Main ideas in the proof of Theorem 2.5 . . ... ... ... .. . . . 17
3.1. The asymptotic expression fork = k(q) ... ..o 18
4. Proof of Theorem 2.5: Matching argument . . . . . ... ...ttt 22
4.1. Outer solutions . ... ... 23
4.2, Innersolutions . . ... .. o 25
4.3. Matching point and matching equations . . . ... ...t 28
4.4. Matching the dominant terms: Setting the constants (Lo, ;1,7 .« .« cvvv ... 29
4.5. Matching the outer and inner solutions: End of the proof of Theorem 2.5 ....... 32
5. Existence result in the outer region. Proof of Theorem4.3 ... .................. 39
5.1. The fixed point €qUAtON . . . . . vttt ittt e e e e 40
5.2, The linear OPerators . . . ... ... v ittt ettt et 44
5.3. Theindependent term . . .. .. ..o vttt e 47
5.4. The contraction MAaPPING . . . ¢ ¢ oo v vttt e et e et e e 50
5.5. Proofof Theorem 5.3 . . .. ... .. ... . ... 51
5.6. Proofof LemmaS.13 .. ... . e 53
6. Existence result in the inner region. Proof of Theorem4.5 ... .................. 57
6.1. The fixed point €qUAtiON . . .. ...ttt 59
6.2. The linear OPErators . . . . . v vt v vttt e it e e e e e e e e i e e e 65
6.3. Theindependentterm . .. ... ... ..ttt 67
6.4. The contraction Mapping . . . . . .. oo v vttt e 69
6.5. Proofof Theorem 6.6 . ... ... ... ... ... ... ... 69
6.6. Proofof Lemma6.10 ... ... ... ... . . 70
A. The dominant solutions in the outer region. Proof of Proposition4.2 .............. 74
A.1. The asymptotic behaviour of the dominant outer solution . . ................ 74
A.2. The behaviour of vg™ in an intermediate region ... ..................... 75
A.3. Monotonicity of the dominant outer solution . ......................... 77
A.4. Bounding the dominant outer solutions . ................. 0., 79
B. The dominant solutions in the inner region. Proof of Proposition4.4 .............. 83
References . . ... ... 85

1. Introduction

In a wide range of physical, chemical and biological systems of different interacting
species, one usually finds that the dynamics of each species is governed by a diffusion
mechanism along with a reaction term, where the interactions with the other species are
taken into account. For instance, one finds this type of systems in the modelling of chem-
ical reaction processes as a model for pattern formation mechanisms [9], in the description
of some ecological systems [24], in phase transitions in superconductivity [16] or even
to describe cardiac muscle cell performance [13], among many others. Mathematically,
a reaction-diffusion system is essentially a system of ordinary differential equations to
which some diffusion terms have been added,

3.U = DAU + F(U,a), (1.1)

where U = U(t,X) € RV, ¥ = (x,y) € R%, t € R, D is a diffusion matrix, F is the
reaction term, which is usually nonlinear, A = d,x + 9, is the Laplace operator and a is
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a parameter (for instance, some catalyst concentration in a chemical reaction) or a group
of parameters.

In this paper, we deal with a particular type of reaction-diffusion equations which are
traditionally called oscillatory systems. These are characterized by the fact that they tend
to produce oscillations in homogeneous situations (i.e., when the term DAU vanishes).
Of particular interest are oscillatory reaction-diffusion systems which tend to produce
spatial homogeneous oscillations. These are systems like (1.1) where the dynamical sys-
tem obtained when one neglects the spatial derivatives (i.e., the Laplace operator) has
an asymptotically stable periodic orbit. To be more precise, we refer to dynamical sys-
tems that undergo a non-degenerate supercritical Hopf bifurcation at (Uy, ag). In this
case, one can derive an equation for the amplitude of the oscillations, A € C, by taking
€2 =a —ap > 0 small, t = &7 and writing the modulation of local oscillations with

frequency w as solutions of (1.1) of the form
U(t,%,a) = Uy + e[A(t, X)e!®Tv + A(t, X)e™'°70] + O(£2),

where bar denotes the complex conjugate. Under generic conditions, performing suitable
scalings and upon neglecting the higher order terms in ¢ (see, for instance, [21, Section 2],
[5], or [22]), the amplitude A(z, X) turns out to satisfy the celebrated complex Ginzburg—
Landau equation (CGL)

3 A=(1+ia)AA+A—(1+iB)A|A%, (1.2)

where A(z, X) € C and «, B are real parameters (depending on F and D). The univer-
sality and ubiquity of CGL have historically produced a large amount of research and
it is one of the most studied nonlinear partial differential systems of equations specially
among the physics community. The CGL equation is also known to exhibit a rich variety
of different pattern solutions whose stability and emergence are still far from being com-
pletely understood (see [7,10,11,27,29,30] for some of the latest achievements and open
problems).

We note that (1.2) has two special features: the solutions are invariant under spatial
translations, i.e., if A(z, X) is a solution, then A(z, X + Xo) does also satisfy equation (1.2)
for any fixed Xo € R?, and it also has gauge symmetry, i.e., /T(t, X) = e'? A(t,X) is a solu-
tion for any ¢ € R.

In this work, we shall focus on some special rigidly rotating solutions of (1.2) called
Archimedean spiral waves. In order to define these solutions, following [29], we consider
first polar coordinates X = (r cos ¢, r sin@) € R? in which equation (1.2) reads

1 1
9,4 = (1+ ia)(afA + oA+ r—za;A) FA-(+ipAlAR,  (13)

where, abusing notation, we denote by the same letter A(¢, r, ¢) the solution in polar
coordinates. To define spiral waves, let us first consider the one-dimensional CGL equa-
tion

3 A=(1+ia)d?A+A—(1+ip)A|A>, reR, (1.4)

and introduce the notion of wave train.
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Definition 1.1. A wave train of (1.3) is a nonconstant solution A(¢, r) of equation (1.4)
of the form
A(t,r) = Ax (2t — kyr), (1.5)

where the profile A« (§) is 2m-periodic, 2 € R\{0} is the frequency of the wave train and
k« € R is the corresponding (spatial) wavenumber.

The particular case of a single mode wave train, namely A(¢,r) = C ol (Q—ksr ), leads
to the well-known relations

C=.1-k2, Q=Q(ks)=-B+k3B—0). (1.6)

The last condition on the frequency is the associated dispersion relation. Then, for any
pair of the parameter values (¢, B) there exists a family of single mode wave trains of (1.4)
of the form given in (1.5) satisfying conditions (1.6), one for each wavenumber k.

Now we define (see Definition 1.2) an n-armed Archimedean spiral wave which,
roughly speaking, is a bounded solution of (1.3) that asymptotically, as r — oo, tends
to a particular wave train (see Figure 1). Spiral waves actually emerge from points where
the amplitude is zero which are usually known as defects [5]. By virtue of the translation
invariance of (1.2), in spiral wave solutions with a single defect, one can place the defect
anywhere in space, in particular at the origin, i.e., A(Z, 6) =0.

The general definition of an n-armed spiral wave solution of the complex Ginzburg—
Landau equation is given in [29].

Definition 1.2. Let n € N. The solution A(z, r, ¢) is a rigidly rotating Archimedean n-
armed spiral wave solution of equation (1.3) if it is a bounded solution of form A(z, r, ¢) =
Ags(r, 2t + ng), defined for r > 0 and ¢ € [0, 277) satisfying

lim max |As(r,¥) — A«(Y —ksr +60(r))| =0
r—>00 y€[0,27]
and
lim max |0y As(r, ) — AL (Y —ksr +6(r))| =0,
r—00 ye[0,27]
where the profile A« (&) defines a wave train of equation (1.4) through A, (2t — k«r),
Ag(r,-) is 2z -periodic and 6 is a smooth function such that lim,_, o, 6'(r) = 0.
The parameter k, is in this case known as the asymptotic wavenumber of the spiral.

Notice that, in a co-rotating frame given by ¥ = Q¢ + n¢ and considering r as
the independent variable, spiral wave solutions can be seen as a heteroclinic orbit, as
represented in Figure 1, connecting the equilibrium point A = 0 with the wave train solu-
tion A.

We will see in Lemma 2.1 that the Ginzburg-Landau equation only possesses wave
trains of a single mode. For this reason, and following the classical literature on spiral
waves in reaction-diffusion equations or A — w systems (see [6,14,15,20,32]), we consider
the following class of Archimedean spiral waves.
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Fig. 1. Representation of the spiral wave solutions of (1.2) as a heteroclinic connection.

Definition 1.3. Let n € N. The solution A(z, r, ) is a rigidly rotating Archimedean 7n-
armed spiral wave with a unique defect and a single mode if A is a solution of (1.3) of the
form

A(t, r, @) = f(r)e! @ +ne+O) (1.7)

with f, © regular (at least €2) for r > 0 satisfying the boundary conditions

f(0) =0, lim f(r) =,/1—k2, ©(0)=0, lim O'(r) = —k.,

and 2, k satisfy the dispersion equation in (1.6). The parameter k. is called, as in Defin-
ition 1.2, the asymptotic wavenumber of the spiral.

Remark 1.4. The boundary condition f(0) = 0 comes from the fact that we are search-
ing spiral waves with one defect located at r = 0 (by the translation property, this is not
a restriction), namely |A(¢, 0, ¢)| = 0. The boundary conditions, as r — 0o, are con-
sequence of Definition 1.2 and (1.6).

There is no need to impose any boundary condition on ® at » = 0 because of the gauge
symmetry of the Ginzburg—Landau solutions. It is a well-known fact [3, 14, 15,20] that the
regularity at r = 0 of ® is equivalent to impose ®'(0) = 0 (see also Remark 2.6). We keep
this redundancy in Definition 1.3 just to emphasize the particular boundary conditions we
deal with.

We introduce the so-called twist parameter g, depending on «, 3,

B—uo
1+ apf

q=ql@p)= (1.8)
which, in particular, is well defined for values of «, B such that | — 8| < 1. As we shall
explain in Section 1.1, the shape of the spiral waves strongly depends on this parameter.
In fact, when ¢ = 0, the solutions of the Ginzburg—Landau equation (1.2) of the form
A(t,X) = e 1 A(t, X) satisfy the “real” Ginzburg-Landau equation

3 A=AA+ A— A|A?, A(t.X) eR.

Our perturbative analysis considers the case in which we are close to the “real” Ginzburg—
Landau equation, that is to say, we deal with values of ¢ which are small.
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The main result of this paper reads as follows.

Theorem 1.5. Fix n € N. Then there exist a constant Cy, only depending on n, gy > 0
small enough and a unique odd function ««: (—qo, qo) — R of the form

2 _Cn_, _ _m_
Kkx(q) = C_Ie n? VT mial (1 4+ O(|loglg||™"), ¢ #0, (1.9)

with the Euler—Mascheroni constant y, such that the complex Ginzburg—Landau equa-
tion (1.3) for ¢ = q(«, B) € (—qo, qo) (defined in (1.8)) possesses rigidly rotating Archi-
medean n-armed spiral wave solutions

At r,0:q) = £(r; q)ei(9t+n¢+®(r;q))

as in Definition 1.3 if and only if the asymptotic wavenumber of the spiral wave satisfies
k« = k«(q) as given in (1.9) and the frequency 2 satisfies (1.6).
In addition, for any q € (—qo, qo), we have that ®'(r; q) has constant sign, £(r; q) is
an increasing function,
f(r;q) >0, forr >0,

and, as a consequence, lim, ., t'(r;q) = 0.

Remark 1.6. The Ginzburg-Landau equation (1.3) depends on the parameters o, 8 € R.
However, the spiral waves of the form in Definition 1.3 depend only on the twist para-
meter g given in (1.8).

In the literature, the parameter ¢ = g(«, B) is often taken positive due to the fact that
if A is a solution of equation (1.3) with parameters «, 8, then A (complex conjugate) is
a solution of (1.3) with parameters —«, —f. Therefore, if 8 —« < 0, then —f — (—«) > 0.
That is, either 4 or A is a solution of a Ginzburg-Landau equation with parameters o, B
satisfying 8 —a > 0.

IfA(t,r)= CetQ1=k«r) is 4 wave train, then CelQ21+k«) ig als0 a wave train because
the dispersion relation (1.6) does not depend on the sign of k. That is, if k, is a (spatial)
wavenumber, also —k, is a wavenumber with the same frequency Q. By the definition
of asymptotic wavenumber, this fact does not imply that k. and —k, are both asymptotic
wavenumbers of two different Archimedean spiral waves of the same Ginzburg-Landau
equation (1.3) with parameters «, 8. Instead of this, for spiral waves as in Definition 1.3,
if k. is the asymptotic wavenumber associated to the spiral wave A(¢, r, ¢; q) of equa-
tion (1.3) with parameters «, 8 (and ¢ = ¢(«, B)), then —k, is the asymptotic wavenumber
associated to the spiral wave A(z,r, ¢; —q) of equation (1.3) with parameters —c, —f (and

q(=a,—p) = —q(a. p)).

Remark 1.7. We emphasize that the results of Theorem 1.5 ensure the existence of a con-
stant M (depending on g and n) such that for all ¢ € (—qo, qo), one has
q,%%+

2¢ Vel i, (q) — 1| <

[loglgl|’

That is, we rigorously bound the relative error of k.(q) with respect to its dominant
term.
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The simple description of spiral wave patterns of (1.2) clashes with the complexity of
obtaining rigorous results on their existence, stability or emergence. In fact, the existence
and uniqueness of k4 (g) and, as a consequence, of the rotational frequency of the pat-
tern €2, is a classical result that was obtained in the eighties by Kopell and Howard in [20].
At the same time, the physics community started showing interest in this type of phenom-
ena and several authors used formal perturbation analysis techniques to describe spiral
wave solutions (see, for instance, [6, 14] or [32]). More relevantly, Greenberg in [14] and
Hagan in [15] used formal techniques of matched asymptotic expansions to conjecture an
asymptotic formula for k.« = k. (g) when ¢ is small. The conjectured expression (1.9) of
the wavenumber k(¢q), has been widely used in the literature and checked numerically in
innumerable occasions (see, for instance, [5,8,9,23,26] or [31]) but it has never been rig-
orously proven, which is the main purpose of the present paper. Furthermore, and as far as
the authors know, in the previous works where expression (1.9) was formally derived, the
order of the error was either not mentioned or was considered (without proof) to be @ (g).

The precise computation of the constants in the exponentially small terms arising
in (1.9) was already a challenge to overcome when the formal derivation was obtained
and, in fact, 30 years later in [4], a new simpler formal asymptotic scheme was used. It is
therefore not surprising that it has taken more than 40 years to finally obtain a rigorous
proof of expression (1.9) (see Remark 1.7).

The novelty of our approach is to introduce a suitable functional setting which allows
us to prove that a necessary and sufficient condition for the spiral waves to exist is that the
associated wavenumber k. has to be exactly «x«(g) as in (1.9). This functional approach
has furthermore allowed to provide a very detailed description of the structure of the
whole spiral wave solutions, of which several features, such as positivity or monotonicity
among many others, have now been rigorously established.

Archimedean spiral wave patterns are present in some other systems. In particular,
there is another type of reaction-diffusion systems, the so-called A — @ systems, which
have been classically used to investigate rotating spiral wave patterns

I (ur) _ (A(f) —o(f)) (w1 ui
()= (i ) () o () o
where u1 (¢, X), u2(f, X) € R and w(-), A(-) are real functions of the modulus

— [y2 1,2
J = Juy+us.

Actually, this system was first introduced by Kopell and Howard in [18] as a model to
describe plane wave solutions in oscillatory reaction diffusion systems. Not much later,
the same authors in [17,19] and [20], under some assumptions on A, w, rigorously proved
the existence and uniqueness of spiral wave solutions of (1.10) with a single mode. Later,
in [3], the authors proved that, in fact, the asymptotic wavenumber k., = k«(g) has to
be a flat function of the (small) parameter g. The particularity of this system is that the
equations satisfied by spiral waves turn out to be exactly the same as the ones for the
CGL equation when A(z) = 1 — z2 and w(z) = Q + ¢(1 — k? — z2), as we show later in
Remark 2.4.
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1.1. Spiral patterns

By Definition 1.2 of Archimedean spiral waves, spiral wave solutions of form (1.7) pro-
vided by Theorem 1.5, have to tend, for any given ¥ = Qf 4+ np, asr — oo, to

Ax(Q + ng — kur + 0(r)) = Ce'@1tno—kur+6()

with A (§) defining a wave train of (1.4) as in Definition 1.1, that is, C, Q2 € R satisfy-
ing (1.6) and 8'(r) — 0 as r — oco. As we have mentioned, we will see in Section 2 that, in
fact, these are the only possible wave trains of (1.4), namely, wave trains of equation (1.4)
only have one mode. The contour lines of A,

Re(Ax (2 4+ ng — kyr)e ) = cos(ng — kyr) = ¢

for any real constant ¢ (or equivalently ng — k.r = ¢’), are Archimedean spirals whose
wavelength L (distance between two spiral arms) is given by

_ 2nn

Ikl

The parameter n € Z is known as the winding number of the spiral and it represents the
number of times the spiral intersects any given circle of radius r¢. In Figure 2, we represent
n-armed Archimedean spirals for different winding numbers 7.

(@ n=1 b)n=2

(©)n=3 dn=4

Fig. 2. Representation of two Archimedean n-armed spiral waves for different winding numbers 7.
For a given winding number, these two spirals correspond to the contour lines cos(—kxr + ng) =
¢ # +£1 in Cartesian coordinates. When ¢ = +1, only one spiral survives.
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At this point, we must emphasize the role of the parameter ¢ in (1.8) in the shape of
the spiral wave
A(t,r,0:q) = (r; q)e' @1 +net0@:0)

provided in Theorem 1.5. Recall that the asymptotic wavenumber of the spiral wave is
kyx = k«(q) with k«(q) defined in (1.9). Let A, be the wave train associated to the spiral
wave A as in Definition 1.2. Then, from (1.6),

. L ~ 2
rlglgof(r,q) =4/1—-k2.

Moreover, (1.9) shows that lim,—,¢ kx(¢) = 0, and therefore lim, . ®'(r;0) = 0. In fact,
when ¢ = 0, that is, « = B (see (1.8)), again from the dispersion equation (1.6) one has
C = 1and Q = —p. In this case, the solutions of the Ginzburg-Landau equation (1.3) of
the form A(z, r, @) := e"m//f(r, @) are such that A satisfies

PO P T
GA+ -0, A+ 50,4+ A— A|A]? =0.
r r

For any n € N, this equation has a solution of the form A (r, @) = f(r)e'™® with £(0) = 0,
lim, o f(r) = 1. Indeed, the equation

2
LY (L S
r r

is a particular case of the equation studied in [2], proving that there exists a unique solution
satisfying the conditions in Theorem 1.5 when ¢ = 0. For instance, plotting Re(;f (r,))
for n = 5 with respect to X = (r cos ¢, r sin @) for r >> 1 big enough, one obtains the
surface depicted in the left image of Figure 3.

45

(@ qg=0 (b) g #0

Fig. 3. For A(t, r, ¢), a spiral wave solution of (1.3) with n = 5, the depicted surfaces represent the
real part of ff(r, @) = A(t, r,¢)e! ¥ with respect to X = (r cos ¢, r sin @) if r is big enough. The
vertical axis corresponds to Re(/f (r, ¢)) and the core of both surfaces corresponds to r = r¢ with rg
big enough. Observe the arms that can be found emanating from the core of the spirals. Compare
with Figure 2.
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We note that the contour lines of Re(/f (r,¢)), namely f(r) cosng = c, tend as r — oo
to be straight lines emanating from the core of the spiral which correspond to different
arms: when ¢ = %1, we have exactly n = 5 straight lines whereas for ¢ # %1, we have
2n = 10 of them.

However, if ¢ # 0, ©(r; g) is not constant; the contour lines bend and tend, as r — oo,
to become the already mentioned Archimedean spirals, as the ones depicted in the right
image of Figure 3, corresponding to n = 5. Again, one can see in the right image of
Figure 3 the different arms emanating from the core of the spiral. This is why g is usually
denoted as the rwist parameter of the spiral.

The paper is organized as follows. First, in Section 2 we prove that the only associ-
ated wave trains (Definition 1.1) have a single mode (Lemma 2.1) and obtain a system
of ordinary differential equations that f and ® have to satisfy in order for A, as defined
in (1.7), to be a rigidly rotating Archimedean n-armed spiral wave. In addition, we set the
boundary conditions which characterize f and ®’ (see Lemma 2.3). Finally, we state The-
orem 2.5, about the existence of such solutions, and we prove Theorem 1.5 as a corollary
of Theorem 2.5.

The rest of the paper is devoted to proving Theorem 2.5. First, in Section 3 we explain
the strategy we follow to prove Theorem 2.5 as well as some heuristic arguments which
motivate the asymptotic expression for the asymptotic wavenumber k. Section 4 is devot-
ed to the proof of Theorem 2.5 using rigorous matching methods. For that, Theorems 4.3
and 4.5 prove the existence of families of solutions and, finally, Theorem 4.7 proves the
desired formula for the asymptotic wavenumber. The more technical Sections 5 and 6 deal
with the proof of Theorems 4.3 and 4.5, respectively.

2. Spiral waves as solutions of ordinary differential equations
The next lemma characterizes the form of the possible wave train solutions of equa-
tions (1.4).

Lemma 2.1. The wave trains associated to (1.3) have a unique mode, namely, they are
of the form A(t,r) = Ce' @k yyith k, € R, and the constants C, Q2 # 0 satisfy rela-
tions (1.6).

Proof. Assume A«(§) =) ,cz aleit€ 4l ¢ C, and let A(z, r) be the wave train defined
through A, thatis, A(f,r) = A«(2t — k4r). Since A(z, r) has to be a solution of (1.4),
we have, forall £ € Z,

i0Qal = —(1 + i)k2e2a¥ + ol — (1 + iB)| 4|20t

with |A|2 = |A(t,r)|? = A(t,r)A(t, r) the complex modulus. Assume até1], gl¢2] £ 0 for
some £1, {». Then

09 =—(14+i0k23 +1—(1+ip)A]%
680 =—(14+i0k2+1—(1+ip) A
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This implies

Qey = —ak202 — BIA]?, 0= —k202 +1—|A]%,

Qt, = —ak202 — BlA?, 0= —k202+1—|A
and as a consequence 0 = —l/c\f(ﬂf — £2) so, if ku £0,0; = £4,. If ky = 0, then we
have Q(£; — £5) = 0 so £; = £, and we are done (recall that Q2 # 0). If £; = —{,, we
deduce Q¢; = Qf, = —Q£; which implies that £; = 0 and hence A(¢, r) is constant
which is a contradiction with Definition 1.1. Therefore, £; = £, and A(¢, r) has only

one mode indexed by £. Defining = £ and k, = Ck,, the wave train is expressed as
A(t,r) = Ce' @k« Tmposing that A(t, r) is a solution of (1.4), we obtain

Q = —ak. — BlA]?, 0= —k2+1—|A].
Using that |A| = C, we have C = Mandﬂ =B +k2(B —a). |
We fix now C, Q and k, such that they satisfy the relations in (1.6), namely
C’=1-k2, Q=-B+k*B—-a), 2.1)
and the associated wave train is
A (Qt — kyr) = Ce!C1Fx7)

By Lemma 2.1, in this paper we look for Archimedean n-armed spiral wave with a unique
defect and a single mode satisfying Definition 1.3,

A(t, 1) = fi(r; g)e! (FrHne+ O (2.2)
with
lim f(r;q) = /1 —k2, lim O'(r;q) = —k«. (2.3)
r—00 r—00

Remark 2.2. By Definition 1.2, an Archimedean spiral wave, associated to the wave train
Ax(Qt — kyr) = Ce!@1=kx7) gatisfies

A(t, r, (p) — AS(}’, Qr + n(p) — Za[(](’,)ei[(ﬂtﬂ—nw) — Z f[L’] (r)eiﬁ(Ql-i-n(p)-‘rie@(r)
LeZ LeZ

with f1(r) > 0forall £ € Z,
lim | () - C| = lim [aM(r)e D —C| =0
r—o00 r—o00
with 6y (r) such that lim, o 81 (r) = —k«, and, for £ # 1,
lim a[E](r) =0.
rF—>0o0

The spiral waves we are looking for, that is, of the form provided in (2.2) given in Defini-
tion 1.3, are the ones where alfl = 0, for £ # 1. These single mode solutions are the ones
studied in previous works of the authors [3, 14, 15,20].
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We look for the equations that f and ® have to satisfy in order for A(z, r, ¢) of the
form in (2.2) to be a solution of (1.3). We recall the definition of ¢ provided in (1.8)

_ P«
1 4ap’

Lemma 2.3. Assume that |@ — | < 1. Let Q2 # 0, let k be constants satisfying (2.1) and
A(t,r,¢:q) = £(r; q)e! @ F19+0WD) for some functions £ and ©. We introduce

o= (i)

q (2.4)

and

120 = (152 barig. xiri) = ©Garig).

Then A(t,r, ¢;q) is a solution of (1.3) if and only if f and v = y' satisfy the ordinary
differential equations

£+ 7 - f’j—j +f(1 = f2=v?) =0, (2.60)
1+ f§ +2fv+qf(— f2—k* =0 (2.6b)
with k € [—1, 1] satisfying the relations
q(l—k2)=—9+a e — k

1-Qa’ 7 (1—ag(1—k2)d

Proof. We first note that, for |« — | < 1, we have 1 + af > 0. In addition, 1 — Qo >0.
Indeed, according to (2.1),

1-Qa=1l—a(-B+ki(f—a)=14+af —afk? +a’k2=1+af(l —k2) + a?k2.

Therefore, if @f > 0, using that k. < 1 (see again (2.1)), we have 1 — Qo > 0. When
af < 0,since 1 + aff > 0,

1-Qa=1—|af|(1 -k +a?k2>1—|af|=1+ap > 0.
Consider the rotating frame with the scalings
B(r.¢) = 8¢ ¥ A(t,ar, @) = f(r;q)e! EreFaa) 2.7

where f(r;q) = §f(ar;q) and x(r;q) = O(ar;q).
Since A is solution of (1.3), B is a solution of

I I 1-iQ I +i
28+ 0,8+ Lap 2T g g2 TP
r r 1

B|B|* =0,

+ia l+ia
or equivalently

l—Qa—i(Q—i—a)B_ 2yl +afp+i(f—a)

B|B|*=0.
1+ a2 C—mitay  DIBI

1 1
2 2 2
0;B + rB,B—}— r28“’B +a
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We define the constants

Q+oa Q+a 52— 2l+af  1+ap

1+a2) 1-Qa “Tre? T 1-qa’

Q=—a?

where, in the last equalities, we have used definition (2.5) of a. Then, since

» B—«a _ B—a _
820 +a2) 14+af

the function B satisfies the equation

a q,

1 1 .
2B + ;a,B + r—za;B +(1+Qi)B—(1+4qi)B|B*=0

and, substituting the form of B in (2.7), we obtain that f and y satisfy the ordinary
differential equations

/ 2

flH = [ fU= =GO =0,
1 ~
200+ A+ S+ —af? =0

Notice that, by (2.1),
(B —a)
1 - Qu«
and then  and ¢ have the same sign as 8 — «. Introducing v = y’ and k € [—1, 1] by the
relation Q = q(1 — k?), the above equations are the ones in (2.6).

To finish, we deduce the relation between k. and k. First, we note that, using the
definition of ¢,

Q= (1—k2)

1+aB—a(B—a)(l —k?)

1-Qa=1-qa(l —k?) =

1+ af
1 2]_ 2 2
_ + o (1 —k*) + aBk > 0.
1+ ap
Then, since R
a+Q  a+q(1-k?)

Q=

_l—ozfz B _1—0“1(1—](2),
using that Q@ = —B + k2(B — ),

B—aBq(l —k*) —a—q(1-k?) B—a—q(l-k>)(+ap)
1 —ag(l —k?) N 1 —ag(l —k2)

ki(f—a) =
When a # B, by definition of g, we have

- &
* T l—aq(l —k2)’

When g = 0, we simply define k = k. which is consistent with the above definitions. =
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Remark 2.4. Spiral wave solutions of A — w systems in (1.10) can be written in terms
of a system of ordinary differential equations by writing system (1.10) in complex form.
That is, denoting

A=u; +iua,

it satisfies
A= A(f)+io(f)A+ AA.

Then considering the change to polar coordinates X = (r cos ¢, r sin ¢) and looking for
solutions of the form provided in (1.7) yield the following system of ordinary differential

equations:
14 2

f 4= f o f0D = 0D =0,
(2.8)

!
e +fx7 +2f Y + flo(f)— Q) = 0.
Equations (2.6) correspond to equations (2.8) in the particular case where
AMz)=1 — 72 and w(z)=Q +q( — k2 _22).

An important observation is that when ¢ = 0 (see (2.4) for the definition of g), equa-
tion (2.6b) simply reads

_ (rf?)
=7 =
and therefore r f2v must be constant. Hence, given that the solutions we are looking for

must be bounded at r = 0, the only possible solution is v = 0. Also, substituting in (2.6a)
one finds that

fv’+f;+2f/v 0

f(r:0) = fo(r)
is the solution of
w o Je 0/ n? 2
o+ = fogz + foll = f5) =0. (2.9)
In the previous paper of the first two authors [2] (see also [3]), the existence of solutions
of the above differential equation was stated (in fact, a more general set of differential

equations was considered) under the boundary conditions

fo(0) =0, lim fo(r) =1, (2.10)
r—o00
satisfying in addition
n?
fo)=1——+00™, r— oo (2.11)
2r2

Using the previous analysis, we will see that Theorem 1.5 is a straightforward con-
sequence of the following result which, moreover, provides more detailed information
on the constant C,,.
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Theorem 2.5. Let n € N. There exist qo > 0 and a function «: [0, go] — R satisfying
k(0) =0, and

2 ¢, _ .
K(g)= e n*Te (1 + O(logg|™)

with the Euler—Mascheroni constant y and

G = rli)ngo (/0 §f02(§')(1 - foz(E)) dg —n?log r),

where fq is the solution of (2.9) and (2.10), such that if k = k(q), then system (2.6)
subject to the set of boundary conditions

f(0:9) = v(0;9) =0,
lim f(r;q) =+~1—k%2, lim v(r;q) = —k,
r—00 r—oo

has a solution.
In addition, such a solution satisfies that, for r > 0, v(r; q) has constant sign, for q
fixed, f(r;q) is an increasing function, f(r;q) > 0 and, as a consequence,

: /(e —
lim f'(r:q) =0.

Remark 2.6. The extra boundary condition lim, . f'(r;¢) = 0 does not need to be
imposed, which, as we will see along the proof of Theorem 2.5, is a consequence of
imposing that the solution satisfies lim, oo (f(r;q), v(r;q)) = (V1 — k2, —k).

As we claimed in Remark 1.4, if v(0; ¢) € R, then v(0; ¢) = 0. Indeed, let us first note
that from (2.6a) we have (rf’) = fn?r=! —rf(1 — f2? —v?), and then we deduce that,
forO0 <r < 1, f(r;q)- f'(r;q) > 0. Therefore, rewriting equation (2.6b) as

(rvf?) = —qrf?(q - f* = k).

since v is defined at r = 0, we have

wri) = =t [ PG00 - S e - ) e
rf2(riq) Jo
We conclude from 1’Hoépital’s rule that v(0; g) = 0.

Proof of Theorem 1.5 as a corollary of Theorem 2.5. First, emphasize the fact that equa-
tions (2.6) remain unaltered when (v, ¢) is substituted by (—v, —¢). That is, v(r; —|q|) =
—v(r;|q|). Then, when ¢ < 0, we can define k(q) = —k(|¢|) and, as a consequence, k is
an odd function on (—go, go). Therefore, one can consider ¢ > 0 without loss of generality.
From property (2.11) of fy as r — o0, it is clear that the constant C,, € R.
By Theorem 2.5 and Lemma 2.3, there exists a spiral wave of form (1.7) satisfying
lim, 0 f'(r;q) = 0, £(0;g) = ®'(0;q) = 0 and

) ) 1 —Qa\3 ) b 1 —Qa\3
Jim 17:9) = VT=2@({05) - Jim @i = @) z)




M. Aguareles, 1. Baldom4, T. M-Seara 16

By Lemma 2.3,
kx(q) = k(q)(1 —ag(l — k()2

Since k«(q) has the same first-order expression as k(q) provided g is small enough,
the expression for x4 (q) in Theorem 1.5 follows from the one for «(q).

To guarantee that f and ® satisfy the required asymptotic conditions provided in (2.3),
we need to check that kx = x«(g) and k = k(q) satisfy

1 - Qo Tk :_k(l—Qa)%

1—k2=0-k? ,
»=( )1+aﬁ T2

where expression (2.1) for © has been used to derive the expression for 1 — k2. Indeed,
from Lemma 2.3 and using definition (2.4) of ¢, we have, if ¢ # 0,

e KB -a) 1+ ap)
q 1 - Qua 1-Qa’

1—k*= =(1-k3})

and the first equality is proven. With respect to the second one, we have to prove that
(1-Qa)(1 —ag(l1—k?) =1+a>
The equality is satisfied for « = 0. When « # 0, we have to prove
0=—(Q+q(1-k?))+a(Qq(1—-k>-1)=—-(Q+a)—q(1 —k>1 - Qa),

which from Lemma 2.3 is true.

For the uniqueness of the function k. (g), we use [20, Theorem 3.1] and [3, Lem-
ma 2.1], related to A — w systems as (2.8), with the assumptions A(1) =0, 1'(z), @’ (z) <0,
for z € (0, 1] and |@’(z)| = O(|¢q|). We note that our case corresponds to A(z) = 1 — z2
and w(z) = Q + g(1 — k? — z?) satisfying these conditions. The result in [3] says that if
system (2.8) has a solution with boundary conditions given by

lim f(r) = foo, lim f'(r)=0, lim v(r) = veo,
r—>00 r—>00 r—00

then fo is such that w(foo) = Q and vgo = A(foo). The result in [20] states that there
exists a unique value, voo(q), for ¢ small enough, such that system (2.8) has solution with
boundary conditions

lim f(r) = foo,  lim f7(r) =0, lim x'(r) = veo(q),

and f, v regular at r = 0. Applying these results to our case, we obtain foo =+ 1— k2
and v, = —k and the results in [20] gives the uniqueness result in Theorem 1.5. [

After more than forty years, Theorems 2.5 and 1.5 provide a rigorous proof of the
explicit asymptotic expressions widely used for k = «(g) and k. = k«(q) as well as
rigorous bounds for their relative errors. Furthermore, the rigorous matching scheme used
in this paper opens the door to showing without much extra effort the equivalent result for
spiral waves in the more general setting of A — w systems.
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3. Main ideas in the proof of Theorem 2.5

To prove Theorem 2.5, we need to study the existence of solutions of equations (2.6) with
boundary conditions

f(0:k,q) =v(0;k.q) =0,

31
lim f(r;k,q) =~1—k2, lim v(r;k,q) = —k. G-1)
r—00 r—00

Observe that the functions ( f, f”, v) satisfy a system of first-order differential equations
of dimension three. It is then natural to expect that no solution exists satisfying the four
boundary conditions (3.1), except for a “privileged” value of k. Theorem 2.5 proves that
this intuition is true.

The strategy of the proof is as follows. We split the domain r > 0 in two regions
limited by a convenient value ro > 1:

e A far-field (outer region) defined as
r € [rg,00), where lim f(r;k,q) = v1—k2, lim v(r;k,q) = -k (3.2)
r—00 r—o0

are the only boundary conditions that are imposed.

e A core-field (inner region) defined as
r €[0,r0], where f(0;k,q) =v(0;k,q) =0 (3.3)

are the boundary conditions.
The specific value of rg = ro(gq) = %eg with p = (“qu)% will be explained in Sec-
tion 4.3.
We shall obtain two families of solutions (see Theorems 4.3 and 4.5), depending on
two free parameters a, b € R, namely:
o [(r,ak,q), d, fO(r,a:k, q), v°"(r,a: k, q) for the outer region satisfying (3.2),
and
o fi"r,b;k,q),d, f"(r,b:k,q), vI"(r,b; k, q) for the inner region satisfying (3.3),

which, upon matching them in the common point r = ry = ro(g), provides a system with
three equations and three unknowns (a, b, k):

f™ro.bik.q) = f*"(ro.a:k.q),
O f™(ro.b:k.q) = 8, f " (ro. as k. q).
v (ro, bk, q) = v°"(ro. a5 k. q).
Therefore, having fixed g, this system provides a solution (a., bx, k+«). See Figure 4 for

a representation of this strategy. Consequently, for the value of k = k., we have a solution
of system (2.6) defined for all r > 0 as

n(r by ke, q), V(1. bys ke, q))  if r € [0, 1],
kg virikg) = ¢ D0 e
(fOUr, as; ks, q), v (r, ax; ki, q))  if r > 1o,
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vi*(r,bs k, q)

out .k
S (r,a k., q) v (r, a3k, q)

S, bk, q)

[

ro = %e ro = %eg

(a) For a given k # k., the families of solutions ( f°"(r,a;k,q), v°"'(r,a; k,q)) (in light blue) and
(fi(t,b;k, q), v'"(r,b; k, q)) (in dark blue). In magenta the horizontal lines f = ~/'1 — k2 (for
f-component) and v = —k (for the v-component). Notice that, in general, they do not match in
a smooth way at r = ryp.

— v (r, b; k., q)

S, a ks, q)

v(r, a3k, q)

S, bsks, q

0
ro=%e ro=%e‘1

(b) For k = ks, the corresponding families of solutions defined in the outer and inner regions,
labelled by a, b, respectively. The solution of the problem, corresponding to ax, b« (and k), is in
red.

D

Fig. 4. A schematic representation of the matching procedure. In blue are depicted several
solutions(fi“(r, b; k,q), vi"(r, b; k, q)) for different values of b, in the inner region, [0, ro], and
the counterpart for the outer region, namely [rg, 00), labelled by a. All of them intersect at r = rg,
but there is only one combination of these solutions (in red) that is differentiable at [0, co) which
corresponds to the selected wavenumber k.

satisfying the boundary conditions (3.1). This proves the existence result in Theorem 2.5
taking k(q) = kx.

Before stating the main results which provide Theorem 2.5, in Section 4, in the next
subsection we give some intuition about how we obtain the value of k = «(q).

3.1. The asymptotic expression for k = k(q)

One can find in the literature different heuristic arguments, based on (formal) matched
asymptotic expansions techniques, which motivate the particular asymptotic expression
for the parameter k,

k =k(q) = ge*ﬁ(l +0(1)) (3.5)

with & € R a parameter independent of ¢ (see, for instance, [15]). However, in this sec-
tion we explain the particular deduction that is more consistent with the rigorous proof
provided in the present work which we obtain by performing a change of parameter
k = Le™2na and finding the value of w that solves the problem. Furthermore, a nov-
elty of our proof is that it also provides that the relative error in expression (3.5) is in fact

O(llogg|™).
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We begin, as we explained at the beginning of Section 3, by looking for solutions of
equations (2.6) which satisfy the boundary conditions (3.2) at r = oo, which we shall
denote as the outer solutions. We introduce a new parameter

e=kq (3.6)
and perform the scaling
R R
R=¢r, V(R)= k_1v<—), F(R) = f(—) (3.7)
e e
to equations (2.6). We obtain
F’ n?
2 " o - _ 2 1.2y2 —
P (F + 2 FR2>+F(1 F2_|2y?) =, (3.82)

V VF'
2 /
|4 —+2
8( TRTTE

- 1) +q*(1— F?) = 0. (3.8b)

If & # 0, one can use the actual value of 1 — F? provided by equation (3.8a) to recombine
equations (3.8a) and (3.8b) to obtain the equivalent system

F’ n2
YA _ 2 _p2p2y —
¢ (F + FR2)+F(1 F2—k*V?) =0, (3.92)
1% n? q* F’ F
V/ o VZ 27 — 1= = F” — ) =2V —. 3.9b
+ RV F( + R) Foo G

By virtue of (3.2), we look for bounded solutions of equations (3.9) satisfying
lim F(R;k,q) =~1—k2, 1lim V(R;k,q) = —1. (3.10)
R—o0 R—00

Following a similar method to that in Proposition 4.2 one can check that the formal asymp-
totic expansions of bounded solutions when R — oo satisfy

k? &2
F(Rk,g) ~~vV1—-k2— —oro—— + O — as R — oo,
( 9 2R/1—k2 (RZ) 3.1
1 g2
V(R,k,q)fv—l—ﬁ%—@(ﬁ) as R — oo.

We note that equation (3.9a) is singular in &. In particular, if ¢ = 0, and therefore k = 0
(recall (3.6)), either F = 0, which is a trivial solution we are not interested in, or 1 —
F2(R) = 0, which also gives a noninteresting solution. But, if we write equation (3.9a) as
F’ e2n?
2 " 2 2172
2(F +—)+F(——+1—F —k V)=0,
( R R?

. . 2
we observe that the asymptotic expansions (3.11) suggest that the terms £ 15 " and £2F”

are of higher order in k, and therefore in &, than the rest. Therefore, we will take as first
approximation the solution of

e2n?

—F+1—F2—k21/2=0,
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which gives our candidate to be the main part of the outer solution we are looking for,

2
Fo(R) = Fo(r;k,q) = \/1 —k2VE(R;q) —82%. (3.12)

Then, neglecting again the terms depending on F’ and F” in equation (3.9b), a natural
definition for V} is the solution of the Riccati equation

/ Vo 2 2 n? : .
Vo+ —=+Vy+q°— —1=0, suchthat lim Vo(R;q) = —1. (3.13)
R R2 R—o0

Observe that the boundary condition for V gives
lim Fo(R:k.q) = V1 —k2,
R—o0

as expected.
A solution of (3.13) is given by (see, for instance, [1])

K, (R)

Vo(R:q) = ®)
ing

(3.14)

with K;,, the modified Bessel function of the second kind. It is a well-known fact that

(see [1D),
Ky (R) = ,/%e—"(l +O(R™Y), asR — oo,

for any v € C, where O(R™!) is uniform as v — 0. Therefore, the functions (Fp. Vo)
satisfy the boundary conditions (3.10).
We go back to our original variables through scaling (3.7) and define

fo(rik,q) = Fo(er;k,q) = Fo(kqr;k,q),

out (3.15)
vo (rik.q) = kVo(er:q) = kVo(kqr:q),

which satisfy
lim vg"(r;k,q) = —k, lim f3"(r;k,q) = V1 —k2. (3.16)
r—>00 r—>00

The precise properties of the dominant terms f;"!, vg" will be given in Proposition 4.2.

An important observation if » 3> 1, but kr is small enough, is that vgm(r; k,q) has
the following asymptotic expansion (a rigorous proof of this fact will be done in Proposi-
tion 4.2, see (4.3)):

n T
v (rik,q) = - tan(nq logr + nglogkqg + 57~ Ho,nq>[1 + 0(q?)]

with g g = arg(T'(1 +ing)) = —ynq + O(¢?), T is the Gamma function, and y is the
Euler—Mascheroni constant.

We now deal with the inner solutions of (2.6) departing the origin and satisfying
f(0;k,q) = v(0; k,q) = 0. For moderate values of r, the inner problem is perturbative
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with respect to the parameter ¢. For that reason, to define the dominant term of the inner
solutions we first consider the case ¢ = 0. Let us now recall that in [3] it was proven
that, when g = 0, system (2.6) has a solution ( f, v) with boundary conditions (3.1) if and
only if k = k(0) = 0. In this case, v = v(r;0,0) = 0 and fo(r) = f(r;0,0) satisfies the
boundary conditions (2.10) and the second order differential equation (2.9),

2
S B  R- =0 pO) =0 dm =1 G

As we already mentioned, the existence and properties of f; were studied in the previous
work of the first two authors [2].
As v(r;0,0) = 0, we write v(r; k,q) = qv(r; k, q) so system (2.6) reads

f/ n2

Ik S E A= g =0

ff)’+f;+2ﬁf’+f(1—f2—k2):0.

Let us now consider ( fo(r), vo(7; k)), the unique solution of this system when ¢ = 0
satisfying (3.17) and

fo
+ — +2U0
fo

+ (1= f§—k*) =0, v(0;k)=0. (3.18)
In [2], it was proven that fo(r) > 0 for r > 0 and fo(r) ~ aor”, as r — 0, thus, the
function

vo(rik) = - f() / E12(6)(1— f2(6) — k2) de (3.19)
0

satisfies (3.18) and vy (0; k) = 0. We then define the functions, whose properties are stated
in Proposition 4.4,

0"(r) = fo(r), vg'(rik,q) = quo(rik). (3.20)
In Proposition 4.4, it will be proven that, if » > 1 but kr is small enough, the function
vir(r; k, q) has the following asymptotic expansion, see (4.11):

: n?(1 + k? C k2
v (rik,q) = —q%logr + an 2qr +q0@F3logr)

+qk?0(r™) (3.21)

with C, defined in Theorem 2.5.

As we emphasize, we expect the functions vg™ and vi)“ to be the first-order of the
functions v°" and v'™ in the outer and inner domains of r. Therefore, a natural request is
that they “coincide up to first-order” in some large enough intermediate point ro such that
kro and ¢ log ro are still small enough quantities. With these hypotheses and using the
previous asymptotic expansion (3.21), we obtain

vi,“(ro;k,q) = j—o[—nzlog ro + C, + HOT],
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where the higher-order terms (HOT) are small provided kr is small. With respect to vg",
using that 0 ng = —ynq + O(q?), we have
n b4

v (ro: k. q) = ri[—a tan(anOg ro +nglogkq + = +nqy + 0(¢?)[1 + (9(612)]]-

0
Observe thatif nglogkq + % = O(q) = mq, upon Taylor expanding the tangent function,
one obtains

v (rosk,q) = —i[n2 logrg + nm + n?y + HOT]

ro

and then it is possible to have vg"(ro) — vg‘(ro) = 0 because the “large” term n? log r is
cancelled.

The last observation of this section is that taking kg = pe™ 2na givesnglogkq + 5 =
ngqlog i = O(q). For this reason, during the proof of Theorem 2.5 in the rest of the paper,
we will rewrite the parameter k using the expression

kg = pe 2, (3.22)

and we will prove that, for g small enough, there exists a value of it independent of ¢ such
that, for k given by (3.22) with u = 1 + @ (|logg|™"), (2.6) has a solution satisfying the
required asymptotic conditions (3.1).

4. Proof of Theorem 2.5: Matching argument

In order to prove Theorem 2.5 following the strategy explained in Section 3, we provide
the precise statements about the existence of the families of solutions (f°", v°") in the
outer region (3.2) (Section 4.1) and (™, v'") in the inner region (3.3) (Section 4.2).
In addition, since our method relies on finding ( £°", v°") and ( f™, v'") near the dominant
terms (f@™, vg™) and (fJ", viM), given in (3.15) and (3.20), respectively, we set all the
properties of these dominant terms in Proposition 4.2 and 4.4, respectively. After that,
in Sections 4.3 and 4.4, the rigorous matching of the dominant terms is done. Finally,
in Section 4.5, we finish the proof of Theorem 2.5.

Let us set some conventions that we will use in the sequel.

e We denote by M a generic constant independent of ¢, k and consequently on &
(see (3.6)), that can (and will) change its value throughout the text.

e  When the notation () (-) is used, it means that the terms are bounded uniformly every-
where the function is studied. That is, if h, h: Uy C R¢ — R/, then, for z € Uy,

h(z) = O(h(z)) & |h(2)| = M|h(z)] 4.1)
for some constant M that only depends on Uy. If it is needed, the domain Uy will be

restricted without special mention.

e If A = A(A) with A, A real parameters, we will say a function h(z, A) continuously
depends on A if h(z, A) := h(z, A(1)) is continuous with respect to A. For instance,
we will say that vz)" (r; k, q) is continuous with respect to u (see (3.22)).
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[m _ 42 -1 1
Ky(z) = Ze 2(1 + 3 + (9(2—2)) veC |z] > zo, |arg(z)| < 37”

z

_ /.t 1 13
I,(z) = Ee (1—1—(9(;)) veC |z| > zo, larg(z)| < F

Kv(z)wél"(u)(%z)_v Rev >0 |z| <z1,z € C\[—00,0]
Iﬂz)»»ﬁ(%z)v W ¢N  |z] <21,z € C\[~00,0]

Tab. 1. Asymptotic expansions of the modified Bessel functions Ky, I, when z — oo and z — 0.
The values zg > 1 and 0 < z; < 1 depend on v.

The modified Bessel functions 7, K,, see [1], play an important role in our proofs.
We pay special attention to their asymptotic behaviour. Table | summarizes the properties
we extensively use along the paper.

Remark 4.1. We stress that for |[v| < vg the (9(%), (9(2%) terms in the expansion for

M

K,, I,, as z — oo in Table 1, are bounded by Bl for |z| > zp, and M, z( only depend

on vg. With respect to the expansions as z — 0, we also have that if Rev > 0, then
|1,(z)| < M|z|¥ for |z| < z; with M, z; depending only on vy.

4.1. Outer solutions

We begin the proof of Theorem 2.5 by studying the dominant terms f™, vg™ (see (3.15))
in the outer region (see (3.2)).

Proposition 4.2. Forany 0 < g < j1, there exists qo = qo(lLo, it1) > 0 such that for any
W € [io, 1] and g € (0, qo), the functions v)™(r: k., q) and f§"(r; k.q) defined in (3.15)
with k = pugq='e™2na, satisfy the following properties:

(1)  There exists Ry > 0 such that for kqr > Ry,
1 1
rik,q) = —k — — + kO ;
Wik, ) 30 0 (o)

(kgr)> (4.2)
k) = VT-K2(1

k 1
- ol—=).
2gr(1 — k2)> + ((qr)2

(i) For 2" < kqr < (qgn)?, one has

n
v (rik,q) = - tan(nqlogr + nqlog(%) - Go,nq)[l + (9(q2)] 4.3)

with 0o ng = arg(T(1 +inq)) = —ynq + O(¢>), where T is the Gamma function
and y is the Euler—Mascheroni constant.
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(iii) For D¢~ 2na < kqr, one has
3,00 (rik,q) >0, vg"(rik,q) <—k, 03, f"(r:k,q) > 0.

(iv) Leta €(0,1). There exist go = qo(a, po, 11) and a constant M = M(a, jro, p£1) >0
such that if T satisfies 2e*e”2an < kqrmin < (kq)*, then, for r > ruin, V3" sat-
isfies

e (r: k. @)l [ro, 8" (ri k. @), [P207v5" (ri k. @) < Mri,

r (g (rik, q) + k)|, |29, v8" (r k. @), |r397v8" (rik, )] < Mq ™.

With respect to ™, we have

1
k) = 5.
P00 S5 s koL P35k )] < Mg )

min’®

L= f(rik. @), |rd, f§™" (rik. @), [P202 3™ (rik. )] < M2

In addition f§™, v§" depend continuously on | € [jo, 1]

The proof of this proposition is postponed to Appendix A, and it involves a careful
study of some properties of the Bessel functions K.

Once (fy", vg") are studied, we look for solutions in the outer region satisfying
boundary conditions (3.2). This is the content of the following Theorem 4.3 which gives
the existence and bounds of a one-parameter family of solutions of equations (2.6), which
stay close to the approximate solutions ( f"'(r; k, ), vy"(r; k. ¢q)) given in (3.15) for all
F > ra, F» being any number such that r, = @ (£%~!) with ¢ = k¢ defined in (3.6) and

0 < o < 1 satisfying g~ 'e!'™® — 0 when g — 0.

Theorem 4.3. Foranyn > 0,0 < j1g < i1, there exist q5 = q¢ (o, 1) > 0,0 < go =

qo(to. 1. 1) = qg (o, w1), €0 = eo(to. w1, 1) > 0 and M = M(po, pt1,n) > 0 such
that, for any | € [lo, 1] and q € [0, qo), if we take ¢ = pe™ 274 and o € (0, 1) satisfying

g lel™ < ey, (4.4)
taking ry as
ry = e%71, 4.5)
k =pg e 2 = eq~! and
_3
a=ar, 2e’2‘/§, |a] < n, (4.6)

equations (2.6) have a family of solutions (f°"(r,a; k, q), v°"(r, a; k, q)) defined for
r > ro which are continuous with respect to a, ju and of the form

o ark.q) = f(rik.q) + g™ (r.a:k. q).

out out out (47)
v (rask,q) = vy (rik,q) + w(r,a:k,q),
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where f™, vi" are defined in (3.15). The functions g*", w*™ satisfy

|r2gout(r’ a;kv Q)l’ |r28rgout(r’ a; k’ q)| S M’
[r2w(r,ask, q) < Mg~ (n+ ¢~ &' 7%).

We can also decompose
¢ (rask, q) = Ko(rv/2)a + gd™(r: k. q) + g3 (r,a: k. q), (4.8)

where Ky is the modified Bessel function of the second kind [1], and g3"(r; k, q) is an
explicit function independent of . Moreover,

(1) there exists My = My(wo, t1) such that, for g € [0, q%],
Mo, L q q9
Ir2g8" (r k. q)l. [r?8, 80" (r:k.q)| < Moe'~*q ™", (4.9)
(ii) and for q € [0, qo],
3
r2g(r.ack, q)|, |r?0,g%" (r,ak,q)| < Mye'™® —l,r2v2,2 al, (4.10)
1 q 1 q q 2

where My = M (1o, 1, 1) depends on o, |11, and 1.
As for w®", it can be decomposed as

w()llt — wgut + w(l)ul

satisfying for q € [0, qo],

|r2wnut(r ak <M -1 —rzﬁ %
0 ) Ay 7Q)|_ Zq e r2 |a|’

2w (r, a;k, q)| < Mae'~*q >

with My = M (wo, t1,1)-

Theorem 4.3 is proven in Section 5 by performing the scaling (3.7) and studying
the solutions of the outer equations (3.9) with boundary conditions (3.10) near the func-
tions Fy, Vp given in (3.12) and (3.14). The proof is done through a fixed point argument
in a suitable Banach space.

We emphasize that, when r — oo, g and w°" have limit zero, and f;" and vj™
satisfy (3.16), then f°* and v°" satisfy the boundary conditions (3.1). With this result
in mind, we now proceed with the study of the behaviour of solutions of (2.6) departing
r = 0, here called inner solutions.

out

4.2. Inner solutions

We now deal with the families of solutions of (2.6) departing the origin, satisfying the
boundary condition f(0) = v(0) = 0 defined for values of r in the inner region (see (3.3)).

We first set the properties of f in vi)“, the dominant terms in the inner region defined
in (3.20), that will mostly be used throughout this proof.
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Proposition 4.4. For any 0 < po < 1, there exists qo = qo(to, 1) > 0 such that for
any | € [/,Lo, w1l and q € [0, qo), the functions fi"(r), vi(r;k,q) defined in (3.20) with
kq = pe ZW, satisfy the following properties:
(i)  Forallr >0, we have fi"(r),d, fi"(r) > 0 and there exists cy > 0 such that

n2

22 +00¢™, r— oo,

o) ~cpr™, 1 —0, o) =1-
2
8,f0m(r) ~ ncfr"_l, r— 0, 8,f0i“(r) = n_3 +0@0™), r— oco.
r
(i) For0<r < k”—2 we have v N(r;k,q) < 0 and there exists a positive function of k,
cy(k) = cd + O(k?), such that
vg (ri k. q) ~ —qeo k), By0g(rik,q) ~ —qey(k), T =0,

Igrl 9,0 lgr

n
v rik, <M , rk, <M , lgr< —.
lvg (r; k., q)] q 0 (rik.q) 94— PG

(i) Forl Kr < kLﬁ’ we have

n*(1 +k?) qCn  k?q

vg (rik.q) = —g————logr + —= —
+qO0logr) +qk*O(r™")
with C, defined in Theorem 2.5 and

—r
2 @.11)

2
0rvg(rik,q) = qn—2 logr + qO(@r™2).
r
In addition, v is continuous with respect to (. € [j10, p1]-

The proof of this proposition is referred to Appendix B and mostly relies on previous
works [2, 3].

The following theorem, whose proof is provided in Section 0, states that there exists
a family of solutions of (2.6), satisfying the boundary conditions at the origin, which
remains close to the approximate solutions (f4"(r), vi'(r; k, q)) given in (3.20), for all
r € [0, rq], where r{ = O (e <) for some p > 0 small enough.

Theorem 4.5. Foranyn > 0,0 < pg < [1, there exist q5 = q§ (o, 1) > 0,0 < go =
qo(to, 1. 1m) < 45, po = po(fo, 1, 1m) > 0 and M = M(uo, jt1,7n) > 0 such that for
any ju € [0, p1), q € [0.qo] and

p € (0, po), (4.12)
taking rq as

4.13)

ry =

[N
S{RS

1

k=puq~ e~ 24 and

~ _3 ~
b =bp?r; 2e™ V21, |b| < (log V2r)? = _. (4.14)

(f (V2)?
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system (2.6) has a family of solutions ( f™(r,b;k,q),v™™(r,b; k,q)) defined for r € [0, 7],
which are continuous with respect to B, W, and satisfy the boundary conditions (3.3),
that is,

£0,b;k,q) = v™(0,b;k,q) = 0.

Moreover, these functions satisfy

F0bik,q) = £ + g7, bk, ),

(4.15)
v (r,bs k,q) = v (rik,q) + w"(r,b; k,q)
with fg", v defined in (3.20). The functions g™, w™ satisfy, for all r € [0, r1],
g (r bk, q)| = Mg, |[w"(r,bik.q)] = Mq®,
forO<r <1,
lg™(r. bk, @) < Mg*r", [3,g"(r.bik.q)| < Mq?r"™!,
[w"(r, bk, q)| < Mg*r, 3w (r,b;k,q)| < Mg?,
andfor1 Kr <ry,
4 1 2 . 1 3
lg"(r,bik,q)| < qug, [w" (r,b; k, q)| < MCI3M-
r r
In addition, there exists a function I satisfying
I'(nvV2)Kn(nv2) — 1(nV2) K} (nv2) =
“/— (4.16)

1
I1r V2|, [I'(rV2)| < My —e"1V2,
[I(rivV2)], [I'(rivV2)]| < 1\/r_l

for some constant My, and where K, is the modified Bessel function of the second kind
(see [1]), such that

g (r,bik,q) = I(r~/2)b + gif(r: k. q) + g7 (r,b: k. q). (4.17)

where gz)“ (r; k, q) is an explicit function which is independent of n. Also, for 1 K r <ry,
(i) there exists Mo(po, 41) such that, for q € [0, ¢],

g0 (r:k.q)|. 0-86'(r: k. q)| < Mog?

1 2
| sz” , (4.18)
(i) and for q € [0, qo),

|
g (r.bs k., q)], 10,87 (r.bi k. q)| < Miq p2|0gr|

where My = M1 (o, 41, n) depends on g, |11, and 0.
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4.3. Matching point and matching equations

Observe that, given 0 < g < U1, the results of Theorems 4.3 and 4.5 are valid for any
value of k of the form k = g = %e_ﬁ, I € [Mo, 1] and ¢ small enough. To finish
the proof of Theorem 2.5, we need to select the value of u, and therefore of k, which
connects an outer solution (given by a particular value of a, and therefore of a) with an
inner one (given by a particular value of b and therefore of B). To this end, we need to

have a non-empty matching region, for which we shall impose r, = ry, that is to say,

g2l = %65. Then, using that ¢ = /Ae_ML", one obtains
2np 1— qlog~/2
T
But, according to Theorem 4.3, it is also required that 81;(1 < eg < 1, which is equivalent

to imposing that g, p satisfy
qllog(eoqgv/2)| < p.

Therefore, fixing any n > 0, since by (4.12), 0 < p < pg, the condition for g, p becomes

q‘log(%)‘ < p < po. (4.20)
We rename )
roi=1r1 =1Fp = % =1 = “_len(Zlq_"a), 4.21)
and we take .
p=< 9 )3, (4.22)
llogq|

which satisfies the required inequalities in (4.20). Therefore, Theorems 4.3 and 4.5 are in
particular valid when taking « and p as given in (4.19) and (4.22), and r; = r; as given
in (4.21), since all these values satisfy conditions (4.4), (4.5), (4.12), and (4.13), if we
take any a and b satisfying (4.6), (4.14), provided

go = qo(io, i1, 1)

is small enough (we take the minimum of both theorems).
Once we have chosen the parameters p and o and the value of the matching point r,
the next step is to prove that there exist a, b, k or equivalently, since

Nl

e V20b and k = - pLe_z‘fL”,

_3 _
a=r, 2eV2r03, b= 0%ry
q

that there exist a, B W, such that, for g small enough,

fro.ark,q) = f™(ro.bsk.q),
O £ (ro.ask,q) = 9, f " (ro. b: k. q), (4.23)
V2" (ro. a5k, q) = v (ro, b; k., q).
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We stress that the existence results, Theorems 4.3 and 4.5, depend on the set of con-

stants [Lg, (41, 17 not defined yet. We shall fix them, in Section 4.4, as follows:

First, we match the explicit dominant terms of the outer functions f°", v°" (see (4.7)
and (4.8)) with dominant terms of the inner functions f i pin (see (4.15) and (4.17)):

Ko(rov/2)ao + 3" (ro: k. q) + g5 (ros k. q) = I(ro~/2)bo + fi"(r0)
+ g0 (ro: k. q), (4.24)
v (ros k. q) = v (ros k. q)

and

V2K (rov2)ag + 8, £ (roi k., @) + 8,83 (ro: k. )
= V2I'(rov/2)bo + 3, fg"(ro) + 0,85 (ros k. q). (4.25)

This is done in Section 4.4, where, in Proposition 4.6, we find

)

> ,—/2ro

e

[N

a0 = Ao’ 2e ro’ bo = bop Ty

and u such that, taking the approximate value of

k=g e 2,

equations (4.24) and (4.25) are solved. Moreover, we fix two values 0 < po < @1 such
that, it € [po, p1]-

The obtained solutions ag, by satisfy conditions (4.6) and (4.14) for a particular value
of n. We will use these values, (o, (11, 7 in Theorems 4.3 and 4.5 to obtain families
of solutions f°U, v°Ut, £in yin of equations (2.6).

Finally, the existence of the constants a, b and p (that will be found to be close to ag,

bo, 1) satisfying the matching conditions (4.23) is provided by means of a Brouwer’s
fixed point argument in Section 4.5 (see Theorem 4.7).

4.4. Matching the dominant terms: Setting the constants |Lo, L1, 1)

As we explained in the previous section, the purpose of this section is to choose the con-
stants (Lo, (1,  Which appear in Theorems 4.3 and 4.5 to obtain the families of solutions
fout pout £in yin of equations (2.6) satisfying the suitable boundary conditions.

The next proposition gives the existence of solutions of equations (4.24) and (4.25).

Cn _ _Cn _
Proposition 4.6. Take 1o = ¢ 2 ¥, uy = 3e n2 ', where C, and y are given in
Theorem 2.5. Then, there exist g7 = q7 (o, pt1) and M (jo, i) such that for 0 < q < q7,
equations (4.24) and (4.25) have a solution (ag, by, (1) satisfying

3

N ~ o _3 _ ~ N
i€ [po, p1l, ao=aoro2€r0ﬁ, |ao| < Mp*, bo=hop’r, 2e rov2, [bo| <M,

where p, 1o are given in (4.22) and (4.21), respectively.
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Proof. As we pointed out in (4.1), we will say h(q) = O (h(q)) if for some g¢ > O there
exists a constant M > 0 such that for all ¢ € (0, go], |h(q)| < M|h(g)|. For instance, by
definitions (4.22) and (4.21),

p=p@=0((fooar)") and qlogtro) = glogro(@) = O(p).

We note that, by definitions of 7y and p in (4.21) and (4.22), respectively, we have

:(9('0):(9((“ . |>1) <1

Then, using the asymptotlc express1ons (4.3) and (4.11) for v"“‘ and v})“ at r = rg and

’nq logro + ng log(ﬁ> —6o,nqg

recalling that k = £ = fig™e™ 717, we have
vg (ro: k. q) — v8‘“(ro; k.q)
1 + k2 C k? n i
= —qn2 logro + q—n —q—"ro + —(nq logro + ng log(ﬁ> — 90,,,,1)
ro 2 2
logro 2 1 H 35
+q(9( 3 )+ k“O(ry ") + (9()nqlogr0+nqlog(2)—«90,,“1 .q )
n2k? k2 log )3
=- P + i(Cn + nzlog(ﬁ) —n@ojnqq_l) —q—ro + q3(_t)(ﬂ)
ro ro 2 2 ro
1
+ —0(q%.qk*)
Fo
= ri(Cn + nzlog(%) —nQO,nqq_l) + ri@(llogqu). (4.26)

Therefore, the only possibility for i to solve v M(rosk,q) —vg"(rosk,q) = 0 is that
_Cn_ oagl—1
Cn + nzlog(%) —nBongq~" = O(llogg|™") & i =2¢ a2 7HOUAT)
where we have used 6y ,q = —ynq + O(q?), or equivalently

— ~Sn_y -1
m=2e » " (140O(logq|™)).

This last equality suggests that the parameter i has to belong to [wg, 1] with, for in-
stance,

Cn _
po=-¢e n2 7 =3¢ a2 7, 4.27)
For any [t € [ug, 1], we introduce now the (independent of 7) function
No(rik.q) = fo"(r) — f"(rik.q) + g5 (r: k. q) — 85" (r: k. ). (4.28)
Then ag, by satisfying (4.24) and (4.25) are given by

I'(rov/2) Ao(ro:k.q) — —51(rov/2) Ag(ro: k. q)

(a") _ b (4.29)
bo d(ro) \ K (ro~/2)Ao(ro: k,q) — EKo(ro«/_)A’ (ro:k.q)

with d(ro) = Ko(ro~/2)I'(ro~/2) — K{(ro~/2)I(ro~/2).
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We first notice that by property (4.16) of the function / and using the asymptotic
expansion in Table 1 for Ko (r) and K, (r) for r > 1, there exists a constant M such that

1 N
0<—— :roﬁ(1+0(—)) < roN2 + M. (4.30)
d(ro) ro
Now we estimate Ag. We first note that, by estimate (4.3) of vgm, if ¢ is small enough,
A 1
lvg" (ro: k. q)| < L <2
ro 4

with a constant M, only depending on (g, /1. Then, by item (i) of Proposition 4.4 along
with definition (3.15) of | fo"”t, we have that, for ¢ small enough,

| fo"(r0) — f5" (ros k. )]

n2 out . 2 I’l2 in I’l2

R R R GG + |7 (o) =1+ 33
R My
< M3 |og™(ro, k)2 + — < s
To To

The constant 1\//75 only depends on (g, (t1. Therefore, by bounds (4.9) and (4.18) in The-
orems (4.3) and (4.5),

|A0(ros k. @) < | fdM(ro) — f"(ro: k. @)| + g (ros k, )| + |g8" (ros k, q)|
1—o 2

. p? log ro|? N
SN AL YL LI VRS /AL (431
Ty Ty qry o
where we have used that
S B
gt =67 = "7 = ¢ P P@? — O(q%), forany{ > 0.

Moreover, since, as established in Theorems 4.3 and 4.5, for 0 < ¢ < ¢ (io, pt1), Mo only
depends on wo, (41, again, the same happens to Mg. Analogously, one can check that if
0 < g =< qg(po, 1), then
2
o P
[0, Ao(ros k,q)| < M7r—2. (4.32)
0
By using estimates (4.30), (4.31) and (4.32), estimates (4.16) of I and the fact that if
r > 1, one has |Ko(rv/2)|. |K)(r+/2)] < Mge™™V2r=%, we have, as k = fig~'e” Zia
with & € [io, (1], the solution (ag, bg) of (4.29) has to satisfy, for ¢ small enough,

1 A~ A~ 1 A~
Jaol < p>—€"V2(V2 + Mg )M [Ms + —= 13,

r2 \/5
0
1 A~ A~ 1 A~
Ibo| < p2—e"OV2(V2 + ero—l)MK[M6 n —M7].
2 «/E

To
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Taking g small enough, M, ro_1 < +/2 and defining

~ ~ 1 -~
M= 2«/§[M6 + ﬁ%] max{M;, Mg},

we conclude that there exist ¢ = g7 (1o, #1) and A?(qf) such that for 0 < g < ¢,
~ . _3 ~ . _3
lag| < M p?r, 2pr0V2 [bo| < Mp?r, 2p7r0vV2,
where p is given in (4.22). Then, defining ao and Bo as

_3 ~ _3
ap = aor() Zero«/i, 2 o 2 —ro«/i

we finish the proof. n

Proposition 4.6 provides the values ag, by, it which we expect will be good candidates
of the approximated values for the solutions a, b, p of the matching equations (4.23).
In particular, we set the constants [, (1 in (4.27).

Now we are going to set the constant . We note that, since ro = r; = r,, the constants
ag, by, provided by Proposition 4.6 satisfy conditions (4.6) and (4.14) in Theorems 4.3
and 4.5 for any n > (\/5)%1\//] . Since ag, by have to belong to the set of parameters a, b
for which Theorems 4.3 and 4.5 hold true, and some room for our perturbative analysis is
needed, we may set 7 any value strictly bigger than (ﬁ)% M, for instance,

n=2M. (4.33)

With this choice of 7, the constants 2, BO satisfy

~ n 2 n =~
<Pz py <L 434
|210|_2P_2 |0|_2 (4.34)

=

4.5. Matching the outer and inner solutions: End of the proof of Theorem 2.5

The main goal of this section is to obtain the parameters a, b (in fact, a, ﬁ) and p which
solve the matching equations (4.23). Having solved these equations, which is the content
of next Theorem 4.7, we have a value of p, and therefore of k as defined in (3.22), for
which the original system (2.6) has a solution ( f, v) satisfying the required boundary
conditions (3.1). Once this result is proven, in order to prove Theorem 2.5 it will only
remain to check that f is a positive increasing function and that v < 0 (see Proposition 4.8
below).

We begin our construction by considering the families of solutions provided by Theor-
ems 4.3 and 4.5 for the constants (Lo, i1, 7, fixed in the previous section (Section 4.4) and
any values a and b satisfying (4.6) and (4.14). Namely, we consider i € [1o, 1], 1, 70,
p and o as given in (4.27), (4.33), (4.21), (4.22), and (4.19), respectively, and g € [0, go].
Along this section, we call g¢ the minimum value provided by all the previous results,
that is, Propositions 4.2, 4.4, and 4.6 and Theorems 4.3, 4.5.

Next theorem gives the desired result.
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Cn _ _Cn _
Theorem 4.7. Take jug = e 2 7, g = 3e 2 ', where C, and y are given in The-
orem 2.5 and 1 as given in (4.33). Then, there exists q* such that for q € [0, ¢*] equa-
tions (4.23) have a solution a(q), b(q), k(q) satisfying (4.6) and (4.14) and k(q) =

e~ 2na with ju € [jo. p1]-
In addition,

2 rof 2 —rof

la(g)| < np“e . [b(g)] = np“e

and c
p=p(g)=2¢ =2 7(1+0O(logg|™")).

Proof. We define, as in Theorems 4.3 and 4.5, the parameters
3
a:=ae '° 2r02, b :=be V2, 2 (4.35)
satisfying
[al, [b| < n.
We impose that vi'(ro, bi k, q) = v°(rg, a;k, q) or equivalently
viMNroik, q) — v3"(ros k. q) = W (ro, ark, q) — w™(ro, bi k, q). (4.36)
On the one hand, by the results involving w°", wi™ in Theorems 4.3 and 4.5 we have
[w*(ro. as k. q) — w'™(ro. b: k. q)| < [w*™(ro:k.q)| + [w™(ro: k. q)|
3
< ML ~|—Mq3|10gr0|
qro o
1 3
=M— + M—
q”o ”o

<ML
qro

On the other hand, by (4.26),
in -k __ p,out -k _i C 2 E —nb, -1 O -1
vy (ros k., q) — vy (ro; ,q)—r nt+n7log(Z ) —nbongq " + lloggq|™" ).
0

Therefore, since 6y, = —ynq + (9(q2), v (ro, b; k,q) = v (ro,a; k, q) (or equival-
ently equality (4.36) holds true) if and only if

C -
log(ﬁ) =—— —v+G@bkiq), [Cab,kiqg)| < Mllogg|™,
2 n

where €3 contains the remaining terms of vin — vg™ and WO — win,

We recall definition (4.35) of a, b and introduce the function

— T
H3@,b, j1:q) = 28_%_y [683(§e’()ﬁr0 _r"fr p>ug~le 2nd ) _ 1]
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which, from Theorems 4.3 and 4.5, is continuous with respect to a, B, . It is clear that
equation (4.306) is satisfied if and only if

p= 207 R 4 305, b,1:q), |Hs@,b,:q)| <M < Mllogg|™'.  (4.37)
We deal now with the (nonlinear) system,
ook, q) = fM(rosk.q), 3, f*"(rosk,q) = 8, f™(ro: k. q),
which can be rewritten, using expressions for f°%, fi"in Theorems 4.3 and 4.5 as
Ko(rov/2)a — I(rov/2)b = A(ro,a,bik,q) = Ao(ro; k. q) + A1 (ro,a,b; k, ),

1
K} (rov/2)a— I'(rov/2)b = —9, A(ro.a,b: k. )

2

1
= E(B,Ao(ro;k,q) + 0, A1(ro,a,b;k,q))

with A defined in (4.28) and
Ar(r,a,bik,q) = gf'(r,b:k, q) — g3 (rask, q).

Therefore, a, b satisfy the fixed point equation

a\ (¢ (ab.k:q)
(b) N (‘Cz(a,b,k;q)) (4.38)
| I'(ro~/2)(A(ro,a, b k, q)) — %I(”oﬁ)arA(ro,a,b;k, 7)

= 1
d(ro) —K}(ron2)A(ro,a,b; k. q) + EKo(rofz)a,A(ro,a,b;k,q)

Using the estimates in Theorems 4.3 and 4.5 for g‘l’“‘, g1 , we obtain

4
in p
|A1(I‘0,3, b;kv Q)l = |g1 (rOvb; k, q)' + |g(1)m(r0» a;k, (1)| = Mr_9
0
and [rgd,Aq(ro,a,bsk, q)| < Mp*, for any a and b satisfying (4.6) and (4.14).
Recalling ag, by are defined in (4.29) and using the above bounds for A; and 9, A4
along with (4.16) and Table 1 for I and Ky and bound (4.30) for d(rg), gives

€1 (a, b, k;q) —ag| < Me™¥?p*r .
[€2(a,b, k;q) —bg| < Me_r‘)ﬁp“ro_j

Recalling the definition of a, b in (4.35), we introduce

~ 3 _3 A x

J1(@,b, u;q) — eT0V2, o €1 (Tsiero“/E 2 bp? ’0“[ ,/u] le~™2nd;q) —a,,
3
-3

@, b, w;q) = erov2y, 2 26, (ae’o‘f ,bp? rO[ ,Mq le~2ma: q) — by,
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and the fixed point equation (4.38) becomes

a) _ (30 +J0(@.b.piq)) (4.40)
b by + H2(a, b, j1:q)
We note that, by Theorems 4.3 and 4.5, #; » are continuous functions with respect to a,
b, 1. Using bound (4.39) of €1, &,
|71A.b. i q)| < Mp*, | H2(8.b, 1iq)| < Mp*. (4.41)

From (4.40) and (4.37), we have that the constants a, b and 0 must to satisfy the fixed
point equation

~ ~ ~ —Cn _ -~
@,b.pn) = H@.b, j1:q) := Q9. bo,2¢ n2 ) + H(@,b, it; q) (4.42)

with # = (Hy, Hs, H3). We recall that as defined in (4.22), p*> = ¢|logg|™! and the
constants (o, 11 and n were fixed at (4.27) and (4.33), respectively. The function #
satisfies, for |al, |b| < nand u € [wo, 1],

1# @, b, ;)| < max{Mpg|logq|™", M|logg|™"'} = M|logq|™".
As a consequence, since ap and bo satisfy (4.34), for |a], |f)| <nand u € [o, L1],
|H12@,b, i q)| < g + Mllogg|™" <,
and, taking po, (1 as defined in (4.27), one finds

~ —Cn _ _
H3@,b,u;:q) =2e 72 77 + O([loggq|™") € [po. ml.

Therefore, there exists g* small enough such that, if ¢ € (0, ¢*], the map H sends the
closed set

B ={@b,u) e R*:[a],|b| <n, p € [po, 1]}
into itself and is continuous with respect to a, B, . Therefore, the Brouwer’s fixed point
theorem provides the existence of the parameters (a, b, 1) = (a(g), b(q), 1(q)), defined
for any ¢ € [0, ¢*], satisfying the fixed point equation (4.42) and
laf <. bl =n. € mo. 1]

In addition, for this solution, using the bounds in (4.41) and (4.34), we have, for ¢ small
enough,

~ -~ A EN n
|a| < |ag| + |#1(@.b, n.q)| < 502 + Mp*llogq| < np*,

and from (4.37),
Cn _
lw—2e 277 < Mllogg|™".

Going back to the original constants a and b using (4.35) completes the proof. ]
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By Theorem 4.7, we can define the solutions of (2.6) satisfying the boundary condi-
tions (3.1) as in (3.4):

(f(r;q),v(r;q))

{(fi“(r,b(q);k(q),q), v™(r,b(q);k(9).9)),  r €[0,r],
(fout(r, a(‘]); k(q)s Q)s vout(r, 3(‘])? k(q)s q))v r=rp.

Therefore, in order to prove Theorem 2.5 it only remains to check the additional properties
on the solution ( f, v).

(4.43)

Proposition 4.8. Let (f(r;q),v(r;q)) be the solution of (2.6) defined by (4.43). There
exists q* such that, for g € [0,q*] and r > 0, f(r;q) is an increasing function,

0< f(r;q) < V1—=k2%(q), v(r:q) <O.

Proof. We first prove that f(r;q) > 0 for r > 0. We start with the outer region. In item (iv)
0

of Proposition 4.2, we proved that f'(r;k(q),q) > % forr >rg = %eﬁ. Therefore,

by Theorem 4.3, when r > ry,

1
friq) = f3"(rik(q). q) — 1g°"(r.a(q): k(q), q)| = 5 Mr—?
1 —2
> 5 —Mrg? >0 (4.44)

In the inner region, using item (i) of Proposition 4.4 and Theorem 4.5 we deduce that
there exists o small enough but independent of ¢ such that if r € [0, g],

friq) = f3"(r) + g"(r.b(q); k(). q) = crr™ + o(r™) + ¢*O¢") > 0

since the constant ¢y is positive. Then, since f" is positive, increasing and independent
of g, again using Theorem 4.5, for o < r < ry,

f(r:q) > fi"0) — 1g™(r,b(q);: k(9), 9)| = fi(0) + O(g?) > 0,

if ¢ is small enough. This finishes the proof of f being positive.
Now we check that f(r;q) < /1 — k?(g). We first note that Theorem 4.7 can be used
to bound a(g). Therefore, by (4.8), (4.9) and (4.10) in Theorem 4.3 we have g(r;q) :=

f(riq) — f"(r.a(q): k(g), q) satisfies, for r > ro,

_3
2g(r;:q)| < |r2a(q)Ko(r)] + Me'™%q™" < pPpe Y2070, 3,02 4 pgl=og™!
< Mp?,

where we have used that, from definition (4.22) of p, e!7%¢~! = ¢! «/Ee_g < p? and
the asymptotic expansion when r >> 1 in Table 1 for the Bessel function K. Therefore,

2
Fria) = |1 = O k). )P =3 + My < 1= k)2 — .
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where we have used v3"(r;k(q),q) < Mry! = Mel™ < 1and p < 1. Then, f(r;q) <
V1= (3" (r;k(q),q))* and as a consequence, since v]" — —k(g) as r — oo and it is
increasing and negative (see item (iii) in Proposition 4.2), we have

f(riq) < V1—-k?(q), r>ro.

With respect to the inner region, namely r € [0, rg], using Proposition 4.4 there exists
. 2

0 > 1 independent on ¢ such that for all 0 < r < ro, (fg")?(r) <1 — 2”7 Then, since
by Theorem 4.5, |g"(r,b: k. q)| < Mq*|logr|?>r~2 for o < r < ro we have

2
2/ n 2 1 [PEeS 2 2(1—a)
S2riq) = 1= 55 + Mp r—251—ﬂ(n —Mp*) <1 - M2,

where we have used again definition (4.22) of p and that ry = %~ = Lzeg (see (4.21)).

Then, using definition (4.22) of p, we conclude that 1 — Me2(=®) <'T — k2(q), taking

if necessary ¢ small enough. As a consequence, f(r;q) < +/1—k?(q) if o <1 <.
It remains to check the property when r € [0, o]. From the fact that foi" (r) is an increasing

function and using Theorem 4.5,

f(riq) = fi"(r) + g™(r:b(q): k(q). q) < f3™(0) + Mq* < /1 —k2(q).

provided fi"(0) < 1, ¢ is independent on ¢, and g is small enough.

The negativeness of v(r; g) < 0 for r > 0 is straightforward from the previous prop-
erty, f(r;q) < +/1—k2%(g). Indeed, using that v(0; ¢g) = 0, from the differential equa-
tions (2.6), we have

v(riq) = —qrfz(l—r;q)/o EF2E )1 — £2(E:q) — K2(q)) d& <.

To finish, we prove that 0, f(r;¢) > 0. We start with the inner region. From Proposi-
tion 4.4, there exist 0 < go < 0; satisfying

2
i n -1 in n .
8y fin(r) = chrn Lifr €[0,00] and 9, f"(r) > 23 if r € (o1, ro].

Let 0 € [00. 01] be such that 9, fi"(r) > 9, fi"(2) > O for all r € [0, 01]. Notice that the
values of gg, 01 and p are independent on ¢. Therefore, using Theorem 4.5, if r € [0, o],

0, f(r3q) = 0, /") + 8,8 (. b@): k(@) 4) = T "™ = Mg~ >0,
When r € [0, 01],
3, f(r;q) = 8- f3"(r) + 3,8 (. b(q): k(9), @) = 3, f3"(@) — Mq* > 0,
taking, if necessary, ¢ small enough. When r > 0, Theorem 4.5 says

n? [log r|?
0, f(riq) > ~— — M2 2
rf(r q) — 2r3 q }'2
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that is positive if 0 < r < ¢g~?|logq|3, if ¢ small enough. In conclusion,

1
O f(rig) >0, 0<r<—H—0.
’ q*|loggl®
To see that 9, f(r; q) > O for bigger values of r, we first need to check
1
" loadl®’
f q?|logq|

Indeed, if q_z|logq|_3 <r < ry, that is, when r belongs to the inner region, from The-

flriq) = (4.45)

orem 4.5

2 2 llog r|?

+ 007 - Mg

F:0) = £20) = 18" (s (@) k(@). ) = 1= 55

2 3 1
> 1-0(q"[logq[") = 7

When r > rg (that is, in the outer region), by (4.44), f(r;q) > % and (4.45) is proven.
We finish the argument by proving that f is an increasing function for r > 0, by con-
tradiction. Since we have proved that 8, f(r;q) > 0 forr > g~ 2|logg|3 and f2(r;q) <
1 —k2(q) = lim, 0o f2(r:q), if f has an extreme at r*, it has to have a maximum at
some point less than r*. Let r, > ¢~ 2|log¢|~3 be the minimum value such that f(r;¢q)
has a maximum at r = r,. That is, 9, f(r«,q) = 0 and B%f(r*; q) < 0. Therefore, since f

is a solution of (2.6), we deduce

2

fraa)| =2 + (1= f2rq) —v2 ()| = 0. (4:46)

ri

Now we use the following comparison result (see [28]).

Lemma 4.9 ([28]). Let (a, b) be an interval in R, let @ = R? x (a,b), and let ¥ €
€1(Q2,R). Suppose h € €%((a, b)) satisfies k" (r) + H (h'(r), h(r),r) = 0. If 3, H <0
on Q and if there exist functions M, m € €2((a, b)) satisfying

M'(r)+HM (), M), r) <0 and m"(r)+ H(m'(r),m(@r),r) >0,

as well as the boundary conditions m(a) < h(a) < M(a) and m(b) < h(b) < M(b), then
forallr € (a,b) we have m(r) < h(r) < M(r).

We set (a,b) = (r«, 00) and define

s hry=" —h"2 R =R =02 (rg)). h > —
1 - \/57
with v(r; ¢) the solution we have already found, and
n 2 1
FH  hr ——h——hvzr 4+ —, h<—.
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We have # € €1(2,R) and 9, # < 0. According to (4.45), for r > ry > ¢~ 2|logq| ™3,
f(r;q) > % so that f(r;q) is a solution of i/ + FH (h'(r), h(r),r) = 0. Taking m(r) =
f(r«; q), we have

Jim m(r) = f(req) = lim f(riq) = Vi-i?
and
m" + H(m'(r),m(r),r) = —f(r*;Q)Z—j + [ (1= f2(ra q) =02 (e )
> —f(r*;q)g + f(rei ) (1 = f2(reiq) — v (r4:9)) = 0,

where we have used the bound in (4.46) for the last inequality. Then Lemma 4.9 concludes
that f(r«;q) = m(r) < f(r;q) for r > r,. Therefore, r, is not a maximum and we have
a contradiction. n

The rest of the work is devoted to proving the results about the existence of families
of solutions in the outer and inner regions. From now on, to avoid cumbersome notation,
we will skip the dependence on the parameters k, g.

5. Existence result in the outer region. Proof of Theorem 4.3

In this section, we prove Theorem 4.3. To do so, by means of a fixed point equation
setting, we look for solutions of equations (3.9) which are written in the outer variables
introduced in Section 3.1 (see (3.7)). Namely, we look for solutions of equations (3.9) with
boundary conditions (3.10) of the form Fy + G, Vo + W with Fy, V defined in (3.12)
and (3.14), respectively, that is, taking ¢ = k¢,

K, q(R)
Kinq(R)’

&2n2
R2

Vo(R) = Fo(R) = \/1 —k2VE(R) — (5.1
We first introduce the Banach spaces we will work with. For any given R, > 0, we

introduce the Banach spaces:

X¢ = {f:[Rumin, 0) — R continuous, || f||¢ := sup |R4f(R)| < oo}, (5.2
RE[Rmin,OO)

being Xy the Banach space of continuous bounded functions with the supremum norm.

Notice that Xy = X¢(Rmin) depends on Ry, and so the norm of a function in the
space X also depends on R,i,. However, if Ry, < R ., X¢(Rmin) C X¢(R! . ) and

min”® min

sup  |REF(R)| > sup |RYF(R)].
R€[Riin,00) Re[R];,,00)

This fact allows us to take R/, > Ruyin, if we are working in X¢(Rmin). We will use this

property along the work without any special mention.
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5.1. The fixed point equation

Our goal in this subsection is to transform equations (3.9a), (3.9b) into a fixed point
equation in suitable Banach spaces. For that, the first step is to write such equations in
a suitable way.

Let F = Fy+ Gand V = Vo + W. The term F(1 — F? — k2V?) in equation (3.92a)
is the following:

F(l1—F?—k?V?) = -2F}G — 3F,G* - G*
n2g?
— WK*[2Vo Fo + FoW +2VoG + WG] + (Fo + G)F
Therefore, equation (3.9a) becomes
2 " Gl 2 " 0( ) 2 3
£ (G n F) _2F(R)G = (FO (R) + ) +3Fy(R)G*>+G
+ sz[ZVO(R)FO(R) + Fo(R)W + 2V4(R)G + WG].

In view of (4.2), which in outer variables reads as

Fo(R) = m(l K o(ﬁ))

2R(1 —k?) R?
we introduce |
F¢(R) =1+ EJEO(R). (5.3)
Therefore, we may write the above equation for G as
G’ 2
G'"+ ——G= =—2M[G, W] (5.4)
R g2

with

MG, W](R) = sz(F(;’(R) + Fé}gR)) — Fo(R)G —3Fy(R)G? —
— Wk2QVy(R)Fo(R) + Fo(R)W +2Vo(R)G + WG).  (5.5)

Now we compute the equation for W from (3.9b). We have

2

W+ % +2Vo(R)W + W2 + V(R) + VO; ) | VA(R) — 1 + qu
_ qz 0( ) " g/ _ O(R)+G/
_FO(R)+G( (R)+ ==+ 6"+ ) 2000 + W) o TG

We recall that Vj is a solution of (3.13). Then

W+ % +2VoW = —N5(G, W)(R) (5.6)
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with
I " F§(R) = .,  G'(R)
No[G, W](R) = W F(R)+G(FO(R)+ G )
L 2(Vo(R) + W)% 5.7)

We define the linear operators

G .2 W
£GIR) = G + = =G 5. La[WI(R) = W' + — + 2Vo(R)W.

and rewrite equations (5.4) and (5.6) as
£1[G] = =2 M[G. W], £2[W] = —M[G, W]. (5.8)

The strategy to prove the existence of solutions of (5.8) is to write them as fixed point
equation and to prove that the fixed point theorem can be applied in suitable Banach
spaces. For this, first, we need to compute a right inverse of £, &£5.

We start with £;. Assume we have

L1[G](R) = —h(R), (5.9)

where A satisfies some conditions that we will specify later. We are interested in solutions
of this equation such that limg_, o, G(R) = 0.
Just for doing computations, we perform the scaling

s = gﬁ g(s) = G(E)

and (5.9) is transformed into
2

” gl 3 se
—o=——n(=). 5.10
g + Pt 3 (ﬁ) (5.10)

The homogeneous linear system associated with equation (5.10) has a fundamental matrix
Ko(s)  Io(s)
Ky(s) 1o(s))’
where Ky, Iy are the modified Bessel functions [1] of the second and first kind. The
Wronskian is given by W(Ko(s), Io(s)) = s~ ! so that the solutions of (5.10) are given by

S E
€)= Koo)|a+ 5 / elo(e)h(5) |+ 1o(o)| b / eKo(eh(5) e |
It is well known that Ko (s) — 0 and Io(s) — oo as s — oo (see Table 1). Then, in order
to have solutions bounded as s — oo, we have to impose

b= [ erotern(5

J_)dg_o
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Therefore,

e = Koo+ 5 [ etoen(5)ae| + T [ eroen(F) ae

and, proceeding in the same way,

€)= Ky)[a+ 5 / sro@h(S2) ] + Srio) [ emotom (S5 ae

Now we undo the change of variables, that is, R = j/—% and G(R) = g(%[). We obtain
the solution of (5.9)

G(R) = Ko(Rf)[H/R slo(w)h@ds}
+10(Rf)/R e )i

with Rpin = % to be determined later.
We introduce the linear operator

$1[4(R) = Ko (Rf)/R eto( 22 e o

+10(R‘/_)f gKo(g*/_)h(g)dg. (5.11)

We have proven the following lemma.

Lemma 5.1. For any a € R, we define

Go(R) = K()(R;/i)a. (5.12)

Then, if G is a solution of (5.4) satisfying G(R) — 0 as R — o0, then there exists a con-
stant a such that
G =Gy + $1[e 2N G, W]l

Now we compute the right inverse of £,. We consider the linear equation
1
Eo[W] = W' + W(E + 2V0) = . (5.13)

Since Vp(R) = (R)K;nq(R), the solutions are given by

tnq

W = (0 [ ext@neo ce)

ing

for any constant cg. In order for W to be bounded as R — oo, it is required that

o+ /R EK2, (E)h(E) dt = 0.
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Therefore,

W(R) = — “ek2, ©ned
(B) = sz L e ae

ing

As a result, we have the following lemma.

Lemma 5.2. Any solution of (5.13) bounded as R — o0 is of the form W = §,[h] with

1 R
Sl = —5—— [ €K7, (E)h(E) dE. (5.14)
2 RK2,,(R) /oo a

From Lemmas 5.1 and 5.2, we can rewrite (5.8) as a fixed point equation (G, W) =
F[G, W] defined by
G = F1[G, W] := Go + S1[e 2 M[G, W]],
W = \7:2[G, W] = —Sz[de[G, W]],
where Gy linearly depends on a constant a (see (5.12)). Notice that the nonlinear oper-
ator N, defined in (5.7) involves the derivatives G’, G”. In order to avoid working with

norms involving derivatives, we will take advantage of the differential properties of %7,
and using that G = F1[G, W] we rewrite the fixed point equation as

G = F1[G. W] := Go + S1[e > M[G. W],

(5.15)
W = #[G, W] = =8[M[F1[G, W], W]],

where §; is defined in (5.11), §5 in (5.14), N7 in (5.5) and N in (5.7).

In Section 5.2, we study the linear operators §; and S, (see (5.11) and (5.14)) and
prove that they are bounded operators in X, for £ > 0.

Our goal is now to prove the following result which is a reformulation of Theorem 4.3.

Theorem 5.3. Letn > 0,0 < po < py and take € = /,Le_ﬁ with g < pt < 1. There
exist

go = qo(po, 11,1m) >0, eo = eo(po, n1,m) >0 and M = M(uo, jt1,7n) >0

such that, for any q € [0, qo], @ € (0, 1) satisfying

q—lel—a < ep,
and for any constant a satisfying
3 g3 M2
a=2¢2(e%) 2esl@a, |a] <7, (5.16)

there exists a family of solutions (G(R, a), W(R, a)) of the fixed point equation (5.15)
defined for R > R}, = &* which satisfy

G2 + €lG'|l2 + | W2 < M&2.
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Moreover, G(R,a) = G°(R) + G'(R,a) and W(R,a) = W°(R,a) + W!(R,a) are
continuous with respect to |1, 4 and they satisfy the following properties:

(i)  there exist g5 = q¢ (o, 1) > 0 and My = Mo (1o, t1) such that, for q € [0, g5],
1G°ll2 + el (G®)ll2 < Moe>%q 7",

(i) forq € [0,qo], we can decompose G' (R, a) = K0(¥)a + GY(R, a) with

1-a
A A & RV?2
16+ €lG Yl = M=~ Ko (57) | Jal = ae”

(iii) and for q € [0, o),

33—«
&
|l <M el < My

eIl = MHKO(Rf))

where My = M1 (o, jt1, ) depends on g, |11, and 0.

The rest of this section is devoted to proving this theorem. In Section 5.2, we prove
that the linear operators §; and S5, defined in (5.11) and (5.14), are bounded in X,
£ > 0. In Section 5.3, we study £ [0, 0] and in Section 5.4, we check that the operator &
is Lipschitz in a suitable ball. Finally, in order to find the suitable decomposition of G,
we refine the previous results in Section 5.5.

It is worth mentioning that the more technical part in this procedure comes from the
study of the function Vy (and K;,4) done in Proposition 4.2.

From now on, we fix 7, ®o, i1, we will take &, g as small as needed, and a satisfy-
ing (5.16). We also will denote by M any constant independent of ¢, g.

5.2. The linear operators

We prove that §;, $, are bounded operators in the Banach spaces X¢ defined in (5.2)
along with important properties of such operators.

5.2.1. The operator $1. In this subsection, we prove that §1: Xy — X, is a bounded

operator. In addition we also provide bounds for ($1[])’, (S1[h])”.

Lemma 5.4. Take R.;, > % with zy given in Table 1 corresponding to Ky, 1o, and
£ > 0. Then, if ¢ is small enough, the linear operator S1: Xy — Xy defined in (5.11) is
a bounded operator. Moreover, there exists a constant M > 0 such that for h € Xy,

IS1[hllle <= Me?||hlle.

Proof. Since R, is such that M > 7y, by the asymptotic expansion in Table 1, for

any R > Rpin,
R«/E TE R/2 e
K ): -2 (9(— ) 5.17

0( & 2ﬁRe ( + R) .17)
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and

(2= e (140 (%))

Let now i € X, thatis, |1(§)| < £7¢||h|¢. Then

|RS1[RI(R))|
R 2 oo —EVZ
V2 e ¢ RV2 e ¢
< CRI () n [e—Re / dE+e'? d}
= CRH (5 ) Ihl = o T
R\3
RV2\t5 2 Vi [Te el V2 [P !
EC( f) 2( e ) ||h||(|:€_R82 e 1 dt+eR£2 e 1dti|
& Z0 té—j RV2 t€—§

= ¢ (Z5) Wl f),

for some constant C, where

z t o0 —t
M(z2) =2tz [eZ/ c - dt ~|—e2/ ° ; dt}
20 tt2 z tt2

and one can easily see that lim,_,., M(z) = 1. Therefore, there exists a constant M > 0
such that |M(z)| < M for z > z¢ and consequently,

|R'S1[h])(R)| < CM&?|h],. .

Corollary 5.5. Let Ry, > ﬁezo and £ > 0. Then for ¢ small enough and h € X,
the function 81[h)] belongs to €2 ([Rmin, 00)). In addition, there exists a constant M > 0
such that

I(S1AD le < Mellhlle,  I(S1[AD" lle < M Alle.

Proof. Let ¢ = 8§1(h). We have

o =2k (2) [ en(* e

#1(52) [ e e

which implies that ¢ is differentiable if 4 is continuous (by definition). Moreover, since
K{(2), I}(z) have the same asymptotic expansions as Ko, /o (in Table 1) performing the
same computations as in the proof of Lemma 5.4, we obtain the result for ¢’.

We note that ¢’ is differentiable if 4 is continuous (again simply by definition). Then ¢
is ©2. Moreover,

PN
+ = -2 =-h,
¢ R g2

and therefore .
IRY"(R)| = Mhlle(3+ %) < Ml .
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5.2.2. The operator S,. Let us first provide a technical lemma.

Lemma 5.6. There exists qo > 0, such that for any 0 < g < qo, if R > Zeze_ﬁ,

i . Khaterde <
znq

Proof. The proof is straightforward from item (iii) of Proposition 4.2. Indeed, we first
recall that V5(R) = v ut( ) and hence Vjp(R) < —1. Then, we consider the function
Y(R) = fR mq(é) d¢ — mq(R) and point out that we just need to prove ¥ (R) < 0

if R > 2¢2%e” 2nd . We have

N =

King(R)
‘///(R) = lnq(R) lnq(R)Klnq(R) = 1nq(R)|: . q(R)]
1nq

= mq(R)[l + VO(R)]

Therefore, since Vp(R) < —1 for R > Zeze_ﬁ, then ¥'(R) > 0 and using that ¢ (R) <
limgr— 00 ¥ (R) = O the result is proven. |

The following lemma, provides bounds for the norm of the linear operator $,, defined
in (5.14).

Lemma 5.7. There exists qo > 0 such that for any 0 < q < qo, taking Ruyin > 2e2e_24Ln,
the operator S,: Xy — Xy, defined in (5.14), is bounded for all £ > 1. Moreover, if h € X,
{=1,2,

1
152A1lle = 5 Il

In addition, when h € X3,
[S2[A]ll2 < [IAll5. (5.18)

Proof. Let{ > 1and h € X,. Then, by Lemma 5.6

R A, OOKlznq(g) I7l¢ o <l
lnq(R) i:f 1 d};: = lnq(R)A Kznq(%')ds = 2||h||[

When / € X3, then since K;,4 > 0 and decreasing,

|R*$:2[h)(R)| <

Rlhls [ K7y ©) * 1
RSIR < 5 [ de < bR [ pae <l m
1nq( ) S R é

Because in the definition of the operator N, (see (5.7)), there are some derivatives
involved, we need a more accurate control on how the operator $; acts on a special
type of functions In particular, we shall need to control $,[hVp], where we recall that

Vo = K;, q(R)(Kmq(R)) 1 For this reason, we study first the auxiliary linear operator
defined by
1
A[R](R) = S2[hVo](R) = REZ_(R) / ER(E)K]yq(§)King(§) dE. (5.19)
lnq
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Lemma 5.8. With the same hypotheses as in Lemma 5.7, for any h € X,
1
1AW =< 5 e
Proof. Leth € X¢. Then

Ay = KT (2 o
RABIR < S o [ K King €
(1 1
< REAw [ K ©King €0 = Sl .

Lemma 5.9. Let hy, hy be bounded differentiable functions. Then
Sa[hih5)(R) = hi(R)ha(R) = Sa[h ha] = S2[RI(R) — 2A[h1ho] (R),

where iz\(R) = h1(R)h2(R)R™L. If(Eiz\l)’ = Siz\z and h is a differentiable bounded func-
tion, then

$2[hah)(R) = hy(R)A(R) — S2[h'h1](R) — 2A[h1 ](R).

Proof. We prove both properties by integrating by parts. Indeed, since 1, &, are bounded
functions

/ Ehy (E) () K2, (£) d

= Rhi(R)h2(R)K},,(R) — / ha(©)[ 1 (§) K7, 4 (&) + ER (E) KT, , ()
+ 2671 (8) K4 (8) King (£) dE].

Therefore, .
RK2 (R) (R)

ing

R
S$2[hih5)(R) = / Em () (§) KT, 4 () dE

satisfies the statement.
With respect to the second equality, again by doing an integration by parts,

S2[hah](R)
! h h(&)K: d
= W ® / R () h(E) K2, (€) d&
= M(RI(R) - / ER O €K, €)1+ 2h(E) Ky (6) King (B dE. m
,,,q<R)

5.3. The independent term

We study now the independent term of the fixed point equation (5.15), that is, [0, 0] =
(#7110, 0], #2[0, 0]). We recall that

F100.0] = Go + S1[e 7> M [0.0]].  F2[0,0] = —83[N2[#1[0. 0], 0]] (5.20)
and N7, M, Gy, 81, S7 are defined in (5.5) and (5.7), (5.12), (5.11), (5.14), respectively.
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Before starting with the study of ¥ [0, 0] in (5.20), we state a straightforward corollary
of items (iii) and (iv) of Proposition 4.2 about the behaviour of Fy, Vy (see (5.1)).

Corollary 5.10. Let Ry, = &* with a € (0, 1). Then there exist qo > 0 and a constant
M > 0 such that for any 0 < g < qo and R € [Rin, +00), V§(R) > 0, Vo(R) < —1,

kVo(R). [kVa(R)RI. [kV"(R)R?| < Me'™

1 and

with k = eq
IR(Vo(R) + DI, [R*Vg(R)]. [R*Vy'(R)| = M.

With respect to Fy, we have Fy(R) > 5, Fy(R) > 0 and

[Fy(R)R|, | (R)R? < Cke' ™, |1 = Fo(R)|, | Fg(R)RI, |F<;’(R>R2| = €.

From now on, we then take R
These conditions will ensure that *~ < 1. The following proposition prov1des the size
of ¥70, 0] in (5.20).

Lemma 5.11. Let 0 < g < 1 and take ¢ = /Le_ﬁ with Lo < it < 1. There exist q§ =
qo (Mo, ,ul) >0, M = M(uo, t1) > 0 such that, for any q € [0, q5] and o € (0, 1) sat-
isfyin min = €%, given n > 0 and a satisfying (5.16) in the definition of Gg
provzded in (5. 12), we have

(1) Let Go = #7110, 0]. Then the following bound holds:

1Goll2 + ellGollz + €*[1Gg ll2 < 1Goll2 + Me*™2* < M(1 + p)e®.  (5.21)

As a consequence, there exists g7 (io, (1, 1) < q§(to, t1) such that if ¢ € [0, q7],
then Fo(R) + Go(R) > %
(2) Let Wy = #,[0,0]. Then there exists q5 (Lo, 1, n) < g7 (o, k1, 1) such that for

q€l0.q95
[Woll < Me*%q~" + Mne < M(1 + n)e.

Remark 5.12. Since M = M (Lo, pt1) does not depend on 7, we have that ¢} (io, t1,0),
g5 (o, 41,0) > 0. In other words, Lemma 5.11 can be also applied for n = 0.

We divide the proof of this lemma into two parts, the first one, in Section 5.3.1, corres-
ponds to the bound for G and the second one, in Section 5.3.2 corresponds to the bound
for W().

5.3.1. A bound for the norm of Gy and its derivatives. Recall that Go = %710, 0] as given

in (5.20). We start bounding [|Go |2, [|Ggll2, |GG 2 with Go given in (5.12). By (5.17),

it is clear that, for R > Ry, = €%,

RV2 Ripin V2 3 __2
f) ‘ < Mla|VER2 =" < Ma|Ja(e®)3e e,
€

|R2Go(R)| = | R*Kof
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if 0 < ¢ < qg, for g5 = g (o, 1) Here we have used that e!=* < Mgq. Therefore,
using that a satisfies (5.16), we conclude that ||Go |2 < Mne?. In addition, it is clear that
e Gyll2 + €21Gyll2 < M ||Go|l2 < Mne?, and thus

1Goll2 + €llGollz + €*I1Ggll2 = Mne?. (5.22)

To deal with §;[¢=2N [0, 0]] (see (5.5)), we first bound
R
Fo(R) = MO.0/R) = 2(Fy (R + L0,
By Corollary 5.10,
|R2e72Fo(R)| < M 21—,
and applying Lemma 5.4, we obtain ||S; (e 72Fo(R))|» < Ce*2%, which gives
[Goll2 < IGoll2 + M&*™2* < M(ne® + £*7%%) < M(1 + n)&>.

Using Corollary 5.5, we obtain the bounds for the derivatives,

elGollz + 21Ggll2 = M(ne® + &72%) < M(1 + n)e?, (5.23)

and (5.21) is proved.
To finish, we notice that by Corollary 5.10, there exists ¢ (to, i1, 1) such that if

g € 10,471,

1 2 1
Fo(R) + Go(R) = 5 = M(1 + n)% = 5 = M1+t = (5.24)

=

5.3.2. A bound for |Wp|2. We recall that Wy = S3[N2[F1]0, 0], 0]] = S$2[N2[Go, 0]],
where N, is defined in (5.7), namely

pE+ Gy o ]
Fo + Gy 4 Fo+ Gy
By definition (5.19) of A,

MN2[Gop, 0] =

Fy+ G(’))

(FO”+ Gy + =

Sz[VoFé + G(’)] _ [F(; + G{,].

Fo + Gy Fo+ Gy
Therefore, for 0 < ¢ < ¢} ((o, 41, 1), using Lemma 5.8, Corollary 5.10 and bounds (5.24)
and (5.23),

F/ G/ F/ G/
Hsz[ + ]H H + < M(ke'™® + 372 4 )

F() + Go Fo+ Go ll2
S M(82 ot —1 +83—20¢ +€77) S M(82—otq—l +87’/),

where we have used that ke! ™% = gq~1e!™* < &. In the rest of the proof, we will reduce

the value of g7, if necessary, without changing the notation. In addition, by Corollary 5.10
since

/
5)‘ < Mq2k€l—ol — quz_“,

2| p3 "
R F,
q‘ ot R

el
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we also have by inequality (5.18) in Lemma 5.7,

612”32[ 1 (F,,+F’ ]”<Mq82—a
Fo+ Go\ ° ’

To bound the last term in ‘W, we use the second statement of Lemma 5.9 with

he—'  h—cr+ S hi—g
Fo + Gy’ 2 0 R’ ! 0
Then
1 G/

S e, G+ R = |56 |, +1sa0Galle + 24 222 ]
H 2[F0+G0( ot R)] 27 I Fyg+ Goli2 +|| 2[ 0]”2+ [F +G():|
By bounds (5.23) and (5.24),

—0 | < Mne+ M32%,
| 2], =

and as a consequence, by Lemma 5.8,
G/
HA[—O ]H < Mne + Me372*,
Fo + G() 2

By bound (5.24) and since R > Ry, = €%,
| Fo(R)| + |Go(R)]
|Fo(R) + Go(R)|?
g3 2 + ne 82—aq—1 + g3 2 + 7]8

R2 ) R2 - R3
= [’ Golll2 < |7 Gglls and
therefore, [|g%S2[h' Gylll2 < M(q%e*3* + ¢?ne*™). We conclude that

|Go(R)'(R)] < |Go(R)]

§M< (43a+n8 a)’

[Woll2 < Me*™*q™" + Mne < M(1 + p)e.

5.4. The contraction mapping

In Lemma 5.11, we have proven that the independent term (Gg, Wy) = F[0, 0] (defined
in (5.20)) satisfies | Go |2 + &[|Woll2 < M (1 + n)&2. In other words, the independent term
belongs to the Banach space X, x X, endowed with the norm

LG W] =1Gl2 + el Wl

Let
ko = ko(to, k1. 1) = |[(Go, Wo) lle™2, (5.25)

then we get the following assertion.
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Lemma 5.13. Let n > 0, 0 < po < 1 and take € = /Le_ﬁ with g < u < 1. Take
Kk > 2ko, where kg is defined in (5.25), and a satisfying condition (5.16). There exist
qo = qo(po, 1,1) > 0and M = M(wo, i1, 1) > 0 such that, for any q € [0, qo] and
a € (0,1) satisfying g~ 'e'=® < 1, taking Ruyin > €%, if (G1, W1), (G2, W) € X5 x X5
with || (G1, W) ||, (G2, W2) || < k&?, then

|F[G1, W] — F[G2, Wa]|| < Me' g7 [(G1, Wi) — (G2, Wa) |, (5.26)

where the operator ¥ is defined in (5.15).
If moreover ||G{ |2, |G4ll2 < ke, then

el|S2[ M2[G1, Wil = 82[Na[Ga2, Wa]] |l
< Me¥|Wy — Wallo + Me' |Gy — Gal2 + Me| Gy = Gl (5.27)

with 8, defined in (5.14) and N, in (5.7). Also,
el (F1[G1, Wi] — F1[Ga, Wa)) [l2 < Me' g7 (G, Wh) — (G2, Wa) . (5.28)

Next subsection is devoted to proving Theorem 5.3 from the above results and Lem-
ma 5.13. We postpone the proof of this lemma to Section 5.6.

5.5. Proof of Theorem 5.3

Lemma 5.13, for 0 < ¢ < qo, gives us the Lipschitz constant of ¥ with the norm ||-]|
on B2, the closed ball of X, x X, of radius k&2, Indeed, the Lipschitz constant is
Me'=%q~! < 1 ife!7%¢™! < g := 53;7. Then the operator ¥ is a contraction. Moreover,
recalling the definition of ko given in (5.25), if (G, W) € B2, itis clear that

LFG. W]

IA

|F[G, W] —F10,0]]| + [[F¥[0,0]]

A

1 1
(G, W)]| + koe? < —Kke? + 582 < kg,
2 2 2

Then, the existence of a solution of the fixed point equation (5.15), namely (G, W) =
F[G, W], belonging to B,,2 is guaranteed by the Banach fixed point theorem.
Moreover, as
IGll2 = IF1[G, W]l2 < ke?,

using (5.28) and Lemma 5.11 to bound the norm of (#7[0, 0])’, one can easily see, for
some constant M ,

IG"ll2 = I(FIG. WD ll2 < I(F1[G, W] = F1[0.0D)[l2 + [(F1[0.0D)'[l2 = M.

_ V2
The continuity with respectto y anda = e3 (e%) 3¢ -7 acanbe proven as follows.
It is clear that from definition (5.12) of G¢ and Table 1, we have

Rﬁ)a _ K()(Rﬁ

&

3 g3 2 ~
Go(R) = K()( )82(8 ) 2esl—a =: K(R)a
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with |[K(R)| < M if R > R, = ¢“. Moreover, by construction,
(G W) = lim (GO, WD), (GO wO) =F[g*D, wkD),
GO W®) =(0.0).

Therefore, using that the operator # defined in (5.15) is continuous with respect to u €
[0, 1] and depends on a through Gy, so the operator ¥ is also continuous with respect to
a € [-n, n], we deduce that (G, W) is continuous with respect to a, u since the operator &
is a contraction uniformly on these parameters.

We introduce now the auxiliary operator

FIG, W] = (F1, F2)[G, W] := (s 2851 [M[G, W]], =S2[ Mo F1[G, W], W]]).

Observe that ¥ [G, W] = F[G, W] for a = 0. We denote by (G°, W) the solution of the
fixed point equation (G, W) = f[G, W], and we emphasize that, since a = 0, Gy = 0
(see (5.12)). We point out that, applying Lemma 5.11 with n — 0 (see Remark 5.12) and
recalling that ! < 547, for 0 < ¢ < g (1o, jt1), we have

LF10.01) < M+ + &%) < Me> g

Therefore, in this case, Ko = ko (fto, 41,0) = &2 Uffc [0,0]]] < Me'=%g™1 with k¢ defined
in (5.25), and this implies

(G, WO)| < 2kpe? < 2M &> %g™ !,

Denoting by My = 2M (which only depends on o, (1), the proof of first item of The-
orem 5.3 is done.
Let now (G, W) be the solution for a given a satisfying (5.16). We have
G = #1[G, W] = Go + F1[G, W1,
W = ‘772[G, W] = _SZ[NZ[}VI[G5 W]a W]]
= =5:[M2[Go + F1[G. W] WI| + $2[No[F1[G. W], W] = F2[G. W].

Therefore, using that (GO, W0 = 3+C[G0, WO], we have, using (5.26) and (5.27),

LG, W)= (G W) < Goll> + LF[G. W] - F[G°, W]
+ e[| S2[Ma[Go + FA[G. W], W]] — So[Na[F1[G. W] W)
< |Goll2 + Me'#g7'[[(G. W) — (G°. W) |
+ Me'"™¥|Goll2 + Me||Gj 2
< M||Goll2 + Me|Gyllz + Mg~ (G, W) — (G°, W?)].
As a consequence, using that, by (5.22), [Goll2 + ¢[|Gjll> < M2, we obtain

(G, W) —(G°, W°)| < Me&%.
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Then

IG — Go — G°» = | F1[G. W] — F1[G®, WO)|l, < Me' "¢ || (G. W) — (G°, W9) ||
S MSS_aq_l.
The bounds for ||(G°)’ ||2 and |G’ — (G®) — G|, follow from bound (5.28) and

an analogous expression for F, along with expression (5.23). Denoting by G'=G-—
— Gy, Theorem 5.3 is proven.

5.6. Proof of Lemma 5.13

The proof of Lemma 5.13 is divided into two parts. In Section 5.6.1, we prove inequality
(5.26) and (5.28). In Section 5.6.2, we prove (5.27).

5.6.1. The Lipschitz constant of 1. Let (G1, W1), (G2, W5) € X3 x X, belonging to
the closed ball of radius k&2, that is, |[(G1, Wi)||, |[(G1, W1)|| < k2. We have, using
Lemma 5.4,

|F1[G1. W] — F1[G2. Walll2 = €281 [M[G1. Wi] — M (G2, Wallll2

(5.29)
< M||N1(G1, W) — N1(G2, Wa)]|2.

Then to compute the Lipschitz constant of %7, it is enough to deal with the Lipschitz
constant of MNj.
Now we write n(A) = (1 — A)(G1, W) + A(G,, W) and, for any R > R, = &%,

1
N1[G2, W2](R) — N [G1, W1](R) = /o 96 N1 [n(M)](R)(G2(R) — G((R))dA

1
+ /0 dw M I(R)(Wa(R) — Wi (R)) dA.

Then, since |[7(1)||2 < k&2, to bound the Lipschitz constant of .y, it is enough to bound
|06 M1[G. W]| and [0w M1 [G, W]| for [|(G. W)z < ke®.

‘We now recall that FO in (5.3) is defined as F? = 1 + F2° Then, since by Corol-
lary 5.10 [kVo(R)| < Me'™ and F§ = 1 — k?V§ — &>n*R™2, we have, using that
R > Ry = &%,

Ao =< + Me“R < Meg“ ", .
|Fo(R)| < MK?*|VE(R)| + Me?R™% < Me*™® (5.30)
Then, if |G(R)| < ke2R™2 < Mg? 2 using gl < Mg,

Fo(R)

[Fo(R) + G(R)| = \[1+ —

+|G(R)| <14+ 0(*2%) <14+ 0(¢%) <2 (531)

if ¢ is small enough.
We claim that if [|(G, W)||» < k&2, then

|0g M [G, W](R)| < M&>™2*,  |aw N [G, W](R)| < Mke'™“. (5.32)
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Indeed, we have
AG N1 (G, W) = —Fy — 6FyG —3G* = 2k>W Vy — k2 W?2,

where N is given in (5.5). Then, using (5.30), |G(R)| < ke>R™2 and |W(R)| < keR™2,
we get

10 M [G, W]| < M( 2-2a +,<R2 +i? R4 +Kk2|V0(R)|— +/<2k2R4)

S1‘/1(82—2oz_+_KE2 2a +K284 4o +Kk8 o 2 2a+K2k2 20182—204)

1—o

<M8220t<1_|_K+K2220¢+ +Kq222“)§M82_2°‘,

where we have used again that EIT_Q < 1. With respect to dw N1 [G, W], we have
Ow M [G, W] = =2k>Vy(Fo + G) —2k*W(Fy + G).

Then, using (5.31),

11—«

0w MG, W]| < M(kel“"—i— k2%> < M(kel_"‘+ k%”a) < Mke“"‘(l + & ; )

gl

provided q_a < 1, and (5.32) is proven.
Finally, using bounds (5.32) of dw N1, dg N2,
|N1[G2, W2](R) — N1[G1, W1](R)|
< M&¥?*|G1(R) — G2(R)| + Mke'~*|W1(R) — Wa(R)|,

and therefore, recalling that k = sq_l,

| N1[G2, Wa] — N1[G1, Willl2 < Me*2%||G1 — Gall, + Mke' ™| Wy — Wa |
< M%7 (G1. Wy) — (G2, W) .

o

This bound and (5.29) lead to the Lipschitz constant of %7, which is M ’“‘"lq_
From these computations, we also deduce expression (5.28) using Corollary 5.5.

5.6.2. The Lipschitz constant of ¥,. Now we deal with ¥, [G, W] which is defined by
F2[G, W] = S2(MN[F1[G, W], W]).
Recall that N, was introduced at (5.7),

q2 " " F(;(R) + G,(R)
Fo(R) + G(R) (R R +6"(R) + R )

Fy(R) + G'(R)
Fo(R) +G(R)’

Nao[G WI(R) = W? —

+2(Vo(R) + W)
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We have to deal with each term of the difference
So[M2[F1[G1, Wh], Wi] — Mo F1[G2, W2], Wa]]

separating in a similar way as we did for computing the norm of Wy in Lemma 5.11.
In this proof, we will use without special mention the first item of Lemma 5.13 (already
proven) and the bounds in (5.28).

Take (G1, W1), (G2, Wa) € X5 x X5 satisfying || (G1, Wh) ||, [[ (G2, Wa) || < ke? and
G112, 1G> < ke. We first prove

e[| S2[ N2[G1, Wil = 82[Na[G2, Wal]|l2
< Mee'™¥|Wy — Wal2 + Mqe| Gy — Gyl + Mq?e' |Gy — Gal2.  (5.33)

We define Gy, = (1 — 1)G2 + AGy and W), = (1 — L)W, + AW, and we notice that the
operator N> can be written as

MNo[G, W] = M[G,G',G", W].

By the mean’s value theorem,

1
N1 WA = alGa Wa] = (Wi = Wa) [ 0w R21G. G5 G Wi 0
0
1
+(61-62) [ 96RlG1. G5 G w
0
1
+ (G - Gé)/ do' M2[G). G, G}, W3] dA
0

1
R 2 ACRONT ALY
0

=: N1 + N> + N3 + N4.
We start with £S>[N1]. We have 8W<A~/2[G, G,G", W] =2W + 2% and therefore,
using the bounds for Fp, F(; in Corollary 5.10,

Slfa 2—a ,,—1

eM k eM e 7%
elNI(R)| = el W1 — Vt/2||2(F + T) = ellWi — W2||2(F + T)

11—«

&
= Me|W1 = Walla—5-

l_
where we have used that &—

< 1. Then, by Lemma 5.7,
elSa[N]l2 < eM || Ny|ls < Mee' ™ | Wy — Wi 2.
We follow with N,. It is clear that
eldg Ma[G, G', G", W](R)|

&

Fl(R) + G'(R)
~ (Fo(R) + G(R))? =

R
—2(Vo(R) + W(R)(Fg(R) + G'(R))|.

¢*FJ(R) + G"(R) + ¢
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We use now that ke!™® < g and eR™2 < ¢172¢ < gl=2f~1 4pnd obtain
e|R*dg N>[G, G',G", W](R)|
< Ms[qsz(l_“) +q2 + gl—aqz + 82—2(1 + qgl—a + q—183—3a + 82—20{]
< Meg?,
where again we have used that ¢!~ < ¢. This gives
g|RIGM>[G.G',G", W]|(R)| < Me' %4>

Therefore,
e|R*N2(R)| < Mq?e' |Gy — Gall2,

and we obtain &|||S2[N2]|l|2 < || V2|3 < Me'™%¢?||Gy — G2|>.
With respect to N3, we have

~ o Vo(R)
N, (R) = dgr B =2EB® + G
2 (R) ' M[Ga. Gy Gy WZ](R) Fo(R) + G (R)

- e W)(R)
R(Fo(R) + Ga(R)) ~ " Fo(R) + GA(R)’
Then 2 2

Mg®s Me 2 1-a) 1 !
£[ONL(R)| < + =3 < Me(g” +¢ a)istqE’

which implies that
e R*ON,(R)|IG1(R) — Gy (R)| < Meq|| Gy — Gjl2.

and therefore

£ <e¢

1
(G — Gl / ON, dA
2 0 3

< Meq| G| — Gyl2. (5.34)

1
82|:(G{ _ 6 f IN, cm]
0

We point out that
Lo Lo
32|:V0(R)(G{ _ G;)/O mdk] - A[(G{ _ G;)/O mdk},
and then

= ¢l|G} = Gyl (5.35)
2

&

! 1
$2| Vo(R)(G| — G, —dA
R e

Bounds (5.34) and (5.35) imply €||$>[N3][l2 < Me||G] — G5 |».
Finally, we deal with N4. Using Lemma 5.9 with

Loda ~ ~
hR)= | ———. ha(R)=G|{-G), h =G|—G),
() /0 Fo + Gy, 2() 1 2 1 1 2
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we have
el S2[Nalll2 < eq®|hhi |2 + eq?||S21h M2 + 26q2 || AR A]2.

Then, we obtain
eq”|hhyl2 < Meg?||G] — G) |2,

and by Lemma 5.8,
eq?||A[h1h]l|l2 < Meq?| G| — G)|a.

In addition,

VF(R) + G (R)]
|Fo(R) + GA(R)|?

swmﬁMMsmmm—%mnA

kel™® + ¢
8—

<M
= R*

1
1G1 = G2ll2 = Meq 551Gy = Gala.

Then, using Lemma 5.7, || S»[A/ h1]||2 ||h’h I3, and we obtain
el|S2[Nalll2 < Meq||G| — G52,

which finishes the proof of bound (5.33).
Now we define ¢ = F1[G1, Wi], 2 = F1[G2, W>]. By bound (5.33), using that
the Lipschitz constant of %7 is M £ q_a and also (5.28), we have

el S2[Malo1, Will = S2[Na[p2, W2lll2
< Me'"Y(G1. W1) — (G2, W) || + ' llo1 — @all2 + ell@] — @512
< Me'"|(G1.Wh) — (G2 Wa) | + &' %q 7 [(G1, W) — (G2, Wa) ||,

and the proof of Lemma 5.13 is finished.

6. Existence result in the inner region. Proof of Theorem 4.5

We want to find solutions of equations (2.6) departing the origin that remain close to
(fan(r), vir(r)) = (fo(r), quo(r)) defined by (3.20), where we recall that fo(r) is the
unique solutlon of (3.17) and vq(r) is the solution of (3.18),

PR - =0 RO =0, T for) = 1
I 6.1
+_+2v0f0+(1_f° k*) =0, v(0) =0.

Then vy can be expressed (see (3.19)) as a function of fy(r) by writing

vo(r) = — %Uféﬁ®04%® k) de.
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The asymptotic and regularity properties of fy, vo are given in Proposition 4.4 and
will be used along the proof of Theorem 4.5. Again, as in Section 5, the proof of such
result relies on a fixed point argument.

Let us now introduce the Banach spaces we shall be working with. For any 0 < s and
¢ > 0, we define w(s) = fol(%) > 0, wo(s) = v2(s) fo(s) > 0 and

_ Ly : 0N
X = {w. [0,51] = R, ¥ € €°([0, 51]). e | el < oo}, 6.2)
endowed with the norm
V(s)

Il = sup |,
s€[0,s1] w(s)+cw0(s)

We stress that in X, the norm ||-|| and

[V (s)] 1 |log s[>\~
[V llax = sup —— + SUP](S—3+CS—2> [¥(s)].

s€[0,s4] S SE[5%,51
for any given s, € (0, s1) are equivalent (see Lemma 4.4). We also introduce the Banach
space

Y ={y:[0,s1] > R, y € €°([0,51]), [¥]ln < 00},
where the norm ||-||,, is defined by

i = sp OL,

S€[0,54]

1 llog 5|2
(et

) el

SE[s4,51]

which satisfies that ¥ C X.
Finally, for any fixed m, [, v > 0, we define

Z, = (¥:(0.51] > Ry € €°(0.51]). [Wll;" < oo},

and the norm

I
i = s HOL L WO

S€[0,54] sm SE[Sx,51] |10gs|v

From now on, we will fix s, (independent of g and k) as the minimum value which
guarantees that, for s > s,, fo(s) > % and the asymptotic expression for K,,, I,, as s — 0o
in Table 1 is satisfied for s > s,, namely

K, (s) = \/ges(l + (9(%)),
Lo =5 (1+0(1))

6.3)

with s > s,.
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6.1. The fixed point equation

We denote by 7 = g and we shall derive a system of two coupled fixed point equations
equivalent to

/

2
f”“7—fé5+fﬂ—f2—fﬁ)=a (6.4a)
fﬁ+f§+2ﬁﬁ+fﬂ—fa—ﬁ)=0 (6.4b)

We thus start by noting that since ¢ is small, we may write ( f, D) as a perturbation around
(fo(r),vo(r)) of the form (f, V) = (fo(r) + g, vo(r) + w). Therefore, using that fy, v
are solutions of (6.1), equation (6.4a) can be expressed as

2

Lg% +5(1=3£20) = Alg.wl. (65)

g// + S
,

with ~
Hlg, w](r) = g + 38> fo(r) + ¢*(vo(r) + w)*(g + fo(r)).

along with the initial condition g(0) = 0. We also have that equation (6.4b) can be written

like f
Jo _ __Vtw
fo et Y

w4+ = +w (fog' = fig)  (66)
along with w(0) = 0.

We now write the differential equations (6.5) and (6.6) as a fixed point equation.
We start by pointing out that, equivalently to what happens for the outer equations, one
cannot explicitly solve the homogeneous linear problem associated to (6.5). However,
we shall conveniently modify equation (6.5) to obtain a set of dominant linear terms at
the left-hand side for which we will have explicit solutions.

We first note that, as shown in [2], fo(r) very rapidly approaches the value of 1.
Inspired by this, we define

/ 2

g5 + 31— f70),

Elg] :=g¢" + =
r

and therefore, equation (6.5) reads & [g] —2¢ = H [g, w](r), which motivates to perform
the change

H[0,0]
g=-——5—tA¢g
into (6.5). Denoting by
H[0,0] 1
ho = — ;= quv(%fo,

Ag is found to satisfy

Ag’ n? N ~ ~
Ag" + Tg - Agr_z —2Ag = Hlho + Ag] — HI[0,0] — E[ho] —3Ag(1 — f5(r)),
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along with Ag(0) = 0. Now we perform the change s = +/2r and we denote by 8g(s) =

Ag(73), 8v(s) = w(5). Jo(s) = Jo(5), Do(s) = vo(5) and ho(s) = ho(5). There-
fore,

3g’ ?
8g" + Tg - Sg(l + Z—z) = M[8g.6v], (6.7)

where
Nil5g.501(5) = ~ 21— )38 + 5 (HII5g + o, 501 — H[0,0) — 3€Tho] (68
with

H1g.80)(s) = g° + 387 fo(s) + 4> (o(s) + 8v)* (fo(s) + ©).
e o n ﬁé) n? = 7 72
lfol(s) = Elhol(sv/2) = 2(5 + =° = o) + 3ho(1 — fF(5)).
The homogeneous linear equation associated to (6.7), namely
! I’l2
1+ %) =0

has solutions K, I, the modified Bessel functions. They satisfy the property that their
Wronskian is % Therefore, equation (6.7) may also be written, for any s; > 0, like

g

8g//+__
N

$5(s) = Kn<s>(c1 + [ en@mitse e ds)
L, (5)(02 - [ exa@milse. 1@ dé),

5¢'(s) = K, <s>(cl + [ en@Mse. s01©) ds)

+10s) (Cz _ [ EK, (6 [5. 50](6) ds),

where ¢y, ¢, are so far free parameters. It is well known (see expansions in Table 1 as
s — 0) that K,,(s) — oo and I,(s) is zero as s — 0, if n > 1. Then, in order to have
solutions bounded at s = 0, we have to impose

o - /0 ' E1,(6) M (5. 5](E) dE = 0.

Therefore,

8g(s) = Kn(S)/O Eln(E)Nl[Sg,SU](E)dEﬁLIn(S)(02+/ ISKn(E)M[Sg,Sv](E)d%')-

For any s; > 0, we introduce the linear operator

S1101(5) = Kn(s) /0 EL(E)Y (E) A& + L, (s) / KL ()Y (8) dE.

We have proven the following result.
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Lemma 6.1. For anyb € R, we define
8o (s) = In(s)b.
Then, if §g is a solution of (6.7) satisfying §g(0) = 0, there exists b such that
8g = 8§80 + 81 0 N1 [8g, Sv]. (6.9)
We emphasize that Np, given in (6.8), has linear terms in §g. In fact, we decompose

MN1[8g,6v] = L[6g] + R1[bg, sv]

with 3 5
L[5g](s) = —5(1 — f5(s))8g(s).
| B 1 - (6.10)
R1[8g.8v](s) = E(H[Sg + ho.Sv] — H[0,0]) — Eg[ho]-
Therefore, equation (6.9) is rewritten as
8g = 880 + 81 0 £[8g] + 81 0 R1[8g, 8v] (6.11)

with 8g¢ defined in Lemma 6.1.

Lemma 6.2. There exist 0 < ¢, L < 1 such that for any 0 < s« < $1, the linear operator
T := 81 o £ satisfies T: X — X with0 < ¢ < 1 the constant defining the norm ||-|| of X
(see (6.2)) and |T || < L < 1. As a consequence, Id — T is invertible.

Proof. In [3], it is proven that the linear operator

FI) = 3Kn0) [ £, 001 = F @@ ds

3 > ~
+ Eln(s)/ EKA(E)(1 = 5 (§))h(E) ds,
)
is contractive in the Banach space defined by

X = {w:[o, 00) = R. ¥ € CO[0.00). [ = sup L - oo}.
s>0 W(s)

The proof is based on the fact that
T = 5Ku05) [ €L = v de

F300) [ KO = FENIML0E & < 1 TE).

where the function 7 is defined by
T6)i= 5K ) [ EL O - O as
0
+300) [ @0 - Femweds

and satisfies | T || = L<l.
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Letnow h € X,
T = 3Kl [ €0 = T+ cwo(e) dé
3RO [ KL = TN + cwn) dé
< BT G) + RG5). 612)

where
RG) = S Ko) [ £~ F2E)uo(e)
£ 30,0 [ KO0 - e i
When s € [0, s.],
ro zem (s [ [Ceae e [Cer

For s € [s«, 51], using 1 — foz(s) = (9(s_2),

< cMsi3 < cM(w(s) + cwo(s)).

log &>
52

dé) <cMs".

log s|?
. | gs| )
ﬁ st

Therefore, using (6.12) one obtains || 7[4]|| < ||4|/(L + cbo), where by is a constant which

is independent of c. _ _
Taking ¢ < min{l, %} sothat L := L + chy < % < 1, the proof is finished. =

<M(

As a consequence of this lemma, equation (6.11) can be expressed as
g = 8o + 81 0 R1[g. 8v].

. (6.13)
8go = (Id—T)'[680], S1:=@d—T)'os,

and we recall that 58y was defined in Lemma 6.1.

Lemma 6.3. There exists a function 1(s) satisfying
1 1
I'(s1)Kn(s1) = I(s1) Ky (s1) = 5 [L(sO] 1T (s1)] < Mﬁe

such that 6go(s) = I1(s)b.

Proof. Recall that (see Lemma 6.2 for the definition of 77)
TII6) =5 Ka®) [ €O~ Fo@)h(e)ds
0
3 51 ~
- EI"(S)/S EKA(§)(1 = fo(§))h(§) d§.
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Since 8gg = (Id — 7)~'[88o], by definition of the operator T it is clear that
8go(s) = Y T™[580](s).
m=>0

and therefore, using that the operator 7 is linear and §8y(s) = I,,(s)b, we conclude

S0(s) = Y T"[8%0l(s) = ( 2 T"[1)())b =: L(5)b.

m=>0 m=>0

Notice that if b = 0, one can take I(s) = I,,(s) and we are done. Assume then that b # 0.
Then, from §go — T [6go0] = 880 = I,,(s)b, one deduces that

In(s) = 1)~ 3 Ka(s) /0 EL.E)(1— fo(€)I(E) d
BLIAT / LKL (6)(1 — o) 1(6) de.
156) = I'6) = S Ky ) / ELE)(1 — foE)I(E) dE

_—1 (s)/ K, (6)(1 — fo(§)1(§) dé.

Therefore,
I'(s1)Kn(s1) — I(s1) K (s1) = 57"

To finish, we observe that ||5go|| < M ||8go|l = M| I, ||b for some positive constant M.
That is, || /|| < M||I,]||. Then, from the asymptotic expression of [, in (6.3), we deduce
that 7, (s)(w(s) 4+ cwg(s)) ™! is an increasing function and then we have || I, || = (w(sy) +
cwo(s1)) "1, (sy) and then

[(w(s1) + cwo(s1) " I(s1)] < M(w(s1) + cwols1)) ™ 1n(s1),

_1
which implies [(s1)| < M1,(s1) < Ms, *e°'. The bound for |/’(s1)| comes from (6.3)
and the fact that 1/ (s1) = [s7! + I(s1) K}, (s1)](Kn(s1)) 7L n

Now we deal with equation (6.6) which, along with the initial condition w(0) = 0, is
equivalent to

w) = s [ 6O st + 20 - S o = S
Therefore, recalling that g = hog + Ag, the function Sv(s) = w(%) satisfies
§u(s) = S5 0 RS2, 8v] 6.14)
with
S:001s) = f ETZEE) b 6.15)

SOS
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and
Ro[8g.8v](s) = (ho + 8¢) (2 fo + ho + 8g)
5() +8U T / i
— hp +8g") — ho + 82)]. 6.16
fo(f0+h0+8g)[fo( o +88") — folho + 69)] (6.16)

In view of (6.13) and (6.14), we are looking for solutions of the associated fixed point
equation. However, as for the outer region, for several technical reasons, we consider
instead the equivalent version of the fixed point equation given by

(6g,0v) = F[8g, 6], (6.17)
where ¥ = (#71, ¥2) with
F1 =088 +S10R1, F2[dg,dv] = §2 0 Ra[F1[8g, 6v], Sv]. (6.18)

Remark 6.4. This strategy of using ¥7, the first component of the fixed point operator,
to compute ¥, reminds of the Gauss-Seidel method for solving linear systems. One could
say then that the operator ¥ is a Gauss-Seidel fixed point operator.

Remark 6.5. We note that we need to guarantee that _ﬁ)(s) + ﬁo(s) + 8g(s) > 0 for
s € [0, 1], in order for the operator R, to be well defined. The following bounds, which
are a straightforward consequence of Proposition 4.4, will be crucial to guarantee the
well-posedness of R;:

gSI

ho(s) < Mg?s"2, 5§ >0, ho(s) Mgq 2| s> 1,
q-s

~ 1
gliol(s) ~ MqPs". s — 0. |ElRol(s)] < Mg &2 gs' <M 5>

Moreover, |%(s)| < Mqg?|logs|?>s73 fors > 1.

In what follows, we simplify the notation by dropping the symbol ~ of ﬁ), %o and hyo.
Now we reformulate Theorem 4.5 to adapt it to the fixed point setting.

Theorem 6.6. Letn > 0,0 < o < 1 and take € = ue_ﬁ with g < pt < 1. There

exist o = qo(o, 1, 1) > 0 and pg = po(Lo, 1, 1) >0, M = M(uo, 11,n) > 0 such
that, for any q € [0, qo] and

0 <p < po.
taking s1 as ,
51 =edq,
if b satisfies
b=s, -3, —1p%h,  |b| <, (6.19)

then there exists a family of solutions (§g(s,b), v (s, b)) of the fixed point equation (6.17)
which is continuous with respect to | and b, defined for 0 < s < sy and satisfies

I8gll + 118g"| + I8l < Mg?.



A rigorous derivation of the asymptotic wavenumber in spiral wave solutions 65

The function g can be decomposed as
8g(s.b) = 8go(s.b) + 8g1(s.b)
with 8go(s,b) = I(s)b + (SEO(S) and 1(s) satisfies 1'(s1)Kn(s1) — I(s1) K} (s1) = s7".
Moreover,
(1) there exist qx = q«(Lo, 1) and My = Mo(pg, 1) such that for q € [0, go*],
1880l + 18861l < Mog®,
(i) and for q € 0. qol,
188111, 18811l = Mq?p?.

As we did in the outer region, we prove this proposition in three main steps. We first
study the continuity of the linear operators §;, S, in Section 6.2 in the defined Banach
spaces. After that, in Section 6.3 we study ¥ [0, 0] and finally, in Section 6.4 we prove
that the operator ¥ is Lipschitz.

From now on, we fix n, ©o, @1, we will take go, po as small as we need and b a con-
stant satisfying (6.19). As a convention, in the proof there appear a number of different
constants, depending on 1, to, 11 but independent of ¢ which, to simplify the notation,
will all be simply denoted as M .

6.2. The linear operators

The following results provide bounds and differentiability properties of the linear operat-
ors 81, S, defined in (6.13) and (6.15).

Lemma 6.7. Let sy, ¢ be such that 0 < s« < 51 and 0 < ¢ < 1, and let € X. Then, the
function 81[y] is a differentiable function in (0, s1) such that $1[y] € ¥ C X, $1[y] € X
and

I$10 1l = MIS1 Y1 = Myl IS [v]] < My

for M a constant independent of s1, s, c.

Proof. Let ¥ € X. One has
[S1[¥](s)] = MIIl//II[Kn(S)/0 EL,(§)(w(§) + cwo(§)) dé

1,09 [ €K@ (e) + cwo@) |
where we have used that ||(Id — 7)~!|| < M.If s € [0, 5], then
|Kn(s)] < Ms™",  [In(s)] < Ms",  w(s) + cwo(s) < Ms"™",

and therefore,

|s1[w]<s>|sM||w||(s—"/0 52"ds+s"/*1ds+s"/ 'sKn@ds) < My ls",

*
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where we have used that

f EK(£) dE < /oo EK(8) dE < M.

When s € [sx, 51],

S*f E( c(w?f)z)ds

s [w1<s>|<M||w||( _S[ erag 1 O f
+$ / ) Ve ( g% (b?f)z)dé)

1 1 2
< M5 + 5 ) < M) + cuoto)

which easily follows upon using that for any v,/ € N,

Sx s

s" s"

Therefore, [|$1[y][ln < M|y .
As for §1[y]’, we notice that

(Id—=T)o81[y]'(s) = K, (S)/ EL(E)Y (§) dE + 1, (S)/ §EKn(§)Y(§) d§,
and so analogous computations as the ones for §;[1] lead to the result. |

Lemma 6.8. Let us fix s1 such that 0 < s, < s1. Then if ¥ € Z(z,’l, the function $>[V/],
defined in (6.15), is a differentiable function in (0, s1) such that $3[y] € Zi’lﬂ and

IS20w 1 < Myl

In addition, if y € Zg’l with v > 2, the function $,[V] is a differentiable function in (0, s1)
such that $3[y] € Zi’o and

IS2 [y ]I < M |s.

The constant M > 0 does not depend on s.

Proof. Letyr € Zz’l. When s € [0, s«], we have

|S2[y](s >|_2f0 /Efo ©ly(E)|dE <My 2,,+1f g g < M|y 3's

When s € [s«, 1],

120](s)] < fo [ E2)|W(E)]dE + fo()/ £ (6)] de

2. (log)’ jlog 5|+
< i+ S [ 5 e <3 (§ + ),
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Finally, let ¢ € Z;’l with v > 2. Then for s € [0, s4],

|
|S2[¥](s)] < 720 )/ Efe ®Iv®)IdE < My |y 2n+1/0 §21 1 dg

< M”W”o S

and if s € [s«, 1],

|32W](S)|_f0 / Ef2)|W(E)]dE + fo()/ £ (6)] d
v, v, (l g) v,
<l S [ G e < iy X .

6.3. The independent term

We now deal with the first iteration of the fixed point procedure given by equation (6.17),
namely we study %[0, 0].

Lemma 6.9. LetO <c <1asinLemma6.2, let0 < o < |41, and take € = ,ue_ﬁ with
o < < wuq. There existq =q* (o, 1) > Oand M = Mg, 1) > 0 such that, for
anyq €[0,q*]and 0 < p < 3, for 0 < s4« <51 < eq glven n > 0 and b satisfying (6.19),
the function (6go, 6vg) = [O, 0] belongs to X x Zl , 8go is a differentiable function
belonging to X, and

188511 1880l < M(1+mg®. [IBuolly™ < M(1 + n)g?.
Furthermore, §go € Y with ||8go||ln < M(1 + n)q?, and Svy € IZS1 1 with ||5v0||1 < Mp>.

Proof. Notice that s;k < 1 if ¢ is small enough. We have §gg = 8g¢ + $1 o R1]0, 0].
We recall that

8go(s) = (Id — 7)™ [68o).

where §8o(s) = I,(s)b. Using that I,, is an increasing positive function, the norms ||-||,
I laux are equivalent and I,(s) = O(s™) as s — 0,

8g0lln < M||880ll < M [b|L,(s1)(w(s1) + cwo(s1)) ™"

1 log sq]%\~1
< bl (o) (5 + e 2550
1 1

Since s; > sx, the asymptotic expression (6.3) for 7, (s1) applies and then, since b satis-
fies (6.19), we conclude that ||8go|| < Mnq?>.
We now compute R1[0, 0] (see (6.10)):
1 1
R1[0,0] = —58[/10] + E(H[ho,O] — H[0.0])

1 1
= —ES[hO] + = (h3 + 3h3 fo + q*viho).
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Therefore, using the estimates for fy, vo, 1o and &[h¢] in Proposition 4.4 and Remark 6.5,
we have
q*[logs|? q*|logs|*

s4 +M 54

sup |R1[0,0](s)| < qus", sup |R1[0,0](s)| <M

s€[0,5+] s€[sx,51]

Using that for any [ € Z, [log s|'s™! is bounded if s € (2,51) and s3> < Mw(s), we have

up|R1[0.016)] = Mg? 5 = MqP(w(s) + cun(s))

s€[sx,51]

As a consequence, R1[0,0] € ¥ C X, || R;[0,0]|| < Cg? and using Lemmas 6.2 and 6.7,
we obtain

I81[R1[0,01lx < M ||$1[R1[0,0]]]| < M [[R1[0,0]]| < Mq>.

Moreover, ||$1[R1[0,0]]'|| < Mg>.

We deal now with §vg. First, we notice that fy 4+ kg + 6go > 0. Indeed, we have, for
s € [0,s4], fo(s) > M|s|" for some positive constant M (see Proposition 4.4). Therefore,
if ¢ is small enough,

So(s) + ho(s) + 8g0(s) = Cs" — Mg?|s|"* — Mq?|s|" > 0.
For s > sy, since fo(s) > 2, taking ¢ small enough,

1 —mgren |10gs|2

IlogSI 2
Mq? -M )
1 52 T3 53 52 4

Fols) + hos) + 8g0(s) > % -

We conclude then that §vg is well defined. Now we are going to prove that it belongs
to 21’3- By definition, vy = #,[0, 0] = S5 o R>[8go, 0] with R, defined by (6.16),

vol fo(hy + 8gq) — fo(ho + 8g0)]
Jo(fo + ho + 8g0) '

R2[6g0,0] = (ho + 8g0)(2f0 + ho + 8g0) +

Therefore, using that §gg € ¥, for s € [0, 5] we have
|R2[820, 01(s)| < M(1 + (s> + 1) < M(1 + n)g>.
On the other hand, for s € [s«, 51],

2 1 3 1 2
Ralto. 010 = M1+ L pgr gy CIOE L l0BSE

As a consequence, R»[5g0,0] € Zé’z with norm || R[8go, 0]||§’2 < M(1 + n)g?. There-

fore, by Lemma 6.8 dvg € Z}’S with norm ||8v0||}’3 < M(1 + n)q?, and thus, for s <
0

51 <e«q

1 3
[vo(s)] < M(1 +n)q2M < M(1+n)p 2| gs| .
N
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6.4. The contraction mapping

In what follows, we shall show that the fixed point equation (6.17) is a contraction in
a suitable Banach space. We define the norm

1(g.8v)] = lI8g]l + 6017

in the product space X x 21’3, and we notice that, under the conditions of Lemma 6.9,
we have proved that || (§go, §vo) || < koq?, where ko = ko (o, i1, 7).

Lemma 6.10. Let (o, (1, n, b and 1 be as in Lemma 6.9, and take ¢ = ,ue_ﬁ with
Mo < i < 1. There exist qo = qo(fo, 1,1n) > 0and M = M (o, 11, n) > 0 such that,
forany q €10,qo], 0 < p < 3 and 0 < s, <51 < eg, we have if (8g1,08v1), (8g2,8v2) €
X x Zi’3 satisfying || (8g1,8v1) ], || (g2, 8v2) || < 2Kk0q?, then

(1) with respect to 7,
171[881.8v1] — F1[8g2. Svalll < M2 [18g1 — Sgall + Mc ™" p?[|Svy — Sva 1>,
(2) and for %>,
|F2[8g1.8v1] — F2[8g2.8val| < Mq?(|8g1 — 8gall + M(p*c ™" + ¢?) || 6v1— 82|y

The remaining part of this section is devoted to prove Theorem 6.6 (Section 6.5
below) and Lemma 6.10 whose proof is divided into two technical sections, Sections 6.6.1
and 6.6.2.

6.5. Proof of Theorem 6.6

The proof of the result is a straightforward consequence of the previous analysis. We de-
fine B = {(6g.0v) € X x Z?’3, | (8g,8v)| < 2k0g?}. The Lipschitz constant of ¥ in B,
lip ¥, satisfies the inequality

)

| =

lip# < M(po, 1, m) max{g®, ¢~ p?} <

provided g is small enough and ¢~ !p?

if || (8g,8v)|| < 2x0q?, then

< %, so that ¥ is a contraction. In addition,

1
| F[82.8v]]] < [LF[0,0]] + |[F[8g.8v] — F[0.0]] < wog® + ELL(Sg,Sv)JJ
< koq® + %ZKO‘]Z < 2k0q°.

Therefore, the operator ¥ sends B to itself. The fixed point theorem assures the existence
of solutions (6g, 8v) € B, consequently satisfies,

1(8g.8v)] = | F[8g.8v]]| < 2k0q,
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and, if (6g, 6v) = F[g, 8v], then g, = F1[8g, v] — F1[0, 0] satisfies
118, 8v] — F1[0,0]]| < Mq?|18g] + Mc™'p?|I8v]l}> < Mc™'p?q2,

provided ¢ < p. The bound for ||6g || follows from the previous bound and Lemma 6.7.
Therefore, also using Lemma 6.3, to prove Theorem 6.6 only remains to check the con-
tinuity with respect to the parameters u, b which is proven as follows. From Lemma 6.3
and Table 1,

8go = I(s)b =: 1(s)b

with |IA(s)| < M if s € [0, s1]. By construction,
(6g,8v) = lim (8g(k),8v(k)), (Sgk,Svk) — 3,~[5g(k71)’8v(k71)]
k—o00
with initial seed (§g@,8§v(®) = (0,0). Using that the operator depends continuously on
(through k = pe™ 27a) and on b (through §gy) along with the fact that it is a contraction

which is uniform with respect to p € [®o, 11]s be [—n, 1], we conclude that (8g, §v) is
also continuous with respect to i, b.

6.6. Proof of Lemma 6.10

6.6.1. The Lipschitz constant for ¥1. Let (§g1,8v1), (g2, 8v,) belonging to X x z'3,
be such that || (8g1,8v1) ], || (8g2,8v2) || < 2k0q>.

From the definition of 7 in (6.18), definition of R in (6.10) and by Lemma 6.7, we
have

[ #1[6g1,8v1] — F1[0g2, va]|| < M| H[ho + 8g1,8v1] — H[ho + 8g2, v2]|.

Let 6g(A) = 8g> + A(6g1 — 8g2) and Sv(A) = Svy + A(Svy — §vy). Using the mean’s
value theorem,

Hlho + 8g1,8v1](s) — H[ho + 8g2, 6v2](s)

1
= /0 01H [ho + 3g(A), Sv(D)](s)(8g1(s) — Iga(s)) dA
1
+ / 92 H[ho + 8g(1), 8v(M)](s)(Sv1(s) — Sva(s)) dA. (6.20)
0

We have [|5g(1)[| < Ag2, [$v(M);* < Bg? and
91 H [ho + (1), 5v(M)](s) = 3(ho(s) + 8g(A)(5))? + 6(ho(s) + 8g(A)(5)) fo(s)
+ ¢ (vo(s) + Sv(A)(5))?,
9> Hho + 8g(1), 8v(M)](s) = 24> (vo(s) + 8v(A)(5))(fo(s) + ho(s) + 8g(5))-
Then, recalling that || kg ||ﬁf2 < Mg?, we obtain, if s € [0, s4],
|01 H [ho + 8g(L), Su(M)](s)] < Mq*s® ™2 + Mg>s" ™' + Mg?s*> < Mq?,
|92 H [ho + 8g(1), 5v(M](5)| < Mg>s",
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and for s € [s«, 51], noticing that

1 1 3 1 1
|U0(S)+8U(A,)(S)| SM(logS| +q2| Ogsl )_ |OgS|(1 2) <M|0gS|
N N
Then
|1 gSI |log s|? |log s[>
01 H [ho + g (1), 5o I6)| = Ma* 25— + M 25— + M =5,
|10gS|2
< Mda?
= Mdq 2
2|10gS|

|02 H [ho + 8g (). 8v(V)](s)| = Mq
Using all these bounds in (6.20), one finds that, for s € [0, s4], denoting §go; =
ho +6gj,j = 1.2,
|H[8go1.8v1](s) — H[8go2, §v2](s)]
< Mq>s" 81 = 8gall + Mq®s" ! [|5vr — bua |y
< Mq?s"~" (I8g1 — 8gall + [18vr — Sva ™)
< Mq*(I8g1 — 82l + 1501 — Sv2[117).
and for s € [s«, 51], using again the notation §go; = ho +dg;, j = 1.2,
|H[8g01.8v1](s) — H[8g02. §v2](s)]

g s|? 2|10gSI

<M2' (W(s) + cwo(s))[|8g1 — 8g2 | + M g*———||8v1 — Sva|}>.

Notice that, for s, < s < 571,

IlogSI

|10gS|2 og s\t
(s3+c 52 )

(w(s) +cwo(s))™ < M 3
e
c

1
=< M(W +c
In addition, if s; < ¢4, then g*|log s|?> < p?. Therefore, since |logs|?> < M2,
|H [ho + 8g1,8v1](s) — H[ho + g2, 8v2](s)|
< M(w(s) + cwo())g*I18g1 — 8g2ll + Mc™ 0 (w(s) + cwo(s) 11 — Sv2)1”,
which proves the first item in Lemma 6.10.

Remark 6.11. As a consequence, using Lemma 6.2, if §g, v € X x 21’3 with ||8g]| <
2 L3 2
2k0q°, [|6v]l;” < 2K0g”,

| F1[8g.8v]|| < [|#1[0,0]|| + [|#1[8g, 8v] — F1[0, O] ||
< koq® + Mq?||8gll + Mc ™ pll8v]l1 < 2k0q?.

if ¢ is small enough. The bound for the derivative is a consequence of Lemma 6.7.
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6.6.2. The Lipschitz constant for 5. We recall that %3[8g, 6v] = 82 o Ra[F1[8g, §v], 8v],
where the operator (R is defined in (6.16). We rewrite R, = & + P - P, with

P[8g,8v] = (ho + 88)(2f0 + ho + 88),
vo + v

fo(fo +ho+38g)

P218g) = folhg +88") — fo(ho + 8g).

For (8g1,8v1), (8g2,8v2) such that || (8g1,8v1) ||, || (8g2.8v2) || < 2k0q?, we denote @j =
371 [ng,Svj], ] = 1,2.

We recall that ||/ ||i_ﬁ2 < M q?, and we shall deal separately with P, P - P,. Starting
with P,

P1lég,6v] =

|P[8g1,8v1](s) — P88, 5v2](5)]

< [2[8g1(5) = 8g2(9)| - [ fols) + ho(s)| + [8g1(s) + 8g2(s)] - 1881 (s) — 8g2(s)I].
Therefore, when s € [0, s54],

| P88 1. 8v1](s) — P88, 6v2l(5)| < M 881 — 8851”2 < M [18g, — 8, ||
and for s € [sx, 51]

|P[8g 1, 8v1](s) — P[8g5. 8v2l(5)| < M ||8g; — g,/ (w(s) + cwo(s))

llog 5|
52 )

< M|sg, _@2”(;13 tc
As a consequence,
|2 Bg1.801] = P18g5. 8v2lllg* < Mg, g |l
and by Lemma 6.8 and the first item of Lemma 6.10,

I182[2 81, 6v1]] — $2[P[8g,, Sva]lll}>

- 6.21)
< Mq?|8g1 — 8ga| + Mc ™' p?||Svy — Sva .

Now we deal with & := &1 - P, . Using the mean value theorem, as described in (6.20),
yields

Pg,.6v1] — P[5g,. 6v2)]
= P1[8g1. Sv1](P2[8g1] — P2[88,]) + P2l88,1(P1[8g . Sv1] — P1[8g,. Sva))
= P1[8g,.5011(fo (B, —@;3 —~ f3(Bg1 —585))
+ 2,038,] (@1 ~5g,) [ aigo). vl

1
+ (Svy — 8v2) /0 am@(x),(sp(x)])dx, (6.22)
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where we denote by g (1) = A8g, + (1 — A)8g, and analogously for §v (). We emphas-
ize now that §g; is a differentiable function since §g; = #1[8g;,v;] = 81 0 R1[8g;, 6v;]
and by Lemma 6.7, the linear operator §; converts continuous functions into differentiable
ones. Moreover, §g ;€ Y and this implies that for s € [0, s4],

Jo(s) + ho(s) +8g(s) = Ms",

while for s € [s«, s1], using that fo(s) > 2, we have fo(s) + ho(s) + 8g(s) > & 1fq is
small enough. Taking this into account, one can now bound the terms in (6.22).
For s € [0, 54],

|P1[52 1. 8v11(5) fo(s) (g, (s) — 825 (5))] < M |58, —8g,] < M|5g, — g, |,
|P1[8g 1. 8v1](s) f3 (5)(Bg 1 (5) — 882(s))| < M|8g, — 8g, 1.

and

— — — 1 — — —
‘«7’2[54‘,'2]@)(55’1(&) —5gz(S))/0 91P1[88(1), Su(M)](s) dA| < Mq?|8g, — 8|,

1
‘fz[@z](swvl(s)—5v2<s)> /0 0,215 (1). So(V](s) dA| < M1Sv1 — Sua 1.

Then for s € [0, 5], recalling that P =P P,
|P[821.6v11(s) — P[5g,. 8va](5)| < M8, — 88, ]| + Mg [[5v1 — Sva]l. (623)
When s € [sx, 51], using that s; = eg and

[8v;(s)] < 2/(0612|logs|3s_1 < 2K0p2|logs|s_1,

we obtain
1211521 5011(5) folo) B, )~ B = wr B g 5l
“"gs'3 logsT 152, — 3l
|P1[38 1. 8011(5) f3 () (581 (5) — 88,(5))] < M “"fj' 1851 — 88l

and

— — — 1 —
P2[8g,](s)(8g 1 (s) —ng(S))/o 91P1[8g(A), Sv(M)](s) dl'

llogs® — —
<Mgq® 5 6g1 — 38l

1
P [8g21(5) (Bv1 (s) —5vz(S))/0 0 P1[8g(R), $v(M)](s) d/\'

< Mg 2 |lo gs|

[I6v1 —8v2||
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Then for s € [s«, $1], increasing s, if necessary

|P[5g 1. 8v1](s) — P[8g,, 5v2](s5)]

M — — 1
< < 8g; — 8gall + Mq?— [|8v1 — Sva |} (6.24)
s2 s2

By bounds (6.23) and (6.24), we have
A~ ~ 3.0
||<7)[?1[8g1,8v1],8v1] —_ ?[?1[8g2,8v2],8v2]||5
= M”@l _@2” + Mq2||8v1 — Sva|.

We use now Lemma 6.8, that ||||}3 < ||||}0 and again the first item in Lemma 6.10 to
conclude

I182[P[F1[8g1, Sv1], Su1]] — S2[P[F1[8g2, Sval, Sva]]}>
< M@?||8g1 — 8]l + M(P*c ™" + ¢2)||8v1 — S|},

Finally, also by the bound in (6.21), since R, = &P + f, the second item of Lemma 6.10
is proven.

Appendix A. The dominant solutions in the outer region. Proof of Proposition 4.2

Along this appendix, we will work with outer variables (see (3.7)) namely R = kqr and,
according to definition (3.15) and (3.6),

R L ou(R
Fo(R) = Fo(Rik.q) = f5*(Z). Vo(R) = Vo(Req) = k™" (Z). & =ka.

/
]

We also recall that, Vy(R) =

R
K[ZZER; (see (3.14)), and Fy was defined in (3.12).

Remark A.l. Since k = ug™!

e~ 21 with W € [o, 11], where 1 > po > 0, the con-
tinuity of vy", f** with respect to u directly follows from the continuity of K;,4, K/,

with respect to R.

q

The proof of Proposition 4.2 requires a thorough analysis, among other things, of the
Bessel function K;,,. We separate it into different subsections which correspond to the
different items in the proposition.

A.l. The asymptotic behaviour of the dominant outer solution

This short appendix corresponds to the first item in Proposition 4.2. That is, we study
o, v for kgr > 1. Consider g < %, using the asymptotic expansions when R — oo

in Table 1 for K;, 4, we have, as R — oo,

Vo(R) = =-—— =-1-—+4+—-+0
King(R) 1+ % +0(3) R R

1 —
King®) 1+ 3 +0(z) 1 ¢ (%) A1)
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with
_ 4ing)> =1 4@(ng)*>+3 1
€1 —¢C = - =%
8 8 2
and the claim is proved. This expansion is valid for R > R, with Ry independent of ¢.

The expansion for Fy is

n2

Fo(R) = \/1 —k2V02—52%22 = \/1 —k2(1+ % +0(%)) — e

k2 k2
_ mw i o)

= VTR (1 st +0(s)

where we have also used that k = g is small (compare with (3.11)). Going back to the
original variables, we obtain the result.

A.2. The behaviour of vy" in an intermediate region

Now we deal with the asymptotic expression of vy™ in (4.3) (item (ii)) for values of r

satisfying e”ma < kqr < (gn)?. In outer variables, it reads as
_ 4 R 2 -5 2 2
Vo(R) = ?cot nq log 7 —Oong )[1 +0(q7)], 2 21a < R=<g°n”, (A2)

with 0 ng = arg (1 +ing) = —ynq + O(g?) and y the Euler-Mascheroni constant.
Let v = nq. We first recall some properties of K;,, with v > 0, see [12,25]. For x € R
(in fact, the formula is also satisfied for some complex domains), we have

i
Kiv(x) = ————F—[I-iv (x) = Lin (x)],
() = =5 () ~ v )
N X2\ k 1 (A.3)
I,(x) = (= S . S
7(x) (z) 1;( 2 ) kK'IC(n+k +1)°
where I'(z) is the Gamma function
(o)
I'(z) =[ 77 le dr.
0
Using
(1 +k+iv)=(k+iv)---(1+iv)D(1+iv), |[T(1£iv)]? = % (A4)
and denoting 6, = arg(I'(1 4+ k 4 iv)), from (A.3) we deduce that
1/, var \2 x2\k  sin(vlog(3) — bk,v)
Kin() =——(=—)" 3 (%) 2 )
v \sinh v 27 k(K2 4+ v2) - (1 4 12)]2

By convention, when k = 0, k![(k2 + v2)--- (1 + v2)]2 = 1.
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By formula (A.4), we have

k
arg(T(1 + k + vi)) = Y arg(l + vi) + arg(T(1 + vi)).
=1

Now we notice that
—0py = —arg T(1 4+ vi) = yv + O(v?), (A.6)
being the Euler—Mascheroni constant y. Indeed, it is well known (see [1]) that
logT(1 4+ 2) = —log(1 4+ 2) + z(1 — y) + O(z?).

Then

1 .
L +iv) = H—we’”“—”“”vz) =1 —iv+ 001 +iv(l—y)+ O0©W?)

=1—yiv+0O@W?),

and henceforth, arg I'(1 4 iv) = —yv + O (v?) as we wanted to check.
We use expansion (A.5) for K;, which has a decomposition

K0 = L[ 2] sin(viog(3) ~ o) £ 0} A
with (x) satisfying |i(x)| < C|x|?, |h'(x)| < C|x| and |h”(x)| < C. Therefore,
K, (x) = [sininvn]%{_% cos(v log(g) — 00,,,) + @}, (A.8)

and as a consequence

ng cos(ng log(&) — 69.nq) — (nq) "' R (R)
R sin(nq log(%) — 60,nq) — H(R)

Vo(R) =

with [2(x)], |xh' (x)| < Cx? and 6p g = argT'(1 +ing) = —nqy + 0(q?).
We notice now that when 2e~3v < x <v?,
b4 5 X 1
) +vy +00°) < vlog(z)—eo,v < —2vllogv|(1 + O(Jlogv|™)).

Then, taking v = ng we deduce that, for 2¢”2nq < R < (qn)?,

_ RI'(R) L1 ,
a(R) = ng cos(nglog(%) —0o.q) = Cna) (ng)*y (1+0)

<C 2

= C(nq) . (A.9)
b(R)| := C(ng)* 1+ O(|logq|™
1b(R)] sin(ra 102 (%) — fomg) = Ctay e T (llogg|™))

<C(ng)?
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and therefore

1 —a(R)

0@ (A.10)

R
Vo(R) = % cotan(nq log(z) — 90,nq>
The result in (A.2) (and consequently item (ii) of Proposition 4.2) follows from (A.10)

and (A.9).

A.3. Monotonicity of the dominant outer solution

This appendix is devoted to proving item (iii) in Proposition 4.2. First, we will see that
vg™, fo' are increasing functions for e~ < kqr. Itis equivalent to prove that Vj(R),
F§(R) are increasing functions in the corresponding domain e~ 2na <R.

We begin with Vj. Using the expansion for K;,, in Table 1 and the corresponding
expansions for Klfnq, Ki”nq, we have, for R > 1,

1 1
Vi) = 525 +0( ).
so that Vj(R) > 0if R > 1.

Assume then that there exists Ry > 26_22[7 such that VO’ (R«) = 0 and take the lar-
ger R, critical point. That is, Vj(R) # 0if R > R,. Notice that, using that Vo(R) — —1
as R — oo and Vj(R) > 0if R > R, we deduce that V5(R«) < —1 and Vj'(R«) > 0,
indeed, if VO” (R+) < 0, it should be a maximum which is a contradiction. Then, since Vj

is solution of (3.13),
Vo(R+) 2 q2n2
TR, + Vo (Rs) + R

—1=0,

or equivalently

1 1 1 2,2
Vo(Ry) = v2(Re) = 5[‘17 + \/ 7 (- qu)}
* * ¥

17 1 1
| —— 4 [ (1 —4¢2n2) + 4|.
2|:R* \/R%( qn)+}

Note that, when ¢ is small enough, v4 (R) are defined for all R > 0, and

Iyino v+ (R) = —o0, Rli_I)noo v+(R) =1, Rli_I)nOo v—(R) = —1,
v—(R) < v4+(R) for all R > 0. We also have
Vo(R) < —1, v—(R) < Vp(R) <v4(R) ifR> 1.
We emphasize that, differentiating equation (3.13), we obtain

Ve(R)  Vo(R) ¢’

Vo (R) + R 72 +2VoVy —2 73 =0.
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Evaluating at R = R, we have

Vo(Re) _ q?n?

Vo(Re) | ,a°n’
R2 R3

"
Vo (Re) e R

=0 & V(R =

That is, assuming that Vy(R+) = v—(Rx), we obtain

1 1 1 q%n? q*n?
” _
R = 3| - \/R_ a1 - )|+ 20

and it is clear that, if ¢ is small enough, V(;/ (R+) <0, and therefore we have a contradiction
with the fact that R, cannot be a maximum. We conclude then that Vy(Rs) = v4(Ry).
In this case, Vo(R«) < —1 if and only if

PRI 1+4(1 qZ”Z)
R, 2\ R2 Rz )

which implies that Ry < 3 and

1
l——>1-—
R, R2

We recall that V' (R«) > 0. Therefore, using again

Vo(R«) | q°n? q’*n?
2 >0 Vo(Ry) > =2 . A1l

V()N(R*) =

Since 2¢” 217 < R, < q*n?, using (A.10), we rewrite Vo(R,) as

Vo(Ry) = ﬂcos(nqlog(%) —0Oo,ng) 1+ a(Ry)
oL R, sin(nqlog(%) —Oong) 1+ b(Ry)’

Using (A.9) and that the function % is a decreasing function if x € [—7, 0], we have

2
ng 1 + a(R,) cos(nqlog(L%) — 6,4y

Vo(Rx) < —
R* 1 + b(R*) Sin(nq log((ng)z) _ Qo,nq)
nq 1 » ) 1 X R
=——(1+4+0 1 - (140 1
Ry 2ngiogng) | T 0084 =~ gy ! T O Teg ™)

which is a contradiction with (A.11). Then we conclude that Vjj(R) > 0 for 2¢"77 < R.

Note that since we have proved that Vj(R) > 0 for R > 2¢~ %, then by (A.1) Vp(R) =
-1- ﬁ + (9(%) if R > 1 which implies that V5(R) — —1 when R — oo and hence
Vo(R) < —1 in the same domain.

Differentiating the expression for Fy (see, for instance, A.1) and using that VO/(R) >0,
we easily obtain Fj(R) > 0.

Going back to the original variables, item (iii) of Proposition 4.2 is proven.
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A.4. Bounding the dominant outer solutions

This appendix is devoted to proving the bounds for vJ" and f™ and its derivatives given
in item (iv) of Proposition 4.2.

Let us first provide a technical lemma whose proof is postponed to the end of this
section.

Lemma A.2. There exists qo > 0 such that if 0 < q < qo, the modified Bessel function
King(R) satisfies

King(R) >0,  Kj,,(R) <0, Kj,,(R)>0, forall R> 2e%e % .

We point out that, in outer variables, in order to prove the bounds in items (iii) and (iv),
it is enough to prove the following result (see also Corollary 5.10).

Lemma A.3. Leta € (0, 1). There exist qo = qo(®) > 0 and a constant M > 0 such that
forany 0 < g < qo and R € [Ryn, +00) with Ry, satisfying 2e2e"2an < Ryn < &%,
where ¢ = kq, one has

kVo(R)|, [kV5(R)RI. [kV"(R)R?| < MeR,

min’

and
IR(Vo(R) + D). [R*V5(R)]. |[R*Vy(R)| < M.

With respect to Fy, we have Fy(R) > 5 L and

|Fo(R)R?|, | F§(R)R®| < MkeRy,, |1 — Fo(R)|, | Fg(R)RI, |Fy (R)R?| < MR

min?

Proof. Because of item (iii) of Proposition 4.2, one deduces that Vj is an increasing
and negative function on [2e” 247, co] and therefore in [Ry,, 00). Therefore, we have
|k Vo(R)| < k|Vo(Rmin)|- We notice that, from (A.7) and (A.8),

mq(Rmm) _R_ COS(I’lq IOg(Rm‘“) — 90 nq) + 4 (Rmm)

Vi (Rmin) - -
’ King(Rmin) A= sin(ng log(Rg2) — 60,nq) + h(Rmin)}

min h/ min
ng COS("‘] log(Rz ) - GO,nq) - Rmin%)

Rumin  sin(ng 10g(R‘“‘“) —00,nq) — h(Rmin)

with h(R) satisfying |h(R)| < M|R|? and |h'(R)| < M|R|. We recall that ¢ = kq =
ne ~27g and —0o,nqg = ynq + O(g?). Then, since Ryin < &% <K ¢,
1+ O(Ry;
Vo (Ruin)| < k- + O R) < MeRy),
Rmin ISIH(— +0(@)] + O(RZ,)

Define now the function g(R) = RVp(R). We want to see that, for R > Ry,
g'(R) # 0. Assume that, for some R, the function has a critical point, namely, g’(R4) =
Ry V§(R«) + Vo(R+) = 0. Then using equation (3.13) satisfied by Vp, we get

2,2

2.2

q-n 2 q-n
=0 Vy(Ry) =1———,

R2 0T R2

VE&(Rs) — 1+
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which is a contradiction with the fact that Vo(R) < —1. Therefore, g’(R) = RVj(R) +
Vo(R) # 0 for R > Ruin.
Recall that, for R > 1,

Vo(R) = —1— % + @(%).

As a consequence,
g(R)=—-1-0O(R? — -1, asR— 0

and therefore, g’(R) < 0 for all R > Rin.

Then g(R1) < g(R,)if Ry > R;, and using that g(R) < 0, we conclude that |g(R,)| <
|g(R1)| when Ry > R,. On the other hand, |R(Vp(R) 4+ 1)| < M when R > Ry if Ry is
big enough (but independent of g). Thus, if R, < R < Ry,

|IR(Vo(R) + 1)] = |RVo(R)| — R < R|Vo(R)| < Ro|Vo(Ro)| < MeR,}.

With respect to V(R), we have |[R2V{(R)| < M if R > R, with Ry big enough. Take
now Rpyin < R < Ry. We recall that

K! (R
VO(R) = L() < 0,
Kinq(R)
and we notice that
0 < V(R = Nina®) ~( ”“’(R)) < King®
King(R) King(R) ing(R)’

The modified Bessel function Kj,, satisfies the linear differential equation

K, (R) n2q?
Kipg + —5— = King(R) (1 - 1) = 0.

Then, using that, by Lemma A.2, for R > Ry, > 2e2e”2na we know that King(R) > 0,

mq(R) < 0 and Kmq(R) > 0 and therefore
K, ,(R) n2q? K, ,(R)
0 < Kiug(R) = == 4 King (R)(1 = 25-) = == & King (R).
Hence, if Ripin < R < Ry,
K, ,(R)

|R?Vy(R)| = R*V§(R) < —R + R?> = R|Vy(R)| + R?

Kinq(R)
< Ro|Vo(Ro)| + Ry < M.

In addition, using that V} satisfies equation (3.13), we have

2,2

0 < kKRVJ(R) = —kVo(R) — kR(VER) — 1) —k L < —kVy(R) < MeRL.
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Now we deal with V'(R). We have, when R > R, with R¢ big enough (but inde-
pendent of ¢), |R3V6’(R)| < M.For Rpin < R < Ry,

Voo Vg , n2q?
2R +-ZVBVB(R)-+-7€;2

Therefore, using that |[RVo(R)| and |R?V{(R)| < M for Ryin < R < Ro, we obtain

Vo (R) =

IR*Vg'(R)| < M.
Moreover, using that qu;iln < gl
2.2

R VS e
R

IkR*Vy'(R)| < |kVo(R)| + |kRV{(R)| + 2k|Vo(R)||R*Vy(R)| + k

Now we deal with the properties of Fy and its derivatives. Since |k Vo(R)| < Me!™®
and Fo(R) = v'1 —k2VZ — e2n®> R~2, we have

Fo(R) =1-Y"a,Bo(R)". an >0,

n>1
with
82}12
Bo(R) = k*VE(R) + <7
Then
Fy(R) == nan, By~ (R)B(R).
n>1
F§(R) = = nan[(n — DBy >(R)(By(R))* + Bf ' (R) B (R)].
n>1

Using the properties for Vj, we deduce from the above expression, the corresponding ones
for Fy. [

To finish the proof of Proposition 4.2, we prove Lemma A.2.

Proof of Lemma A.2. We take v = ng < vy. Besides expression (A.5) of K;,, we also
have the integral expression

o0
Ky (x) = / e * e cog(vr)de, x>0, (A.12)
0

from which we deduce that K;, (x) is real if x > 0.
Notice that, from Remark 4.1, there exists x¢ only depending on vg such that Vx > xg,

K0 = | Ze(1+0(2)) 0.
K (x) = —\/gex(l + (9(%)) <0,

therefore, we only need to prove that K/’ (x) > 0.

(A.13)
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We first claim that K7 (x) > 0 if x > v2 and v > 0. Indeed, differentiating twice
expression (A.12),

o0
K/ (x) = / e~ cosh? £ cos(vt) dr.
0

For0 <vt < %, we have cos(vt) > 4 and then, also using that e’ < 2cosht <e’ +1 <
2e’ for t > 0, we obtain

T
V2 [ >
K/ (x) > —/ e XN cosh? ¢ dt —/ e XN cosh? ¢ dt
0

JT

4v

T

V2 [W el g

> — e ¥ 2 e2dr — e ¥ T dr
8 Jo 4

ﬁ -Z @ —Xel 2t *® —Xel 2t
= ?e 2 e 2 e dr — e 2% e dr.
0

-l:-‘-q

T
4v

Note that, performing the obvious change u = e,

! 2 2
[e_x%ezl dr = /e_%”u du = —Ze Uy + —/e_%” du
X X

2 x
= —;e—fet [xe! +2] = —F(1).

‘We obtain then

ki = [ro ()]t ()

In order to check that K/ (x) > 0, we have to prove the inequality

F(0) > F(Z—U)[l + %e"].

Since x > 0, it is enough to check that

X P T 8 X
2> e 3N D (o fs 4 2)(1 + —ef).

/2

On one hand, x > v? with v small enough, implies 2 < v2edn < xedv. On the other

hand, it is clear that 1 < e if x > 0 and x < e*. Therefore, the above inequality is
satisfied if

I
> e (et —4)+ 1 i

[N

[\ )
SN

T
2> 6%6_%(641) DeXedie? &
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for all x > v2. Thus, we need v to satisfy

ﬁ > e_%(e%_“)"’_%
24 ’

which is true if v is small enough.

In conclusion, we have proven that, for v > 0 small enough and x > v2, the func-
tion K, satisfies K (x) > 0. It remains to prove that K/, (x) > 0 if x < v2. From (A.7)
and (A.8), we have

1
neo =[] s Xy L Xy
K, (x) = [smh o {xz sm(vlog(2) 90,,,) + 2 cos(v 10g<2) 90,v>
h"(x
+ L} (A.14)
v
For 2e2e~3v < x < v2, itis clear from (A.6)
v log(g) — 6o,y < 2vlogv + (y —log2)v + O(v?) < 0,
X T 5 T
vlog(z)—é’o,v > 2v — > +yv 4+ 0O(°) >—2
if we take v small enough. Therefore, if v is small enough,
cos(v log(g> - 90,v> > cos(—% +2v 4+ yv + (9(1)2))
— sin((2 4 y)v + O(?) > (1 + g)v
sin(v log<§) — 90,v> > —1.
Then, from expression (A.14) of K7 (x),
1 2 1
VI 2 y X v (Y
K/ >[—] I+ =)v—v—-C— >[—] Zy—Cyv? 0
(%) 2 x4sinh v {( —|—2>v Y v}_ x4sinh v {ZV Y }>

if v is small enough. Therefore, we have just shown that K7’ (x) > 0if x > 2¢2¢~3v . This
result along with the asymptotic expressions (A.13) provides the sign for K7, and K;,. =

Appendix B. The dominant solutions in the inner region. Proof of Proposition 4.4

We now prove the asymptotic properties of f,", Uo defined in (3.20). As we have already
pointed out, the properties of fo = fi" and 9, fi" are all provided in [2]. With respect to
the properties of vg'(r) = qvo(r), with vg in (3.19), in the second item, in [3] the function

() = %U/m@aﬁ@m

was considered and the same asymptotic properties of vy was considered as the ones
stated in the second item but for all » > 0. We introduce

Avg(r;k) := vo(r;k) —vo(r) =

fof%@@
0
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Remark B.1. Since vi(r:k) = quo(r:k) = qTo(r) + qAvo(r:k) and k = pug=e™2a,
the continuity with respect to u € o, (1] is clear.

Note that, if 0 < r < 1, using that fo(r) ~ aor”,

K2r, drAvg(r; k) ~ k=c

1
A k) ~
vo(r; k) 2
for some constant c¢. Then it is clear that, for 0 < r < 1, the properties of v (rik,q) are
deduced from the analogous ones for vy (r) proven in [3].

When kr < k and r > 1, we have > < fo(r) < 1. Then

[Avo(r; k)| < MK>r.

As a consequence, |Avg(r; k)| < M" < Mllogr|r~Vifkr < 2L 2 . In [2], it was already
proved that [vg(r)| < M|logr|r~. Therefore, this property (and analogously the one
for vy) is satisfied.

It only remains to check that vy < 0. From its definition (3.19), it is enough to check
the inequality 1 — k2 — f§ <5 > 1
such that 5

n
1— £2(r) > —, )
Jo(r) = > T3>

Therefore, for kr < 2 and r > rg, we have | — k2 — f02 (r) = 0. Since fp is an increasing
function, we have 1 —k? — fZ(r) > 0 for all » > 0 such that kr < 2

Now we prove the third item. We first deal with the asymptotic expression of vyl = gvo.
We use the asymptotic expressions of fo(r) already proven in the first item, namely

fo(r)—1—222+(9(r 4 asr — oco.
We write
vo(r) = — fo() / EF2E)(1 — f2(E) dE + — fo() / Ef2(5) d

=:vg(r) + vg(r).

We take ry > 1. It is clear that

k2 r ) _ k2 T ) kz r )
o e = o [Tepoa s oo [ ere

Notice that

™ 2 _ 1.2 -1
— | e =roe.

and, using f&(r) =1— 'r’—z +OF Y ifrre > 1,

—ry  k’n*logr L R2Oe,

27'
(e =
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Consider now r, > 1 and let us define
2

r 1 i
mmMg:%m+jM)g@ﬁ+;73[sﬁ@a—ﬁ@ms

2
V%U/ R0~ S e + i stoa().
It is clear, using again that foz(r) =1- % + 0™
" n? n? r
Avo(r,rs) = rfo B / )dE + —rfoz(r) log(z)

=00+ (9(r—1r;2).

Therefore, taking r,. — 0o, we have

O(~) = vj(r) + —5—logr

1m(ﬁﬁ%u+ﬁkﬁ@a—ﬁ@w9

ﬁysmm

= vp(r) +

rfz(r) (n*logr + Cp) = vy (r) + ;(n2 logr + Cp)(1 4+ O(r™2))
0

1 n? Cy _3
=v,(r) + Tlogr + — + O logr)

with C, as defined in Theorem 2.5. Collecting all these estimates, the proof of (4.11) is
complete.
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