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Abstract. We study the Gevrey character of a natural parameterization of

one dimensional invariant manifolds associated to a parabolic direction of fixed

points of analytic maps, that is, a direction associated with an eigenvalue equal
to 1. We show that, under general hypotheses, these invariant manifolds are

Gevrey with type related to some explicit constants. We provide examples of

the optimality of our results as well as some applications to celestial mechanics,
namely, the Sitnikov problem and the restricted planar three body problem.

1. Introduction. Let us consider a dynamical system defined through a map F ∶
Rm → Rm with a fixed point at the origin. To each invariant subspace E of DF (0)
one can try to identify its corresponding counterpart for F , that is, a manifold
tangent to E at the origin invariant by F , if it exists. Of course, these invariant
manifolds need not be unique, or even if they do exist, they can be less regular than
the map F , depending on the resonance relations in SpecDF (0)∣E . In the case that
F is analytic or C∞, one can even ask if there exists a formal invariant manifold
tangent to E, that is, a formal power series which solves at all orders an appropriate
invariance equation.

One way to obtain manifolds invariant by F is by using the parameterization
method. A brief description is the following. If E ⊂ Rm is a subspace of dimension n,
invariant by DF (0), one can try to find an invariant manifold by F tangent to E
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at the origin as an embedding K ∶ Bρ ⊂ Rn → Rm (here Bρ denotes the ball of
radius ρ) such that K(0) = 0, DK(0)Rn = E and a reparameterization R ∶ Bρ → Rn,
R(0) = 0, satisfying the invariance equation

F ○K =K ○R. (1)

Well known examples of invariant manifolds are the strong stable and unstable
manifolds, which, roughly speaking, are associated to the eigenvalues λ of DF (0)
such that ∣λ∣ > µ > 1 and ∣λ∣ < ν < 1, respectively, for given constants µ and ν. See,
for instance, [13, 14, 15] and [7, 12, 8] and the references therein. These manifolds
are as regular as the map in a neighborhood of the fixed point. In particular,
analytic if so is the map. Their expansions in power series are convergent.

When one considers invariant manifolds tangent to subspaces associated to sub-
sets of non-resonant eigenvalues the situation becomes more interesting. The in-
variance equation can be solved at all orders, due to the non-resonant character
of the eigenvalues. This solution provides a formal invariant manifold. In general,
this formal series corresponds to a regular meaningful object if one imposes the
non-resonant eigenvalues to be of modulus larger (resp. smaller) than one. That
is, when the non-resonant manifolds are submanifolds of the strong unstable (resp.
stable) manifold. See for instance [7]. If the map is analytic, these non-resonant
manifolds are also analytic and, again, their expansions are convergent.

Here we consider the totally resonant case, that is, manifolds tangent to subspaces
associated to the eigenvalue 1 and, thus, submanifolds of the center manifold. We
call these manifolds parabolic.

When the map is tangent to the identity at the fixed point, that is, DF (0) = Id,
any subspace of Rm is invariant by DF (0). In order to identify the subspaces
which are susceptible to have an invariant manifold tangent to them it is necessary
to pay attention to the first next non-vanishing terms of the Taylor expansion
of F at the origin. This is the case considered in [5], when one looks for one
dimensional manifolds. See also [18]. In the latter, only analytic manifolds where
considered, while the former includes the case of finite differentiability. The former
also includes the construction of formal solutions of the invariance equation (1).
Under the conditions in [5], if the map F is analytic or C∞, the parabolic invariant
manifolds exist and are C∞ at the fixed point. See also [11] and the survey [1] in
the setting of complex dynamics.

In [2] it is studied the case of F analytic, tangent to the identity and with
invariant manifolds of dimension two or greater. These manifolds are analytic in
their domain, although in general the fixed point is only at their boundary. In this
case, however, it is easy to see that in general there are no formal solutions (in the
sense of power series) of the invariance equation (1). In the same setting, in [3] it is
shown that the invariant manifolds can be approximated by sums of homogeneous
functions of increasing order.

In the present paper we assume that F is an analytic local diffeomorphism in a

neighborhood of the origin in R ×Rd ×Rd
′

and satisfies

DF (0) =
⎛
⎜
⎝

1 0 0
0 Idd 0
0 0 C

⎞
⎟
⎠

(2)

with 1 /∈ SpecC and Idd is the identity matrix in Rd. When d = 0, that is, when 1
is a simple eigenvalue of DF (0), this class of maps was studied in [4]. There the
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authors proved that if the map F has the form

F ∶ (x
z
) ∈ R ×Rd

′
↦ (x − ax

N + zON−1 +ON+1

Cz +O2
) ,

where Oj stands for O(∥(x, z)∥j), with a ≠ 0, N ≥ 2, the invariance equation admits

a formal solution K̂(t) = ∑k≥1Kjt
j , Kj ∈ R1+d′ , with some polynomial reparame-

terization R, and that the series is α-Gevrey with α = 1/(N −1), that is, there exist
constants c1, c2 > 0 such that

∥Kj∥ ≤ c1cj2j!α, j ≥ 0.

Furthermore, if a > 0 and SpecC ⊂ {z ∈ C ∣ ∣z∣ ≥ 1, z ≠ 1}, there is an analytic
solution K of the invariance equation, defined in some convex set V with 0 ∈ ∂V ,
that is α-Gevrey asymptotic to K̂, that is, there exist constants c1, c2 > 0 such that

XXXXXXXXXXX
K(t) −

n−1

∑
j=1

Kjt
j
XXXXXXXXXXX
≤ c1cn2n!α∣t∣n, n ≥ 2, t ∈ V.

Here we generalize these results to the case d > 0, d′ ≥ 0. That is, if the map
F has the linear part (2) and certain conditions on the nonlinear terms are met
(see Theorem 3.1), the invariance equation (1) for the map F admits a formal

solution K̂(t), which is γ-Gevrey for a precise γ (defined in (4)). We provide

examples for which this value of γ is sharp, that is, K̂(t) is not γ′-Gevrey for any
0 ≤ γ′ < γ. These conditions can be seen as non-resonances, because they allow to
solve some cohomological equations (see also Claim 4.2). Also they would imply the
existence of a characteristic direction, if the map was truly tangent to the identity
at the fixed point.

Adding some additional conditions (see Theorem 3.3), we also prove that there
is a true invariant manifold given by an analytic parameterization K which is γ-
Gevrey asymptotic the the formal series K̃ in some complex convex set with 0 at its
boundary. We will refer to this manifold as a parabolic manifold and we notice that
the information about its internal dynamics is given by R(t) which, in our case,
turns out to be a polynomial. Depending on R the parabolic manifold may behave
as a (weak) stable manifold (in the sense that the iterates of its points converge to
de origin) or a (weak) unstable manifold. In those cases we will denote them by
parabolic stable/unstable manifolds.

Of course, the conditions that allow the existence of a formal solution are weaker
than the ones we need to impose in order to have a true invariant manifold. However,
we prove that if the map possesses a one dimensional parabolic stable invariant
manifold to the origin, tangent to a particular direction associated to an eigenvalue
equal to 1, and it is non-degenerate (in the sense of Proposition 3.2), then there
are suitable coordinates in which the map satisfies our conditions (listed in (3) and
hypotheses below).

Our results provide upper bounds for the coefficients of the asymptotic expansion
of the invariant manifold. The existence of lower bounds remains open. Although
we provide examples that show the optimality of our results, we also prove that if
the map is the time one map of an autonomous analytic vector field, satisfying our
hypotheses, the invariant manifold, when written as a graph, extends analytically
to a neighborhood of the origin (see Claim 4.2). That is, the invariant manifolds
can be more regular than what we claim. This is no longer true for the stroboscopic
Poincaré map of time-periodic equations (Claim 4.3). However, although obtaining
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lower bounds is out of the scope of the present work, we show in Proposition 3.8
that the conditions to obtain such lower bounds cannot depend on a finite number
of coefficients of the Taylor expansion of the map F .

An important consequence of our present results is the Gevrey character of some
invariant manifolds in some problems of Celestial Mechanics. In several instances
of the restricted three body, like the Sitnikov problem or the restricted planar three
body problem, the parabolic infinity is foliated by periodic orbits. The associated
stroboscopic Poincaré map satisfies the conditions of our existence result (Theo-
rem 3.3) with d′ = 0, which implies that the manifolds are at least 1/3-Gevrey at
the origin. See Section 4.3 for more details. Simó and Mart́ınez announced in 2009
[16] that, in the case of the Sitnikov problem, the manifolds are precisely 1/3-Gevrey,
which would imply the optimality of our result in the sense that these manifolds
are not more regular. The numerical experiments in [17] strongly support the same
claim for the restricted circular planar three body problem. These computations
and the example we provide in Claim 4.3 move us to conjecture that the invariant
manifolds of infinity of the restricted three body problem are exactly 1/3-Gevrey
(see Conjecture 4.5 for the precise statement).

The structure of the paper is as follows. In Section 2 we introduce the definitions
and notations we will use along the paper. In Section 3 we collect the main results of
the paper. Section 4 is devoted to present some examples that show that the Gevrey
order we find is optimal. We also show how our theorems apply to the restricted
three body problem. The rest of the paper contains the proofs of the results on
Section 3. In Section 5 we obtain the formal solution of the invariance equation.
Its Gevrey character is studied in Section 6. The existence of the true manifold is
proved in Section 7. The appendix contains the proofs of Propositions 3.2 and 3.8.

2. Set up and notation. Let U ⊂ R × Rd × Rd
′

be an open neighborhood of

0 = (0,0,0). We consider F ∶ U Ð→ R ×Rd ×Rd
′
, the real analytic maps defined by

F
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

x − axN + fN(x, y, z) + f≥N+1(x, y, z)
y + xM−1B1y + xM−1B2z + gM(x, y, z) + g≥M+1(x, y, z)

Cz + h≥2(x, y, z)

⎞
⎟
⎠
, (3)

where:

● N,M ≥ 2 are integer numbers;
● the constant a is non-zero;
● 1 /∈ SpecC;
● fN(x, y, z) is a homogeneous polynomial of degree N such that fN(x,0,0) = 0.

We introduce the notation

v = 1

(N − 1)!∂
N−1
x ∂yfN(0,0,0) ∈ Rd, w = 1

(N − 1)!∂
N−1
x ∂zfN(0,0,0) ∈ Rd

′
,

so that ∂yfN(x,0,0) = xN−1v⊺ and ∂zfN(x,0,0) = xN−1w⊺;
● gM(x, y, z) is a homogeneous polynomial of degreeM such that gM(x,0,0) = 0,
DygM(x,0,0) = 0 and DzgM(x,0,0) = 0;

● f≥N+1 has order N + 1 (the function and its derivatives vanish up to order N
at (0,0,0)), g≥M+1 has order M + 1 and h≥2 has order 2.

Since F is real analytic, it can be extended to a complex neighborhood UC of U .
For simplicity, we will denote also by F this complex extension.

We introduce the following notational conventions we use throughout the paper.
We denote by Ŵ (t) = ∑k≥0Wkt

k any formal series in t and if W (t) is a map, we
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denote Wk = 1
k!
DkW (0), if the derivatives are defined. The expressions W≤l, W≥l+1,

etc. will mean ∑lk=0Wkt
k, ∑k≥l+1Wkt

k, etc., and we will use them without further
mention. The projection over the x, y or z-component is denoted by πx, πy and πz.

If W (⋅) ∈ C1+d+d′ (or if W is a map taking values in C1+d+d′ , or a power series with

coefficients in C1+d+d′), we write W x = πxW , W y = πyW and W z = πzW . We also
use πx,yW =W x,y = (W x,W y), or any other combination of the variables.

We finally introduce the constants

α = 1

N − 1
and γ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

N − 1
, if N ≤M,

1

N −M , if N >M,
(4)

which will play a capital role in our results.

3. Main results. We start dealing with formal solutions of the invariance equation
F ○K =K ○R. We provide conditions that ensure the existence of a formal solution
as a power series, which turns out to be γ-Gevrey.

Theorem 3.1. Let F be a map of the form (3). If the matrix B1 satisfies that

● if M < N , the matrix B1 is invertible,
● if M = N , the matrices B1 + laId are invertible for l ≥ 2,
● if M > N , no conditions are needed for B1,

then there exist formal power series R̂(t) = ∑n≥1Rnt
n ∈ R[[t]], K̂(t) = ∑n≥0Knt

n ∈
R[[t]]1+d+d′ with K0 = (0,0,0) and K1 = (1,0,0)⊺ such that

F○K̂ = K̂○R̂ (5)

(in the sense of formal series composition).
More precisely, under these conditions, there exists a unique polynomial R(t) =

t − atN + bt2N−1 such that for any c ∈ R, there is a unique formal power series

K̂(t) = ∑n≥1Knt
n ∈ R[[t]]1+d+d′ with K0 = (0,0,0)⊺, K1 = (1,0,0)⊺ and Kx

N = c,
satisfying (5).

This expansion is γ-Gevrey, that is, there exist constants c1, c2 > 0 such that

∥Kn∥ ≤ c1cn2n!γ , n ≥ 0,

where ∥⋅∥ is a norm in R1+d+d′ .

We prove Theorem 3.1 along Sections 5 and 6. First, in Proposition 5.1 we prove
the existence of the formal solution of (5) and provide formulas to compute it.
Then, with the aid of some technical lemmas, we prove in Proposition 6.6 that this
formal solution is γ-Gevrey.

The following proposition emphasizes the conditions on our map given by (3) are
not too restrictive when considering parabolic-hyperbolic fixed points.

Proposition 3.2. Let F ∶ U → R ×Rd ×Rd
′

be a real analytic map of the form

F(x, y, z) = (x, y,Cz) +N(x, y, z), N(x, y, z) = O(∥(x, y, z)∥2),
with 1 /∈ SpecC, having an invariant curve associated to the origin of the form
(y, z) = ϕ(x). Assume that there exist N ≥ 2 and a ≠ 0 such that

N x(x,ϕ(x)) = −axN +O(∣x∣N+1) (6)

and that ϕ is Cr with r ≥ N . Then, by means of changes of variables and a blow
up, F can be expressed in the form (3) for some M ≥ 2.



4164 INMACULADA BALDOMÁ, ERNEST FONTICH AND PAU MARTÍN

The proof of this result is elementary. We defer it to Appendix A.
The following result assures that, under additional conditions, the formal ex-

pansion K̂ given by Theorem 3.1 is the asymptotic series of a true solution of the
invariance equation, analytic in some domain with 0 at its boundary.

Theorem 3.3. Let F be a map of the form (3). Assume that a > 0 and

● If M ≥ N , the matrix C satisfies SpecC ⊂ {z ∈ C ∶ ∣z∣ ≥ 1}/{1}.
● If M < N , the matrix C satisfies SpecC ⊂ {z ∈ C ∶ ∣z∣ > 1} and the matrix B1

is such that SpecB1 ⊂ {z ∈ C ∶ Re z > 0}.

Then, for any 0 < β < απ, there exist ρ small enough and a real analytic function
K defined on the open sector

S = S(β, ρ) = {t = reiϕ ∈ C ∶ 0 < r < ρ, ∣ϕ∣ < β/2} (7)

such that K is a solution of the invariance equation F ○K =K ○R.
Moreover, K is γ-Gevrey asymptotic to the γ-Gevrey formal solution K̂. That

is, for any 0 < β̄ < β and 0 < ρ̄ < ρ, there exist constants c1, c2 such that, for any
n ≥ 2, XXXXXXXXXXX

K(t) −
n−1

∑
j=1

Kjt
j
XXXXXXXXXXX
≤ c1cn2n!γ ∣t∣n,

for all t ∈ S̄1 ∶= {t = reiϕ ∈ C ∶ 0 < r ≤ ρ̄, ∣ϕ∣ ≤ β̄/2}.
In particular, K can be extended to a C∞ function in [0, ρ).

The proof of this theorem is given in Section 7.
Now we give conditions that ensure that the manifold given by Theorem 3.3 is

unique (in a suitable open set).

Theorem 3.4. Under the same assumptions of Theorem 3.3, if the matrices C and
B1 satisfy that

SpecC ⊂ {z ∈ C ∶ ∣z∣ > 1}, and SpecB1 ⊂ {z ∈ C ∶ Re z > 0},
there exists a unique right hand side branch of a curve in the center manifold which

is a parabolic stable manifold to the origin. That is, if we denote by B(ρ) ⊂ R1+d+d′

the open ball of radius ρ, the following local stable manifold

W s
ρ = {(x, y, z) ∈ B(ρ) ∶ F k(x, y, z) ∈ B(ρ) ∩ {x > 0}, for all k ≥ 0}

satisfies that W s
ρ =K([0, ρ)).

This theorem is proven by using the same geometrical arguments in [4]. We omit
the proof.

Remark 3.5. In the last two theorems we have assumed a > 0. Clearly, if a < 0, the
map F −1 has the form (3) substituting a,B1,B2 and C by −a,−B1,−B2 and C−1

respectively. Therefore, if a < 0, we can apply (if the other conditions are satisfied)
Theorems 3.3 and 3.4 to F −1 obtaining a local unstable parabolic invariant manifold.

A straightforward consequence of Theorem 3.3 is the following.

Corollary 3.6. If a ≠ 0, there exists a unique constant b such that the real analytic
maps

f(x) = x − axN + f≥N+1(x), R(x) = x − axN + bx2N−1

are conjugated in a domain S(β, ρ), with 0 < β < απ and ρ small, by means of
an analytic function h ∶ S(β, ρ) → C which is α-Gevrey asymptotic to a α-Gevrey
formal series at 0.
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In the next section we will provide examples and describe the parabolic manifolds
as graphs of functions. We remark that

Remark 3.7. Let F be a map of the form (3) satisfying the hypotheses of Theo-
rem 3.3. Then, the graph invariance equation

F y,z(x,Φ(x)) = Φ(F x(x,Φ(x))) (8)

with the condition Φ(0) = 0, DΦ(0) = 0, has a γ-Gevrey solution if and only if the
invariance equation F○K =K○R has a γ-Gevrey solution with K(t) = (t,0)+O(t2)
and R(t) = t − atN + bt2N−1. It is unique if the hypotheses of Theorem 3.4 are
satisfied.

Indeed, if Φ satisfies (8), then K̃(x) = (x,Φ(x)) and R̃ = F x(x,Φ(x)) is a solution
of F○K =K○R. Let h be the γ-Gevrey conjugation provided by Corollary 3.6. Then
R(t) = h−1 ○ R̃ ○ h(t) = t− atN + bt2N−1 and K = K̃ ○ h is the solution we are looking
for. Reciprocally, if F ○K =K ○R, then Φ(x) =Ky,z((Kx)−1(x)) is solution of the
graph invariance equation. Notice that Kx(t) = t +O(t2) is invertible around the
origin and its inverse is Gevrey.

The same happens at a formal level. In this case, only the hypotheses of Theo-
rem 3.1 are required.

The statements in this section provide upper bounds to the coefficients of the
formal solution of the invariance equation. In the next section we will give exam-
ples that show that our results are sharp but also examples that show that a map
satisfying our hypotheses can have an analytic invariant manifold. To provide con-
ditions that ensure the existence of lower bounds of the coefficients remains an open
problem. The following proposition shows that these conditions cannot depend only
on a finite number of coefficients of the Taylor expansion of F at the origin.

Proposition 3.8. Let F be an analytic map of the form (3) satisfying the hy-
potheses of Theorem 3.1 and ϕ̂(x) = ∑k≥2 ϕkx

k a formal solution of the invariance
equation (8). For p ≥ 0, let ϕ≤p(x) = ∑2≤k≤p ϕkx

k.
Then, for any p ≥ 2, there exists an analytic map G such that

∥F (x, y, z) −G(x, y, z)∥ = O(∥(x, y, z)∥p+1)
with graphϕ≤p as invariant manifold to the origin. If p ≥ max{N,M}, G satisfies
the hypotheses of Theorem 3.1 and, consequently, graphϕ≤p is a parabolic invariant
manifold.

We defer the proof of this proposition to Appendix B.
In the following section we consider some examples. It is often easier to provide

examples of maps arising from flows. The following remark is straightforward, but
allows us to apply our results directly to flows.

Remark 3.9. Let X(x, y, z, t) be a T -periodic vector field, (x, y, z) ∈ R ×Rd ×Rd
′
,

of the form

X(x, y, z, t) =
⎛
⎜
⎝

−axN + fN(x, y, z, t) + f≥N+1(x, y, z, t)
xM−1B1y + xM−1B2z + gM(x, y, z, t) + g≥M+1(x, y, z, t)

Dz + h≥2(x, y, z, t)

⎞
⎟
⎠
. (9)

Assume that the functions fN , f≥N+1, gM , g≥M+1, h≥2 satisfy the hypotheses in Sec-
tion 2 for all t ∈ [0, T ] and that 0 ∉ SpecD. Then, any stroboscopic Poincaré map

of ξ̇ =X(ξ, t) has the form (3) with the same a,B1,B2 and C = eTD.
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4. Examples. In this section we provide several examples. In particular we show
that, under the hypotheses of Theorem 3.3, the parabolic manifold (and, conse-
quently, the formal solution) is indeed γ-Gevrey and not more regular, that is, it is
not γ′-Gevrey for 0 ≤ γ′ < γ.

It is more convenient to work with differential equations and manifolds represent-
ed as graphs. That is, for a given time periodic system X(x, y, z, t) of the form (9),

we look for formal solutions (y, z) = Φ̂(x, t), depending periodically on t, of the
invariance equation:

Xy,z(x, Φ̂(x, t), t) =DxΦ̂(x, t)(Xx(x, Φ̂(x, t), t)) + ∂Φ̂

∂t
(x, t). (10)

It is often useful to use the following equivalent definition of a s-Gevrey series
(see [6]): a formal series ∑n≥0 anz

n is s-Gevrey if there exist c1, c2 > 0 such that
∣an∣ ≤ c1cn2 Γ(1 + sn), for all n ≥ 0.

4.1. Some elementary examples. The first one is a generalization of the ones
in [4]. Here we add the variables corresponding to the eigenvalue equal to 1 but
still require the presence of the hyperbolic directions.

Claim 4.1. Let X(x, y, z) be the autonomous vector field

X(x, y, z) = (−axN , xM−1B1y+g(x, y, z),Cz+x`c), (x, y, z) ∈ R×Rd×Rd
′
, (11)

with c ≠ 0, C an invertible matrix and g = gM + g≥M+1 as in (3).
Assume that a,B1 satisfy their corresponding conditions in Theorem 3.1. Then

● If M ≥ N and d′ ≥ 1, for any g(x, y, z) = O(∥(x, y, z)∥M+1), the formal invari-
ance equation (10) has a γ-Gevrey solution which is not γ′-Gevrey for any
0 ≤ γ′ < γ.

● If M < N , taking g(x, y, z) = xνb, b ≠ 0, with ν ≥M + 1, the formal invariance

equation (10) has a solution Φ̂(x) = ∑n≥1 Φnx
n which is γ-Gevrey and is not

γ′-Gevrey for any 0 ≤ γ′ < γ.

Proof. We introduce Φ̂(x) = (ϕ̂(x), ψ̂(x)). We have that ψ̂(x) = ∑n≥2 ψnx
n satisfies

−a∑
n≥2

nψnx
n+N−1 = C ∑

n≥2

ψnx
n + x`c

or, equivalently,

∑
n≥2

ψnx
n = −x`C−1c − aC−1 ∑

n≥N+1

(n −N + 1)xnψn−N+1.

Therefore ψ2,⋯ = ψ`−1 = 0, ψ` = −C−1c and

ψn = −a(n −N + 1)C−1ψn−N+1, n ≥ ` + 1. (12)

Then ψn = 0 if n ≠ ` + k(N − 1) and

ψ`+k(N−1) = (−1)k+1ak
k−1

∏
i=0

(` + i(N − 1))C−k−1c,

which implies, since N − 1 ≥ 1, that ∥ψ`+k(N−1)∥ ≥ ∥c∥∥C∥−1(a∥C∥−1)kΓ(`+ k)/Γ(`).
Then, using that Γ(` + k(N − 1)α) = Γ(` + k) we conclude that the formal series ψ̂
is exactly of order α = 1/(N − 1).

If M ≥ N , γ = 1/(N − 1), then, ψ̂ is exactly of the Gevrey order claimed in

Theorem 3.1. Therefore, no matter the Gevrey order of ϕ̂, the asymptotic series Φ̂
is γ-Gevrey.
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Now we consider the case M < N . The invariance of the formal solution ϕ̂(x) =
∑n≥2 ϕnx

n reads

−a∑
n≥2

nϕnx
n+N−1 = bxν +B1 ∑

n≥2

ϕnx
n+M−1.

Since M < N and B1 is invertible, ϕ2 = ⋯ = ϕν−M = 0, ϕν−M+1 = −B−1
1 b, and

ϕn = −a(n +M −N)B−1
1 ϕn−N+M , n ≥ ν −M + 1.

In the same way as in (12), it follows that ϕ̂ is Gevrey of order γ = 1/(N −M).

We emphasize that, when M < N , the map defined by (11) has a Gevrey formal
solution of order precisely γ = 1/(N −M) even if d′ = 0, that is, even if F is tangent
to identity, but the same claim (for this particular example) only holds for M ≥ N
if d′ ≥ 1. In the next subsection we will deal with the case M ≥ N and d′ = 0,
which is the relevant one in the problems of celestial mechanics we will consider in
Section 4.3.

4.2. The tangent to the identity case (d′ = 0) when M ≥ N . In this section we
present a family of differential equations of the form (9) having a formal solution
of the invariance equation (10). We check that this formal solution is precisely
γ-Gevrey. Recall that in this case γ = 1/(N − 1).

The example we will consider will be given by a non autonomous time periodic
vector field. The reason is because if the vector field is autonomous, the parabolic
invariant manifold is analytic (when written as a graph), as the following claim
shows.

Claim 4.2. Assume M ≥ N . Let X be an analytic vector field of the form

X(x, y) = ( − axN + f(x, y),B1x
M−1y + g(x, y)), (x, y) ∈ R ×Rd (13)

with f = fN +f≥N+1, g = gM +g≥M+1 as in (3), a ≠ 0 and B1 satisfying the condition
stated in Theorem 3.1. Then, the invariance equation (10) has a real analytic
solution ϕ ∶ Bρ ⊂ C→ Cd tangent to the x-axis at the origin.

As a consequence the real analytic maps

F (x, y) = (x − axN + f̃(x, y), y +B1x
M−1y + g̃(x, y)),

with a ≠ 0, which are the time 1 map of systems like (13), have an analytic solution
of the graph invariance equation (8).

Proof. The one dimensional invariant manifold we are looking for is the graph of a
function y = ϕ(x) satisfying the equation

dy

dx
= 1

−axN + f(x, y)
[B1x

M−1y + g(x, y)]. (14)

We introduce the new variable u by y = xu. The system becomes

du

dx
= 1

−axN + f(x,xu)
[(axN−1Id +B1x

M−1 − x−1f(x,xu))u + x−1g(x,xu)]. (15)

We introduce the functions f̄(x,u) ∶= f(x,xu) and ḡ(x,u) ∶= g(x,xu) and we notice
that they satisfy f̄(x,xu) = ∣x∣NO(∥(x,u)∥) and ḡ(x,u) = O(∣x∣M+1)+O(∣x∣M∥u∥2).
In addition, since f and g are analytic functions at (x, y) = (0,0) and M ≥ N , so
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are the functions x−N+1f̄(x,u), x−N f̄(x,u) and x−N ḡ(x,u) at (x,u) = (0,0). We
rewrite (15) as

du

dx
= 1

−ax + x−N+1f̄(x,u)
[(aId +B1x

M−N − x−N f̄(x,u))u + x−N ḡ(x,u)]. (16)

We consider now the system

ẋ = −ax+ x−N+1f̄(x,u), u̇ = (aId+B1x
M−N − x−N f̄(x,u))u+ x−N ḡ(x,u). (17)

The origin is a fixed point, having a single hyperbolic direction corresponding to
the eigenvalue −a. Indeed, when M > N , the linear part of the field in (17) at
(x,u) = (0,0) is A = diag(−a, aId). However, when M = N , this linear part is

A = ( −a 0
∂x[x−N ḡ](0,0) aId +B1

) ,

which may be not diagonal. Using the non-resonance condition −a ∉ Spec (B1+laId)
if M = N and that a ≠ 0 if M > N , one deduces from the theory of nonresonant
invariant manifolds ([7]) that the one-dimensional invariant manifold corresponding
to the eigenvalue −a is the graph of a real function h, analytic at x = 0, which is
a solution of (16). Let h(x) = cx + O(x2) (the constant c is 0 if either M > N or
∂x[x−N ḡ](0,0) = 0). Then y = xh(x) = O(x2) is a real analytic solution of (14)
tangent to the x axis.

Claim 4.3. Let X be the 2π-periodic vector field defined by

X(x, y, t) = ( − axN , bxN−1y + xN+1 cos t), (x, y) ∈ R2,

with a, b > 0. The parabolic stable manifold has a formal Taylor expansion at 0
which is Gevrey of order exactly γ = 1/(N − 1).

Proof. We first note that Theorems 3.3 and 3.4 assure the existence and uniqueness
of the parabolic stable manifold when a, b > 0.

For any initial conditions x0, y0, t0, the associated flow is given by

x(t) = x0

(1 + a(N − 1)(t − t0)xN−1
0 )α

y(t) = (1 + a(N − 1)(t − t0)x0)β
⎛
⎜
⎝
y0 + ∫

t

t0

xN+1
0 cos t

(1 + a(N − 1)(t − t0)xN−1
0 )α(N+1)+β

dt
⎞
⎟
⎠
,

where we have introduced β = b/a. Since we are looking for the stable invariant
manifold, we want the solution such that (x(t), y(t)) → (0,0) as t → ∞. Hence,
since β > 0, we need to impose

y0 = −xN+1
0 ∫

∞

t0

1

(1 + a(N − 1)(t − t0)xN−1
0 )α(N+1)+β

cos t dt.

Therefore the stable invariant manifold is described by

y = ϕ(x, t) = −xN+1 ∫
∞

0

1

(1 + a(N − 1)τxN−1)α(N+1)+β
cos(t + τ)dτ.

Notice that ϕ is 2π-periodic with respect to t. Now we will prove that the series of
ϕ at x = 0 is Gevrey of order γ = 1/(N − 1). First we introduce σ = α(N + 1) +β > 1
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and we decompose

ϕ(x, t) = −xN+1 ∫
∞

0

ei(t+τ) + e−i(t+τ)

2(1 + a(N − 1)τxN−1)σ
dτ

= −µx2eit ∫
∞

0

eµix
−(N−1)u

2(1 + u)σ du − µx2e−it ∫
∞

0

e−µix
−(N−1)u

2(1 + u)σ du,

with µ−1 = a(N − 1). We take θ ∈ (0, π) and change the integration path in the
above integrals as:

ϕ(x, t) = −µx2eit ∫
∞eiθ

0

eµix
−(N−1)u

2(1 + u)σ du − µx2e−it ∫
∞e−iθ

0

e−µix
−(N−1)u

2(1 + u)σ du.

It is well known that these integrals define the confluent hypergeometric functions
Ψ (see [9, p. 280]) so that

ϕ(x, t) = −µ
2
x2 (eitΨ(1,−σ + 2, µix−(N−1)) + e−itΨ(1,−σ + 2,−µix−(N−1))) .

By [9, p. 302], an asymptotic expansion of Ψ(a, c, z) for large ∣z∣ is

Ψ(a, c, z) = ∑
n≥0

(−1)n (a)n(a − c + 1)n
n!

z−a−n,

with (a)n = Γ(a + n)/Γ(a). Therefore, the Taylor formal series at 0 of ϕ is

ϕ̂(x, t) = − µ
2
x2 1

Γ(σ) ∑n≥0

(−1)nΓ(n + σ) ((µix−(N−1))−n−1 + ( − µix−(N−1))−n−1)

=µx2 1

Γ(σ) cos t∑
n≥0

Γ(2n + 1 + σ)x
(N−1)(2n+2)

µ2n+2

− µx2 1

Γ(σ) sin t∑
n≥0

Γ(2n + σ)x
(N−1)(2n+1)

µ2n+1
.

This formal series is Gevrey of order γ = 1/(N − 1). Indeed, comparing Γ(k + σ)
with Γ(1+ γ(N − 1)(k + 1)) = Γ(k + 2) we conclude that ϕ̂ is a Gevrey formal series
of order exactly γ.

4.3. Aplications to celestial mechanics. The three body problem describes the
motion of three point bodies evolving under their mutual Newtonian gravitational
attraction. The restricted three body problem is the simplification of the three body
problem obtained by assuming that one of the bodies has zero mass. Consequently,
the bodies with mass, usually called primaries, describe Keplerian orbits. See, for
instance, [19].

Among the several instances of the restricted three body problem one finds the
Sitnikov problem, which is the special case when the primaries move in ellipses and
the massless body in the line orthogonal to the plane of the primaries through their
center of mass. The relevant parameter in the Sitnikov problem is the eccentricity e
of the orbits of the primaries. When e = 0, the Sitnikov problem is integrable.
Another important subproblem is the so called restricted planar three body problem
(RPTBP), when the massless body moves in the plane where the primaries lie, while
the latter describe Keplerian ellipses. In this case, a relevant parameter is the mass
ratio of the primeries, µ, which can be assumed to be in [0,1/2]. When µ = 0, the
RPTBP is integrable.
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In both cases, the parabolic infinity can be written as

ẋ = −1

4
(x + y1)3(x + (x + y1)3O0)

ẏ1 =
1

4
(x + y1)3(y1 + (x + y1)3O0)

˙̃y = 1

4
(x + y1)2(x − y1)ỹ + (x + y1)5O0

ṫ = 1,

(18)

where (x, y1, ỹ) ∈ R ×R ×Rn and Ok stands for a function in (x, y1, ỹ, t), 1-periodic
with respect to t, analytic in a neighborhood of x = y1 = 0, ỹ = 0 and of order
O(∥(x, y1, ỹ)∥k). In the case of the Sitnikov problem, n = 0, while n = 2 in the
RPTBP. See [20] for the derivation of the above equations in Sitnikov problem
and [10] in the planar restricted three body problem.

It is immediate to check that any stroboscopic Poincaré map of the system (18)
has the form

⎛
⎜
⎝

x
y1

ỹ

⎞
⎟
⎠
↦

⎛
⎜
⎝

x − 1
4
x4 + y1O3 +O5

y1 + 1
4
y1x

3 + y2
1O2 +O5

ỹ + 1
4
ỹx3 + y1ỹO2 +O5

⎞
⎟
⎠
,

which has the form (3) with

d = 1 + n, d′ = 0, N =M = 4, a = 1

4
, B1 =

1

4
Id1+n.

Consequently α = 1/3. Since the eigenvalues of B1 are positive, Theorems 3.1, 3.3
and 3.4 apply. Hence we have

Corollary 4.4. The parabolic infinity in the Sitnikov problem (for any e ∈ [0,1))
and in the RPTBP (for any µ ∈ [0,1/2]) possesses invariant manifolds which are
1/3-Gevrey.

As we have already mentioned, Theorems 3.1, 3.3 only provide upper bounds on
the coefficients of the expansion of the invarariant manifold. However, in view of
Mart́ınez and Simó’s numerical computations [17] and the example in Claim 4.3,
where a time periodic perturbation of a system with a parabolic fixed point is
considered, we present the following conjecture.

Conjecture 4.5. The parabolic infinity in the Sitnikov problem, with e ∈ (0,1), and
in the RPTBP, with µ ∈ (0,1/2], possesses invariant manifolds which are precisely
1/3-Gevrey, that is, they are not γ′-Gevrey for any 0 ≤ γ′ < 1/3.

5. Formal parameterization of the manifold. In this section we obtain a for-
mal solution of the equation F○K = K○R, that is, a formal series which solves the
equation at all orders. We will need also a precise expression of the coefficients in
order to obtain Gevrey estimates for them.

We will use the following notation, that arises from the Faà-di-Bruno formula.
Assuming that f and g are two C∞ functions such that f ○ g makes sense, f(0) = 0
and g(0) = 0, we have that (f○g)l = 1

l!
Dl(f○g)(0) satisfies

(f ○ g)l =
l

∑
k=1

∑
l1+⋯+lk=l

li≥1

fk[gl1 ,⋯, glk]. (19)
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Here fk and gk are k-multilinear symmetric maps. This expression also holds when

dealing with the composition of formal power series f̂(w) = ∑l≥1 flw
l and ĝ(v) =

∑l≥1 glv
l. The coefficient of the l order term of the formal composition f○g is given

by (19). It depends only on f≤l(w) = ∑lk=1 fkw
k and g≤l(v) = ∑lk=1 gkv

k. The only

term of (f̂○ĝ)l in which fl appears is flg
l
1, and the only term in which gl appears

is f1gl.
We introduce the maps

L(x, y, z) =
⎛
⎜
⎝

x − axN
y
Cz

⎞
⎟
⎠
, G(x, y, z) = F (x, y, z) − L(x, y, z), (20)

for l ≥ 2, the family of operators

Al =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−(B1 + alId)−1, if N =M,

−B−1
1 , if M < N,

−(la)−1Id, if M > N
(21)

and

L = min{N,M}.

Proposition 5.1. There exists a unique b ∈ R such that for any c ∈ R there exists a

unique formal power series K̂(t) = ∑∞l=1Klt
l, Kl ∈ R1+d+d′ with K1 = (1,0,0)⊺ and

Kx
N = c, such that R(t) = t−atN+bt2N−1 and K satisfies the equation F○K−K○R = 0

formally.
The coefficients of K and R can be given inductively. For l > 1 we have

Kz
l = −(C − Id)−1Ezl ,

Ky
l =

⎧⎪⎪⎨⎪⎪⎩

AlEyl+L−1, if N <M,

Al(Eyl+L−1 +B2K
z
l ), if N ≥M,

Kx
l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1

a(l −N)(E
x
l+N−1 + v⊺Ky

l +w
⊺Kz

l ), if l ≠ N,

c, if l = N,

and

Rl+N−1 =
⎧⎪⎪⎨⎪⎪⎩

0, if l > 1, l ≠ N,
b = Ex2N−1 + v⊺Ky

N +w⊺Kz
l , if l = N ;

where

Exl+N−1 = − a ∑
l1+⋯+lN=l+N−1

1≤li≤l−1

N

∏
i=1

Kx
li +

l+N−1

∑
k=N

∑
l1+⋯+lk=l+N−1

1≤li≤l−1

Gxk[Kl1 ,⋯,Klk]

−
l−1

∑
k=2

Kx
k ∑

l1+⋯+lk=l+N−1

1≤li≤l+N−2

k

∏
i=1

Rli , (22)
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Eyl+L−1 =
l+L−1

∑
k=M

∑
l1+⋯+lk=l+L−1

1≤li≤min{l−1,l+L−M}

Gyk[Kl1 ,⋯,Klk]

−
min{l−1,l+L−N}

∑
k=M−L+2

Ky
k ∑

l1+⋯+lk=l+L−1

1≤li≤l+N−2

k

∏
i=1

Rli (23)

and

Ezl =
l

∑
k=2

∑
l1+⋯+lk=l

1≤li≤l−1

Gzk[Kl1 ,⋯,Klk] −
l−N+1

∑
k=2

Kz
k ∑

l1+⋯+lk=l

1≤li≤l+N−2

k

∏
i=1

Rli . (24)

In addition, if 1 ≤ l ≤M −L + 1, Ky
l = 0.

Proof. First we prove by induction that there exist a formal seriesK(t) = ∑n≥1Knt
n,

Kn = (Kx
n,K

y
n,K

z
n)⊺ ∈ R1+d+d′ and a polynomial R(t) = ∑n0

n≥1Rnt
n, Rn ∈ R, with as

much as possible coefficients equal to 0, such that the error

El = F ○K≤l −K≤l ○R≤l+N−1

satisfies

El(t) =
⎧⎪⎪⎨⎪⎪⎩

(O(tl+N),O(tM+1),O(tl+1))⊺, if l <M −L + 1,

(O(tl+N),O(tl+L),O(tl+1))⊺, if l ≥M −L + 1.
(25)

To deal simultaneously with both cases we introduce P (l) as

P (l) =
⎧⎪⎪⎨⎪⎪⎩

M + 1, if 1 ≤ l <M −L + 1,

l +L, l ≥M −L + 1.

Note that P (l − 1) + 1 ≥ P (l) and that P (l) = max{M + 1, l +L}.

We can write El(t) = ∑n≥1E
l
nt
n, with Eln ∈ R × Rd × Rd

′
. We denote by

El,xl+N−1,E
l,y
P (l)

and El,zl the first non-zero terms of (El,x,El,y,El,z) respectively.

From the proof it will become clear that Em,xl+N−1,E
m,y
P (l)

and Em,zl actually do not

depend on m provided m ≥ l − 1. We will simply denote them by Exl+N−1,E
y
P (l)

and

Ezl respectively. These values are the ones which appear in the statement.
Taking R(t) = t− atN +O(tN+1) and K1 = (1,0,0)⊺ the claim holds true for l = 1

because

E1(t) = F ○K≤1(t) −K≤1 ○R≤N(t) = (O(tN+1),O(tM+1),O(t2)).
Now, let l ≥ 2 and assume that there exist polynomials K≤l−1 of degree at most

l − 1 and R≤l+N−2 of degree at most l +N − 2 such that

El−1(t) = (O(tl+N−1),O(tP (l−1)),O(tl))⊺.
We remark that the value of the constant b = R2N−1 will be determined at the step
l = N .

In addition, we assume that Ky
j = 0, 1 ≤ j ≤ l − 1 ≤M −L + 1.

We look for Kl ∈ R ×Rd ×Rd
′

and Rl+N−1 ∈ R such that K≤l(t) =K≤l−1(t) +Klt
l

and R≤l+N−1(t) = R≤l+N−2(t) +Rl+N−1t
l+N−1 satisfy (25). Defining ∆l(t) =Klt

l, we
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have that

El = F○K≤l −K≤l ○R≤l+N−1

=El−1

+ F ○K≤l − F ○K≤l−1 − (DF ○K≤l−1)∆l (26)

+ (DF ○K≤l−1)∆l (27)

−K≤l ○R≤l+N−1 −K≤l ○R≤l+N−2 (28)

−∆l ○R≤l+N−2. (29)

By the induction hypothesis,

El−1(t) = (Exl+N−1t
l+N−1,Ey

P (l−1)
tP (l−1),Ezl t

l)⊺ + (O(tl+N),O(tP (l)),O(tl+1))⊺.

Now we identify the lowest order terms in (26), (27), (28) and (29).
Using that l ≥ 2 we easily estimate (26)

(F ○K≤l − F ○K≤l−1 − (DF ○K≤l−1)∆l)(t) = (O(t2l+N−2),O(t2l+M−2),O(t2l))⊺

= (O(tl+N),O(tP (l−1)+1),O(tl+1))⊺

since 2l +M − 2 ≥M + 1 + 2l − 3 >M + 1 and 2l +M − 2 ≥ l +L + l − 2 ≥ l +L.
Concerning (27), taking into account that K1 = (1,0,0)⊺,

((DF○K≤l−1)∆l)(t) =
⎛
⎜
⎝

(1 −NatN−1)tlKx
l + v⊺K

y
l t
l+N−1 +w⊺Kz

l t
l+N−1 +O(tl+N)

Ky
l t
l +B1K

y
l t
l+M−1 +B2K

z
l t
l+M−1 +O(tl+M)

CKz
l t
l +O(tl+1)

⎞
⎟
⎠
.

As for (28), taking into account that Ky
j = 0 if 1 ≤ j ≤ l−1 ≤M −L+1, which implies

that

K≤l(t) =
⎧⎪⎪⎨⎪⎪⎩

Ky
l t
l, l − 1 ≤M −L + 1,

KM−L+1t
M−L+1 +O(tM−L+2), otherwise,

we have that

(K≤l ○R≤l+N−1 −K≤l ○R≤l+N−2)(t) =
⎛
⎜
⎝

Rl+N−1t
l+N−1

0
0

⎞
⎟
⎠
+
⎛
⎜
⎝

O(tl+N)
∆y
l (t)

O(tl+N)

⎞
⎟
⎠
,

where

∆y
l (t) =

⎧⎪⎪⎨⎪⎪⎩

lKy
l O(t2l+N−2), l − 1 ≤M −L + 1,

O(tl+M+N−L), otherwise,

In all cases O(tl+M+N−L) = O(tP (l−1)+1).
Finally we evaluate (29)

∆l ○R≤l+N−2(t) =Kl(t − atN +O(tN+1))l =Klt
l − laKlt

l+N−1 +O(tl+N)Kl.

From the above calculations, since l ≥ 2, we have

El(t) =
⎛
⎜
⎝

(Exl+N−1 + a(l −N)Kx
l −Rl+N−1 + v⊺Ky

l +w⊺Kz
l )tl+N−1

Ey
P (l−1)

tP (l−1) + alKy
l t
l+N−1 +B1K

y
l t
l+M−1 +B2K

z
l t
l+M−1

(Ezl + (C − Id)Kz
l )tl

⎞
⎟
⎠

+
⎛
⎜
⎝

O(tl+N)
O(tP (l−1)+1) +O(tl+N)Ky

l

O(tl+1)

⎞
⎟
⎠
.
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This expression permits to choose (Kx
l ,K

y
l ,K

z
l ) and Rl+N−1 in order to El has the

claimed order. We start dealing with the third component. We have to take

Kz
l = −(C − Id)−1Ezl .

When dealing with the second one we have to distinguish two cases. If P (l − 1) =
M + 1, which means that l < M − L + 1 we have that l + L − 1 < M . Then if
L = N < M , Ky

l = 0. Otherwise, if L = M ≤ N , l ≤ 1 and this case is void. Now
suppose P (l − 1) = l +L − 1. If M ≤ N , we take

Ky
l = Al(E

y
l+L−1 +B2K

z
l ),

while, if N <M ,

Ky
l = AlE

y
l+L−1.

Finally, considering the x component, if l ≠ N , we take

Rl+N−1 = 0, Kx
l = − 1

a(l −N)
(Exl+N−1 + v⊺Ky

l +w
⊺Kz

l ),

otherwise,

R2N−1 = Ex2N−1 + v⊺Ky
N +w⊺Kz

N , Kx
N is free .

We write c =Kx
N which can be chosen arbitrarily. We recall that R2N−1 corresponds

to the coefficient b.
Now we come to compute Exl+N−1, Eyl+L−1 and Ezl+L−1.

By definition, Ezl is the term of order l of πzEl−1 = F z ○K≤l−1 −Kz
≤l−1 ○R≤l+N−2,

that is,

Ezl =
1

l!
DlπzEl−1(0).

By the Faà di Bruno formula (19),

Ezl =
l

∑
k=1

∑
l1+⋯+lk=l

1≤li≤l−1

F zk [Kl1 , . . . ,Klk] −
l−1

∑
k=1

Kz
k ∑

l1+⋯+lk=l

1≤li≤l+N−2

k

∏
i=1

Rli . (30)

In the first term of (30) the addend with k = 1 vanishes becauseKz
1 = 0. Moreover,

for k ≥ 2, F zk = Gzk. In the second term, the addend with k = 1 also vanishes.
Moreover, if k > l −N + 1, since

∑
l1+⋯+lk=l

1≤li≤l+N−2

k

∏
i=1

Rli

is the coefficient of tl in

R(t)k = (t − atN + bt2N−1)k = tk − aktk+N−1 +O(tk+2N−2),

the addend with this k vanishes because then l < k +N − 1 and the next non-zero
term after order k is of order k +N − 1. This proves formula (24).

Analogously,

El+N−1
x = 1

(l +N − 1)!D
l+N−1πxEl−1(0), El+L−1

y = 1

(l +L − 1)!D
l+L−1πyEl−1(0).
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Applying again Faà di Bruno’s formula we obtain

Eyl+L−1 =
l+L−1

∑
k=1

∑
l1+⋯+lk=l+L−1

1≤li≤l−1

F yk [Kl1 ,⋯,Klk] −
l−1

∑
k=1

Ky
k ∑

l1+⋯+lk=l+L−1

1≤li≤l+N−2

k

∏
i=1

Rli (31)

and

Exl+N−1 =
l+N−1

∑
k=1

∑
l1+⋯+lk=l+N−1

1≤li≤l−1

F xk [Kl1 ,⋯,Klk] −
l−1

∑
k=1

Kx
k ∑

l1+⋯+lk=l+N−1

1≤li≤l+N−2

k

∏
i=1

Rli .

We begin by determining the indices in (31) that provide non-zero terms in Eyl+L−1.
The term with k = 1 in the first addend (31) vanishes because it would be F y1 K

y
l+L−1,

but for El we are working with K≤l−1. Moreover, since F yk = 0 if 2 ≤ k ≤M − 1, the
sum must start with k =M . Also, M ≤ k ≤ l1+⋯+ lk = l+L−1 implies l ≥M −L+1.
In addition, when l =M −L + 1, we always have that

l1 +⋯ + lk =M −L + 1 +L − 1 =M.

Therefore, if l = M − L + 1, k = M and l1 = ⋯ = lM = 1. Since K1 = (1,0,0)⊺, the
corresponding term is

F yM [
M)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
K1,⋯,K1] =

1

M !
∂Mx F

y(0,0) = 0.

Then if l ≤ M − L + 1 the first term is void. To finish with the first term, we note
that for all i, using again that k ≥M ,

M − 1 + li ≤ l1 +⋯ + lk = l +L − 1 ⇒ li ≤ l +L −M,

that is, the first term of (31) has the form claimed in formula (23). With respect
to the second term of (31), we only need to note that Ky

k = 0 for 1 ≤ k ≤M −L + 1,
and analogously as before, that

∑
l1+⋯+lk=l+N−1

1≤li≤l+N−2

k

∏
i=1

Rli

is the coefficient of tl+N−1 of R(t)k. Therefore since if vanishes for k < l + L − 1 <
k +N − 1, we have that l +L − 1 ≥ k +N − 1 which implies that k ≤ l +L −N . This
ends the proof of formula (23) for Eyl . To check formula (22) for Exl+N−1 we use the

form of F x(x, y, z) = x − axN +Gx(x, y, z) and the proof follows the same lines as
the one for Eyl+L−1.

6. Gevrey estimates. Before starting to obtain the Gevrey estimates of the for-
mal solution K we perform two changes of coordinates. The first one is a close
to the identity change that uses the (N − 1)-degree approximation of the formal
parabolic curve obtained in Proposition 5.1 to put it closer to the x-axis. In the
new variables the parameterization will be the embedding to the x-axis plus terms
of order at least N .

The structure of this section is quite similar to the counterpart in [4], however,
there are some differences to take into account.
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Lemma 6.1. We define the change of variables

(x, y, z) = Φ(x̄, ȳ, z̄) ∶=K≤N−1(x̄) + (0, ȳ, z̄),

where K≤N−1(x̄) = ∑N−1
j=1 Kj x̄

j. In these new variables:

1. F̄ = Φ−1 ○F ○Φ has the same form (3) of F with the same constant a, vectors
v⊺,w⊺ and the same matrices B1 and C.

2. The formal solution K̄ and R̄ of F̄ ○ K̄ − K̄ ○ R̄ = 0 obtained applying Propo-
sition 5.1 to F̄ satisfies

K̄(t) = (t,0,0)⊺ +O(tN) and R̄(t) = t − atN + bt2N−1 = R(t).

3. The Gevrey character is not affected by this change, i.e., if one of K or K̄ is
Gevrey of some order the other is also Gevrey of the same order.

The proof of this lemma depends on cumbersome but straightforward computa-
tions and uses, among other properties, that Ky

1 = ⋯ =Ky
M−L+1 = 0.

Next we perform a rescaling of parameter λ to achieve a good control on the
growth of the terms Kl of the formal solution up to some suitable order l0 so that
we can start an induction procedure to estimate the terms Kj from l0 on and obtain
a significantly simpler bound from them.

Let U ⊂ C1+d+d′ be the domain of a complex extension of F̄ . Let B(δ) be a ball

of radius δ > 0 such that B(δ) ⊂ U .
Let Ḡ = F̄ − L with L defined in (20). Given λ ≥ 1 we introduce

F̃ (x, y, z) = λF̄ (λ−1x,λ−1y, λ−1z), G̃(x, y, z) = λḠ(λ−1x,λ−1y, λ−1z),
K̃(t) = λK̄(λ−1t), R̃(t) = λR̄(λ−1t),

(32)

and for the sake of simplicity, we omit the dependence of λ on the notation.

Lemma 6.2. Let δ̄ be such that B(δ̄) is contained in the complex domain U of F̄ .
Let Ḡ = F̄ − L and κ̄ = max

(x,y,z)∈B(δ̄) ∥Ḡ(x, y, z)∥.

For all δ0, ε, µ0 > 0 and l0 ∈ N, there exists λ ∶= λ(δ0, ε, µ0, l0, δ̄) ≥ 1 such that the

functions F̃ , G̃, K̃ and R̃ defined above in (32), satisfy the following properties:

1. F̃ has the form (3), where the corresponding values of a, v,B1,B2 and C
(which we denote with the same letter with tilde) are

ã = λ−(N−1)a, ṽ = λ−(N−1)v, w̃ = λ−(N−1)w, B̃i = λ−(M−1)Bi,

with i = 1,2 and C̃ = C, respectively. The domain of F̃ contains a ball B(δ̃),

with δ̃ = λδ̄ > δ0.
2. R̃(t) = t − ãtN + b̃t2N−1 with b̃ = λ−2N+2b. We further ask ∣λ−1/γa∣ ≤ ε where γ

is defined in (4). As a consequence ã ≤ ε.
3. Formally we have that

F̃ ○ K̃ − K̃ ○ R̃ = 0.

4. Let κ̃ = max
(x,y,z)∈B(δ̃)

∥G̃(x, y, z)∥. It is clear that κ̃ = λκ̄ and hence ∥G̃k∥ ≤ λκ̄δ̃−k

for all k ≥ 0.
5. ∥K̃l∥ ≤ µ0l!

γ for all N ≤ l ≤ l0. We recall that K̃l = 0 if 2 ≤ l ≤ N − 1.

We remark that σ ∶= b̃
ã2

does not depend on the rescaling parameter λ.
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Lemma 6.3. The matrices Ãl defined as in (21) with B̃1 instead of B1, after the

changes of variables in Lemmas 6.1 and 6.2, satisfy Ãl = λN−1Al if M ≥ N and
Ãl = λM−1Al when M < N . Moreover, if l ≥ l0 ≥ 2∣a∣−1∥B1∥,

∥Ãl∥ ≤ 2λN−1(l∣a∣)−1, if M ≥ N.

The following technical lemmas are slight variations of lemmas in [4]. For the
reader’s convenience, we state and prove them.

Lemma 6.4. Let k, ν ∈ N, ν ≥ k and β ≥ 1
N−1

. Let also

J1
k,ν = k!βRk,ν , where Rk,ν = ∑

l1+⋯+lk=ν

li≥1

k

∏
i=1

R̃li

and R̃l are the coefficients of the polynomial R̃(t) = t− ãtN + b̃t2N−1. Let σ = b̃
ã2

and

m = ν−k
N−1

. We have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J1
k,k = k!β

∣J1
k,ν ∣ ≤ (ν −N + 1)!β(ν −mN + 1)∣ã∣m(1 + ∣σ∣)m/2, if ν−k

N−1
∈ N,

J1
k,ν = 0, otherwise.

Proof. Note that Rk,ν is the coefficient of tν of the polynomial (t − ãtN + b̃t2N−1)k.
Then, we can rewrite it as

Rk,ν = ∑
m1+m2+m3=k

m1+Nm2+(2N−1)m3=ν

k!

m1!m2!m3!
(−ã)m2 b̃m3 . (33)

The conditions on the indices m2,m3 in the previous formula imply (N − 1)m2 +
2(N − 1)m3 = ν − k, that is, m2 + 2m3 = (ν − k)/(N − 1) ∈ N. Therefore Rk,ν = 0 if
m ∶= (ν − k)/(N − 1) ∉ N. When ν = k, m2 = m3 = 0 and m = 0. Then Rk,k = 1 and

J1
k,k = k!β . If m ≥ 1, we reduce (33) to a sum with a single index as

Rk,ν =
[
m
2
]

∑
m3=0

(ν − (N − 1)m)!
(ν −mN +m3)!(m − 2m3)!m3!

(−ã)m−2m3 b̃m3 .

Using

(ν − (N − 1)m)!
(ν −Nm +m3)!

≤ (ν − (N − 1)m)!
(ν −Nm)! ≤ (ν − (N − 1)m)m−1(ν −Nm + 1)

and

[
m
2
]

∑
m3=0

∣ã∣m−2m3 ∣̃b∣m3

(m − 2m3)!m3!
≤ ∣ã∣m

[
m
2
]

∑
m3=0

1

([m/2] −m3)!m3!
∣ b̃
ã2

∣
m3

≤ 1

[m
2
]!
∣ã∣m(1 + ∣σ∣)m/2,

we get

∣Rk,ν ∣ ≤
1

[m
2
]!
(ν − (N − 1)m)m−1(ν −Nm + 1)∣ã∣m(1 + ∣σ∣)m/2.

Finally, since k = ν − (N − 1)m, using that m ≥ 1 and that

(ν − (N − 1)m)!β(ν − (N − 1)m))m−1

(ν −N + 1)!β = (ν − (N − 1)m)m−1

[(ν −N + 1)⋯(ν − (N − 1)m + 1)]β
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≤ (ν − (N − 1)m)m−1

(ν − (N − 1)m + 1)(m−1)(N−1)β
≤ 1,

we obtain

∣J1
k,ν ∣ ≤

1

[m
2
]!
(ν − (N − 1)m)!β(ν − (N − 1)m)m−1(ν −Nm + 1)∣ã∣m(1 + ∣σ∣)m/2,

where we use that (N − 1)β ≥ 1.

The next lemma collects two technical results on bounds of some products of
factorials.

Lemma 6.5. Let N ≥ 2, β ≥ 1
N−1

and Nβ = Nβ(N−1).

i) Let k ≥ 1, ν ≥ kN and

Mk,ν = ∑
l1+⋯+lk=ν

li≥N

(l1! ⋅ ⋯ ⋅ lk!)β . (34)

If ν < kN , the sum in (34) is void and we define Mk,ν = 0. We have

⎧⎪⎪⎨⎪⎪⎩

Mk,ν ≤ (ν − k + 1)!βNk−1
β , ν ≥ kN,

Mk,ν = 0, otherwise.

ii) Let k ≥ 1, ν ≥ k and

J2
k,ν = ∑

l1+⋯+lk=ν

li=1 or li≥N

(l1! ⋅ ⋯ ⋅ lk!)β , ν ≥ k. (35)

(If ν < k the sum in (35) is void and we define J2
k,ν = 0.) We have

J2
k,ν ≤

(Nβ + 1)k − 1

Nβ
(ν − k + 1)!β , ν ≥ k.

Proof. i) If kN > ν, one has that Mk,ν = 0. Let us assume that kN ≤ ν. One
can check that, if a, b, c ∈ N with b ≤ c, then (a + b)!c! ≤ b!(a + c)!. Therefore, for
l1, l2,⋯, lk ≥ N such that l1 +⋯ + lk = ν one has that l1!l2! ≤ N !(l1 + l2 −N)!, that

l1!l2!l3! ≤ N !(l1 + l2 −N)!l3! = N !(l1 + l2 − 2N +N)!l3! ≤ N !2(l1 + l2 + l3 − 2N)!
and applying this procedure recursively we get

l1!l2! ⋅ ⋯ ⋅ lk! ≤ N !k−1(l1 +⋯ + lk − (k − 1)N)! = N !k−1(ν − (k − 1)N)!.
On the other hand it is clear that

#{l1 +⋯ + lk = ν, li ≥ N} = #{m1 +⋯ +mk = ν − kN, mi ≥ 0}

= ( ν − kN + k − 1
k − 1

).

Therefore

Mk,ν ≤ N !β(k−1)(ν − (k − 1)N)!β ( ν − kN + k − 1
k − 1

).

Now we use that N !β ≤ Nβ(N−1) that

( ν − kN + k − 1
k − 1

) = ν − kN + k − 1

k − 1
⋅ ⋯ ⋅ ν − kN + 1

1
≤ (ν − kN + 1)k−1
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and that
(ν − k + 1)!

(ν − (k − 1)N)! ≥ (ν − (k − 1)N + 1)(k−1)(N−1)

to obtain

Mk,ν ≤ Nk−1
β (ν − (k − 1)N)!β(ν − kN + 1)k−1

≤ Nk−1
β (ν − k + 1)!β (ν − kN + 1)k−1

(ν − (k − 1)N + 1)β(N−1)(k−1)
.

Finally the bound in i) follows because β(N − 1) ≥ 1.
ii) For k = ν, J2

k,ν = 1 and the bound is obvious. Assume that ν > k. Then,

J2
k,ν =

k−1

∑
i=0

( k
i
)Mk−i,ν−i ≤ (ν − k + 1)!β

k−1

∑
i=0

( k
i
)Nk−i−1

β

≤ (ν − k + 1)!β (Nβ + 1)k − 1

Nβ

and the proof is complete.

Now we are going to prove that K̃(t) = ∑l≥1 K̃lt
l is Gevrey of order γ. Recall

that γ was defined in (4).

Proposition 6.6. Let δ̄, κ̄ be as in Lemma 6.2. We take δ0 = 2(1 + Nγ), with

Nγ = Nγ(N−1) and ε, µ0 and l0 according to the cases

● N ≤M ,

ε = 1

8(1 + ∣σ∣) ,

µ0 = 1,

l0 ≥ max{6κ̄(1 +N)M δ̄−M(N ∣a∣)−1,N + 4µN−1
0

N
(1 +N)N (1 + 2κ̄

∣a∣δ̄N
)} .

● M < N ,

ε = min{ 1

8(1 + ∣σ∣) ,
1

4∥B−1
1 ∥(1 + ∣σ∣)1/2

} ,

µ0 = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1,

⎡⎢⎢⎢⎢⎣

Nγ

6κ̄∥B−1
1 ∥ ( δ̄

1 +Nγ
)
M⎤⎥⎥⎥⎥⎦

1
M−1 ⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

l0 ≥ N + 4µN−1
0

Nγ
(1 +Nγ)N (1 + 2κ̄

∣a∣δ̄N
) .

Let F̃ rescaled with λ depending on δ0, ε, µ0, l0 as in Lemma 6.2 and K̃ be the formal
solution K̃(t) = ∑∞j=1 K̃jt

j of equation F̃ ○ K̃ − K̃ ○ R̃ = 0. Then

∥K̃j∥ ≤ µ0j!
γ , j ≥ 0.

Proof. We use the formulas for K̃ and E in Proposition 5.1 applied to F̃ , and hence
we have that K̃l = 0 if 2 ≤ l ≤ N −1. By Lemma 6.2 and the choice of parameters we
have that ∥K̃j∥ ≤ µ0j!

γ for N ≤ j ≤ l0. We will use Lemmas 6.4 and 6.5 with β = γ.

We assume by induction that ∥K̃j∥ ≤ µ0j!
γ for 1 ≤ j ≤ l − 1 for some l > l0.
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We start bounding K̃z
l . We introduce

H1
l =

l

∑
k=2

∑
l1+⋯+lk=l

1≤li≤l−1

G̃zk[K̃l1 ,⋯, K̃lk], H2
l =

l−N+1

∑
k=N

K̃z
kR̃k,l

so that Ezl = H1
l − H2

l . We have that, by 4 of Lemma 6.2, taking λ such that

µ0(Nγ + 1)/δ̃ < 1/2 and using Lemma 6.5,

∥H1
l ∥ ≤ λκ̄

l

∑
k=2

δ̃−kµk0J
2
k,l ≤

λκ̄l!γ

Nγ

l

∑
k=2

[µ0(Nγ + 1)
δ̃

]
k (l − k + 1)!γ

l!γ

≤ 2
λκ̄l!γ

Nγ
[µ0(Nγ + 1)

δ̃
]

2

≤ µ0l!
γλ−1[2κ̄δ̄−2(Nγ + 1)2N−1

γ ].

Moreover, for H2
l , it is clear that ∥H2

l ∥ ≤ ∑
l−N+1
k=N µ0k!γ ∣R̃k,l∣ = µ0∑l−N+1

k=N J1
k,l. Then,

using Lemma 6.4 and writing m = (l − k)/(N − 1),

∥H2
l ∥ ≤ µ0(l −N + 1)!γ

[
l−N
N−1 ]

∑
m=1

(l −mN + 1)∣ã∣m(1 + ∣σ∣)m/2

≤ µ0(l −N + 1)!γ(l −N + 1)2∣ã∣(1 + ∣σ∣)1/2

≤ µ0l!
γλ−N+1[2∣a∣(1 + ∣σ∣)1/2].

Therefore, since ∥K̃l
z∥ ≤ ∥(C − Id)−1∥∥Ezl ∥ ≤ ∥(C − Id)−1∥(∥H1

l ∥ + ∥H2
l ∥),

∥K̃l
z∥ ≤ µ0l!

γλ−1 [2κ̄δ̄−2(Nβ + 1)2N−1
β + λ−N+2[2∣a∣(1 + ∣σ∣)1/2]] (36)

and taking λ big enough we obtain ∥K̃l
z∥ ≤ µ0l!

γ .

To bound K̃y
l we introduce H3

l and H4
l so that El+L−1

y =H3
l −H4

l :

H3
l =

l+L−1

∑
k=M

∑
l1+⋯+lk=l+L−1

1≤li≤min{l−1,l+L−M}

G̃yk[K̃l1 ,⋯, K̃lk], H4
l =

min{l−1,l+L−N}

∑
k=N

K̃y
k R̃k,l+L−1.

We distinguish two cases, when L = min{N,M} = N and L = M < N . First we
deal with the case L = N . In this case γ = 1/(N −1), Nγ = N and µ0 = 1. By item ii)
of Lemma 6.5, we have that

∥ÃlH3
l ∥ ≤ λN κ̄

1

l∣a∣
l+N−1

∑
k=M

J2
k,l+N−1

1

δ̃k
≤ λN κ̄ 1

Nl∣a∣
l+N−1

∑
k=M

(l +N − k)!γ (1 +N
δ̃

)
k

≤ λN κ̄ 1

Nl∣a∣ (l +N −M)!γ
l+N−1

∑
k=M

(1 +N
δ̃

)
k

≤ λN κ̄ 2

Nl∣a∣ (l +N −M)!γ (1 +N
δ̃

)
M

,

since we are assuming that 1+N
δ̃

≤ 1+N
δ0

= 1/2. Therefore, using that δ̃ = λδ̄, that

M ≥ N = L and that l ≥ l0,

∥ÃlH3
l ∥ ≤ l!γ l−1

0 [λN−M κ̄
2

N ∣a∣ (
1 +N
δ̄

)
M

] ≤ 1

3
l!γ

by definition of l0.
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Now we deal with H4
l . It is clear that ∥H4

l ∥ ≤ ∑l−1
k=N J

1
k,l+N−1. Recall that

J1
k,l+N−1 ≠ 0 if and only if k = l + N − 1 −m(N − 1) for some m ∈ N. If m = 1,

then k = l+N −1−(N −1) = l which is a contradiction, because k ≤ l−1. Moreover,
since k ≥ N , m ≤ (l − 1)/(N − 1). Therefore, using Lemmas 6.3 and 6.4:

∥ÃlH4
l ∥ ≤ 2λN−1 1

∣a∣l

[
l−1
N−1 ]

∑
m=2

l!γ(l +N −mN)∣ã∣m(1 + ∣σ∣)m/2.

Then, since ∣ã(1 + ∣σ∣)1/2∣ ≤ ε(1 + ∣σ∣) ≤ 1/8 and ã = λ−(N−1)a, we have that

∥ÃlH4
l ∥ ≤ 4λN−1 1

∣a∣l l!
γ(l −N)∣ã∣2(1 + ∣σ∣) ≤ l!γλ−(N−1)[4∣a∣(1 + ∣σ∣)] ≤ 1

3
l!γ

if λ is big enough. On the one hand, when N < M , K̃y
l = Ãl(H3

l +H4
l ) and the

previous bounds imply the induction result. On the other hand, when N = M ,
K̃y
l = Ãl(H3

l +H4
l + B̃2K̃

z
l ). By (36), the term ∥ÃlB̃2K̃

z
l ∥ is bounded by l!γ/3 if λ

is large enough and therefore, also in this case, we are done.
Now we deal with the case L =M < N . Recall that γ = 1/(N −M). Then

∥ÃlH3
l ∥ ≤ λM κ̄∥B̃−1

1 ∥
l+M−1

∑
k=M

J2
k,l+M−1

µk0

δ̃k

≤ λM κ̄∥B̃−1
1 ∥

l+M−1

∑
k=M

1

Nγ
(l +M − k)!γ (µ0(1 +Nγ)

δ̃
)
k

≤ λM κ̄∥B̃−1
1 ∥
Nγ

l!γ
l+M−1

∑
k=M

(µ0(1 +Nγ)
δ̃

)
k

≤ λM2κ̄
∥B̃−1

1 ∥
Nγ

l!γ (µ0(1 +Nγ)
δ̃

)
M

since µ0 ≤ 1 and
1+Nγ

δ̃
≤ 1+Nγ

δ0
= 1/2. Moreover, using that δ̃ = λδ̄,

∥ÃlH3
l ∥ ≤ µ0l!

γµM−1
0 [2κ̄

∥B̃−1
1 ∥
Nγ

(1 +Nγ
δ̄

)
M

] ≤ 1

3
µ0l!

γ

by definition of µ0.
Now we deal with H4

l . By induction hypothesis, ∥H4
l ∥ ≤ µ0∑l+M−N

k=N J1
k,l+M−1.

Then, using Lemmas 6.3 and 6.4:

∥ÃlH4
l ∥ ≤ µ0λ

M−1∥B̃−1
1 ∥

[
l+M−N−1
N−1 ]

∑
m=1

(l +M −N)!γ(l +M −mN)∣ã∣m(1 + ∣σ∣)m/2

≤ 2µ0λ
M−1∥B̃−1

1 ∥(l +M −N)!γ(l +M −N)∣ã∣(1 + ∣σ∣)1/2

≤ 2µ0λ
M−N∥B̃−1

1 ∥∣a∣(1 + ∣σ∣)1/2(l +M −N)!γ(l +M −N)

since ∣ã∣(1 + ∣σ∣)1/2 ≤ ε(1 + ∣σ∣)1/2 ≤ 1/2. Now we stress that, since γ = 1/(N −M),

(l +M −N)!γ(l +M −N) ≤ l!γ l +M −N
(l +M −N + 1)γ(N−M)

≤ l!γ .

Therefore, by Lemma 6.2,

∥ÃlH4
l ∥ ≤ µ0l!

γλM−N [2∥B̃−1
1 ∥λM−N ∣a∣(1 + ∣σ∣)1/2l!γ] ≤ 1

3
µ0l!

γ ,
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if λ is big enough. Notice that, by Lemma 6.3, ÃlB̃2 = AlB2, so that by (36) we

can take λ big enough such that ∥ÃlB̃2K̃
z
l ∥ ≤ µ0l!

γ/3. Therefore, we also get in this

case that ∥K̃y
l ∥ ≤ µ0l!

γ .

Now we deal with K̃x
l . We decompose K̃x

l =H5
l +H6

l +H7
l +H8

l with

H5
l =

1

l −N ∑
l1+⋯+lN=l+N−1

1≤li≤l−1

N

∏
i=1

K̃x
li , H6

l =
1

ã(l −N)
l−1

∑
k=N

K̃x
kRk,l+N−1,

H7
l =

1

ã(l −N)
l+N−1

∑
k=N

∑
l1+⋯+lk=l+N−1

1≤li≤l

Gxk[K̃l1 ,⋯, K̃lk], H8
l =

(ṽ⊺K̃y
l + w̃⊺K̃z

l )
ã(l −N) ,

where in H7
l we use that K̃x

2 = ⋅ ⋅ ⋅ = K̃x
N−1 = 0 by Lemma 6.1 and that K̃y

l , K̃
z
l are

already known. We notice that, using ii) of Lemma 6.5 and that µ0 ≤ 1

∣H5
l ∣ ≤ µN0

1

l −N ∑
l1+⋯+lN=l+N−1

li=1 orN≤li≤l−1

(l1! ⋅ ⋯ ⋅ lN !)γ ≤ µ0l!
γ 1

l0 −N
[µ

N−1
0 (1 +Nγ)N

Nγ
]

≤ 1

4
µ0l!

γ

by definition of l0. To bound ∣H6
l ∣ we use Lemma 6.4 and we get

∣H6
l ∣ ≤µ0

1

∣ã∣(l −N)
l−1

∑
k=N

k!γRk,l−N+1

≤µ0
1

∣ã∣(l −N) l!
γ

[
l−1
N−1 ]

∑
m=2

(l −N(m − 1))∣ã∣m(1 + ∣σ∣)m/2

≤µ0l!
γ 1

∣ã∣2∣ã∣
2(1 + ∣σ∣) = µ0l!

γλ−(N−1)[2∣a∣(1 + ∣σ∣)] ≤ 1

4
µ0l!

γ ,

where we used that ∣ã∣(1+ ∣σ∣) ≤ ε(1+ ∣σ∣) ≤ 1
2

and that λ is large enough. To bound

H7
l , we recall that

1+Nγ

δ̃
≤ 1/2, ã = λ1−Na and that δ̃ = λδ̄. Then, by definition of l0:

∣H7
l ∣ ≤

λκ̄

∣ã∣(l −N)
l+N−1

∑
k=N

δ̃−kµk0J
2
k,l+N−1

≤ λκ̄

∣ã∣(l −N)
l+N−1

∑
k=N

(l +N − k)!γ 1

Nγ
(µ0(1 +Nγ)

δ̃
)
k

≤ 2λκ̄

∣ã∣(l −N)Nγ
l!γ (µ0(1 +Nγ)

δ̃
)
N

≤ µ0l!
γ 1

l0 −N
[2κ̄µN−1

0

∣a∣Nγ
(1 +Nγ

δ̄
)
N

]

≤1

4
µ0l!

γ .

Moreover, since by Lemma 6.2, ṽ = λ−(N−1)v and w̃ = λ−(N−1)w, H8
l can be made

smaller than µ0l!
γ/4 provided λ is big enough. Then ∣K̃x

l ∣ ≤ µ0l!
γ .
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7. A solution of the invariance equation F ○K −K ○ R = 0. In this section
we prove Theorem 3.3, that is, there exists a real analytic function which is a true
solution of the invariance equation in an appropriate domain and it is γ-Gevrey
asymptotic to the formal solution K̂ found in the previous section.

We will use some basic properties about Gevrey functions. A summary of these
properties can be found in [4]. See also [6].

We begin by applying Borel-Ritt’s theorem for Gevrey functions to the formal
solution K̂ ([6, p.17]). Let 0 < β < απ be an opening of a sector. Then there exist
ρ small enough and a γ-Gevrey real analytic function, Ke, defined on the sector
S(β, ρ), which is γ-Gevrey asymptotic to the formal solution K̂ (see (7) for the
definition of the sector). Then,

F ○Ke −Ke ○R = E
being E a real analytic function on S(β, ρ) γ-Gevrey asymptotic to the identically
zero formal series. As a consequence, for any closed sector

S̄1 ∶= S̄1(β̄, ρ̄) = {t ∈ C ∶ 0 < ∣t∣ ≤ ρ̄, ∣arg(t)∣ ≤ β̄/2} ⊂ S(β, ρ)
there exist c0, c such that

∥E(t)∥ ≤ c0exp (−c∣t∣−1/γ) , if t ∈ S̄1.

We look for a real analytic function H defined on S̄1 such that

F ○ (Ke +H) − (Ke +H) ○R = 0, sup
t∈S̄1

∣H(t)∣exp (c∣t∣−1/γ) < +∞. (37)

For that we rewrite (37) as a fixed point equation. Let us introduce Ĉ(t) and N as:

Ĉ(t) =
⎛
⎜
⎝

Id 0 0
0 Id +B1[Kx

e (t)]M−1 0
0 0 C

⎞
⎟
⎠
, N(H) = F (Ke +H) − F (Ke) − Ĉ(t)H.

Then the equation (37) becomes

Ĉ(t)H(t) −H ○R(t) = −E(t) −N(H)(t). (38)

We introduce S1(β̄, ρ̄) = int(S̄1(β̄, ρ̄)) and the Banach spaces

X`,m = {H ∶ S̄1(β̄, ρ̄) ∪ {0} → Cm, C0, real analytic in S1(β̄, ρ̄) and ∥H∥` < +∞}
with

∥H∥` ∶= sup
t∈S̄1

∥H(t)∥∣t∣−`exp (c∣t∣−1/γ) .

It is straightforward to check that, if H1,H2 are C0 functions in S̄(ρ̄, β̄) ∪ {0},
satisfying that H1(0) =H2(0) = 0, then, denoting ∆H(t) =H1 −H2,

∥N x,y(H1)(t)∥ ≤a1∥H1(t)∥2 + ∣t∣M−1(a2∣t∣ + a3∣t∣N−M)∥H1(t)∥
+ a4∥B2∥∥H1(t)∥,

∥N z(H1)(t)∥ ≤b1∥H1(t)∥2 + b2∣t∣∥H1(t)∥,
∥N x,y(H1)(t) −N x,y(H2)(t)∥ ≤a1∥∆H(t)∥2 (39)

+ ∣t∣M−1(a2∣t∣ + a3∣t∣N−M + a4∥B2∥)∥∆H(t)∥,
∥N z(H1)(t) −N z(H2)(t)∥ ≤b1∥∆H(t)∥2 + b2∣t∣∥∆H(t)∥.

To prove the above inequalities we take into account that Ky
e ,K

z
e = O(∣t∣2) as well

as the form (3) of F .
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We observe that, by scaling the variable z, the norm ∥B2∥ is as small as we need.
In addition, the matrix C does not change with this scaling.

We are forced to distinguish two cases according to the different values of M and
N .

7.1. The case M ≥ N . Recall that we are assuming that SpecC ⊂ {z ∈ C ∶ ∣z∣ ≥ 1}.
In this case we reinterpret (38) as the fixed point equation

H(t) = F(H)(t) ∶= (Ĉ(t))−1 [H ○R(t) −E(t) −N(H)(t)] (40)

which is, essentially, the same as the one considered in [4]. A crux point is that, if
H ∈ X0,1+d+d′ , then

∥H ○R∥0 ≤ e−
a
2 c(N−1) cosλ∥H∥0 (41)

so that this term is contracting. Following the steps in the mentioned work, one can
easily check that, taking 0 < β < απ and ρ small enough, the fixed point equation (40)
has a unique solution belonging to the Banach space X0,1+d+d′ for any ρ̄, β̄ such that
S̄1(β̄, ρ̄) ⊂ S(β, ρ). As a consequence, the invariance condition (37) can be solved
and the solution Ke +H is analytic in the sector S(β, ρ) and α-Gevrey asymptotic

to the formal solution K̂.

7.2. The case M < N . When M < N the strategy developed for the case M ≥ N
can not be applied. In this case bound (41) is not longer true. Indeed, as shown
in Lemma 7.1 below (see also [4]), ∣R(t)∣ ≤ ∣t∣(1 + ν∣t∣N−1)−α with ν > 0. Then, if
H ∈ X0,1+d+d′ ,

ec∣t∣
−1/γ

∥H ○R(t)∥ ≤ ∥H∥0e
−c∣R(t)∣−(N−M)

−c∣t∣−(N−M)
≤ ∥H∥0e

−c a2 (N−1) cosλ∣t∣M−1
).

This implies that the term H ○R is not contracting. For this reason we rewrite (38)
as another fixed point equation. We recall that, when M < N , γ = 1/(N −M) and
we are assuming that SpecB1 ⊂ {z ∈ C ∶ Re z > 0} and that SpecC ⊂ {z ∈ C ∶ ∣z∣ > 1}.

First we define an appropriate norm in C1+d+d′ . We take a norm in Cd
′

such
that ∥C−1∥d′ < 1. Notice that, since SpecB1 ⊂ {z ∈ C ∶ Re z > 0}, there exists a
norm in Cd such that ∥Id −B1t

M−1∥d < 1 − µ∣t∣M−1 ≤ 1. This follows from the fact
that Id−B1t

M−1 is in Jordan form if B1 is in Jordan form as well. Therefore, since
Kx
e (t) = t +O(t2), taking ρ small enough,

∥(Id −B1[Kx
e (t)]M−1)−1∥d ≤ 1.

We finally define

∥(x, y, z)∥ = max{∣x∣, ∥y∥d, ∥z∥d′}.

If necessary, we will write ∥(x, y)∥ = max{∣x∣, ∥y∥d}.
We rewrite equation (38) as:

G(H)(t) = −E(t) +N(H)(t) + (0,0,Hz ○R(t))⊺, (42)

with G(H)(t) = Ĉ(t)H(t) − (Hx ○ R(t),Hy ○ R(t),0). The usual way to proceed
is: i) to find a formal inverse, S, of the linear operator G, ii) to prove that S is
continuous in appropriate Banach spaces and iii) to write equation (42) as a fixed
point equation and to apply the fixed point theorem.
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The formal operator S = (Sx,Sy,Sz), acting on analytic functions T , defined by

Sx(T ) = ∑
j≥0

T x ○Rj ,

Sy(T ) = ∑
j≥0

j

∏
i=0

(Id +B1[Ke ○Ri]M−1)−1T y ○Rj ,

Sz(T ) = C−1T z

is the formal inverse of G. The proof of this fact is straightforward. We (formally)
rewrite equation (42) as:

H = F(H) ∶= −S(E +N(H) + (0,0,Hz ○R)⊺) (43)

To obtain accurate bounds for S, we need precise estimates on the convergence
of the iterates Rk(t) for t ∈ S(β, ρ). Given ν > 0, let Rν ∶ [0,∞) → R be defined by

Rν(u) =
u

(1 + νuN−1)α .

Lemma 7.1. Let R ∶ S(β, ρ) → C be a map of the form R(t) = t − atN +O(∣t∣N+1),
a > 0. Assume that β < απ. Then, for any 0 < ν < a(N−1) cosλ, with λ = (N−1)β/2,
there exists ρ small enough such that

∣Rk(t)∣ ≤ Rkν(∣t∣) =
∣t∣

(1 + kν∣t∣N−1)α
.

In addition, R maps S(β, ρ) into itself.

Proof. Writing t = ∣t∣eiθ, the computation of the modulus of R(t) gives

∣R(t)∣ = ∣t∣[1 − a∣t∣N−1 cos(N − 1)θ +O(∣t∣N)]

and Rν(u) = u(1−ανuN−1 +O(u2N−2)). Therefore, since a cos(N − 1)β/2 > αν and
ρ is small enough, ∣R(t)∣ ≤ Rν(∣t∣), for all t ∈ S(β, ρ).

Since Rν is the flow time 1 of the one dimensional equation u̇ = −ανuN , i.e.
Rν(u) = ϕ(1, u), then Rkν is the flow time k of the same equation, that is:

Rkν(u) = ϕ(k, u) =
u

(1 + kνuN−1)α
.

Using that d
du
Rν(u) > 0, it is easy to prove by induction that ∣Rk(t)∣ ≤ Rkν(∣t∣).

To prove that R(S(β, ρ)) ⊂ S(β, ρ) is straightforward, see [4].

Now we deal with the linear operator S.

Lemma 7.2. Let 0 < β < απ/2, 0 < ν < a(N − 1) cosλ and `, `′ ∈ R. If ρ is small
enough, then, for any β̄ ∈ (0, β) and ρ̄ ∈ (0, ρ), S is a well defined, linear and
bounded operator from X`,1+d × X`′,d′ to X`−M+1,1+d × X`′,d′ . In addition,

∥Sx,y(T x,y)∥`−M+1 ≤
2

cα(N −M)ν ∥T
x,y∥`, ∥Sz(T z)∥`′ ≤ ∥C−1∥∥T z∥`′ .
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Proof. Let T be a function belonging to X`,1+d+d′ . Since Sz(T z) = C−1T z, the claim
is clear. We have that

∥Sx,y(T x,y)(t)∥ ≤ ∑
j≥0

∥T x,y(Rj(t))∥ ≤ ∑
j≥0

∥T x,y∥`∣Rj(t)∣`exp (−c∣Rj(t)∣−1/γ)

≤ ∑
j≥0

∥T x,y∥`∣t∣`

(1 + jν∣t∣N−1)α`
exp(− c

∣t∣1/γ (1 + jν∣t∣
N−1)α/γ)

≤ ∥T x,y∥`∣t∣`
⎛
⎜
⎝
e−c∣t∣

−(N−M)
+ ∫

∞

0

e
−

c

∣t∣(N−M) (1+xν∣t∣
N−1

)
α(N−M)

(1 + xν∣t∣N−1)α`
dx

⎞
⎟
⎠
.

Let I(t) be the integral in the right hand side of the last inequality. By performing
the change of variables

v = (1 + xν∣t∣N−1)α(N−M)

,

dv = α(N −M)ν∣t∣N−1(1 + xν∣t∣N−1)α(N−M)−1
dx

= α(N −M)ν∣t∣N−1v−(M−1)/(N−M)dx

we have that

I(t) = 1

α(N −M)ν∣t∣N−1 ∫
∞

1
e
−

c

∣t∣N−M v
v−(`−M+1)/(N−M) dv

= ∣t∣−(`−M+1)/(N−M)

α(N −M)ν∣t∣M−1 ∫
∞

∣t∣−(N−M)
e−cww−(`−M+1)/(N−M) dw.

Integrating by parts we easily obtain

I(t) ≤ 1

cα(N −M)ν∣t∣M−1
e
−

c

∣t∣N−M + ∣` −M + 1∣
N −M ∣t∣I(t)

and the claim is proven since we can take ∣t∣ < ρ small enough.

It is clear that E ∈ X0,1+d+d′ for any 0 < ρ̄ < ρ and 0 < β̄ < β < απ. By Lemma 7.2,
S(E) ∈ X−M+1,1+d × X0,d′ ⊂ X−M+1,1+d+d′ . We introduce

% = 2∥S(E)∥−M+1, D = 2

cα(N −M)ν .

Lemma 7.3. Let 0 < β < απ, 0 < ν < a(N − 1) cosλ and ρ small enough such that
the conclusions of Lemmas 7.1 and 7.2 hold true. For any 0 < β̄ < β and 0 < ρ̄ < ρ,
we introduce B−M+1(%) ⊂ X−M+1,1+d+d′ the closed ball of radius %.

Then, if ρ is small enough, the fixed point equation (43), H = F(H), has a unique
solution H ∈ B−M+1(%).

Proof. Let H ∈ B−M+1(%). We notice again that, by means of a scaling in the z-
variable, ∥B2∥ is small enough. In addition, since N > M , ∣t∣ ≥ ∣t∣N−M . By using
bound (39) of ∥N(H)∥, we have that, for ∣t∣ ≤ ρ̄ < ρ,

∥N x,y(H)∥0 ≤ (%a1∣t∣−(M−1)e−c∣t∣
−(N−M)

+ (a2 + a3)∣t∣ + a4∥B2∥) ∥H∥−M+1

≤ (ρ1/2 + a4∥B2∥)∥H∥−M+1,

∥N z(H)∥−M+1 ≤ (%b1∣t∣−(M−1)e−c∣t∣
−(N−M)

+ b2∣t∣) ∥H∥−M+1 ≤ ρ1/2∥H∥−M+1

if ρ is small enough. Hence, by Lemma 7.2

∥S(N(H))∥−M+1 ≤ max{D, ∥C−1∥} (ρ1/2 + a4∥B2∥)∥H∥−M+1.
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We take ρ and ∥B2∥ small enough, such that

max{D, ∥C−1∥} (ρ1/2 + a4∥B2∥) ≤
1

2
(1 − ∥C−1∥). (44)

Moreover, since ∥Sz(Hz ○R)∥M+1 ≤ ∥C−1∥∥Hz∥−M+1,

∥F(H)∥ ≤ ∥S(N(H))∥−M+1 + ∥Sz(Hz ○R)∥−M+1

≤ 1

2
(1 + ∥C−1∥)∥H∥−M+1 < ∥H∥−M+1.

We have proven that F(B−M+1(%)) ⊂ B−M+1(%).
Now we check that F is contractive. Indeed, let H1,H2 ∈ B−M+1(%) be two

functions in B−M+1(%). Again using (39),

∥S(N(H1)) − S(N(H2))∥−M+1 ≤ max{D, ∥C−1∥} (ρ1/2 + a4∥B2∥)∥H1 −H2∥−M+1

and, since ∥Sz(Hz
1 ○R −Hz

2 ○R)∥M+1 ≤ ∥C−1∥∥Hz
1 −H2∥−M+1, we obtain

∥F(H1) − F(H2)∥−M+1 ≤
1

2
(1 + ∥C−1∥)∥H1 −H2∥−M+1,

using (44).

We deduce from this lemma that equation (37) is satisfied for H ∈ X−M+1,1+d+d′ .
Therefore, the function K = Ke + H is a solution of F ○ K = K ○ R, analytic in
S(β, ρ) and with K̂ as its asymptotic γ-Gevrey series. This proves Theorem 3.3 for
the case M < N .

Appendix A. Proof of Proposition 3.2. We write ϕ = ϕ≤r +ϕ>r being ϕ≤r the
Taylor decomposition of ϕ up to order r. Note that ϕ(0) = 0. We also will use N≤r

and the notation introduce in Section 2.
We perform the normal form procedure (using the struture of eigenvalues) to

assure that N z(x, y,0) = O(∥(x, y)∥N), the change of variables

(x̄, ȳ, z̄) = (x, y − ϕy
≤r(x), z − ϕz≤r(x))

and the blow up

x̄ = u, ȳ = umv, z̄ = unw
for some n,m ∈ N to be determined later. We obtain the new map F = (Fu, F v, Fw):

Fu(u, v,w) =u +N x(u,umv + ϕy
≤r(u), unw + ϕz

≤r(u)),

F v(u, v,w) = 1

(Fu(u, v,w))m
[umv +N y(u,umv + ϕy

≤r(u), unw + ϕz
≤r(u))

+ϕy
≤r(u) − ϕy≤r(Fu(u, v,w))] ,

Fw(u, v,w) = 1

(Fu(u, v,w))n
[unw +N z(u,umv + ϕy

≤r(u), unw + ϕz
≤r(u))

+ϕz
≤r(u) − ϕz≤r(Fu(u, v,w))] .

We have that F is a real analytic map and that

Fu(u, v,w) = u +N x
≤r(u,umv + ϕy≤r(u), unw + ϕz

≤r(u)) + o(∣u∣r),
where N ≤r

x is a polynomial of degree r. Then,

Fu(u, v,w) = u +N x
≤r(u,ϕy≤r(u), ϕz≤r(u)) +O(∣u∣m+1∥v∥, ∣u∣n+1∥w∥) + o(∣u∣r).
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In addition, since

N x
≤r(u,ϕy≤r(u), ϕz≤r(u)) −N(u,ϕy(u), ϕz(u)) = o(∣u∣r+1),

taking m + 2 ≥ N and n + 2 ≥ N and using (6)

Fu(u, v,w) = u − fu(u, v,w)u ∶= u − (auN−1 +O(∣u∣N) +O(∣u∣m∥v∥, ∣u∣n∥w∥))u.

Therefore, Fu satisfies the form of the first component in (3).
Now we deal with F v. We first note that, since ϕ is invariant, we have that

ϕ≤r(u) +N y(u,ϕy
≤r(u), ϕz≤r(u)) − ϕy≤r(Fu(u,0,0)) = o(∣u∣r).

Secondly, we observe that, using the mean’s value theorem

F v(u, v,w) = v

(1 + fu(u, v,w))m + B̄1(u, v,w)v + un−mB̄2(u, v,w)w + o(∥u∣r−m),

B̄1, B̄2 being matrices with every entry of order at least O(∥(u,umv, unw)∥). Note
that,

v

(1 + fu(u, v,w))m =v +mauN−1v +O(∣u∣N∥v∥) +O(∣u∣m∥v∥2) +O(∣u∣n∥w∥2),

B̄1(u,umv, unw)v =B̄1(u,0,0)v +O(∣u∣m∥v∥2) +O(∣u∣n∥w∥2),
B̄2(u,umv, unw)w =B̄2(u,0,0)w +O(∣u∣m∥v∥2) +O(∣u∣n∥w∥2).

Let M1,M2 ∈ N, M1,M2 ≥ 2 and B̂1, B̂2 real matrices be such that B̄i(u,0,0) =
B̂iu

Mi−1 + O(∣u∣Mi), i = 1,2. Eventually, B̂1, B̂2 can be the zero matrix if either
B̄1(u,0,0) or B̄2(u,0,0) are flat at u = 0. In this case one can take either M1 ≥ N
or M2 ≥ N .

We have then that

F v(u, v,w) =v + (mauN−1Id + uM1−1B̂1)v + uM2−1B̂2w +O(∣u∣M1∥v∥)
+O(∣u∣M2∥w∥) +O(∣u∣N∥v∥) +O(∣u∣m∥v∥2) +O(∣u∣n∥w∥2) + o(∥u∣r−m)

The result follows with M = min{M1,N} taking m + 2 ≥ max{M1,N}, n = m +
max{0,M −M2} ≥m and B1 and B2 adequately.

Finally we deal with Fw. We recall that N z(x, y,0) = O(∥(x, y)∥N) and we
notice that ϕz(x) = O(∣x∣N). Indeed, ϕz satisfies

Cϕz(x) +N z(x,ϕy(x), ϕz(x)) = ϕz(x +N x(x,ϕy(x), ϕz(x))
or, taking into account condition (6),

(C − Id + ∫
1

0
∂zN z(x,ϕy(x), λϕz(x))dλ)ϕz(x) = −N z(x,ϕy(x),0) − ϕz(x)

+ ϕz(x +N x(x,ϕy(x), ϕz(x)))
=O(∣x∣N).

Since the matrix in the left hand side is invertible if ∣x∣ is small enough, ϕz(x) =
O(∣x∣)N .

Performing analogous computations as the ones for F v and taking into account
that ϕz

≤r(x) = O(∣x∣N) and that N z(x, y,0) = O(∥(x, y)∥N) one obtains that

Fw(u, v,w) = Cw + Ĉ1u
N+m−n−1v +O(∥u, v,w∥2) = Cw +O(∥u, v,w∥2)

and the proof is complete since N +m − n − 1 ≥ 1.
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Remark A.1. As a consequence of the proof, Proposition 3.2 holds true if F ∈ Cr
with r big enough (including the C∞ case). In addition the map of the form (3) is
also Cr.

Appendix B. Proof of Proposition 3.8. Since graph ϕ̂ is the formal invariant
manifold of F , it satisfies

ϕ̂(F x(x, ϕ̂(x))) − F y,z(x, ϕ̂(x)) = 0. (45)

Let g̃(x) = ϕ≤p(F x(x,ϕ≤p(x))) −F y,z(x,ϕ≤p(x)). We claim that g̃(x) = O(∥x∥p+1).
Indeed, using that ϕ1 = 0 (since graph ϕ̂ is tangent to the x-direction), we have that

ϕ̂(F x(x, ϕ̂(x))) =ϕ≤p(F x(x,ϕ≤p(x))) + [ϕ≤p(F x(x, ϕ̂(x))) − ϕ≤p(F x(x,ϕ≤p(x)))]
+ ϕ>p(F x(x, ϕ̂(x)))

=ϕ≤p(F x(x,ϕ≤p(x))) +O(∥x∥N+p) +O(∥x∥p+1)
and

F y,z(x, ϕ̂(x)) =F y,z(x,ϕ≤p(x)) + [F y,z(x, ϕ̂(x)) − F y,z(x,ϕ≤p(x))]
=F y,z(x,ϕ≤p(x)) +O(∥x∥p+1).

Hence, taking into account (45), the claim follows.
We define G by Gx = F x and Gy,z = F y,z + g̃. Clearly, F (x, y, z) −G(x, y, z) =

O(∥(x, y, z)∥p+1). We only need to check that graphϕ≤p is invariant by G, which is
true since, by the definition of g̃ and G,

ϕ≤p(Gx(x,ϕ≤p(x))) = ϕ≤p(F x(x,ϕ≤p(x))) = F y,z(x,ϕ≤p(x)) + g̃(x)
= Gy,z(x,ϕ≤p(x)),

which concludes the proof.
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