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Abstract. We study particular solutions of the inner equation associated with the splitting of separatrices
on generalized standard maps. An exponentially small complete expression for their difference is
obtained. We also provide numerical evidence that the inner equation provides quantitative infor-
mation about the splitting of separatrices even in the case when the limit flow does not.
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1. Introduction. The phenomenon of the splitting of separatrices occurs when a dynam-
ical system having an invariant object (a fixed point, a periodic orbit, a torus, etc.) with
coincident branches of its stable and unstable invariant manifolds (a separatrix) is perturbed.
Generically, a new invariant object of the perturbed system arises which still possesses stable
and unstable invariant manifolds, but the latter no longer coincide.

The problem of measuring the size of this splitting is long-standing in dynamics. It is
related to the existence of transversal homoclinic points and, consequently, with the noninte-
grability and with the size of the stochastic zone of the system under study.

The most popular tool for measuring the splitting of separatrices is the Melnikov ap-
proach [26]. It is based on classical perturbation theory and provides a first order approx-
imation for the splitting by using the distance between the stable and unstable invariant
manifolds of the perturbed system. Nevertheless there are plenty of interesting (and in some
sense generic) situations where this approach fails: when the Melnikov function does not cor-
rectly predict the size of the splitting or when no Melnikov function is available, for instance
when integrable systems near simple resonances are perturbed. In this case, Poincaré already
detected in [28] that the separatrix splits, but it turns out that the size of this splitting is
exponentially small in the perturbation parameter, what it is usually known as a beyond-all-
orders phenomenon. Consequently a direct application of a first order perturbation theory
never will be able to provide a good estimation for this exponentially small splitting. There
are other settings, related, for instance, to Arnold diffusion and fluid transport, when the
splitting of separatrices is exponentially small in the perturbation parameter, but from now
on we will restrict ourselves to the case of near identity, analytic, area-preserving maps.
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INNER EQUATION FOR AREA-PRESERVING MAPS 1063

1.1. Exponentially small splitting of separatrices in analytic maps. Throughout this
introduction we will avoid precise statements and technicalities, but we will give the main
ideas about the exponentially small phenomena.

Consider an area-preserving analytic map, close to the identity, that is, a map which can
be written as

(1.1) G(z, h) = z + hg(z, h), z ∈ R
2,

where h is a small parameter and g(0, h) = 0, so that the origin is a fixed point for any value
of h. Assume also that the origin is a weakly hyperbolic fixed point. Namely, redefining the
parameter h if necessary, the eigenvalues λ, λ−1 of DG(0) are of the form λ = eh = 1 +O(h).
In this case, there exist W s and W u, the stable and unstable invariant manifolds of the origin,
respectively. The goal is to measure the discrepancy between these invariant manifolds. Notice
that, since for h = 0 the map G(z, 0) = z, this is a beyond-all-orders phenomenon. The
strategy is to not consider the first approximation of the map G as simply taking h = 0, but
as the time h map of the vector field

(1.2) z′ = g(z, 0).

It can be seen, for instance in [10], that this approximation holds under generic and checkable
assumptions. If the vector field (1.2) possesses a homoclinic connection γ0 associated with the
origin (the fixed point), then one expects that the exponentially small splitting of separatrices
phenomenon arises for maps of the form (1.1). In fact in [10] it is proved that, for any p ∈W s,

(1.3) dist(p,W u) ≤ Kσe
−2πσ/h,

with σ > 0 and Kσ a constant depending on σ and p but independent of h. Nevertheless this
upper bound is not useful for deciding whether the separatrix γ0 splits or not. It turns out to
be mandatory to obtain an expression for the asymptotic behavior of the splitting.

We emphasize here that, even when the distance betweenW s andW u seems a good choice
for measuring the splitting, it depends on the point p. This is because this measure does not
exploit the area-preserving character of our map. There are several quantities more appro-
priate for this task. One of them is the Lazutkin invariant (see formula (2.7) in section 2.1),
which is related to the angle between W s and W u at a homoclinic point. An upper bound
similar to (1.3) for the Lazutkin invariant can be obtained but with Kσ depending only on σ.

If the asymptotic behavior for the splitting has to be proved, the first question that arises
from (1.3) is how much bigger σ could be. To find this optimal value of σ one has to know
the analyticity domain of γ0, the homoclinic connection of the vector field (1.2). It is proven
in [9] that γ0 has complex singularities; henceforth it is analytic in a maximal complex strip
{t ∈ C : |Imt| < σ0}. The bound (1.3) holds for any σ < σ0, changing Kσ appropriately.
Notice that if we take any fixed σ∗ < σ0, we do not obtain a sharp upper bound, simply
because the result also holds for σ, with σ∗ < σ < σ0, and henceforth, taking h small enough,
we get a better estimate than the previous one. As a consequence any asymptotic formula
will require taking σ arbitrarily close to σ0 as a function of h.

The key point for proving the bound (1.3) is to obtain good parameterizations for the
invariant manifolds W s, W u, which are analytic in the complex strip {t ∈ C : |Imt| < σ} with
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1064 I. BALDOMÁ AND P. MARTÍN

σ < σ0. The natural parameterization for the invariant manifolds is the functions γu,s(t) that
satisfy

(1.4) G(γu,s(t), h) = γu,s(t+ h).

Notice that the homoclinic connection γ0 satisfies this invariance equation for the time h flow of
the vector field (1.2). As we have mentioned in the above paragraph, to obtain an asymptotic
formula for the splitting it is necessary to find solutions of the invariance equation (1.4)
defined for values of t arbitrarily close to σ0 as a function of h. Since the strip is limited by
the singularities of the homoclinic connection γ0, this study becomes harder when the values
of t are closer to these singularities. The inner equation is a suitable approximation of the
invariance equation (1.4) for values of t close to these singularities.

The main goal of this paper is to derive the inner equation for a large set of area-preserving
maps (the so-called generalized standard maps) and to obtain information about some special
solutions and their difference. This is a first step in the proof of an asymptotic formula for
the splitting of the invariant manifolds for these maps, but obtaining this formula is beyond
the scope of this work. Nevertheless we will provide some numerical results which, combined
with heuristic arguments (see section 4, especially (4.6)), support the relation between the
splitting and the inner equation.

1.2. The inner equation. An overview. The study of the inner equation has been at the
heart of the proof of the exponentially small splitting of separatrices in many examples, for
maps [18, 23, 24] as well as for flows [20].

In the case of area-preserving analytic maps, the use of the inner equation dates back
to [21], where a scheme to obtain an asymptotic formula for the splitting of separatrices of
the Chirikov standard map was established. In that paper, a particular instance of the inner
equation was introduced: the so-called semistandard map. Further development of the ideas
in [21] led to the first rigorous proof of the asymptotic formula for the Chirikov standard map
in [18]. A brief discussion on the splitting size of the Chirikov standard map can be found
in [13]. From the same authors, the survey on exponentially small phenomena [15] introduces,
among other things, the inner equations associated with polynomial standard maps and lists in
an informal way asymptotic formulas for the splitting of separatrices in those cases. It is also
remarkable that in the paper [16] resurgence theory is applied to the study of the solutions
of the inner equation associated with the area-preserving Hénon map. This paper is strongly
related to [14]. Also in the study of perturbation of the McMillan map [23, 24] resurgence
methods were applied to studying the inner equation. Summarizing, one can find rigorous
results on the inner equation in [18, 16, 24], particularly examples which are covered under
our present work, which also includes and generalizes those present in [15] and the numerical
study [17].

In the case of flows, the inner equation has been a successful tool for measuring the
splitting of separatrices when the Melnikov function fails to predict the size of the splitting,
as in the rapidly forced pendulum. (See [19, 20] or [2] for a generalization to arbitrary
polynomial Hamiltonian systems of one and a half degrees of freedom, following the study on
the inner equation in [1].) A different technique based on continuous averaging to study the
exponentially small behavior of the splitting can be found in [30].
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INNER EQUATION FOR AREA-PRESERVING MAPS 1065

The purpose of the present paper is twofold, a combination of rigorous theoretical results
in a general setting and numerical experiments avoiding lengthy proofs in particular examples.
One of the numerical examples shows a type of behavior that is not covered by the surveys [15,
17] (see the end of this section).

We study some second order difference equations, called inner equations, which have the
form either

φ(z + 1)− 2φ(z) + φ(z − 1) = −φn(z) +G(φ(z))

or

φ(z + 1)− 2φ(z) + φ(z − 1) = −enφ(z) +G(eφ(z)),

depending on the class of maps under consideration, and where G(w) is an analytic function
such that G(w) = O(wn+1).

These equations appear, in particular, in the problem of exponentially small splitting of
separatrices in generalized standard maps (see the next section for definitions), but they can
appear in studies of other types of maps (with parabolic fixed points, for instance), and, with
this applicability in mind, we consider them in their full generality (see (3.3) and (3.4)). In
particular, our present results generalize those on the inner equations appearing in [21, 18,
13, 15, 16, 23, 24]. It is important to remark that in the previous literature on the subject the
symmetries of the particular problems under consideration were exploited extensively in the
proofs. Our present formulation does not rely on additional symmetries, making it suitable
for applications. In particular, we provide all the technical details and complete proofs of the
statements concerning the inner equations and their solutions. As a side comment for the
specialists, there are several technical improvements in the proofs of our theoretical results,
which we expect can be applied in other problems related to difference equations.

We describe a large set of formal solutions of these inner equations, from which some true
solutions are obtained, and we derive a complete formula for their difference. The main results
are collected in section 3, while section 2 provides a more detailed introduction of the problem
and description of some of the known results. Sections 5, 6, and 7 are devoted to proving the
theoretical results, while section 4 contains the numerical results with a nonrigorous exposition
of their relation to the developed theory. It should be remarked that the relation between
the inner equation and the actual computation of the splitting, in the particular cases where
proofs are available (see [18, 23, 24]), is lengthy and full of technicalities. Our exposition here
tries to give the reader an idea of the link between the inner equation and splitting size, by
making very strong assumptions, in order to explain the obtained numerical results. These
assumptions are fully proved in the literature for the Chirikov standard map and the McMillan
map.

The numerical experiments have been conducted to test the applicability of the theoret-
ical results. Although academic in nature, they show the relation between the splitting of
separatrices and the difference between two solutions of the inner equation. Moreover, the
main example exhibits a behavior that is not covered by the surveys [15, 17]. In this example,
given by the map (

x
y

)
�→
(
x+ y + ε(x− x3)− ε2x7

y + ε(x− x3)− ε2x7

)
,
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1066 I. BALDOMÁ AND P. MARTÍN

where ε is a small parameter, although the size of the splitting is much larger than the
guess suggested by [10], the leading term of its asymptotic behavior is provided by the inner
equation. As a matter of fact, the splitting size in this example behaves asymptotically when
ε→ 0 as

A

h10/3
exp

(
−π

2

h
+

25/4
√
πΓ(3/4)2)

h1/2

)
(1 + higher order terms),

where ε = 4 sinh2(h/2) and A is a constant related to some inner equation, while the näıve
guess provided by the limit flow (see section 2 for details), in this case the Duffing equation
ẍ = x−x3, would be exponential with exponent −π2/h. That is, the correction term is larger
than any power of h. See sections 2.4 and 4.

We remark that although the computation of the actual splitting has been performed by
using the multiple precision package PARI-GP, the computation of the leading term has been
achieved by using the standard long double precision in C.

2. Generalized standard maps and exponentially small splitting of separatrices.

2.1. Generalized standard maps. We will say that an area-preserving map (x∗, y∗) =
F (x, y) is a generalized standard map if it can be written in the form

(2.1)

{
x∗ = x+ y + f(x, h),

y∗ = y + f(x, h),

where h is a small parameter. We will assume that f depends analytically in its arguments on
|h| < h0, |x| < ρ0, for some fixed h0, ρ0 > 0. We will be interested in the case when the origin
is a fixed point of F , that is, f(0, h) = 0. Moreover, we will assume the origin to be weakly
hyperbolic, although our study may be applied also to the case of a parabolic fixed point.

The parameter h is chosen in such a way that specDF (0, 0) = {eh, e−h}. This last
condition is equivalent to imposing f ′(0, h) = ∂

∂xf(0, h) = ε, with ε = 4 sinh2(h/2). We
further assume that

(2.2) f(x, h) =
∑
k≥0

fk(x)h
k+2 = εf0(x) +O(h3x).

Under these conditions, the map (2.1) can be written as a close to the identity map: with the
scaling x̃ = x, hỹ = y, it becomes (using again x and y as variables)

(2.3)

{
x∗ = x+ hy +O(h2x),

y∗ = y + hf0(x) +O(h2x).

When h is small, the map (2.3) is well approximated by the time h map of the flow of the
Hamiltonian system

(2.4)

{
ẋ = y,

ẏ = f0(x).D
ow
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INNER EQUATION FOR AREA-PRESERVING MAPS 1067

We assume that the origin in (2.4), which is a fixed point, possesses a homoclinic connection,
γ0(t) = (x0(t), y0(t)). By a shift in t, we can choose γ0 such that x0 is an even function,
that is, γ0 intersects transversally the line {y = 0} at t = 0. The invariant manifolds of the
origin for the map (2.3) are close to this homoclinic connection. Hence, if h is small, by the
conservation of the area, they must intersect. It is not difficult to check that the expansions
in powers of h of the stable and unstable curves coincide. As a consequence, the expansion
of the angle of intersection in powers of h vanishes, which, in view of the analytic nature of
the problem, suggests that this angle may have an exponentially small behavior in h. In fact,
Fontich and Simó, in [10], obtained an exponentially small upper bound for the angle. They
showed that if γ0 is analytic in the complex strip {|Imt| < σ0} and the map F is defined
around the homoclinic orbit, then, for any 0 < σ < σ0, the distance between the stable and
the unstable manifold of the origin of (2.3) is bounded by Kσe

−2πσ/h for any 0 < h < hσ,
where Kσ and hσ are positive constants depending on σ and Kσ depends also on the point
where this distance is measured. Restoring to the original variables, the same applies to the
invariant manifolds of the origin of (2.1).

Equivalently, a natural parametrization γ(t) = (x(t), y(t)) of the invariant manifolds of
the origin of (2.1), when condition (2.2) is satisfied, that is, a parametrization satisfying
F ◦ γ(t) = γ(t+ h), must be a solution of the difference equation

(2.5) x(t+ h)− 2x(t) + x(t− h) = f(x(t), h),

with y(t) = x(t)− x(t− h). This equation implies that the curve γ = (x, y) is invariant by F
and that the action of F on γ is conjugated to the shift on the parameter t: t �→ t+h. One must
supply additional conditions on γ to obtain the invariant stable and unstable curves: if γ is the
unstable (resp., stable) manifold of the origin, then limt→−∞ x(t) = 0 (resp., limt→∞ x(t) = 0)
is required.

Since the left-hand side of the invariance equation (2.5) is formally

x(t+ h)− 2x(t) + x(t− h) = 4 sinh2
(
h

2

∂

∂t

)
(x)(t) = h2ẍ(t) +O(h4),

it can be approximated, when h is small, by the second order differential equation

(2.6) ẍ = f0(x),

which is nothing more than (2.4).
In order to measure the difference between the invariant manifolds, the Lazutkin invariant

at a homoclinic point p = γu(0) = γs(0),

(2.7) ω(p) = det

(
d

dt
γu(0),

d

dt
γs(0)

)
,

is often used, where γu,s(t) are natural parametrizations of the unstable and stable manifolds.
Unlike the angle between the invariant curves, ω(p) is a symplectic invariant and depends only
on the homoclinic orbit, not on the specific point p. Another symplectic invariant quantity
that can be used to measure the splitting of the separatrices is the area of the lobe between
two consecutive homoclinic points.
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1068 I. BALDOMÁ AND P. MARTÍN

Since an upper bound of the splitting of the separatrices is known, the question of its
asymptotic behavior when h tends to 0 arises. Some well-known examples in the literature
where this formula is available are briefly summarized in the next subsection.

2.2. Examples of generalized standard maps with exponentially small splitting of sep-
aratrices. There are not many examples with a complete proof of an asymptotic formula for
the splitting of separatrices in area-preserving maps. Here we quote two. There is a more
abundant literature about splitting of separatrices in Hamiltonian systems with one and a
half degrees of freedom (see [29, 8, 4, 30, 22, 27, 5]).

The first example is the Chirikov standard map, introduced by Chirikov as a basic model
of the motion of a system close to a nonlinear resonance (see, for instance, [3]). It corresponds
to taking f(x, h) = ε sin(x), with ε = 4 sinh2(h/2). This map is in fact defined in the annulus,
and the limit flow (2.4) is a pendulum with the saddle at the origin. The separatrix of the
pendulum is analytic in the strip {|Imt| < π/2} and has a singularity at t = iπ/2. The
symmetries of the problem imply that there is a homoclinic point p on the line x = π.

In [18], Gelfreich proved, following the scheme developed by Lazutkin in [21], that

ω(p) � 4π

h2
e−π2/h

∑
k≥0

h2kωk,

where the series on the right-hand side is asymptotic. In particular, the exponent in the
exponential is well predicted by the Fontich–Simó theorem in [10].

The second example is the perturbed McMillan map. The McMillan map itself was intro-
duced in [25] in the modelization of particle accelerator dynamics. In [6, 23, 24], perturbations
of the McMillan family of the form

(2.8)

⎧⎨⎩
x∗ = y,

y∗ = −x+
2cosh(h)y

1 + y2
+ ε̃V ′(y)

are considered, with V (y) =
∑

k≥2 Vky
2k analytic in a neighborhood of y = 0. In the above

formula, h is the Lyapunov exponent of the origin, which is the small parameter, and ε̃ is
independent of h and not necessarily small. The McMillan map is obtained when ε̃ = 0 and is
integrable with a polynomial first integral. See [6] for more details about the McMillan map.

With a linear change of coordinates, the map (2.8) can be written in the form (2.1) with

f(x, h) = ε
x− 2x3

1 + εx2
+

ε̃

ε1/2
V ′
(
ε1/2x

)
= ε(x− (2− 4ε̃V2)x

3)− ε2(x2 − (2 + 6ε̃V3)x
5) +O(ε4),(2.9)

where, again, ε = 4 sinh2(h/2). The limit flow (2.6) is the Duffing equation

ẍ = x− (2− 4ε̃V2)x
3,

with homoclinic x0(t) = α/ cosh(t), α = (1 − 2ε̃V2)
−1/2 (assuming |ε̃| < (2V2)

−1). Its singu-
larities closest to the real line are located at ±iπ/2. In [23, 24], improving a partial result
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in [6], it was proven that, if V̂ (2π) 	= 0, where

V̂ (ζ) =
∑
k≥2

Vk
ζ2k−1

(2k − 1)!

is the Borel transform of V , then the invariant manifolds to the origin of (2.8) split when
ε̃ 	= 0 and the Lazutkin invariant of a particular homoclinic orbit satisfies

ω � 4πε̃

β2h2
e−π2/h

∑
k≥0

h2kB+
k (ε̃),

where the functions B+
k are analytic around ε̃ = 0, β2 = 1 − 2ε̃V2/ cosh h, and B+

0 (ε̃) =

4π2V̂ (2π) + O(ε̃). If the map is written in the form (2.1), with the function f given in (2.9),
the Lazutkin invariant has an additional h2 in the denominator. Again, the exponent of the
exponential is well predicted by the Fontich–Simó theorem.

2.3. Numerical studies for polynomial generalized standard maps. In [17], Gelfreich and
Simó presented a detailed numerical study of the splitting of the separatrices of the generalized
standard map (2.1) in the case f(x, h) = εp(x), with p(x) =

∑n
k=1 pkx

k a polynomial of degree
n with p1 = 1 (which implies f ′(0, h) = ε) and pn < 0. Is is also assumed that there is a
homoclinic curve to the origin in the limit flow system (2.6).

Then, via numerical experiments, the authors showed that the asymptotic behavior of the
Lazutkin invariant depends only on the relative position of the singularities of the homoclinic
solution of (2.6), on the degree n of the polynomial p, and on the coefficient pn:

ω � Cn

|pn|ν/2hν
e−2πρ/hω̃(h) + · · · ,

where ν = 2(n + 1)/(n − 1); ρ is the minimum distance to the real line of the singularities of
the homoclinic of (2.6); ω̃(h) 	≡ 0 is either a constant, a periodic function, or a quasi-periodic
function of 1/h, depending only on the number of singularities at |Imt| = ρ and their relative
positions; and Cn depends only on n.

Also in this case, the exponential behavior is well predicted by the Fontich–Simó theorem.

2.4. A discrepant example. Numerical observations. We introduce the generalized stan-
dard map (2.1) induced by

(2.10) f(x, h) = ε(x− x3)− ε2x7.

Note that this map possesses terms in ε2, like the McMillan map has (see (2.9)). Unlike the
McMillan case, the function defining this map is entire.

The limit flow (2.6) for this map is also a Duffing equation, in this case ẍ = x − x3,
with homoclinic x0(t) =

√
2/ cosh(t), whose singularities are located at the same place of the

homoclinic of the McMillan map, π/2 being their minimum distance to the real line. Hence,
one could be tempted to infer that the exponential behavior of the Lazutkin invariant is of
order e−π2/h.
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1070 I. BALDOMÁ AND P. MARTÍN

However, our numerical experiments suggest that the Lazutkin invariant at the first ho-
moclinic point over the line y = 0, in the topology of the unstable manifold, behaves like

(2.11) ω � A

h10/3
e−2πρ(h)/h + · · · ,

where

(2.12) ρ(h) =
π

2
− 21/4Γ(3/4)2√

π
h1/2 +O(h3/2)

and A = 871.683 . . . . In particular, the size of the Lazutkin invariant is much larger than
the näıve guess, which, in turn, suggests that the approximation of the invariant manifolds
provided by the limit flow (2.6) is not good enough to predict the asymptotic formula of
the splitting. Section 4 is devoted to explaining these numerical experiments. In particular,
we will conjecture the source of the function ρ(h) and the origin and computation of the
constant A.

2.5. Inner equation for generalized standard maps. In all the aforementioned examples,
the constants ω0, B

+
0 (ε̃), Cn, and A in the leading term of the asymptotic behavior of the

Lazutkin invariant are related to a suitable inner equation, whose solutions provide better
approximations of the invariant manifolds for values of t in some regions of C than the one
provided by the limit flow (2.6). Even in the case of the generalized standard map defined
by (2.10), where the limit flow (2.6) does not provide enough information, the numerically
evaluated constant A in (2.11) is obtained from such an inner equation.

In order to be able to construct the inner equation we will impose several conditions on
the function defining the generalized standard map.

Let F be a generalized standard map of the form (2.1), induced by a function f(x, h) =∑
k≥0 fk(x)h

k+2, satisfying the hypotheses in section 2.1. We furthermore assume the follow-
ing:
(HP1) For each k ≥ 0, fk(x) =

∑dk
j=1 fk,jx

j, with fk,dk 	= 0.
(HP2) The function k �→ (dk − 1)/(k + 2) has a global maximum on N. Let I ⊂ N be the set

where this maximum is achieved.
Hypothesis (HP2) implies a restriction in the rate of growth of the degree of each of the

polynomials fk, which can be at most linear in k. We also remark that, combining hypotheses
(HP1) and (HP2) with the fact that f is analytic in the bidisk Dρ0 × Dh0 , one obtains that
the domain of analyticity with respect to x depends on h and tends to be the whole complex
plane when h tends to 0.

We fix χ ∈ C. We introduce the new unknown φ(z) defined by x(χ + hz) = h−αλφ(z),
with

α =
k + 2

dk − 1
for any k ∈ I

and λ a parameter to be determined later. Note that, by definition of I in (HP2), α is indeed
independent of k ∈ I. The invariance equation (2.5) becomes

(2.13) φ(z + 1)− 2φ(z) + φ(z − 1) = hαλ−1f(h−αλφ(z), h).
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INNER EQUATION FOR AREA-PRESERVING MAPS 1071

With the standing hypotheses, the right-hand side above admits an expansion of suitable
positive powers of h as follows:

hαλ−1f(h−αλφ(z), h) =
∑
k≥0

dk∑
j=1

fk,jh
−α(j−1)λj−1φj(z)hk+2

=
∑
k≥0

hk+2−α(dk−1)

⎛⎝fk,dkλdk−1φdk(z) +

dk−1∑
j=1

hα(dk−j)fk,jλ
j−1φj(z)

⎞⎠
=
∑
k∈I

fk,dkλ
dk−1φdk +O(hmin{1,α}),

where in the last equality we have used the definitions of α and I. The inner equation is
obtained by keeping only the first term in h in the right-hand side of (2.13):

(2.14) φ(z + 1)− 2φ(z) + φ(z − 1) =
∑
k∈I

fk,dkλ
dk−1φdk .

Let n = min{dk : k ∈ I}. To simplify the notation we introduce the coefficients G̃k such that∑
k∈I

fk,dkλ
dk−1φdk =

∑
k≥n

G̃kλ
k−1φk.

Now we take λ such that λn−1 = −(G̃n)
−1. With this choice, the inner equation associated

with the generalized standard map is

(2.15) φ(z + 1)− 2φ(z) + φ(z − 1) = −φn(z) +
∑

k≥n+1

Gkφ
k(z),

with Gk = G̃kλ
k−1. Notice that G(φ) :=

∑
k≥n+1Gkφ

k is analytic in a neighborhood of φ = 0.
In the trigonometric case one can proceed analogously. Indeed, assume that f(x, h) =∑

k≥0 fk(x)h
k+2, with f satisfying the following:

(HT1) For each k ≥ 0, fk(x) =
∑dk

j=−dk
fk,je

ijx is a trigonometric polynomial of degree
dk ≥ a, with fk,dk 	= 0.

(HT2) The function k �→ dk/(k+2) has a global maximum on N. Let I ⊂ N be the set where
this maximum is achieved.

For any χ ∈ C, we define φ(z) by x(χ+ hz) = −i log
(
hαλ

)
+ iφ(z) with

(2.16) α =
k + 2

dk
for any k ∈ I

and λ a parameter. Then, the invariance equation (2.5) becomes

(2.17) φ(z + 1)− 2φ(z) + φ(z − 1) = −if(−i log
(
hαλ

)
+ iφ(z), h).

As in (2.14), the inner equation is the above equation when h → 0. In this case, taking λ
appropriately, one obtains

(2.18) φ(z + 1)− 2φ(z) + φ(z − 1) = −e(n−1)φ(z) +
∑
k≥n

Gke
kφ(z),
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1072 I. BALDOMÁ AND P. MARTÍN

where n− 1 = min{dk : k ∈ I}. The discrepancy in the definition of n in both cases allows us
to make a unified treatment of the problem in the next sections.

Since the original invariance equation (2.5) is autonomous, the inner equation (2.15)
or (2.18) does not depend on the choice of the complex number χ introduced with the new
unknown φ. Nevertheless, this complex number is essential when the size of the splitting of
separatrices is studied and has to be well chosen. Roughly speaking, it will measure the expo-
nential smallness of the splitting, which turns out to be O(hνe−2πImχ/h) for some ν ∈ R. This
asymptotic behavior has been proved only for particular maps (see section 2.2), but there is
numerical evidence (see sections 2.3 and 2.4) that it also holds in a more general setting. We
plan, in a future work, to prove it for the generalized standard maps.

In the examples presented in sections 2.2 and 2.3, χ is chosen to be the location of the
singularity of the homoclinic solution γ0 of the limit flow (2.6) that is closest to the real line.
In the example in section 2.4, χ is also related to the singularities of a homoclinic solution of
some flow, which is no longer (2.6) but ẍ = x− x3 − εx7.

2.5.1. Some examples of the inner equation. Here we show how the inner equation is
derived for some examples.

The first one is the map introduced in section 2.4. Its inner equation is

(2.19) φ(z + 1)− 2φ(z) + φ(z − 1) = −φ7(z).

Indeed, in this case f(x, h) = ε(x−x3)+ε2x7 with ε = 4 sinh2(h/2). Therefore, f0(x) = x−x3,
f2k(x) = f2k,1x − f2k,3x

3 − f2k,7x
7, and f2k−1(x) = 0 for k ≥ 1, which implies that d0 = 3,

d2k = 7, and d2k−1 = 0 for k ≥ 1. In this situation, it is clear that n = 7, α = 2/3, and the
set I = {2}; therefore the right-hand side of (2.14) is f2,7λ

6φ7, and defining λ adequately, we
encounter (2.19).

Now we compute the inner equation for the generalized standard map induced by f(x, h) =
ε(x − x3). In this case f2k(x) = f2k,1x − f2k,3x

3, d2k = 3, f2k+1(x) = 0, and d2k+1 = 0 for
k ≥ 0, and this implies that n = 3, α = 1, and the set I = {0}. Then, the right-hand side
of (2.14) is f0,d0λ

2φ3, and we obtain the inner equation

(2.20) φ(z + 1)− 2φ(z) + φ(z − 1) = −φ3(z).

We can also encounter inner equations having infinite terms on their right-hand sides,
for instance, by considering f(x, h) = ε sin(x) +

∑
k≥1 akh

2k+2 sin((k + 1)x). In this case
d2k = 2k+2, d2k+1 = 0, n = 2, α = 2, and I = {k ∈ N : k is even}, so that the inner equation
is

φ(z + 1)− 2φ(z) + φ(z − 1) = −eφ(z) +
∑
k≥2

Gk(e
kφ(z)).

The main purpose of this paper is to provide some particular solutions of the inner equa-
tion (2.15) and (2.18) as well as to compute an explicit formula for their difference. The precise
statement is placed in next section, while its proof is spread over the subsequent ones. As we
have already commented in section 1.2, this computation has been at the heart of the proof
of the splitting of separatrices in all the known examples, and it also gives an explanation to
the numerical results concerning the example in section 2.4.
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INNER EQUATION FOR AREA-PRESERVING MAPS 1073

3. Main results. We consider the linear operators

(3.1) Δ(φ)(z) = φ(z + 1)− φ(z)

and

(3.2) Δ2(φ)(z) = Δ(φ)(z) −Δ(φ)(z − 1) = φ(z + 1)− 2φ(z) + φ(z − 1)

and two types of inner equation. The first one, under the hypotheses (HP1) and (HP2), which
from now on we will call polynomial case, is

(3.3) Δ2(φ) = g(φ, μ) := −φn +G(φ, μ),

and the second one, under the hypotheses (HT1) and (HT2), which we will call trigonometric
case, is

(3.4) Δ2(φ) = g(φ, μ) := −e(n−1)φ +G(eφ, μ),

with G an analytic function in some open bidisk D(�)× D(μ0) ∈ C
2 and such that

G(y, μ) =
∑

k≥n+1

Gk(μ)y
k in the polynomial case,(3.5)

G(ey, μ) =
∑
k≥n

Gk(μ)e
ky in the trigonometric case.(3.6)

The parameter μ is included for the sake of completeness and is a regular parameter.
Remark 3.1. Let α ∈ R be such that αn > 1. If we consider inner equations of the form

either Δ2(φ) = g(φα, μ) in the polynomial case or Δ2(φ) = g(αφ, μ) in the trigonometric one,
the results in this section also hold true with the same proof. However, in order to avoid a
new parameter, we restrict ourselves to the hypotheses above.

In this section we present the results dealing with both formal and analytic solutions of
the inner equation.

Given ν > 0, we will denote by

C[[z−ν ], {μ}] =
⎧⎨⎩φ(z) =∑

k≥1

ck−1(μ)

zνk
| ck−1 : B(μ0) → C

⎫⎬⎭
the space of formal power series in z−ν without constant term, whose coefficients ck−1 depend
analytically on μ ∈ B(μ0).

Proposition 3.2. Let n ≥ 2, r = 2/(n − 1).
1. If n is even, then (3.3) and (3.4) admit a unique formal solution φ̃ such that φ̃ ∈

C[[z−r], {μ}] with cn−1
0 = −r(r + 1), in the case of (3.3), and, in the case of (3.4),

φ̃− φ̃0 ∈ C[[z−r], {μ}], with

(3.7) φ̃0(z) =
1

n− 1
log

(
− 2

n− 1

1

z2

)
.

Moreover, any formal solution of the inner equation (3.3) belonging to C[[z−r/2], {μ}]
is of the form φ̃(z− c, μ) for some c ∈ C and c0 such that cn−1

0 = −r(r+1). The same
applies to any formal solution φ of (3.4) such that φ− φ̃0 ∈ C[[z−r/2], {μ}].
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1074 I. BALDOMÁ AND P. MARTÍN

Imz

Rez

−ρ

γ −iρ

Du
γ,ρ

Figure 1. Unstable domain.

2. If n = 2m− 1 with m ≥ 2, the formal solutions are

(3.8) φ̃(z, μ) =
∑
k≥1

1

zkr

∑
0≤j≤[ k−1

m−1 ]

ck−1,j(μ) log
j z,

in the case of (3.3), with c0 = c0,0 satisfying cn−1
0 = −r(r + 1), and

(3.9) φ̃(z, μ) =
1

n− 1
log

(
− 2

n− 1

1

z2

)
+
∑
k≥1

1

zkr

∑
0≤j≤[ k

m−1 ]

ck−1,j(μ) log
j z,

in the case of (3.4). The symbol [x] stands for the integer part of x. The coeffi-
cients ck−1,j are analytic functions in B(μ0).
The solution is unique, provided that cm−1,0 = 0. Any other formal solution of the
form (3.8) or (3.9) is obtained from these by translation.

Now we deal with the analytic solutions of the inner equation. Let us define the complex
domains where these solutions are defined. For any ρ, γ > 0, we introduce (see Figure 1)

(3.10) Ds
γ,ρ = {z ∈ C : |Imz| > −γRez + ρ}, Du

γ,ρ = −Ds
γ,ρ.

Let φ̃0 be defined by (3.7) in the trigonometric case and φ̃0 ≡ 0 in the polynomial case. Let
φ0 be the truncation up to order n in z−r of the formal solution provided by Proposition 3.2;
that is, if n = 2m with m ≥ 1,

(3.11) φ0(z) = φ̃0(z) +
n∑

k=1

ck−1(μ)z
−kr,

and if n = 2m− 1 with m ≥ 2, φ0 in the polynomial case is

(3.12) φ0(z) =

n∑
k=1

1

zkr

∑
0≤j≤[ k−1

m−1 ]

ck−1,j(μ) log
j z,
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INNER EQUATION FOR AREA-PRESERVING MAPS 1075

and in the trigonometric case is

(3.13) φ0(z) = φ̃0(z) +
n∑

k=1

1

zkr

∑
0≤j≤[ k

m−1 ]

ck−1,j(μ) log
j z.

Theorem 3.3 (existence theorem). Let r = 2/(n− 1) and c0 be such that cn−1
0 = −r(r+ 1).

For any γ > 0 there exists ρ0 big enough such that for any ρ ≥ ρ0 the inner equations (3.3)
and (3.4) have two analytic solutions φu,s : Du,s

γ,ρ ×B(μ0) → C such that

φu,s(z, μ) = φ0(z) + ψu,s(z, μ),

with
sup

(z,μ)∈Du,s
γ,ρ×B(μ0)

|zr+2ψu,s(z, μ)| < +∞.

Now we state the theorem for the difference φu − φs. First we define the complex domain
(see Figure 2)

(3.14) Eγ,ρ = Du
γ,ρ ∩Ds

γ,ρ ∩ {z ∈ C : Imz < 0}\{z ∈ C : |Rez| ≤ 1, |Imz| ≤ ρ+ γ},
where the difference between two solutions of the inner equation (3.3), φu − φs, is defined.

1−1 Re z

−iρ

Eγ,ρ

Im z

iρ + iγ

Figure 2. Inner domain.

To unify the notation we introduce the new parameters

(3.15) � =

{
r + 2 polynomial case,
2 trigonometric case,

d� =

{
c0 polynomial case,
1 trigonometric case.

Theorem 3.4. Let φu,s be two analytic solutions of (3.3) and (3.4) satisfying the conditions
stated in Theorem 3.3.

Their difference φu − φs : Eγ,ρ ×B(μ0) → C can be expressed as

(3.16) φu(z, μ)− φs(z, μ) = ζ1(z, μ)
∑
k<0

p1k(μ)e
2πikz + ζ2(z, μ)

∑
k<0

p2k(μ)e
2πikz,

with p1k, p
2
k analytic functions in B(μ0) and ζ1, ζ2 satisfying that
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1076 I. BALDOMÁ AND P. MARTÍN

1. their Wronskian

W (ζ1, ζ2) :=

∣∣∣∣ ζ1(z, μ) ζ2(z, μ)
ζ1(z + 1, μ) ζ2(z + 1, μ)

∣∣∣∣ = 1;

2. there exists a constant C such that for any z ∈ Eγ,ρ and μ ∈ B(μ0),∣∣z1−�e2πiz
(
ζ1(z, μ)− ∂zφ

s(z, μ)
)∣∣ ≤ C,

∣∣∣∣ z−ν

logσ z

(
ζ2(z, μ)− z�

rd�(2�− 1)

)∣∣∣∣ ≤ C,

with ν = �− r, σ = 0 if n > 3, ν = �− 1 if n ≤ 3, σ = 0 if n = 2, and σ = 1 if n = 3.
From now on we will skip the dependence on μ being always analytic.

4. Numerical results. In this section we present some numerical results concerning the
generalized standard map (2.1) given by the functions f1(x, h) = ε(x − x3) − ε2x7 in (2.10)
and f2(x, h) = ε(x− x3). We recall here that ε = 4 sinh2(h/2).

We notice that both functions f1, f2 satisfy the hypotheses of section 2.5. Henceforth, as
we show in section 2.5.1, we can construct the inner equation for the generalized standard
map induced by them:

(4.1) Δ2(φ) = −φ7 and Δ2(φ) = −φ3.
The first one corresponds to f1 and the second one to f2.

Let
Θ := φu − φs

be the difference between the two solutions of the inner equation (4.1) given by Theorem 3.3.
First, in a general setting, we relate the main term of Θ to the Lazutkin invariant for the
standard map (2.1) induced by f . Next, we compute the actual Lazutkin invariant for the maps
defined by f1 and f2, which is computed numerically by using multiprecision routines. After
that we summarize the method for computing the main term of the difference Θ := φu − φs,
by exploiting the theoretical framework we have developed. One aspect worth noting is that
these computations have been performed through standard long double precision arithmetic.

A similar, but more detailed, numerical comparison between the Lazutkin invariant and
the difference Θ is performed in [12] for the Swift–Hohenberg equation.

4.1. The relation between the Lazutkin invariant and Θ. For computing the first asymp-
totic term of Θ we now take advantage from the fact that we have an alternative expression
for Θ by using the functions ζ1 and ζ2 given in Theorem 3.4. Indeed, we actually can write
the difference Θ as

Θ(z) = ζ1(z)
∑
k<0

p1ke
2πikz + ζ2(z)

∑
k<0

p2ke
2πikz

with pj(z) =
∑

k<0 p
j
ke

2πikz, j = 1, 2, 1-periodic functions. We recall that by Theorem 3.4,
W (ζ1, ζ2) = 1, and henceforth p1 =W (Θ, ζ2) and p2 =W (ζ1,Θ).

On the one hand, we introduce the new quantity ωin(z):

(4.2) ωin(z) := − d

dz
W (Θ, ζ1)(z) =

d

dz
p2(z) =

∑
k<0

2πikp2ke
2πikz

≈ −2πip2−1e
−2πiz.
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INNER EQUATION FOR AREA-PRESERVING MAPS 1077

The last equality has been deduced as Imz → −∞. On the other hand, note that by using
the first approximations of ζ1 and ζ2 in Theorem 3.4, since � > 0, ζ1(z) → 0 as Imz → −∞,
and ζ2(z) = O(z�), the main term of Θ is

Θ(z) = ζ1(z)p1(z) + ζ2(z)p2(z) ≈ ζ2(z)p2(z) ≈ z�
p2−1

rd�(2�− 1)
e−2πiz.

We recall here that only p2−1 is unknown; the other quantities are defined in terms of the inner
equation. Henceforth, both ωin(z) and z

−�Θ(z) are asymptotically equivalent.
In order to compare the numerical results with our theoretical framework we will gather

in a rather informal way several facts, some of them not proven. In particular, to transform
assumptions (A1) and (A2) below into proven facts would require involved arguments even
for particular cases. For this reason, we will avoid precise statements. The chain of reasoning
is a slight modification of that in [23], which also follows [21, 18].

Let f be a real analytic function satisfying the hypotheses in sections 2.1 and 2.5. We
first remark that there exists a solution of the invariance equation (2.5) induced by f , xu(t),
iπ-antiperiodic, entire, and real analytic in t, such that limRet→−∞ xu(t) = 0 and xu(0) =
xu(−h) (and xu(t) − xu(t − h) > 0 for t ≤ 0). Then, the function xs(t) = xu(−t) is also a
solution of (2.5), with the same regularity, satisfying limRet→∞ xs(t) = 0. Hence, γu,s(t) =
(xu,s(t), xu,s(t) − xu,s(t − h)) are natural parametrizations of the invariant manifolds of the
origin. We notice that p = γu(0) = γs(0) = (xu,s(0), 0) is the first homoclinic point. Let
D(t) = xs(t)− xu(t).

Using the h-step Wronskian

Wh(u, v)(t) =

∣∣∣∣ u(t) v(t)
u(t)− u(t− h) v(t)− v(t− h)

∣∣∣∣ = ∣∣∣∣ u(t) v(t)
Δhu(t) Δhv(t)

∣∣∣∣ ,
the Lazutkin invariant (2.7) can be written as

(4.3) ω(p) = det(γ̇u, γ̇s)|t=0 =
d

dt
det(γ̇u, γs − γu)|t=0 =

d

dt
Wh(ẋ

u,D)|t=0.

Since both xu and xs are solutions of the second order difference equation (2.5), their
difference D also satisfies a linear second order equation, namely,

(4.4) Δ2
hD(t) = −

(∫ 1

0

∂

∂x
f(sxs(t) + (1− s)xu(t), h) ds

)
D(t).

Notice that if xu is close to xs, then (4.4) is close to the linearization of the invariance
equation (2.5) around xu. Hence, our first assumption is that

(A1) there is a (real analytic) solution η1 of (4.4) close to ẋu.
Let η2 be another (real analytic) solution of (4.4) with Wh(η1, η2) = 1, which can be obtained
by the “variation of constants” method. Hence, we can write D = c1η1+c2η2, where c1 and c2
are the h-periodic functions c1 =Wh(D, η2) and c2 =Wh(η1,D). Substituting this expression
for D into (4.3) and using that η1 is close to ẋu, we have that

(4.5) ω(p) ≈
d

dt
Wh(η1,D)|t=0.
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1078 I. BALDOMÁ AND P. MARTÍN

Since f satisfies the hypotheses of section 2.5, we can construct an inner equation associ-
ated with the standard map induced by f . The second assumption is

(A2) there exists χ ∈ C (which can depend on h) such that, for values of t satisfying
|t− χ| = O(h), xu,s(t) are close to h−αλφu,s((t− χ)/h). Here φu,s are the solutions
of the inner equation (3.3) given by Theorem 3.3, and α, λ are both parameters
introduced in section 2.5. Since f is real analytic, one can assume that Imχ > 0.

As a consequence, since, by Theorem 3.4, ζ1(z) = ∂zφ
u(z) +O(zr+1e2πiz),

ẋu(t) ≈ h−α−1λ
d

dz
φu((t− χ)/h) ≈ h−α−1λζ1((t− χ)/h).

Recall now that p2(z) = −W (Θ, ζ1)(z). Hence, taking into account the scaling and assump-
tion (A1), for values of t close to χ,

Wh(η1,D)(t) ≈Wh(h
−α−1λζ1, h

−αλΘ)((t− χ)/h) = h−2α−1λ2p2
(
(t− χ)/h

)
.

Then, since Wh(η1,D)(t) and W (ζ1,Θ)((t− χ)/h) are both h-periodic and since the first one
is a real analytic function, we easily have that for real t

d

dt
Wh(ẋ

u,D)(t) ≈ 2h−2α−2Re

(
λ2 · d

dz
p2
(
(t− χ)/h

))
= 2h−2α−2Re

(
λ2 · ωin

(
(t− χ)/h

))
,

with ωin defined in (4.2). Hence, evaluating at t = 0,

(4.6) ω(p) ≈ 2h−2α−2Re
(
λ2 · ωin(−χ/h)

)
.

Our goal now is to check numerically the above formula for the maps induced by f1 and f2.

4.2. The limit flow and its singularities. In the cases of the Chirikov standard map and
the perturbations of the McMillan map in [18] and [23], respectively, χ = iπ/2 is the closest
to the real line singularity of the homoclinic orbit of the limit flow (2.6). In the maps induced
by f1(x, h) = ε(x − x3) − ε2x7 and f2(x, h) = ε(x − x3) under consideration, the closest to
the real line singularity of the homoclinic of the limit flow ẍ = x− x3 is also iπ/2 (see section
2.4). Nevertheless, our numerical computations show that this singularity is not the right
guess for χ in the case of f1. For this reason, we consider the higher order (in h) limit flow

(4.7) ẍ = x− x3 − εx7.

The parametrization, x0(t, h), of the homoclinic loop to the origin such that ẋ0(0, h) = 0 has
a singularity at

ρ(h) =

∫ +∞

x0(0,h)

dx√
x2/2− x4/4− εx8/8

,

where x0(0, h) =
√
2 + O(h2) is the positive root of x2/2 − x4/4 − εx8/8 and the integral is

computed along the real line. The other singularities can be obtained by changing the path
of integration. It can be seen that

(4.8) ρ(h) = i
π

2
− i

21/4Γ(3/4)2√
π

h1/2 +O(h3/2).
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We remark that, although the singularities of the homoclinic of (4.7) tend to the singularities
of the limit flow ẍ = x − x3 from (2.6) (in a rather slow way), they are of a different type:
whereas the latter are poles, the former are branching points.

We choose the values χ = iπ2 − i2
1/4Γ(3/4)2√

π
h1/2 for f1 and χ = iπ2 for f2, and we will assume

that (A2) holds for them.

4.3. Numerical computations. We now define

(4.9) ω̃(h) = h2α+2λ−2e2π|χ|/hω(p), ω̃in(z) = 2e2πizRe (ωin(z)) ,

taking λ = 1 and, on the one hand, α = 2/3 for f1 and, on the other hand, α = 1 for f2. We
note that, since χ has no real part, checking formula (4.6) is equivalent to checking that

ω̃(h) ≈ ω̃in

(−χ/h)⇔ lim
h→0

ω̃(h) = lim
Imz→−∞

ω̃in(z).

First we show the results for ω̃(h). We have numerically computed this quantity by using
multiprecision routines written in PARI-GP. In Figure 3 we show the computed values for
f1(x, h) = ε(x−x3)− ε2x7 and for the map induced by f2(x, h) = ε(x−x3). Let us denote by
ω̃i(h) the value of ω̃(h) for the corresponding maps fi, i = 1, 2. We have added a correction
factor esc = 85 · 10−4 in order to have the same magnitude for both values of ω̃(h).

0.0005 0.0015 0.0025 0.0035 0.0045 0.0055
6.725

6.735

6.745

6.755

h

 

 

log(ω̃1(h))
log(ω̃2(h) · esc)

Figure 3.

These numbers have been obtained by explicitly computing ω(p) = det(γ̇u(0), γ̇s(0)),
following the strategy in [7]. Due to the exponentially small behavior of this quantity, it
has been necessary to compute γ̇u,s(0) with increasing accuracy, thus making it impossible to
achieve very small values of h.

Notice that, in the case of the map induced by f2(x, h) = ε(x − x3), the values of ω̃2(h)
converge quite quickly, when h becomes smaller, to a constant value

(4.10) ω̃2(h) ≈ 1.00083 · 105.
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−7 −6.05 −5.1 −4.15 −3.2 −2.25

6.7682

6.7695

6.7707

6.772

Imz

 

 

log(ω̃in(h)) for f1

log(ω̃in(h) · esc) for f2

Figure 4.

In the case of the map induced by f1(x, h) = ε(x − x3)− ε2x7, the convergence of the values
of ω̃1(h) is slower, as Figure 3 shows. However, computing ω̃1(h) for h = 1/2000 + k/40000,
k = 0, . . . , 199, and making some assumptions on the form of the asymptotic expansion of
ω̃1(h) in h, it is possible to extrapolate the limit value with better accuracy.

In this way, we have obtained that

(4.11) ω̃1(h) ≈ 871.683.

We remark that, with the computed data, in which each value of ω̃i(h), i = 1, 2, has a few
hundred correct digits, it would be possible to obtain a better approximation of this value
and also to compute the coefficients of the asymptotic expansion. Since our intention was to
compare the results obtained by the analysis of the solutions of the inner equation, we have
not pursued this direction.

Now we compute ω̃in(z). By definition (4.2) of ωin(z) and (3.1) of the operator Δ,

(4.12) ω̃in(z) = 4πe2πizRe
(
Θ(z) ·Δ(∂zφ

s)(z) − ∂zφ
s(z) ·Δ(Θ)(z)

)
+O(e−2πizz2r+2, e−2πiz),

where we have used that, by Theorem 3.4, ζ1(z)− ∂zφ
u(z) = O(e−2πizzr+1).

For symmetry reasons, we choose z = −iρ with ρ ∈ [2.25, 7]. We have used long double

precision in C for calculating φs,u(z), ∂zφ
s,u(z). The strategy was suggested in [15]:

• First we compute the formal series φ̃N up to order N big enough. We know that the
solutions φs,u are close to φ̃N if |z| is big enough. Analogously for ∂zφ

s,u.
• We evaluate the formal series φ̃N (z ± k) and ∂zφ̃N (z ± k) with k ∈ N big enough.
• Since both φs,u satisfy the inner equation, we obtain φs,u(z) and φs,u(z+1) recurrently.

Analogously for ∂zφ
s,u(z) and ∂zφ

s,u(z + 1).
We have computed ω̃in(z) for the inner equations (4.1). Our results are given in Figure 4,

where we have added the scaling factor esc = 871 · 10−5.
We can observe that, on the one hand, when Imz ∈ [−3,−2] the theoretical error in (4.12)

is big. On the other hand, when Imz ∈ [−7,−6] the round-off errors (for f1) begin to be
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INNER EQUATION FOR AREA-PRESERVING MAPS 1081

bigger than the theoretical error, and hence the computed values have noise. Nevertheless
for values of Imz ∈ [−5,−3] the computed values of ω̃in(z) behave like a constant. More
precisely, we have found ω̃in(z) = 871.6833 . . . for Δ2(φ) = −φ7 and ω̃in(z) = 1.000832 . . . 105

for Δ2(φ) = −φ3, which agree with the results for ω̃(h) given in (4.10) and (4.11).

5. Formal solutions of the inner equation. In this section we prove the existence of
formal solutions of the inner equation (3.3). The proof of the existence of formal solutions
of (3.4) follows the same procedure. Hence, we skip it.

We start by defining the spaces to which these formal solutions belong. For n ∈ N and
r(n− 1) = 2, we define

(5.1) Xr =

{
φ(z) =

∑
k≥1

ck−1

zkr

∣∣∣∣∣ ck ∈ C

}
,

the space of formal power series in x−r without constant term, and, if n = 2m − 1, m ≥ 2,
that is, r = 1/(m− 1), then

(5.2) X log
r =

{
φ(z) =

∑
k≥1

∑
0≤j≤[ k−1

m−1 ]

ck−1,j
logj z

zkr

∣∣∣∣∣ ck,j ∈ C

}
,

where [x] denotes the integer part of x, the space of formal power series in x−r and log z, with
the power of log z bounded by the power of x−r, without constant term.

We will say that φ = Okr, with k ∈ N, if and only if zkrφ ∈ C[[z−r]] is a power series

with terms z−jr for j ≥ 0. We will also use Okr,j in X log
r , with k ∈ N, j ∈ N ∪ {0}, meaning

that φ = Okr,j implies that zkr(log z)−jφ(z) is a formal power series with terms of the form

z−k′r logj
′
z, with k′ ≥ 0 and j′ ≥ −j such that j′ ≤ 0 whenever k′ = 0. We keep both

notations in order to emphasize that Okr is a series without logarithms, while Okr,0 is a series
whose leading term does not have logarithms.

We collect several properties of these spaces in the following lemma, whose proof is straight-
forward.

Lemma 5.1. Let n ≥ 2, r = 2/(n − 1), and g be an analytic function around the origin

with g(y) = Ay� +O(y�+1) for some � ∈ N ∪ {0}. The spaces Xr, for n even, and X log
r , for n

odd, have the following properties:
1. Xr and X log

r are invariant by the formal differential operator ∂2

∂z2
. Furthermore, if

φ ∈ X log
r (resp., Xr), then

∂2

∂z2
φ(z) = z−2ψ(z) with ψ ∈ X log

r (resp., Xr).

2. If φ(z) = az−r + φ̃(z), with φ̃ = O2r,j, 0 ≤ j ≤ [1/(m − 1)] (resp., O2r), then
g(az−r + φ̃(z)) = Aa�z−�r + ϕ(z), with ϕ = O(�+1)r,j (resp., O(�+1)r).

Moreover, in the case n = 2m−1, X log
r is also invariant by translation; that is, if φ(z) ∈ X log

r ,

then φ(z − c) ∈ X log
r for any c ∈ C. In the case n = 2m, if φ ∈ Xr, then φ(z − c) ∈ Xr/2.

We recall the function g(y) = yn −G(y). We remark that, since the operator Δ2 can be
written formally as

(5.3) Δ2φ(z) = 4 sinh2
(
1

2

∂

∂z

)
φ(z) =

(
∂2

∂z2
+

1

12

∂4

∂z4
+ · · ·

)
φ(z),
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1082 I. BALDOMÁ AND P. MARTÍN

item 1 in Lemma 5.1 implies that the inner equation (3.3) is well defined in Xr and X log
r . We

introduce

(5.4) ε(φ) = Δ2(φ)− g(φ).

It is clear that ε(φ)(z) = z−2ε̂(z) with ε̂ ∈ X log
r (resp., Xr).

The next lemma follows directly from the definition of X log
r .

Lemma 5.2. Let n = 2m−1, r = 1/(m−1), φ ∈ X log
r , and ε(φ) be as in (5.4). If z2ε(φ)(z)

has no terms of order N or smaller in z−r (that is, no terms of the form z−kr logj z, with
1 ≤ k ≤ N), then ε(φ) = O(N+1)r+2,L, where L = [N/(m− 1)].

Definition 5.3. Let n ≥ 2, N ∈ N, r = 2/(n − 1), and φ ∈ Xr or X log
r . We will call

truncated series of order N of φ to φ̃N having the following form:
1. If n is even,

φ̃N (z) =

N∑
k=1

ck−1

zkr
.

2. If n = 2m− 1 is odd,

φ̃N (z) =
m−1∑
k=1

ck−1

zkr
+

N∑
k=m

1

zkr

∑
0≤j≤[ k−1

m−1 ]

ck−1,j log
j z.

Throughout the proof of Proposition 3.2, we will need to compute several times the formal
series g(φ + ψ) − g(φ), with different φ and ψ. The following lemma, which follows from the
properties in Lemma 5.1, summarizes the result.

Lemma 5.4. Let n ≥ 2, r = 2/(n − 1), N ≥ 2, N ∈ N, and φ ∈ Xr or X log
r . We define

ψN = φ̃N − φ̃N−1, where φ̃N and φ̃N−1 are the truncated series of order N and N − 1,
respectively. We have the following:

1. If n is even,

g(φ̃N (z)) − g(φ̃N−1(z)) = −nc
n−1
0

z2
ψN (z) +O(N+1)r+2.

2. If n = 2m− 1 is odd, writing L = [N/(m − 1)],

g(φ̃N (z)) − g(φ̃N−1(z)) = −nc
n−1
0

z2
ψN (z) +O(N+1)r+2,L.

The following proposition implies the existence of a formal solution of the inner equa-
tion (3.3) and hence Proposition 3.2.

Proposition 5.5. Let n ≥ 2, r = 2/(n − 1), and c0 be such that cn−1
0 = −r(r + 1). The

inner equation (3.3) admits a formal solution φ with zr(φ(z)− c0z
−r) ∈ Xr if n is even, and

zr(φ(z) − c0z
−r) ∈ X log

r if n is odd.
Let N ≥ 2 and φ̃N be the truncated series defined as in Definition 5.3. Writing the

truncation error of order N as

εN := ε(φ̃N ) = Δ2(φ̃N )− g(φ̃N ),

where ε was defined by (5.4), we have that
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INNER EQUATION FOR AREA-PRESERVING MAPS 1083

1. if n ≥ 2 is even, εN = O(N+1)r+2;
2. if n = 2m− 1 ≥ 2 is odd and L = [N/(m − 1)], then

(i) if 1 ≤ N ≤ m− 1, εN = O(N+1)r+2,
(ii) if m ≤ N , εN = O(N+1)r+2,L.

Proof. We deal first with 1. We prove the claim by induction over N . We start by assuming
N = 1. Let φ̃1(z) = c0z

−r. By item 2 in Lemma 5.1 and using (5.3), we have that

ε1(z) = Δ2(φ̃1)(z) − g(φ̃1(z)) = r(r + 1)
c0
zr+2

+
cn0
znr

+O(n+1)r.

The claim for N = 1 follows from the facts that r = 2/(n−1), which implies O(n+1)r = O2r+2

and cn−1
0 = −r(r + 1).

Now we assume the claim for N − 1; that is, there exist coefficients ck, 1 ≤ k ≤ N − 2,
such that φ̃N−1 satisfies

εN−1(z) = ε(φ̃N−1)(z) =
AN−1

zNr+2
+O(N+1)r+2.

We look for φ̃N (z) = φ̃N−1(z) + cN−1z
−Nr satisfying the claim. We have that

εN (z) = εN−1(z) + Δ2
(cN−1

zNr

)
− g

(
φ̃N−1(z) +

cN−1

zNr

)
+ g(φ̃N−1(z)).

By item 1 of Lemma 5.4,

(5.5) g
(
φ̃N−1(z) +

cN−1

zNr

)
− g(φ̃N−1(z)) = −nc

n−1
0

z2
cN−1

zNr
+O(N+1)r+2.

Hence, using again (5.3),

εN (z) =
AN−1

zNr+2
+ λN

cN−1

zNr+2
+O(N+1)r+2,

where the coefficient λN is

(5.6) λN = Nr(Nr + 1) + ncn−1
0 =

4

(n− 1)2

(
N − n+ 1

2

)
(N + n).

Clearly, the claim follows if λN is different from 0, which is true since n is even and positive.
Now we assume n = 2m − 1, m ≥ 2. The induction process from the previous case

can be used, provided that λN 	= 0. This is true for N 	= m. Hence, the claim holds for
1 ≤ N ≤ m− 1. Let φ̃m−1(z) = c0/z

r + · · ·+ cm−2/z
(m−1)r be the corresponding function. It

satisfies

(5.7) εm−1(z) = ε(φ̃m−1)(z) =
Am−1

zmr+2
+O(m+1)r+2.

Now we consider the case N = m. Since λm = 0, this case cannot be dealt with as before.
We need to include logarithms in the formal series.

D
ow

nl
oa

de
d 

09
/2

0/
12

 to
 1

47
.8

3.
13

3.
10

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1084 I. BALDOMÁ AND P. MARTÍN

Notice that, from (5.3),

(5.8) Δ2

(
log� z

zkr

)
= kr(kr + 1)

log� z

zkr+2
− �(2kr + 1)

log�−1 z

zkr+2
+ �(�− 1)

log�−2 z

zkr+2
+Okr+4,�.

We look for φ̃m = φ̃m−1+ψm satisfying the claim, with ψm(z) = cm−1,1z
−mr log z+cm−1,0z

−mr.
Hence we have that

εm = εm−1 +Δ2(ψm)− g(φ̃m−1 + ψm) + g(φ̃m−1).

From (5.8), we have that

(5.9) Δ2(ψm)(z) =
mr(mr + 1)

z2
ψm(z)− (2mr + 1)cm−1,1

1

zmr+2
+Omr+4,1,

while, from 2 in Lemma 5.4,

(5.10) g(φ̃m−1(z) + ψm(z)) − g(φ̃m−1(z)) = −nc
n−1
0

z2
ψm(z) +O(m+1)r+2,L,

with L = [N/(m− 1)] = [m/(m− 1)].
Hence, substituting (5.9) and (5.10) into the expression for εm above, we obtain

εm(z) = εm−1(z) +
λm
z2
ψm(z) − (2mr + 1)cm−1,1

1

zmr+2
+O(m+1)r+2,L,

where the coefficient λN was introduced in (5.6) and, in fact, satisfies λm = 0. Since εm−1(z) =
Am−1z

mr+2 + O(m+1)r+2 (see (5.7)), taking cm−1,1 = Am−1/(2mr + 1), we have that εm =
O(m+1)r+2,L. Notice that the coefficient cm−1,0 is free. Hence, the claim is proven for 1 ≤
N ≤ m.

Now, proceeding by induction, the result is proven.

6. A solution of the inner equation. The goal of this section is to prove the existence of
a solution of the inner equation satisfying the properties stated in Theorem 3.3.

For any γ, ρ > 0, we recall the complex domains

Ds
γ,ρ = {z ∈ C : |Imz| > −γRez + ρ}, Du

γ,ρ = −Ds
γ,ρ,

defined in (3.10) (see Figure 1). We also introduce the norms

‖ϕ‖u,sν,γ,ρ = sup
z∈Du,s

γ,ρ

|zνϕ(z)|

and the Banach spaces

X u,s
ν,γ,ρ = {ϕ : Du,s

γ,ρ → C such that ‖ϕ‖u,sν,γ,ρ < +∞}.
We also define the functional space

X u,s
ν,k,γ,ρ = {ϕ : Du,s

γ,ρ → C such that ϕ(z) := (log z)−kϕ(z) ∈ X u,s
ν,γ,ρ},D
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and, if there is no danger of confusion, we will simply denote them

Xν = X u,s
ν,γ,ρ, X log

ν,k = X u,s,
ν,k,γ,ρ, ‖ · ‖ν = ‖ · ‖u,sν,γ,ρ, Dγ,ρ = Du,s

γ,ρ.

From now on we will denote by C a generic positive constant independent of γ, ρ, ν. We
state (without proof) the following lemma, which will be used without mention throughout
this section.

Lemma 6.1. Let 0 < ν1, ν2. For any ϕ1 ∈ Xν1 and ϕ2 ∈ Xν2,

ϕ1 · ϕ2 ∈ Xν1+ν2 and ‖ϕ1 · ϕ2‖ν1+ν2 ≤ ‖ϕ2‖ν2 · ‖ϕ1‖ν1 .
Also there exists C > 0 such that if 0 < ν1 < ν2 and ϕ ∈ Xν2, then

ϕ ∈ Xν1 and ‖ϕ‖ν1 ≤ Cρ−(ν2−ν1)‖ϕ‖ν2 .
As in the previous section, we will denote by Oν and Oν,k a generic function belonging to

Xν and X log
ν,k , respectively.

Theorem 3.3 is rephrased in terms of the Banach spaces X u,s
ν,γ,ρ in the following proposition.

Proposition 6.2. Given γ > 0, there exists ρ0 > 0 such that for any ρ ≥ ρ0 the inner
equation (3.3) (polynomial case) or (3.4) (trigonometric case)

(6.1) Δ2(φ) = g(φ)

have exactly two solutions φu,s of the form

φu,s = φ0 + ψu,s,

where φ0 is the truncated series of order n defined in (3.11), (3.12), and (3.13), depending on
the case we are dealing with, and ψu,s ∈ X u,s

r+2,γ,ρ.
The properties of φ0 that we are interested in follow from Proposition 5.5.
Corollary 6.3. Let us consider the remainder of order n:

ε0 = ε(φ0) = Δ2(φ0)− g(φ0),

where φ0 is the truncated series of order n defined in (3.11), (3.12), and (3.13).
For any γ > 0 there exists ρ0 big enough such that the following hold:
1. If n is even, φ0 = c0z

−r +O2r in the polynomial case, and φ0 =
r
2 log(−rz−2) +Or in

the trigonometric one.
2. If n = 2m− 1 is odd, for the polynomial case φ0 = c0z

−r +O2r +Omr,1. Notice that,
since m ≥ 2, in particular we also have that φ0 = c0z

−r +O2r,1. In the trigonometric
case, we have that φ0 = r

2 log(−rz−2) +Or +O(m−1)r,1, which also implies that φ0 =
r
2 log(−rz−2) +Or,1.

3. For any value of n we have that ε0 ∈ Xnr+2.
The proof of Proposition 6.2 is performed in two steps. In section 6.1 we introduce a linear

equation which is close to the first order variational equation of (6.1) with respect to φ0. Such
linear equations can be easily inverted in the adequate Banach spaces. Finally, in section 6.2
we look for ψu,s as a solution of a suitable fixed point equation.

From now on we will deal only with the −u− case, the −s− case being analogous. For
that reason we will omit −u− from our notation.
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1086 I. BALDOMÁ AND P. MARTÍN

6.1. The linearized inner equation. We introduce the function

(6.2) H(z) = (1 + z−1)� − 2 + (1− z−1)�

for both cases, the polynomial and the trigonometric one with � defined in (3.15). In this sec-
tion we are going to study the following linear homogeneous second order difference equation:

(6.3) Δ2(φ)(z) = H(z)φ(z).

We recall that the Wronskian of two solutions, φ1, φ2, of a linear difference equation is
defined as

W (φ1, φ2)(z) =

∣∣∣∣ φ1(z) φ2(z)
φ1(z + 1) φ2(z + 1)

∣∣∣∣ .
In addition, on the one hand, (6.3) has the obvious solution η2(z) = z�, and, on the other
hand, it is a well-known fact that η1 = b · η2 is a solution of (6.3) if and only if

Δb(z) =
1

η2(z) · η2(z + 1)
=

1

z�(z + 1)�
.

One can also deduce that W (η1, η2) ≡ 1.
We will need a right inverse of the linear operator Δ defined in appropriate Banach spaces.

For this reason we introduce the formal operator

(6.4) Δ−1(h)(z) =
∑
k≥1

h(z − k).

We emphasize that we are dealing with the unstable case.
Lemma 6.4. Let α > 0. For any γ > 0 there exists ρ0 > 0 such that, for any ρ ≥ ρ0,

Δ−1 : Xα+1,γ,ρ → Xα,γ,ρ is a right inverse of the operator Δ defined in (3.1) with ‖Δ−1‖ ≤ C.
The proof of this lemma is straightforward and can be found in [18].
The first variational around φ0 of the inner equation (6.1) is given by

(6.5) Δ2(φ) = Δ2(φ) = Dg(φ0)φ,

and we notice that

Dg(φ0) =

{ −nφn−1
0 +DG(φ0), polynomial case,

−(n− 1)eφ0(n−1) +DG(eφ0)eφ0 , trigonometric case.

By using the identities cn−1
0 = −r(r+1) and nr = r+2, the fact that H(z) = (�−1)�z−2+

O3, and Corollary 6.3, the result is as follows.
Lemma 6.5. For any γ > 0 there exists ρ0 > 0 big enough such that the following hold:
1. The function H(z) satisfies H = Dg(φ0)−A, with A ∈ Xr+2 if n 	= 3, and A ∈ X log

r+2,1

if n = 3.
2. The function η2(z) = z� is a solution of (6.3). Consequently, the function η1 defined

by

η1(z) = z�
∑
k>0

1

(z − k)�(z − (k + 1))�

is also an independent solution with W (η1, η2) = 1. By Lemma 6.4, η1 ∈ X�−1.D
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We notice that property 1 of Lemma 6.5 implies that the linear equation (6.3) is a good
approximation of the first order variational with respect to φ0 given in (6.5).

Finally, as we will see in the lemma below, Lemma 6.5 allows us to invert the linear
operator L(φ)(z) = Δ2(φ)(z) −H(z)φ(z).

Lemma 6.6. For any γ > 0 there exists ρ0 > 0 such that for any ρ ≥ ρ0 the operator
L(φ) = Δ2(φ) − H · φ has right inverse L−1 : Xα+2,γ,ρ → Xα,γ,ρ if α > � − 1 and has the
expression

(6.6) L−1(h) = η1 ·Δ−1(η2 · h)− η2 ·Δ−1(η1 · h).
Moreover, ‖L−1(h)‖α,γ,ρ ≤ C‖h‖α+2,γ,ρ, C being an independent constant of γ, ρ.

Proof. We will omit γ, ρ from the notation. On the one hand, η1, η2 are independent
solutions of the homogeneous linear equation L(φ) = 0, and hence, by the variation of con-
stants method, we obtain formula (6.6). On the other hand, if g ∈ Xα+2 with α > � − 1,
then η2 · g ∈ Xα+2−� and η1 · g ∈ Xα+�+1, and by Lemma 6.4, η1 · Δ−1(η2 · g) ∈ Xα and
η2 ·Δ−1(η1 · g) ∈ Xα. The bound ‖L−1(g)‖α ≤ C‖g‖α+2 is obtained by a direct application of
Lemma 6.4.

6.2. The fixed point equation. In this section we are going to prove Proposition 6.2
about the existence and properties of solutions of the inner equations (3.3) (polynomial case)
and (3.4) (trigonometric case),

Δ2(φ) = −g(φ),
of the form φ = φ0 + ψ, with φ0 given by (3.11) (n even), (3.12) (n odd, polynomial case),
or (3.13) (n odd, trigonometric case).

We introduce

(6.7) ε0 = −Δ2(φ0) + g(φ0), R(ψ) = ψ2

∫ 1

0
D2g(φ0 + λψ)(1 − λ) dλ,

and we note that if φ = φ0 + ψ is a solution of the inner equation, then, by 1 of Lemma 6.5,
ψ has to satisfy the second order difference equation given by

(6.8) Δ2(ψ)−H · ψ = ε0 +A · ψ +R(ψ).

As we proved in Lemma 6.6, the linear operator L has a right inverse in some adequate Banach
spaces. Using it, we will obtain a solution of (6.8) by using the fixed point equation given by

(6.9) ψ = F(ψ) := L−1(ε0) + L−1(A · ψ) + L−1 ◦ R(ψ).

Proposition 6.7. Let γ > 0. There exists ρ1 > 0 big enough such that, for any ρ ≥ ρ1, the
fixed point equation (6.9) has a unique solution ψ ∈ Xr+2,γ,ρ.

Proof. We first note that there exists ρ0 > 0 such that L−1(ε0) ∈ Xr+2,γ,ρ0 since, by
Corollary 6.3, ε0 ∈ Xr+4,γ,ρ0 if ρ0 is large enough. Let �0 = 2‖L−1(ε0)‖r+2,γ,ρ0 . During the
proof of this proposition we will denote by K a generic constant depending only on φ0, ρ0,
and γ, and we will omit the dependence on γ and ρ in the Banach spaces and norms.

Let ψ1, ψ2 ∈ B(�0) ⊂ Xr+2. We start by bounding the difference ‖F(ψ1) − F(ψ2)‖r+2.
By Lemma 6.5 we have, taking νr = 0 if n 	= 3, and νr = r/2 if n = 3, that A ∈ Xr+2−νr,γ,ρ1 ,D
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1088 I. BALDOMÁ AND P. MARTÍN

provided that ρ1 is large enough. Henceforth, if ψ ∈ Xr+2, A · ψ ∈ X2r+4−νr . Applying
Lemmas 6.1 and 6.6, we can easily check that

(6.10) ‖L−1(A · (ψ1 − ψ2))‖r+2 ≤ Cρ−r+νr
1 ‖A‖r+2−νr · ‖ψ1 − ψ2‖r+2.

Now we deal with R(ψ1)−R(ψ2). We recall that R was defined in (6.7). We notice that

R(ψ1)−R(ψ2) =
(
ψ2
1 − ψ2

2

) ∫ 1

0
D2g(φ0 + λψ1)(1 − λ) dλ

+ ψ2
2

∫ 1

0
[D2g(φ0 + λψ1)−D2g(φ0 + λψ2)](1 − λ) dλ.(6.11)

We first claim that, if λ ∈ [0, 1] and z ∈ Dγ,ρ1 with ρ1 big enough,

(6.12) |D2g(φ0(z) + λψ1(z))| ≤ K|z|�−4 ≤ K|z|−2+r,

where � was defined in (3.15). Indeed, we deal first with the polynomial case. In this case, by
definition (3.5) of g, there exists a constant K such that |g(y)| ≤ K|y|n. Moreover, since g is
an analytic function, Cauchy’s theorem implies that if y0 ∈ D(�/2),

(6.13) |D2g(y0)| ≤ K|y0|−2 sup
|y−y0|≤|y0|/2

|g(y)| ≤ K|y0|n−2.

Also, since ψ1 ∈ B(�0) ⊂ Xr+2, there exist constants 0 < K1 ≤ K2 and ρ1 big enough,
K1|z|−r ≤ |φ0(z) + λψ1(z)| ≤ K2|z|−r < �/2 for any λ ∈ [0, 1], and z ∈ Dγ,ρ1 . Then, using
nr = r + 2 and estimate (6.13),

|D2g(φ0(z) + λψ1(z))| ≤ K|φ0(z) + λψ1(z)|n−2 ≤ K|z|2r|z|−rn = K|z|−2+r,

which proves bound (6.12) in the polynomial case. The trigonometric case is easier since
|g(y)| ≤ K|ey(n−1)|, and henceforth, a standard Cauchy estimate leads to bound (6.12). Hence,
if ψ1, ψ2 ∈ B(�0),

|D2g(φ0(z) + λ(ψ1(z))) · (ψ2
1(z)− ψ2

2(z))| ≤ K|z|−4|ψ1(z) − ψ2(z)|.

Now we claim that, for λ ∈ [0, 1] and ψ1, ψ2 ∈ B(�0),

|[D2g(φ0(z) + λ(ψ1(z))) −D2g(φ0(z) + λ(ψ2(z)))]ψ
2
2(z)| ≤ K|z|−2r−4|ψ1(z)− ψ2(z)|.

Indeed, since g is an analytic function, D3g is bounded in D(�), and henceforth, for any
y1, y2 ∈ D(�), |D2g(y1)−D2g(y2)| ≤ K|y1 − y2|, and the claim is proved, provided that ρ1 is
large enough to ensure that for any z ∈ Dγ,ρ1 , ψ1(z), ψ2(z) ∈ D(�).

Finally by using the previous computations and formula (6.11), one obtains that R(ψ1)−
R(ψ2) ∈ Xr+6 ∪ X(2r+4)+r+2 = Xr+6 ⊂ Xr+4 and moreover

(6.14) ‖R(ψ1)−R(ψ2)‖r+4 ≤ C|ρ|−2‖ψ1 − ψ2‖r+2.D
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Then, by Lemma 6.6, L−1(R(ψ1)−R(ψ2)) ∈ Xr+2 and moreover

‖L−1(R(ψ1)−R(ψ2))‖r+2 ≤ C|ρ|−2‖ψ1 − ψ2‖r+2.

Using this bound, (6.10), and definition (6.9) of the operator F , one has that, if ρ1 is large
enough and ρ ≥ ρ1,

‖F(ψ1)−F(ψ2)‖r+2 ≤ Cρ−r+νr
1 ‖ψ1 − ψ2‖r+2 ≤ 1

2
‖ψ1 − ψ2‖r+2,

and hence F is contractive (we recall that r − νr > 0). Moreover, if ψ ∈ B(�0),

‖F(ψ)‖r+2 ≤ ‖F(0)‖r+2 + ‖F(0) −F(ψ)‖r+2 ≤ ‖ε0‖r+2 +
1

2
‖ψ‖r+2 < �0,

which ends the proof of the proposition.

7. The difference φu − φs. By Proposition 6.2 the existence of two solutions φu,s =
φ0 + ψu,s of the inner equation is proved. Let us write Θ = φu − φs and also introduce the
function

(7.1) E = −
∫ 1

0
(1− λ)D2g(φs + λ(φu − φs)) dλ · (φu − φs).

We recall that both φu,s are solutions of the same nonlinear difference equation:

(7.2) Δ2(φ) = −φn +G(φ) = −g(φ).

Consequently, the function Θ satisfies the linear difference equation

(7.3) Δ2(Θ) = (−Dg(φs) + E) ·Θ.

Although we do not have a good representation of the difference Θ = φu − φs, by means of
Proposition 6.2 we already know that it is well defined and some not optimal bounds for Θ are
provided. This allows us to define a new linear equation (7.3) from which Θ is also a solution.
In conclusion, we will use Θ = φu − φs both as a known function (to define E(z)) and as an
unknown solution of the above linear equation.

The goal of this section is to prove that any analytic solution of (7.3) satisfying adequate
boundary conditions has to be exponentially small, that is, of O(e−2πiz). In fact, as claimed
in Theorem 3.4, we will provide an exact formula for Θ.

7.1. Notation. Given ρ, γ > 0, let us recall the complex domain

Eγ,ρ = Du
γ,ρ ∩Ds

γ,ρ ∩ {z ∈ C : Imz < 0}\{z ∈ C : |Rez| ≤ 1, |Imz| ≤ ρ+ γ}

defined in (3.14) (see Figure 2).
For ν, k ∈ R, we also introduce the norms

‖ϕ‖ν,γ,ρ = sup
z∈Eγ,ρ

|zνϕ(z)|, ‖ϕ‖logν,k,γ,ρ = sup
z∈Eγ,ρ

|zν(log z)−kϕ(z)|,
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1−1 Re z

−iρ

Im z

iρ + iγγ1
z

z − σ(z) z

Eγ,ρ

γ2
z

Figure 5. Path γz.

and the Banach spaces

Yν,γ,ρ = {ϕ : Eγ,ρ → C such that ‖ϕ‖ν,γ,ρ < +∞},
Y log
ν,k,γ,ρ = {ϕ : Eγ,ρ → C such that ‖ϕ‖logν,k,γ,ρ < +∞}.

If there is no danger of confusion, we will simply denote

Yν = Yν,γ,ρ, ‖ · ‖ν = ‖ · ‖ν,γ,ρ, Y log
ν,k = Y log

ν,k,γ,ρ, ‖ · ‖logν,k = ‖ · ‖logν,k,γ,ρ.

Lemma 7.1. Let 0 < ν1, ν2. For any f ∈ Yν1 and g ∈ Yν2, then f · g ∈ Yν1+ν2 and

‖f · g‖ν1+ν2 ≤ ‖f‖ν1 · ‖g‖ν2 .
Also, there exists a constant C such that if 0 < ν1 < ν2 and f ∈ Yν2,

f ∈ Yν1 and ‖f‖ν1 ≤ Cρ−(ν2−ν1)‖f‖ν2 .
As in previous sections, we will denote by Oν and Oν,k a generic function belonging to

Yν,γ,ρ and Y log
ν,k,γ,ρ, respectively.

7.2. A right inverse of the operator Δ(φ)(z) = φ(z + 1) − φ(z). In this section we
are going to construct a right inverse of the linear operator Δ,

(7.4) Δ(φ)(z) = φ(z + 1)− φ(z),

defined on functions belonging to Y log
ν,k with ν, k ∈ R. We will follow the results introduced

in [11] (which provide an explicit formula for Δ−1), and we also give useful properties of this

operator when it acts on Y log
ν+1,k.

We first notice that, since Eγ,ρ is an open set, for any z ∈ Eγ,ρ there exists σ(z) such that
{w ∈ C : |z − w| < 2σ(z)} ⊂ Eγ,ρ. As a consequence, the complex path γz = γ1z ∨ γ2z (see
Figure 5),

γ1z (t) = {−i(ρ+ γ)(1− t) + t(z − σ(z)), t ∈ [0, 1)},
γ2z (t) = {z − σ(z) + it, t ∈ (−∞, 0]},(7.5)
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is contained in the complex set Eγ,ρ.
Given h an analytic function and z ∈ Eγ,ρ, we introduce the linear operators

(7.6) Δ−1
− (h)(z) =

∫
γz

h(u)

e2πi(u−z) − 1
du and Δ−1

+ (h)(z) =

∫
γz

h(u)

1− e−2πi(u−z)
du.

Proposition 7.2. Let ν, k ∈ R and γ > 0. We define the linear operator

Δ−1 =

{
Δ−1

− if ν ≤ 0,

Δ−1
+ if ν > 0.

There exists ρ0 > 0 such that, for any ρ ≥ ρ0,
1. if ν 	= 0, Δ−1 : Y log

ν+1,k,γ,ρ → Y log
ν,k,γ,ρ is a right inverse of the operator Δ;

2. if ν = 0, Δ−1 : Y log
1,k,γ,ρ → Y log

0,k+1,γ,ρ is a right inverse of the operator Δ.

Moreover, in both cases, there exists a positive constant C such that ‖Δ−1‖ ≤ C.
Proof. Throughout this proof we will denote by K a generic constant depending only on γ

and ν. We will omit γ, ρ0, and ρ from our notation of the Banach spaces and norms.
We fix ν ∈ R, γ > 0, fulfilling the hypotheses of Proposition 7.2 and ρ0 ≤ ρ big enough.

Let h ∈ Y log
ν+1,k, and introduce ϕ = Δ−1(h). Our first observation is that ϕ is an analytic

function defined in Eγ,ρ. Indeed, for any σ0 > 0 we define the set

Ωσ0 = {u ∈ Eγ,ρ : u− σ0 ∈ Eγ,ρ}.

We emphasize that Eγ,ρ = ∪σ0>0Ωσ0 . Moreover, we note that if z ∈ Ωσ0 , we can take σ(z) = σ0
in the expression (7.6) of ϕ(z). Henceforth, in order to deduce that ϕ is an analytic function
in Ωσ0 , we have only to study the convergence of∫

γ2
z

h(u)

e∓2πi(u−z) − 1
du.

To this end, we observe that |e∓2πi(γ2
z−z) − 1| ≥ |e±t2π|ρ+γ+Imz| − 1| and that |h(γ2z (t))| ≤

C(z)|t|−ν−1 logk(|t|) for some function C(z). Therefore, if ν ≤ 0 and t ∈ (−∞, 0],

|h(γ2z (t))|
|e2πi(γ2

z−z) − 1| ≤ 2C(z)|t|−ν−1 logk(|t|)et2π|ρ+Imz|,

and we are done for the case ν ≤ 0. The case ν > 0 can be handled analogously.
Now we are going to check that Δ−1 is a right inverse of the operator Δ. We take into

account that if z, z + 1 ∈ Eγ,ρ,

Δϕ(z) = ∓
∫
γz+1−γz

h(u)

e∓2πi(u−z) − 1
du,

and therefore, since the only singularity of ∓h(u)/(e∓2πi(u−z) − 1) is u = z and it is a simple
pole with residue h(z)/2πi, we have that both ϕ± are solutions of Δ(ϕ) = h defined in the
complex domain Eγ,ρ. Here we have proceed exactly as in [11].
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It remains only to prove that ϕ = Δ−1(h) ∈ Y log
ν,k , provided h ∈ Y log

ν+1,k. We restrict

ourselves to the complex domain Ẽγ,ρ+γ ⊂ Eγ,ρ defined by

Ẽγ,ρ′ = Du
γ,ρ′ ∩Ds

γ,ρ′ ∩ {z ∈ C : Imz < 0}.

We notice that, if the following bounds are proved,

|zν(log z)−kϕ(z)| ≤ K‖h‖logν+1,k, z ∈ Ẽγ,ρ+γ , if ν 	= 0,(7.7)

|(log z)−k−1ϕ(z)| ≤ K‖h‖log1,k, z ∈ Ẽγ,ρ+γ , if ν = 0,(7.8)

then the same statement holds for z ∈ Eγ,ρ. Indeed, assume that bounds (7.7) and (7.8) are

satisfied, and let z ∈ Eγ,ρ\Ẽγ,ρ,γ . We have two cases, Rez ≤ 0 and Rez > 0. On the one

hand, if Re ≤ 0, it is clear that z + 1 ∈ Ẽγ,ρ+γ and that ϕ(z) = ϕ(z + 1) − h(z). On the

other hand, if Rez > 0, z− 1 ∈ Ẽγ,ρ+γ , and consequently ϕ(z) = ϕ(z− 1)+h(z). In any case,
|ϕ(z)| ≤ |ϕ(z ± 1)| + |h(z)|. Here we have used that Δ(ϕ) = h. Therefore, if ν 	= 0, using
bound (7.7), we obtain

|ϕ(z)| ≤ K‖h‖logν,k

(|z ± 1|−ν |log(z ± 1)|k + |z|−ν−1|log z|k) ≤ K‖h‖logν,k|z|−ν |log z|k,

and the result is proved for ν 	= 0. Analogously we check the result for ν = 0.
The proof of bounds (7.7) and (7.8) is easy but requires tedious computations which will be

omitted here. Nevertheless, we point out that for any fixed z ∈ Ẽγ,ρ+γ we can take σ(z) = 1/2
in the definition (7.5) of γz.

7.3. Two independent solutions of the linear equation (7.3). We recall that Θ = φu−φs
satisfies (7.3):

(7.9) Δ2Θ = (−Dg(φs) + E)Θ.

The following lemma states the properties of E that we will need. Its proof is completely
analogous to that of bound (6.12), provided φu − φs ∈ Yr+2,γ,ρ.

Lemma 7.3. Let γ and ρ satisfy the conclusions of Proposition 6.2, and E be the function
defined in (7.1). We have that E ∈ Yr+6−�,γ,ρ.

As we did in section 6.1, we split

−Dg(φs) + E = H +M,

where H was defined in (6.3), M ∈ Yr+2 if n 	= 3, and M ∈ Y log
r+2,1 if n = 3. We rewrite (7.9)

as
Δ2(Θ)−H ·Θ =M ·Θ.

A solution of the homogeneous equation Δ2(ϕ) = H · ϕ is η2(z) = z�. The function

η1(z) = z�Δ−1

(
1

η2(z + 1)η2(z)

)
∈ Y�−1

is another solution satisfying W (η1, η2) = 1.
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By using these decompositions as well as Proposition 7.2 for the operator Δ−1, we can
obtain solutions of the nonhomogeneous linear equation Δ2(ϕ)−H · ϕ = h.

Lemma 7.4. For any γ > 0 there exists ρ0 > 0 large enough such that for any ρ ≥ ρ0 the
operator L(ϕ) = Δ2(ϕ)−H · ϕ has right inverse defined in Eγ,ρ:

(7.10) L−1(h) = η1 ·Δ−1(η2 · h)− η2 ·Δ−1(η1 · h).
There exists C > 0 such that for any α ∈ R and h ∈ Yα+2,γ,ρ we have the following:

1. If α 	= �− 1 and α 	= −�, then L−1(h) ∈ Yα,γ,ρ and ‖L−1(h)‖α,γ,ρ ≤ C‖h‖α+2,γ,ρ.

2. If either α = � − 1 or α = −�, then L−1(h) ∈ Y log
α,1,γ,ρ and ‖L−1(h)‖logα,1,γ,ρ ≤

C‖h‖α+2,γ,ρ.
The next lemma provides a fundamental system of solutions of the linear equation (7.9).
Lemma 7.5. Let γ > 0. There exists ρ0 large enough such that, for any ρ ≥ ρ0, (7.9) has

two independent solutions, η̂1 and η̂2, satisfying

η̂1(z) = ∂zφ
s(z) + η̂11(z), η̂11 ∈ Yr+3,γ,ρ,

η̂2(z) =
z�

rd�(2�− 1)
+ η̂12(z), η̂12 ∈ Y log

ν,k,γ,ρ,

with ν = min{r − �, 1− �}, k = 0 if n 	= 3, k = 1 if n = 3, and d� defined in (3.15).
Proof. First we look for η̂1. By construction, ∂zφ

s is a solution of the variational equation
Δ2ϕ = −Dg(φs)ϕ; therefore, the equation that η̂11 has to satisfy is

(7.11) Δ2(ϕ) −H · ϕ =M · ϕ+ E · ∂zφs.
We look for η̂11 by means of the fixed point equation

(7.12) ϕ = L−1(E · ∂zφs) + L−1(M · ϕ).
We are interested in solutions belonging to Yr+3. It is enough to check that the norm of the
linear operator G : Yr+3 → Yr+3 defined by G(ϕ) = L−1(M · ϕ) is less than one. This fact
follows from Lemma 7.4 together with the facts that E ∈ Yr+6−�, M ∈ Yr+2 if n 	= 3, and
M ∈ Y log

r+2,1 if n = 3. One easily then deduces that

(7.13) η̂11 = (Id− G)−1
(L−1(E · ∂zφs)

) ∈ Yr+3

is a solution of (7.11).
Now we deal with the second solution of (7.9). We observe that, since η̂1 is a solution,

the function η̂2 = b · η̂1 is also a solution of the linear equation (7.9) satisfying W (η̂1, η̂2) = 1
if and only if b satisfies

Δ(b)(z) =
1

η̂1(z + 1)η̂1(z)
.

By Proposition 6.2, η̂1 = ∂zφ
s + η̂11 = ∂zφ0 + ∂zψ

s + η̂11 , where ∂zψ
s, η̂11 ∈ Yr+3. Moreover,

using the definitions of d�, � in (3.15) and Corollary 6.3, it is a direct computation to check
that b has to satisfy the linear equation

Δ(b)(z) =
z2�−2

r2d2�
+ S(z)
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with S ∈ Y−2�+3 if n = 2, S ∈ Y log
−2�+3,1 if n = 3, and S ∈ Y−2�+2+r if n > 3. We take

b0(z) =
z2�−1

r2d2� (2�− 1)

and note that r2d2�Δ(b0)(z) = z2�−2 +O−2�+3. Henceforth, the difference b1 = b− b0 satisfies
an equation of the form

(7.14) Δ(b1) = S̃(z),

with S̃ ∈ Y−2�+3 if n = 2, S̃ ∈ Y log
−2�+3,1 if n = 3, and S̃ ∈ Y−2�+2+r if n > 3. Applying

Proposition 7.2, one has that (7.14) has a solution b1 belonging to Y−2�+2 if n = 2, Y log
−2�+2,1

if n = 3, and Y−2�+1+r if n > 3, and the result follows.

7.4. A final formula for Θ = φu − φs. Since Θ is a solution of the linear homogenous
difference equation (7.9), the general theory allows us to write it as

(7.15) Θ(z) = p1(z)η1(z) + p2(z)η2(z),

with η1, η2 being two independent solutions of (7.9) and p1, p2 being 1-periodic analytic func-
tions in Eγ,ρ. Moreover, if W (η1, η2) = 1, the functions p1 and p2 are determined by

(7.16) p1(z) =W (Θ, η2)(z), p2(z) = −W (Θ, η1)(z).

Lemma 7.6. Let γ, ρ > 0, and η1, η2 be two independent solutions of the linear difference
equation (7.9) satisfying that W (η1, η2) = 1 and that η1 ∈ Yr+1 and η2 ∈ Y−�.

Then there exist coefficients pk1 , p
k
2 (depending on η1,2) such that

(7.17) Θ(z) = η1(z)
∑
k<0

pk1e
2πikz + η2(z)

∑
k<0

pk2e
2πikz.

Proof. We first point out that we already know that Θ = φu − φs = ψu − ψs ∈ Yr+2,γ,ρ,
provided that, by Theorem 3.3, ψu,s ∈ X u,s

r+2. In addition, if h ∈ Yν,γ,ρ, then Δ(h) ∈ Yν+1,2γ,2ρ.
Indeed, standard arguments can be used to prove that if h ∈ Yν,γ,ρ, then ∂zh ∈ Yν+1,2γ,2ρ

(see, for instance, [1]). Therefore, if z, z + 1 ∈ E2γ,2ρ,

|h(z + 1)− h(z)| ≤ ‖∂zh‖ν+1

∫ 1

0

1

|z + t|ν+1
≤ K‖∂zh‖ν+1

1

|z|ν+1
.

Using the above property, that Θ ∈ Yr+2, and formula (7.16) for p1, p2, one has that p1 ∈ Y1

and p2 ∈ Yr+4. In particular, p1, p2 → 0 as Imz → −∞, and since they are 1-periodic,

p1(z) =
∑
k<0

pk1e
2πikz, p2(z) =

∑
k<0

pk2e
2πikz,

and the lemma is proved.
We recall that the existence of independent solutions of the linear difference equation (7.9)

satisfying the hypotheses of Lemma 7.6 is guaranteed by Lemma 7.5. Hence Lemma 7.6 applied
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to η̂1, η̂2 already gives an expression of Θ which is exponentially small. Among other things,
we have proved that there exist γ, ρ > 0 such that

(7.18) |e2πizz−�(φu(z)− φs(z))| ≤ K, z ∈ Eγ,ρ.

Nevertheless we have not proved Theorem 3.4 yet. We need to look for more suitable
independent solutions of (7.9) to apply Lemma 7.6.

Corollary 7.7. Let γ > 0. There exists ρ0 > 0 big enough such that, for any ρ ≥ ρ0, (7.9)
has two fundamental solutions of the form

ζ1(z) = ∂zφ
s(z) + ζ11 (z),

ζ2(z) =
z�

rd�(2�− 1)
(z) + ζ12 (z),

with d� defined in (3.15) and ζ11 satisfying

sup
z∈Eγ,ρ

|z1−�e2πizζ11 (z)| < +∞.

In addition, ζ12 ∈ Yr−�,γ,ρ if n > 3, ζ12 ∈ Y1−�,γ,ρ if n = 2, and ζ12 ∈ Y log
1−�,1,γ,ρ if n = 3.

Proof. As in the proof of Lemma 7.5, we write ζ11 = ζ1 − ∂zφ
s. We note that ζ11 satisfies

(7.11):

Δ2(ζ11 )(z)−H(z)ζ11 (z) =M(z)ζ11 (z) + E(z)∂zφ
s(z).

We write ζ(z) = e2πizζ11 (z), and we notice that ζ has to satisfy the equation

(7.19) Δ2(ζ)(z)−H(z)ζ(z) =M(z)ζ(z) + e2πizE(z)∂zφ
s(z).

We introduce ϕ0(z) = e2πizE(z)∂zφ
s(z). We first claim that ϕ0 ∈ Y3−�. Indeed, we note

that ∂zφ
s ∈ Y�−1, and we recall that

(7.20) E(z) = −
∫ 1

0
(1− λ)D2g(φs + λ(φu − φs)) dλ

(
φu − φs

)
.

The claim follows from the facts that, by (7.18), |z−�e2πiz(φu−φs)| is bounded and, moreover,
|D2g(φs + λ(φu − φs))| ≤ K|z|�−4 if z ∈ Eγ,ρ (which can be proved as in (6.12)).

It is clear that a particular solution ζ of (7.19) is given by a solution of

ζ = L−1(ϕ0) + G(ζ),

where G(ζ) = L−1(M · ζ).
First we observe that, by Lemma 7.4, the independent term L−1(ϕ0) ∈ Y1−�. Second we

check that (Id − G) is invertible in Y1−�. Let ψ ∈ Y1−�. Since M ∈ Y r
2
+2 for any n ≥ 2, we

have that M · ψ ∈ Y3+ r
2
−�, and consequently, by Lemma 7.4, G(ψ) ∈ Y1+ r

2
−� and, moreover,

‖G(ψ)‖1−� ≤ ρ−r/2‖G(ψ)‖1+ r
2
−� ≤ ρ

−r/2
0 C‖ψ‖1−� ≤ 1

2
‖ψ‖1−�.
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This implies that the norm of the linear operator G : Y1−� → Y1−� is less than one, and
therefore Id− G is invertible. To this end, we can write ζ as

ζ =
(
Id− G)−1

(L−1(ϕ0)),

and we deduce that ζ ∈ Y1−� and ‖ζ‖1−� ≤ 2‖L−1(ϕ0)‖1−�, which implies the result for ζ1.
The existence and properties of ζ2 follow from those for η̂2 in Lemma 7.5.

Acknowledgments. We are indebted to the anonymous referees who helped us to improve
this work, especially sections 1–4.
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