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Abstract In this paper we study a beyond all orders phenomenon which appears in
the analytic unfoldings of the Hopf-zero singularity. It consists in the breakdown of
a two-dimensional heteroclinic surface which exists in the truncated normal form of
this singularity at any order. The results in this paper are twofold: on the one hand,
we give results for generic unfoldings which lead to sharp exponentially small upper
bounds of the difference between these manifolds. On the other hand, we provide
asymptotic formulas for this difference by means of the Melnikov function for some
non-generic unfoldings.

Keywords Exponentially small splitting ·Hopf-zero bifurcation ·Melnikov function ·
Borel transform

Mathematics Subject Classification 34E10 · E4E15 · 37C29 · 37G99

1 Introduction

The Hopf-zero singularity (also called central singularity, Gavrilov–Guckenheimer or
fold-Hopf singularity) is any vector field X∗ : R

3 → R
3, having the origin as an

equilibrium point, and such that the linearization of X∗ at this point, DX∗(0), has
eigenvalues 0, ±iα∗, for some α∗ �= 0. Equivalently, X∗(0) = 0 and DX∗(0) is
conjugated to
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⎛
⎝

0 α∗ 0
−α∗ 0 0
0 0 0

⎞
⎠ , α∗ > 0. (1)

This singularity has codimension two in the sense that it can bemet by a generic fam-
ily of vector fields depending on at least two parameters. However, since DX∗(0) has
zero trace, when one considers X∗ in the context of divergence-free vector fields, it has
codimension one. Following (Broer and Vegter 1984) we will refer to the divergence-
free case as the conservative case.

The generic families which meet the singularity X∗ for some value of the param-
eters, which we assume is (0, 0), are called the versal unfoldings of the Hopf-zero
singularity. That is, they are families Xμ,ν of vector fields on R

3 depending on two
parameters (μ, ν) ∈ R

2, such that X0,0 = X∗, the vector field described above.
The unfoldings of this singularity, and the different behavior these families can

present, have been broadly studied (Takens 1973a, b, 1974;Guckenheimer 1981;Broer
and Vegter 1984; Freire et al. 2002; Dumortier and Ibáñez 1998; Champneys and Kirk
2004; Lamb et al. 2004; Gavrilov 1978, 1985; Gavrilov and Roshchin 1983; Gucken-
heimer and Holmes 1983; Dumortier et al. 2013; Kuznetsov 2004). The standard way
to proceed in the study of these unfoldings is as follows: first, one uses normal form
theory and, performing changes of variables, writes the vector field in the simplest
possible form up to some order. Then, one studies the effects of the non-symmetric
(higher-order terms) in the dynamics. In our case, following (Guckenheimer 1981),
we consider Xμ,ν a family of vector fields in R

3 such that X0,0 has the origin as an
equilibrium point with linear part (1). After the normal form procedure up to order
two, the vector field Xμ,ν in the new coordinates (x̄, ȳ, z̄) takes the form

dx̄

dt̄
= x̄ (β0ν − β1 z̄)+ ȳ

(
α∗ + α1ν + α2μ+ α3 z̄

) + O3(x̄, ȳ, z̄, μ, ν)

dȳ

dt̄
= −x̄

(
α∗ + α1ν + α2μ+ α3 z̄

) + ȳ (β0ν − β1 z̄)+ O3(x̄, ȳ, z̄, μ, ν)

dz̄

dt̄
= −γ0μ+ γ1 z̄2 + γ2(x̄2 + ȳ2)+ γ3μ2 + γ4ν2 + γ5μν + O3(x̄, ȳ, z̄, μ, ν)

Note that the coefficients β1, γ1, γ2 depend exclusively on the chosen singularity X∗,
in fact only on its degree two jet. We also observe that the conservative setting is
obtained taking ν = 0 and β1 = γ1 and imposing that the higher-order terms are
divergence free.

InTakens (1974) (see alsoDumortier et al. 2013) it is seen that the generic conditions
β1 �= 0, γ1 �= 0, and γ2 �= 0, characterize a stratum of codimension two (dimension
one in the conservative case) in the space of germs of singularities of vector fields on
R
3. We will assume them from now on. Moreover, the scaling z̄ → γ1 z̄, allows us to

assume that γ1 = 1. In Takens (1974), Dumortier and Ibáñez (1998) the authors see
that there are six topological types of singularities of codimension two depending of
the choice of the parameters β1 �= 0 and γ2 �= 0 (see Figure 8.16 in Kuznetsov 2004).
In this paper we will deal with the Hopf-zero singularity corresponding to

β1 > 0, γ2 > 0, (2)

that we will denote, following (Dumortier et al. 2013), by HZ∗.
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We will also assume the generic conditions β0 �= 0, γ0 �= 0 for the unfoldings
considered. Under these conditions, redefining the parameters, one can assume β0 =
γ0 = 1, obtaining:

dx̄

dt̄
= x̄ (ν − β1 z̄)+ ȳ

(
α∗ + α1ν + α2μ+ α3 z̄

) + O3(x̄, ȳ, z̄, μ, ν)

dȳ

dt̄
= −x̄

(
α∗ + α1ν + α2μ+ α3 z̄

) + ȳ (ν − β1 z̄)+ O3(x̄, ȳ, z̄, μ, ν)

dz̄

dt̄
= −μ+ z̄2 + γ2(x̄2 + ȳ2)+ γ3μ2 + γ4ν2 + γ5μν + O3(x̄, ȳ, z̄, μ, ν)

(3)

and the conservative setting is obtained taking β1 = 1, ν = 0 and imposing that the
higher-order terms are divergence free.

The versal unfoldings of the Hopf-zero singularity have been widely studied in
the past, see for example (Broer and Vegter 1984; Gavrilov 1978, 1985; Gavrilov
and Roshchin 1983; Guckenheimer 1981; Guckenheimer and Holmes 1983; Takens
1973a, 1974; Kuznetsov 2004). In these works, for generic singularities, depending
on the region in the parameter space where (μ, ν) belongs to, the qualitative behavior
of Xμ,ν is studied. However, for the HZ∗, there is one open regionU in the parameter
space (see (5)) in which the behavior of Xμ,ν is not completely understood. These
unfoldings Xμ,ν are the candidates to possess chaotic behavior. In this work we study
these unfoldings and prove, as a direct consequence of our results, the existence of
heteroclinic transversal curves between two equilibrium points of Xμ,ν when (μ, ν)
belongs to a subset of this region U .

Let us to explain how this phenomenon is encountered in generic unfoldings Xμ,ν
of HZ∗.

Let us call X2
μ,ν the normal form of these unfoldings truncated at order two, that is,

system (3) neglecting the terms of degree equal or higher than three. In fact we also
neglect the second-order terms that only depend on the parameters μ, ν. This system
has a rotational symmetry and if we write it in cylindrical coordinates:

x̄ = r̄ cos θ, ȳ = r̄ sin θ, z̄ = z̄

it has the form:

dr̄

dt̄
= r̄(ν−β1 z̄), dθ

dt̄
= α0 +α1μ+α2ν+α3 z̄, dz̄

dt̄
= −μ+ z̄2 +γ2r̄2, (4)

where α0 = α∗.
The bifurcation diagram of system (4) has been studied by Guckenheimer (1981)

and Gavrilov (1978) (see also Guckenheimer and Holmes 1983; Dumortier et al. 2013
or Kuznetsov 2004 for a study of the normal form up to order three). We emphasize
some facts when β1, γ2 satisfy (2).

Ifμ < 0, the systemhas no equilibriumpoints and the dynamics is known.Atμ = 0
the system has an equilibrium at the origin which bifurcates, for μ > 0, in two equi-
librium points S̄2± = (0, 0,±√

μ). For μ > 0, the linearization DX2
μ,ν(0, 0,±√

μ)

has eigenvalues:
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λ±
1 = ν ∓ β1√μ+ i

(
α0 + α1μ+ α2ν ± α3√μ

)
, λ±

2 = λ±
1 , λ

±
3 = ±2

√
μ.

Therefore:

• if ν > β1
√
μ, S̄2+ is a repellor and S̄2− is a saddle-focus.

• if ν < −β1√μ, S̄2+ is a saddle-focus and S̄2− is an attractor.
• if −β1√μ < ν < β1√μ, S̄2+ and S̄2− are saddle-focus.

The dynamics of X2
μ,ν as well as the one of Xμ,ν are well known in the first two cases.

In this paper we will focus in the last case, which presents the richest dynamics, and
we will take (μ, ν) ∈ U , being

U = {(μ, ν) ∈ R
2 : μ > 0, |ν| < β1√μ}. (5)

The dynamics of Xμ,ν when (μ, ν) ∈ U is studied in the previous references, but some
global phenomena still need to be completely understood. Let us give some details
about this problem.

When (μ, ν) ∈ U , the truncated vector field X2
μ,ν has S̄

2± as equilibrium points of
saddle-focus type connected by the heteroclinic orbit:

W1 = {x̄ = ȳ = 0, |z̄| ≤ √
μ} (6)

which consists on a branch of the one-dimensional unstable manifold of S̄2+ that
coincides with a branch of the one-dimensional stable manifold of S̄2−.

When ν = 0, the two-dimensional stable manifold of S̄2+ also coincides with the
two-dimensional unstable manifold of S̄2−, giving rise to a two-dimensional hetero-
clinic surface (see Fig. 1):

W2 =
{
z̄2 + γ2

β1 + 1
r̄2 = μ

}
. (7)

For ν = 0 the system has a first integral in the general (both conservative and non-
conservative) case:

H(r̄ , z̄) = r̄
2
β1

(
−μ+ z̄2 + γ2

β1 + 1
r̄2
)
.

When ν �= 0, the one-dimensional heteroclinic connection W1 persists, but this is not
the case of the two-dimensional heteroclinic surface. In this case the unstable manifold
of S̄2− and the stable manifold of S̄2+ do not coincide. More concretely, the intersection
of these manifolds with the plane z = 0 is two curves Cu, Cs such that Cu is inside
the interior of Cs or viceversa depending on the sign of ν. See (Guckenheimer 1981;
Kuznetsov 2004; Dumortier et al. 2013).

Let us consider Xn
μ,ν , the truncation of the normal form up to order n ≥ 3, which

is a polynomial of degree n. Then, denoting again the vector field in the new variables
by Xμ,ν , one has:

Xμ,ν = Xn
μ,ν + Fn

μ,ν, where Fn
μ,ν(x̄, ȳ, z̄) = On+1(x̄, ȳ, z̄, μ, ν). (8)
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Fig. 1 Phase portrait of the
vector field Xn

μ,ν for
(μ, ν) ∈ �n , for any n ∈ N. In
red and blue, the one- and
two-dimensional heteroclinic
connections, respectively. The
domain bounded by the
two-dimensional heteroclinic
connection has size O(√μ)
(Color figure online)

If (μ, ν) ∈ U the truncation of the normal form Xn
μ,ν has again two saddle-focus

equilibrium points S̄n± = (0, 0,O(√μ)) connected by a heteroclinic orbit contained
in r̄ = 0.

However, it is known (Guckenheimer 1981;Kuznetsov 2004;Dumortier et al. 2013)
that if we fix σ = ν√

μ
�= 0 and take μ → 0+ the two-dimensional manifolds of S̄n±

do not intersect. Furthermore, when σ = ν√
μ
and μ are small, scaling the system and

using classical perturbation methods one can see that the distance between the two-
dimensional invariant manifolds measured at their intersection with the plane z = 0
is of the form:

c1ν + c2μ+ O
(
ν
ν√
μ
,μ3/2, ν

√
μ

)
, c1 �= 0, (9)

where c1, c2 depend on the degree three jet of Xμ,ν . Therefore, if ν is not of order μ,
this distance cannot be zero and the two-dimensional manifolds of S̄n± do not intersect.

Moreover, if the parameters (ν, μ) belong to a curve �n of the form:

�n =
{
(μ, ν) ∈ U : ν = −c1

c2
μ+ O(μ3/2)

}
,

one can ensure the existence of a two-dimensional heteroclinic surface (see again
Fig. 1) for any finite order n. Let us note here that, in contrast to what happens for
n = 2, the normal form Xn

μ,ν has a first integral only in the conservative case. For
this reason the heteroclinic surface exists for any value of the parameter μ in the
conservative case. On the contrary, in the general case, if one takes the parameters
(μ, ν) small enough and away from the curve �n , the two-dimensional stable and
unstable manifolds of the points S̄n± do not intersect.

Next, we consider the whole vector field Xμ,ν = Xn
μ,ν + Fn

μ,ν . In Dumortier et al.
(2013), Kuznetsov (2004), it is shown that:
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(a) (b)

Fig. 2 The distance between the invariant manifolds. a The distance d̄u,s(μ, ν) between the one-
dimensional invariant manifolds of S̄+(μ, ν) and S̄−(μ, ν). b The two-dimensional invariant manifolds of
S̄+(μ, ν) and S̄−(μ, ν) until they reach the plane z̄ = 0

• It also has two equilibrium points S̄± = (0, 0,O(√μ)), which also are of saddle-
focus type if (μ, ν) ∈ U are small enough.

• The one-dimensional invariant manifolds of the equilibrium points S̄+(μ, ν) and
S̄−(μ, ν) generically split. Indeed, in Baldomá and Seara (2006) and Baldomá
et al. (2013) an asymptotic formula for the distance between these manifolds,
which turns out to be exponentially small in

√
μ, was obtained. In the former

work the conservative setting for some non-generic unfoldings was considered
and the generic case in both the conservative and the general setting was studied
in the latter (see Fig. 2a).

• The behavior of the two-dimensional invariant manifolds is more involved. Recall
that Xμ,ν = Xn

μ,ν + Fn
μ,ν , and the remainder Fn

μ,ν , is of orderOn+1(x̄, ȳ, z̄, μ, ν).
Moreover, as the points and its manifolds until theymeet the plane z̄ = 0 are inside
a domain inR3 of sizeO(√μ), in this regionwe have: Fn

μ,ν(x̄, ȳ, z̄) = On+1(
√
μ).

Therefore, the distance between the manifolds is given again by (9) and conse-
quently, when |ν| �= O(μ), they do not intersect.

After these considerations the relative position the two-dimensional stable and
unstable manifolds of the points S̄± is known, except when |ν| = O(μ). For this
reason, we will study the distance between them when

|ν| ≤ σ ∗μ, (μ, ν) ∈ U (10)

for any given constant σ ∗.
In particular, when (μ, ν) are close to �n (or for any sufficiently small μ in the

conservative case) the heteroclinic connections that exist for Xn
μ,ν will be generically

destroyed in Xμ,ν . Obviously, the breakdown of these heteroclinic connections cannot
be detected in the truncation of the normal form at any finite order and therefore, as it
is usually called, it is a phenomenon beyond all orders.

Since Xμ,ν = Xn
μ,ν + Fn

μ,ν , either in the conservative case or in the general case
when (μ, ν) are close to �n , the breakdown of the heteroclinic connections must be
caused by the remainder Fn

μ,ν , which is of order Fn
μ,ν(x̄, ȳ, z̄) = On+1(

√
μ). As this

is valid for all n, the distance between the invariant manifolds should be smaller than
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Fig. 3 The intersection between
the invariant manifolds and the
plane z̄ = 0, and the distance
D̄u,s(θ, μ, ν) between them

any finite power of the perturbation parameter
√
μ. For this reason, one expects this

distance to be exponentially small in
√
μ when the analytic case is considered. Note

that, in the general case (that is, when two parameters are considered) one expects to
find a curve�∗ such that the distance between the two-dimensional invariantmanifolds
is exponentially small when (μ, ν) ∈ �∗. In fact, we will prove the existence of a
wedge-shaped domainWu,s (see Fig. 4) around�∗ such that, when (μ, ν) ∈ Wu,s, this
distance is exponentially small and the two-dimensional invariant manifolds intersect
transversally along two heteroclinic curves (see Theorem 1.1 and Corollary 1.3).

Let D̄u,s(θ, μ, ν) be the distance between the two-dimensional invariant manifolds
of the equilibrium points S̄±(μ, ν) at the plane z̄ = 0 (see Figs. 2b, 3). Our final goal
is to provide asymptotic formulas for this quantity. However, due to the technical com-
plications to deal with this exponentially small phenomenon, we have split the whole
proof in two papers; the present work and (Baldomá et al. 2016). In the former, we
provide asymptotic formulas for D̄u,s(θ, μ, ν) when non-generic analytic unfoldings
are considered, whereas for generic unfoldings we provide sharp upper bounds. In the
latter we give the asymptotic formula in the generic case. It is worth mentioning that
all the proofs in this work are also true for the generic case and therefore, in Baldomá
et al. (2016), some results derived in this work will be used.

1.1 The Regular Versus the Singular Case: Main Result

As it is well known by experts in the field, in order to obtain asymptotic formulas for
the breakdown of the two-dimensional invariant manifolds of S̄+(μ, ν) and S̄−(μ, ν),
one needs to obtain suitable parameterizations of these invariant manifolds not only
on real domains, but also over complex ones. These domains need to beO(√μ)–close
to the singularities of the corresponding heteroclinic connection of the unperturbed
system X2

μ,ν in (4). We recall that the one-dimensional heteroclinic connection W1
in (6) exists for any (μ, ν). However, the two-dimensional one W2 in (7) only exists
when ν = 0. Let us notice that the heteroclinic surface W2 can be parameterized by
(t, θ) (in cylindric coordinates), by:
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r̄ = r̄(t, θ) = √
μ
β1 + 1

γ2

1

cosh
(
β1t

) ,
θ = θ,

z̄ = z̄(t, θ) = √
μ tanh

(
β1t

)
,

⎫⎪⎪⎬
⎪⎪⎭

t ∈ R, θ ∈ [0, 2π ]. (11)

Observe that (r̄(t̄
√
μ), θ(t̄

√
μ), z̄(t̄

√
μ)) is solution of (4), with θ(t) = θ0 + (α0 +

α1μ)
t√
μ

+ α3
β1

log cosh(β1t), for arbitrary θ0.
Clearly this parameterization has singularities at β1t = ±iπ/2. Far from these

singularities, we will find parameterizations of the invariant manifolds for Xμ,ν which
are well approximated by the unperturbed heteroclinic connection (11), but this will
not be the case close to the singularities. This yields some technical difficulties.

A good way to start the study of the invariant manifolds in these complex domains
is considering smaller perturbations of the vector field X2

μ,ν . Recall that Xμ,ν =
X2
μ,ν + P2

μ,ν + F2
μ,ν where P2

μ,ν contains the degree two terms in the parameters μ, ν
in (3) and F2

μ,ν = O3(x̄, ȳ, z̄, μ, ν).We introduce a new parameter q ≥ 0 and consider
the following (artificial) vector field,

X reg
μ,ν := X2

μ,ν + (√μ)q(P2
μ,ν + F2

μ,ν). (12)

Clearly, for q = 0 we recover (8), while for q > 0 the perturbation terms are smaller
than those in (8). We call the case q > 0 the regular case, while q = 0 is the singular
one which represents a generic family of unfoldings of HZ∗.

Imposing the condition q > 0, one can see that the heteroclinic connections of the
unperturbed system X2

μ,ν give good approximations of the invariant manifolds, even
close to their singularities. The asymptotic formulas measuring the breakdown of the
heteroclinic surface in this case consist on suitable versions of the so-called Melnikov
integrals (see Guckenheimer and Holmes 1983; Mel’nikov 1963). Thus, one can start
studying the regular case to gain some intuition without getting lost with technical
problems and, after that, one can proceed with the singular case. This is what we
have done in the present paper. Notice that in the general case we take the parameters
satisfying |ν| ≤ σ ∗(√μ)q+2, (μ, ν) ∈ U which gives condition (10) when q = 0.

More precisely we have proven:

Theorem 1.1 Consider a Hopf-zero singularity H Z∗ and X reg
μ,ν as in (12)with q ≥ 0.

There exists μ0 > 0 such that if 0 < μ < μ0 and (μ, ν) ∈ U defined in (5), the vector
field X reg

μ,ν has two equilibrium points S̄±(μ, ν) of saddle-focus type of the form

S̄±(μ, ν) = (0, 0,±√
μ)+ O(μ2 + ν2) q+1

2 .

In addition, S̄+ has a two-dimensional stable manifold and S̄− has a two-dimensional
unstable manifold.

For any u ∈ R and θ ∈ [0, 2π ], let D̄u,s(u, θ, μ, ν) (D̄u,s(u, θ, μ) in the con-
servative case) be the distance between the two-dimensional unstable manifold of
S̄−(μ, ν) and the two-dimensional stable manifold of S̄+(μ, ν) when they meet the
plane z̄ = √

μ tanh(β1u) (see (11)).
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Then, there exist constants C1, C2 (see their formula in Theorem 2.5) and L0 (see
its formula in Remark 5.7) in such a way that, given T0 > 0, for all u ∈ [−T0, T0] and
θ ∈ S

1, introducing the function:

ϑ̄(u, μ) = α0u√
μ

+ 1

β1

[
α3 log cosh(β1u)−

(
α3 + α0L0(

√
μ)q

)
log

√
μ
]
,

the following holds:

1. In the conservative case, which corresponds to β1 = 1 and ν = 0, as μ→ 0+,

D̄u,s(u, θ, μ) =
√
γ2

2

e
− α0π

2
√
μ

(
√
μ)3−q

cosh3(u)

[
C1 cos

(
θ + ϑ̄(u, μ)

)

+C2 sin
(
θ + ϑ̄(u, μ)

)
+ O

(
(
√
μ)q + (√μ)3

) ]
.

2. In the general case, given σ ∗ > 0, for μ → 0+ and |ν| ≤ σ ∗(√μ)q+2, there
exists C0 = C0(μ, ν) given by:

C0(μ, ν) = ν I + J (
√
μ)q+2 + O

(
(
√
μ)q+3

)
(13)

where J , I �= 0 are constants defined in (92) and (90), such that:

D̄u,s(u, θ, μ, ν) =
√

γ2

β1 + 1
cosh

1+ 2
β1 (β1u)

{
C0

(
1 + O((√μ)q+1,

ν√
μ
)

)

+ e
− α0π

2β1
√
μ

(
√
μ)

2
β1

+1−q

[
C1 cos

(
θ + ϑ̄(u, μ)

)

+ C2 sin
(
θ + ϑ̄(u, μ)

)
+ O

(
(
√
μ)q + (√μ)3

)]}
.

In addition, there exists a curve

�∗ =
{
(μ, ν) ∈ U : ν = ν0∗(

√
μ) = − J

I

√
μ
q+2 + O(√μq+3

)

}

such that for all 0 < μ < μ0 one has:

C0 = C0(μ, ν0∗(
√
μ)) = 0.

Remark 1.2 Notice that, if we take q = 0 in Theorem 1.1, the relative error terms are
not small butO(1) so our result provides sharp upper bounds even in this case. Later,
in Sect. 2.5 these upper bounds are proven in a different (and easier) way. To obtain
asymptotic formulas when q = 0, one needs to deal with the so-called inner equation
as it is done in Baldomá et al. (2016).
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Fig. 4 The curve �∗ and the
wedge-shaped domain Wu,s

around it. For values of μ, ν
inside this open domain, Xμ,ν
has two transversal heteroclinic
orbits, whereas if μ, ν belongs
to {|ν| < β1√μ}\Wu,s there
are not heteroclinic intersections

Corollary 1.3 Take T0 > 0, and 0 < μ < μ0. Consider the curve �∗ given in
Theorem 1.1. Then, there exists a wedge-shaped domainWu,s in the parameter plane
around this curve (see Fig. 4) such that, for (μ, ν) ∈ Wu,s, and for fixed u ∈ [−T0, T0],
the function D̄u,s(u, θ, μ) is exponentially small and has two simple zeros which give
rise to two transversal heteroclinic orbits between the points S̄±(μ, ν). Moreover, for
(μ, ν) /∈ Wu,s, D̄u,s(u, θ, μ) has no zeros and therefore the two-dimensional stable
and unstable manifolds of S̄±(μ, ν) do not intersect.

A more accurate description of the wedge-shaped domain Wu,s in terms of the
parameters δ = √

μ, σ = ν√
μ
is given in Corollary 2.17.

Proposition 1.4 Consider the set HZ∗ of the Hopf-zero singularities H Z∗, with
β1, γ2 > 0. Then,

1. Given H Z∗ ∈ HZ∗ and X reg
μ,ν as in (12) the constant C := C1 − iC2, where C1, C2

are given in Theorem 1.1, only depends on the chosen singularity H Z∗ ∈ HZ∗
2. LetA be the subset ofHZ∗ such that, if H Z∗ ∈ A, then the constant C �= 0. Then

A is open and dense inHZ∗ with the supremum norm.

1.2 Exponentially Small Splitting of Invariant Manifolds

The formulas given in Theorem 1.1 prove that the breakdown of the heteroclinic
connection is exponentially small in the perturbation parameter

√
μwhen (μ, ν) ∈ �∗

in the general case or in the conservative case. Therefore, this work deals with the
problem of the so-called exponentially small splitting of separatrices.

This problem was already considered by Poincaré in his famous work (Poincaré
1890). There he studied Hamiltonian systems with two and a half degrees of freedom
and realized that this phenomenonwas responsible for the creation of chaotic behavior.
He considered a model which, after reduction, became the perturbed pendulum:

ÿ = 2μ sin y + 2με cos y cos t.

Poincaré developed an analytic tool, rediscovered by V.K. Melnikov 70 years later, to
prove that the splitting of the separatrices is exponentially small in μ, provided that ε
is smaller than some exponentially small quantity. Of course, this latter assumption is
enormously restrictive, but many years had to go by until it could be removed.
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When studying exponentially small phenomena, one cannot use classical per-
turbation methods. Over the last decades more sophisticated techniques have been
developed mainly for Hamiltonian systems and area-preserving maps. Indeed, this
problem was not studied from a rigorous point of view until the end of the 1980s and
during the 1990s. Neı̆shtadt (1984) gave upper bounds for the splitting in Hamilto-
nian systems of one and a half and two degrees of freedom and Lazutkin (2003) (see
also Gelfreich 1999) was the first to give an asymptotic expression of the splitting
angle between the stable and unstable manifolds for the standard map.

After Lazutkin’s paper, some works gave bounds for the splitting for rapidly forced
systems and for area-preserving diffeomorphisms close to the identity (Holmes et al.
1988; Fontich and Simó 1990a, b).

Later on, asymptotic formulas for several examples were obtained. The first works
were (Kruskal and Segur 1991; Delshams and Seara 1992; Gelfreich 1994). After
these pioneering works, partial results for general Hamiltonian systems were given
in Delshams and Seara (1997), Gelfreich (1997a), Baldomá and Fontich (2004), Bal-
domá and Fontich (2005). A new approach that has had much influence in posterior
studies of exponentially small splitting was introduced in Sauzin (2001), Lochak et al.
(2003). It is important to note that, besides (Lazutkin 2003) and (Kruskal and Segur
1991), all the examples cited above deal with the so-called regular case, in which some
artificial condition about the smallness of the perturbation is required. In this case the
Melnikov method gives the correct size of the splitting.

In the singular case one often has to study a certain equation independent of param-
eters, usually called the inner equation. There are a few works dealing with this kind
of equations in different settings, see (Gelfreich 1997b; Gelfreich and Sauzin 2001;
Olivé et al. 2003; Baldomá 2006; Baldomá and Seara 2008; Baldomá and Martín
2012), but, besides the works of Lazutkin and Kruskal and Segur, there are very few
works with rigorous proofs in the singular case for Hamiltonian systems (see for
instance Treschev 1997; Gelfreich 2000; Guardia et al. 2010; Baldomá et al. 2012;
Guardia 2013) or conservative maps (Gelfreich and Brännstrom 2008; Martín et al.
2011). Numerical results about the splitting in the Hamiltonian setting can be found
inBenseny andOlivé (1993), Gelfreich (1997b), for two-dimensional symplecticmaps
in Delshams and Ramírez-Ros (1999), Gelfreich and Simó (2008), Simó and Vieiro
(2009), Miguel et al. (2013) and in Gelfreich et al. (2013) the splitting is computed for
two-dimensional manifolds in four-dimensional symplectic maps. Besides the previ-
ous works on either Hamiltonian systems or symplectic maps, (Lazaro Ochoa 2003)
deals with exponentially small splitting of separatrices in the reversible setting and
the work (Fontich 1995) gives results for dissipative perturbations of Hamiltonian
systems.

The exponentially small phenomenon can be encountered in several problems of
bifurcation theory. In Broer and Roussarie (2001), the authors prove that chaotic
dynamics near a degenerate fixed point, in quite general families of planar diffeo-
morphisms, is confined to, at most, an exponentially narrow horn in the parameter
space. A particular case is the Bodganov–Takens bifurcation. Numerical studies for
this bifurcation are done in Simó et al. (1991), Gelfreich and Naudot (2009), Gelfreich
(2003). The latter also provides heuristic arguments to derive an asymptotic formula
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for the size of the chaotic zone. A related paper is Gelfreich and Naudot (2008) where
the authors study a inner equation associated with the Bodganov–Takens bifurcation.

For Hamiltonian systems of two degrees of freedom, the analogous singularity to
the Hopf-zero singularity is the 02iω singularity, also called Hamiltonian–Hopf bifur-
cation. In Gaivão and Gelfreich (2011), the authors study this singularity combining
numerical and analytic techniques. The same singularity in the reversible case is con-
sidered in Lombardi (1999), Lombardi (2000) where the author proves the existence
of homoclinic connections for every periodic orbit exponentially close to the origin,
except the origin itself. We emphasize the paper (Jézéquel et al. 2016), where the
authors prove the same result considering homoclinic connections with several loops,
using geometric arguments.

For the Hopf-zero singularity in Baldomá et al. (2013), an asymptotic formula to
measure the breakdown of the one-dimensional heteroclinic connection W1 in (6) is
proven in the singular case for any value of (μ, ν) small enough both in the conservative
and the general case.

It is worth mentioning that here we do not deal with a Hamiltonian system, namely
we study a vector field in R

3 whose flow might not be volume-preserving (since we
consider not only the conservative setting but also the general one) and it is not a
reversible system. For this reason, some new ideas had to be used in order to prove
the results found in this paper. We stress that, even if the general case may seem more
difficult, the freedom to choose the parameters in a suitable curve on the parameter
space where a relevant quantity, the constant C0 in Theorem 1.1, vanishes simplifies
the proof of this theorem. The same procedure has been used in Broer and Roussarie
(2001), Gelfreich (2003). However, in the conservative case, the volume-preserving
property of the vector field must be used to prove that this constant is zero for any
unfolding.

1.3 The Shilnikov Bifurcation and the Hopf-Zero Singularity

To finish this introduction, let us mention that we believe that our results can lead to
prove the existence of Shilnikov bifurcations, (Šil’nikov 1965), in suitable unfoldings
Xμ,ν . Indeed, the existence of such Shilnikov bifurcations for C∞ unfoldings of the
Hopf-zero singularity is studied in Broer and Vegter (1984). Doing the normal form
procedure up to order infinity and usingBorel–Ritt’s theorem, the vector field Xμ,ν can
be decomposed as Xμ,ν = X∞

μ,ν+F∞
μ,ν , where X

∞
μ,ν has the same phase portrait as the

vector field Xn
μ,ν described above (Fig. 1) and F∞

μ,ν = F∞
μ,ν(x̄, ȳ, z̄) is a flat function

at the origin. Their strategy consists in constructing suitable perturbations p∞
μ,ν , which

are also flat functions, such that the heteroclinic connections of the family X∞
μ,ν are

destroyed and somehomoclinic ones appear giving rise to the so-calledShilnikovbifur-
cation. Therefore, an existence theorem is given, but the results do not provide condi-
tions to checkwhether a concrete family Xμ,ν possesses or not a Shilnikov bifurcation.

The case of real analytic unfoldings of the singularity HZ∗ has been open since then.
It is possible that the strategy of Broer and Vegter can be adapted to the analytic case.
Of course one cannot consider flat perturbations, but suitable perturbations could be
constructed (although not straightforwardly) following (Broer and Tangerman 1986)
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and (Broer and Takens 1989). However, another strategymust be followed if given any
unfolding Xμ,ν one wants to determine whether it will or will not possess a sequence
of Shilnikov bifurcations. The key point, as in the C∞ case, is to check if the given
unfolding Xμ,ν does not have the aforementioned heteroclinic connections.

Progress was made recently in Dumortier et al. (2013), where the authors prove
a result equivalent to that of Broer and Vegter (1984) in the real analytic context,
assuming someupper and lower bounds of the distance between the invariantmanifolds
of S̄+(μ, ν) and S̄−(μ, ν). The authors assume, among other conditions, that the
heteroclinic connections are destroyed and quantitative information about the splitting
is required. Our work provides asymptotic formulas of the splitting of these invariant
manifolds which, as a consequence, allow to check if the corresponding assumptions
in Dumortier et al. (2013) are satisfied. We leave the complete proof of the existence
of Shilnikov bifurcations for a future work.

1.4 Plan of the Article

The paper is organized as follows. In Sect. 2, we expose the strategy we will follow
to prove Theorem 1.1 by enunciating, without proving, the main results we will need,
namely, i) existence of suitable parameterizations of the invariantmanifolds in complex
domains, ii) derivation and computation of the Melnikov function, iii) expression,
in complex domains, for the difference between the invariant manifolds and iv) the
exponentially small formulas for the difference in real domains. After that, still in
Sect. 2, we prove Theorem 1.1 as a consequence of Theorem 2.14. We postpone all
the technical proofs to Sects. 3–5.

2 The Regular Case: Heuristics of the Proof

Let us first define the complex norm inCn , ‖ζ‖ = max{|ζ1|, . . . , |ζn|}.With this norm,
we will denote by B(r), the open ball of Cn of radius r > 0 centered at the origin.

Following the same strategy as the one presented in Baldomá et al. (2013) and also
discussed in Sect. 1, which involves normal form changes, scalings and redefinitions
of parameters, we can write X reg

μ,ν , in (12), in its normal form of order three, namely:

dx̄

dt̄
= x̄ (ν − β1 z̄)+ ȳ (α0 + α1ν + α2μ+ α3 z̄)+ (√μ)q f̄ (x̄, ȳ, z̄, μ, ν),

dȳ

dt̄
= −x̄ (α0 + α1ν + α2μ+ α3 z̄)+ ȳ (ν − β1 z̄)+ (√μ)q ḡ(x̄, ȳ, z̄, μ, ν), (14)

dz̄

dt
= −μ+ z̄2 + γ2(x̄2 + ȳ2)+ (√μ)q h̄(x̄, ȳ, z̄, μ, ν).

The functions f̄ , ḡ and h̄ are analytic functions in B(r̄0)3×B(μ̄0)×B(ν̄0) ⊂ C
3×C

2,

f̄ (x̄, ȳ, z̄, μ, ν) = x̄ Ā(x̄2 + ȳ2, z̄, μ, ν)+ ȳ B̄(x̄2 + ȳ2, z̄, μ, ν)+ O4(x̄, ȳ, z̄, μ, ν)

ḡ(x̄, ȳ, z̄, μ, ν) = ȳ Ā(x̄2 + ȳ2, z̄, μ, ν)− x̄ B̄(x̄2 + ȳ2, z̄, μ, ν)+ O4(x̄, ȳ, z̄, μ, ν)

h̄(x̄, ȳ, z̄, μ, ν) = γ3μ2 + γ4ν2 + γ5μν + C̄(x̄2 + ȳ2, z̄, μ, ν)+ O4(x̄, ȳ, z̄, μ, ν)
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and Ā, B̄ and C̄ are functions satisfying:

x̄ Ā, x̄ B̄, ȳ Ā, ȳ B̄, C̄ = O3(x̄, ȳ, z̄, μ, ν),

when they are evaluated in their arguments.

Remark 2.1 In Baldomá et al. (2013) when the breakdown of the one-dimensional
heteroclinic connection was considered, we performed the normal form up to order
two. In this work we need to perform an additional step of the normal form procedure
for technical reasons which will be explained later on, see Sect. 4.1.1, even though
the terms of order three do not appear explicitly neither in our hypotheses nor in our
results.

In the remaining part of this section we give the main ideas of the proof of Theo-
rem 1.1. The rest of the paper is devoted to prove the results stated in this section. We
now summarize the subsections that can be found in this Section, each one consisting
in one step of the proof of Theorem 1.1 and Corollary 1.3. The first step, explained
in detail in Sect. 2.1, consists in scaling variables and introducing the new parameters
δ = √

μ, σ = δ−1ν and calling p = q − 2 as in Baldomá et al. (2013). Still in this
preliminary section, we give a parameterization of the heteroclinic connection of the
unperturbed system which corresponds to the normal form of order two. In Sect. 2.2
we give parameterizations of the two-dimensional invariant manifolds adequate to
our purposes. In Sect. 2.3, we introduce and study the Melnikov function adapted
to this problem. This Melnikov function will be the dominant term in the difference
between the invariant manifolds. After that, in Sect. 2.4, we give some properties of
this difference which allows us, in Sect. 2.5, to give a sharp upper bound of this dif-
ference. Finally, in Sect. 2.6, we state and prove Theorem 2.14 which is equivalent to
Theorem 1.1 and Corollary 1.3.

2.1 Preliminary Considerations

This subsection is mainly devoted to fix notation and perform straightforward changes
of variables to put the vector field X reg

μ,ν , in (12), in a suitable way to work with.
Moreover, we also study what we call the unperturbed system.

2.1.1 Notation, Scalings and Set Up

Wescale system (14) as inBaldomá et al. (2013), namelywe define the newparameters
p, δ, σ and rename the coefficients γ2, α3, β1 as:

p = q − 2, δ = √
μ, σ = δ−1ν, b = γ2, c = α3, d = β1.

We also introduce the constant h3 from h̄ given by

h̄(0, 0, z̄, 0, 0) = h3 z̄
3 + O(z̄4).
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In the new variables

x = δ−1 x̄, y = δ−1 ȳ, z = δ−1 z̄ + δ p+3h3/2, t = δt̄,

system (14) becomes:

dx

dt
= x (σ − dz)+

(
α(δ2, δσ )

δ
+ cz

)
y + δ p f (δx, δy, δz, δ, δσ ),

dy

dt
= −

(
α(δ2, δσ )

δ
+ cz

)
x + y (σ − dz)+ δ pg(δx, δy, δz, δ, δσ ),

dz

dt
= −1 + b(x2 + y2)+ z2 + δ ph(δx, δy, δz, δ, δσ ),

(15)

whereα(δ2, δσ ) = α0+α1δσ+α2δ2 withα0 �= 0 and f, g and h are the corresponding
ones to f̄ , ḡ and h̄. To shorten the notation, we write system (15) as

dζ

dt
= X (ζ, δ, σ ) = X0(ζ, δ, σ )+ δ p X1(δζ, δ, δσ ), ζ = (x, y, z). (16)

From now on, we will omit the dependence of α with respect to δ and σ .

Remark 2.2 Recall that b > 0, d > 0, The parameter δ > 0 is small and |σ | < d.
Without loss of generality, we assume thatα0 and c are positive constants. In particular,
for δ small enough, α(δ2, δσ ) will be also positive.

Since the functions f̄ , ḡ and h̄ are real analytic, the same happens for X1. We call
B3(r0)× B(δ0)× B(σ0) ⊂ C

3 × C
2 its analyticity domain.

2.1.2 Unperturbed System: σ = 0, X1 ≡ 0

Consider system (15) with σ = 0, f = g = h = 0. It is clear that it has rotational
symmetry. For our purposes it will be very useful to consider “symplectic” cylindric
coordinates:

x = √
2r cos θ, y = √

2r sin θ, z = z. (17)

The main reason is that this change of variables is volume-preserving. Therefore,
in the conservative case, after this change of variables the new vector field will be
conservative too. The unperturbed system writes out as:

dr

dt
= −2dr z,

dθ

dt
= −α

δ
− cz,

dz

dt
= −1 + 2br + z2. (18)

Since b > 0, the unperturbed system (18) has a two-dimensional heteroclinicmanifold
connecting S+(δ, 0) = (0, 0, 1) and S−(δ, 0) = (0, 0,−1) given by:

{
(r, z) ∈ R

2 : −1 + 2br

d + 1
+ z2 = 0

}
.
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This manifold can be parameterized for t ∈ R by the solutions of the unperturbed
system starting at time t = 0 on the plane z = 0 and with angular variable θ = θ0 ∈
[0, 2π) by:

r = R0(t) := (d + 1)

2b

1

cosh2(dt)
, (19)

θ = �0(t, θ0) := θ0 − α

δ
t − c

d
log cosh(dt),

z = Z0(t) := tanh(dt). (20)

Remark 2.3 For bounded ‖ξ‖, with ξ = (x, y, z, 1, σ ), f (δξ), g(δξ), h(δξ) =
O(δ3). Thus, using classical perturbation methods, one can easily see that the differ-
ence between the two-dimensional invariant manifolds is of order O(σ )+ O(δ p+3).
Therefore, if σ is not of order δ p+3, this difference is not exponentially small in δ.
For this reason, in the rest of the paper we assume that |σ | ≤ σ ∗δ p+3, for some
constant σ ∗, since the exponentially small case is the only one where the Shilnikov
phenomenon can occur, see (Dumortier et al. 2013).

Analogous considerations were done in the introduction for the generic case p =
−2 (see (10)).

From now on, we will omit the dependence of α with respect to δ and σ .

2.2 Local Parameterizations of the Invariant Manifolds

System (16) has two equilibrium points S±(δ, σ ) of saddle-focus type, see (Baldomá
et al. 2013) for instance, and also Lemma 4.1. The goal in this subsection is to provide
good parameterizations for the two-dimensional invariant manifolds associated with
S±(δ, σ ).

It is useful to write system (16) in symplectic cylindric coordinates (17):

dr

dt
= 2r(σ − dz)+ δ pF(δr, θ, δz, δ, δσ ),

dθ

dt
= −α

δ
− cz + δ pG(δr, θ, δz, δ, δσ ),

dz

dt
= −1 + 2br + z2 + δ pH(δr, θ, δz, δ, δσ ),

(21)

where X1 = (F,G,H) is defined as

X1(δr, θ, δz, δ, δσ ) =
⎛
⎜⎝

√
2r cos θ

√
2r sin θ 0

− 1√
2r

sin θ 1√
2r

cos θ 0

0 0 1

⎞
⎟⎠ X1(δζ, δ, δσ ) (22)

being ζ = (√2r cos θ,
√
2r sin θ, z).

Let us explain how we construct good parameterizations of the invariant manifolds
which will be solutions of the same equation. The experts in the field know this is a key
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point to prove the exponential smallness of their difference. Due to the geometry of the
unperturbed system, it seems natural to write them as graphs over z and the angular
variable θ (see Fig. 2). However, we will not do exactly that, but instead we will
introduce a new variable u defined by: u = Z−1

0 (z) = d−1atanh(z), or equivalently
z = Z0(u) (recall that Z0 was defined in (20)). The invariant manifolds in symplectic
polar coordinates will be parameterized by:

r = ru,s(u, θ), z = Z0(u), (23)

or in Cartesian coordinates

x = √
2ru,s(u, θ) cos θ, y = √

2ru,s(u, θ) sin θ, z = Z0(u).

This method, being very useful for our purposes, has some drawbacks. For example,
it is obvious that z = Z0(u) → ±1 as u → ±∞. Thus, if the z-component of the
equilibrium points S±(δ, σ ) is not equal to ±1, respectively, these parameterizations
will not work for large values of |u|. Nevertheless, we will prove that these parame-
terizations exist for bounded values of u.

Now we give the invariance equation that the parameterizations ru,s satisfy. To
simplify the notation, we introduce

X̄1(r)(u, θ) = X1(δ(R0(u)+ r(u, θ)), θ, δZ0(u), δ, δσ ), X̄1 = (F,G, H) (24)

for a given function r(u, θ). To avoid cumbersome notations, if there is no danger of
confusion, we will omit the dependence on variables (u, θ). Using this notation, the
parameterizations ru,s have to satisfy the following PDE:

dθ

dt
∂θr + du

dt
∂ur = 2(σ − dZ0(u))r + δ pF(r − R0(u)),

and, using Eq. (21) and that dudt = d−1(1 − Z2
0(u))

−1 dz
dt :

(
−α
δ

− cZ0(u)+ δ pG(r − R0(u))
)
∂θ r +

(−1 + 2br + Z2
0(u)+ δ pH(r − R0(u))

d(1 − Z2
0(u))

)
∂ur

=2(σ − dZ0(u))r + δ pF(r − R0(u)). (25)

Since it is reasonable to consider system (21) as a perturbation of the unperturbed
system (18) (σ = 0 and X1 = 0) studied in Sect. 2.1.2, we impose that ru,s(u, θ) =
R0(u)+ ru,s1 (u, θ), where R0 is given in (19). Using the relations

R′
0(u) = −2dR0(u)Z0(u), −1 + 2bR0(u)+ Z2

0(u) = d(1 − Z2
0(u)),
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and putting all terms which are either small or nonlinear in ru,s1 in the right-hand side
of the equality and the remaining terms in the left, Eq. (25) writes out as

L(r1) = F(r1), (26)

where L and F are the differential operators defined by:

L(r) :=
(
−δ−1α − cZ0(v)

)
∂θr + ∂ur − 2Z0(u)r, (27)

F(r) :=2σ(R0(u)+ r)+ δ pF(r)+ δ p d + 1

b
Z0(u)H(r)

− δ pG(r)∂θr −
(
2br + δ pH(r)
d(1 − Z2

0(u))

)
∂ur. (28)

We now define the complex domains in which ru,s1 (and therefore ru,s) will be
defined. We first deal with the unstable case. We want these domains to be close to the
singularities of the heteroclinic connection of the unperturbed system (see (19)–(20))
closest to the real line. These are ± iπ

2d . Moreover, it will be convenient that these
domains have a triangular shape. To this aim, let 0 < β < π/2 and κ∗ > 0 be two
constants independent of δ and σ . Take κ = κ(δ) any function satisfying that for
0 < δ < 1:

κ∗δ ≤ κδ < π

8d
. (29)

Then we define the domain (see Fig. 5a):

Du
κ,β =

{
v ∈ C : |Im v| ≤ π

2d
− κδ − tan βRe v

}
. (30)

We will split the domain Du
κ,β in two subsets. Let T > 0 be any constant independent

of β, κ∗, δ and σ . We introduce (see Fig. 5a):

Du
κ,β,∞ =

{
v ∈ Du

κ,β : Re v ≤ −T
}
, Du

κ,β,T =
{
v ∈ Du

κ,β : Re v ≥ −T
}
.

Analogously, for the stable case we define (see Fig. 5b):

Ds
κ,β = −Du

κ,β, Ds
κ,β,∞ = −Du

κ,β,∞, Ds
κ,β,T = −Du

κ,β,T .

For any fixed real ω > 0, we also define the complex domains:

Tω := {θ ∈ C/(2πZ) : |Im θ | ≤ ω} . (31)

The next result gives the main properties of the functions ru,s1 .

Theorem 2.4 Let p ≥ −2, σ ∗ > 0 and 0 < β < π/2 be any constants. There exist
κ∗ ≥ 1, δ∗ > 0, such that for all 0 < δ ≤ δ∗, if κ = κ(δ) satisfies condition (29) and
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(a) (b)

Fig. 5 The outer domains Du
κ,β and Ds

κ,β . a Outer domain Du
κ,β for the unstable case with subdomains

Du
κ,β,T and Du

κ,β,∞. b Outer domain Ds
κ,β for the stable case with subdomains Ds

κ,β,T and Ds
κ,β,∞

|σ | ≤ σ ∗δ p+3, the unstable manifold of S−(δ, σ ) and the stable manifold of S+(δ, σ )
are given, respectively, by:

ζ u,s(u, θ) = (√2ru,s(u, θ) cos θ,
√
2ru,s(u, θ) sin θ, Z0(u)), (u, θ) ∈ Du,s

κ,β,T × Tω

with ru,s(u, θ) = R0(u)+ ru,s1 (u, θ) and r
u,s
1 satisfying Eq. (26).

Let us introduce

η∓(w) = αw ∓ δ(cw ∓ cd−1 log(1 + e±2dw)).

We decompose ru,s1 into ru,s1 = ru,s10 + ru,s11 being

ru,s10 (u, θ) = cosh
2
d (du)

∫ u

∓∞
F(0) (w, θ − δ−1

(
η∓(w)− η∓(u)

))

cosh
2
d (dw)

dw,

with F in (28) and we take − in the unstable case and + in the stable one.
Then, there exists M > 0 such that for all (u, θ) ∈ Du,s

κ,β,T × Tω:

|ru,s10 (u, θ)| ≤ Mδ p+3| cosh(du)|−3

|ru,s11 (u, θ)| ≤ M
(
δ2p+6| cosh(du)|−4 + δ p+4| cosh(du)|−1

)
,

and:

|∂uru,s1 (u, θ)| ≤ Mδ p+3| cosh(du)|−4, |∂θru,s1 (u, θ)| ≤ Mδ p+4| cosh(du)|−4.

In addition, the function ru,s10 is defined in the full domain Du,s
κ,β × Tω.
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The proof of this Theorem can be found in Sect. 4.2. We stress that this result is also
valid in the singular case p = −2.

2.3 The Melnikov Function

Our final aim is to find an asymptotic formula of the difference� = ru−r s = ru1 −r s1.
Recall that by Theorem 2.4 we have:

�(u, θ) = ru10(u, θ)− r s10(u, θ)+ ru11(u, θ)− r s11(u, θ).

Theorem 2.4 suggests that ru10 and r
s
10 are larger than r

u
11 and r

s
11. Hence, it is natural to

expect that the first order of the difference is given by the difference of these dominant
terms. That is, we expect that:

�(u, θ) = ru10(u, θ)− r s10(u, θ)+ h.o.t.

Wewill see that this approach is valid for p > −2, that is, for non-generic unfoldings.
We postpone the study of the case p = −2 to Baldomá et al. (2016), where we will
see that this assumption is not true.

Let us consider the difference ru10 − r s10, which is 2π−periodic in θ , so that we can
write its Fourier series:

M(u, θ) := ru10(u, θ)− r s10(u, θ) =
∑
l∈Z

M [l](u)eilθ . (32)

We introduce η(w) = αw + δcd−1 log(cosh dw). We observe that, for real values of
u, w, η(w)−η(u) = η∓(w)−η∓(u), with η∓ introduced in Theorem 2.4. Therefore,
using the formula for ru,s10 in the mentioned result, we have that

M(u, θ) = cosh
2
d (du)

∫ +∞

−∞
F(0) (w, θ − δ−1

(
η(w)− η(u)))

cosh
2
d (dw)

dw, (33)

which is the Melnikov function adapted to this problem. As F(0)(u, θ) is periodic in
θ , the coefficients M [l](u) for u ∈ R are:

M [l](u) = cosh
2
d (du)eilδ

−1η(u)
∫ +∞

−∞
e−ilδ−1η(w)F [l](0)(w)

cosh
2
d (dw)

dw. (34)

Moreover, from (34) it is clear that we can write series (32) as:

M(u, θ) = cosh
2
d (du)

∑
l∈Z
ϒ

[l]
0 eil(θ+δ−1αu+cd−1 log cosh(du)), (35)
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where ϒ [l]
0 are the constants:

ϒ
[l]
0 =

∫ +∞

−∞
e−il(δ−1αw+cd−1 log cosh(dw))F [l](0)(w)

cosh
2
d (dw)

dw. (36)

In addition M [l](u) = cosh
2
d (du)eil(δ

−1αu+cd−1 log cosh(du))ϒ
[l]
0 .

In the following theorem we provide upper bounds for ϒ [l]
0 for |l| ≥ 2 and closed

formulas forϒ [1]
0 andϒ [−1]

0 in terms of the Borel transform of some functions depend-

ing on the perturbation terms.We also prove that (besides the averageϒ [0]
0 ) they are the

dominant coefficients of M . To this purpose, we recall that given a function m(w, θ)
such that for some k ∈ R can be written of the formm(w, θ) = ∑

n≥0 mn(θ)w
n+1+ik ,

with mn , periodic in θ , we define its Borel transform m̂(ζ, θ) as:

m̂(ζ, θ) =
∑
n≥0

mn(θ)
ζ n+ik

�(n + 1 + ik)
. (37)

To avoid a cumbersome notation, we introduce

w(w, θ) =
(√

d + 1

b
w cos θ,

√
d + 1

b
w sin θ,−iw, 0, 0

)

and F̃(w, θ) = cos θ f (w(w, θ)) + sin θg(w(w, θ)) with f and g the perturbation
terms in system (15).

Theorem 2.5 Consider the 2π -periodic in θ function

m(w, θ) =
√
d + 1

b
w1+ 2

d+i cd

(
F̃(w, θ)− i

√
d + 1

b
h(w(w, θ))

)
. (38)

Let m̂(ζ, θ)be its Borel transformas defined in (37)and m̂[1] its first Fourier coefficient.
Then, writing C = C1 − iC2 = 4π

d m̂[1] (α
d

)
, C1, C2 ∈ R,

ϒ
[1]
0 = ϒ [−1]

0 = δ p− 2
d−i cd e− απ

2dδ

(C
2

+ O(δ)
)
.

Moreover, there exists a constant K such that:

∣∣∣ϒ [l]
0

∣∣∣ ≤ K δ p−
2
d e− απ

2dδ
3|l|
4 , |l| ≥ 2. (39)
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In conclusion, defining ϑ(u, δ) = δ−1αu + cd−1
[
log cosh(du)− log δ

]
for u ∈ R

and θ ∈ S
1 one has that:

M(u, θ) = cosh
2
d (du)

[
ϒ

[0]
0 (40)

+ δ p− 2
d e− απ

2dδ

(
C1 cos(θ + ϑ(u, δ))+ C2 sin(θ + ϑ(u, δ))+ O(δ)

)]
.

The proof of this result can be found in Sect. 3.1.
Due to the exponential smallness ofϒ [l]

0 , |l| ≥ 1, the dominant term of theMelnikov

function for real values of u is its average ϒ [0]
0 . We will give more details about this

coefficient in Sect. 2.6, Theorem 2.9.

Remark 2.6 An immediate corollary of Theorem 2.5 is Proposition 1.4. Indeed, on
the one hand, by its definition, the constant C depends only on the singularity HZ∗.
On the other hand, C �= 0 if and only if m̂[1] (α

d

) �= 0, which is a generic condition.

2.4 The Difference

In this section we study the difference �(u, θ) = ru1 (u, θ) − r s1(u, θ). We give only
the main result and some intuitive ideas of the proof. For all the details we refer the
reader to Sect. 5.

First,wefind an equation for the difference�. To this aim,we subtract thePDEs (26)
for ru1 and r s1, and then using the mean value theorem, we obtain an equation of the
following form:

( − δ−1α − cZ0(u)
)
∂θ�+ ∂u�− 2Z0(u)�

= (2σ + l1(u, θ))�+ l2(u, θ)∂u�+ l3(u, θ)∂θ�. (41)

Here the functions l1, l2, l3 are “small” in the appropriate sense.More precisely, denot-
ing rλ = (ru1 + r s1)/2 + λ(ru1 − r s1)/2, the functions li are:

l1(u, θ) = δ
p

2

∫ 1

−1
∂r F(rλ)dλ+ δ p(d + 1)

2b
Z0(u)

∫ 1

−1
∂r H(rλ)dλ

− δ p

2

∫ 1

−1
∂rG(rλ)∂θrλdλ− δ p

2d(1 − Z2
0(u))

∫ 1

−1
∂r H(rλ)∂urλdλ

− b

d(1 − Z2
0(u))

(∂ur
u
1 + ∂ur s1), (42)

l2(u, θ) = − b

d(1 − Z2
0(u))

(ru1 + r s1)−
δ p

2d(1 − Z2
0(u))

∫ 1

−1
H(rλ)dλ, (43)
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Fig. 6 The domain Dκ,β

l3(u, θ) = − δ p

2

∫ 1

−1
G(rλ)dλ. (44)

The precise meaning of “small” will be given in Lemma 5.2.
Recall that ru1 and r s1 are defined, respectively, in the domains Du

κ,β,T × Tω and
Ds
κ,β,T × Tω. Thus, their difference will be defined in the intersection of these two

domains. So, from now on we will consider (u, θ) ∈ Dκ,β × Tω, where we define
Dκ,β as (see Fig. 6):

Dκ,β = Du
κ,β,T ∩ Ds

κ,β,T . (45)

Now, we study all the solutions of Eq. (41). First we notice that, by the so-called
method of variation of constants, every solution � of (41) can be written as:

�(u, θ) = P(u, θ)k(u, θ), (46)

where P is a particular solution of this same equation satisfying P(u, θ) �= 0, and
k(u, θ) satisfies the associated homogeneous PDE:

(
−δ−1α − cZ0(u)

)
∂θk + ∂uk = l2(u, θ)∂uk + l3(u, θ)∂θk. (47)

Let us now mention some properties of these functions k and P .
To study the function k we shall rely on the form of Eq. (47). One of its main

features is that if ξ is a particular solution of (47) such that (ξ(u, θ), θ) is injective in
Dκ,β × Tω, then any solution k of (47) can be written as:

k(u, θ) = k̃(ξ(u, θ)),

for some function k̃(τ ). As a consequence of (46) and of the above equality

�(u, θ) = P(u, θ)k̃(ξ(u, θ)) (48)
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with P a particular solution of (41) and ξ a particular solution of (47).
Since the functions li are “small,” Eq. (47) is a perturbation of:

(
−δ−1α − cZ0(u)

)
∂θk + ∂uk = 0.

A solution of this equation is given by ξ0(u, θ) = θ + δ−1αu + cd−1 log cosh(du).
Then, we look for a solution of (47) of the form:

ξ(u, θ) = θ + δ−1αu + cd−1 log cosh(du)+ C(u, θ), (49)

where, as expected, C will be a “small” function.
Notice that, if the existence of ξ of the form (49) can be proven then the function

k̃(τ ) has to be 2π -periodic in its argument. Indeed, since k is 2π -periodic in θ one has
that k̃(ξ(u, θ+2π)) = k̃(ξ(u, θ)). The claim follows from the fact that ξ(u, θ+2π) =
ξ(u, θ)+ 2π .

To study the particular solution P of (41) we note that, being σ = O(δ p+3) and li
“small,” Eq. (41) is a perturbation of:

(
−δ−1α − cZ0(u)

)
∂θ�+ ∂u�− 2Z0(u)� = 0.

A solution of this equation is given by P0(u) = cosh2/d(du). Therefore, we look for
a particular solution of (41) of the form:

P(u, θ) = cosh2/d(du)(1 + P1(u, θ)),

where P1(u, θ) will be “small.”
As a conclusion of all the previous considerations, one obtains the following result,

which characterizes the form of the difference � as well as the sizes of the functions
P1 and C described above.

Theorem 2.7 Let p ≥ −2 and |σ | ≤ δ p+3σ ∗. The difference � can be written as:

�(u, θ) = P(u, θ)k̃(ξ(u, θ)) = cosh2/d(du)(1 + P1(u, θ))k̃(ξ(u, θ)), (50)

where k̃(τ ) is a 2π−periodic function, the function ξ is a solution of (47) defined as:

ξ(u, θ) = θ + δ−1αu + cd−1 log cosh(du)+ C(u, θ), (51)

and it is such that (ξ(u, θ), θ) is injective in Dκ,β × Tω. In addition, P is a solution
of (41) and P1 and C are real analytic functions, defined in Dκ,β × Tω such that:

1. There exist L0 ∈ R and functions L(u) and χ(u, θ) such that

C(u, θ) = δ p+2d−1αL0 log cosh(du)+ αL(u)+ χ(u, θ), (52)

123

Author's personal copy



J Nonlinear Sci

where, for all (u, θ) ∈ Dκ,β × Tω:

|L(u)| ≤ Mδ p+2, |L ′(u)| ≤ Mδ p+2, |χ(u, θ)| ≤ Mδ p+3

| cosh(du)| , (53)

for some constant M. L0 and L(u) are determined by a finite number of Taylor
coefficients of the functions f , g and h appearing in (15). Formulas for L0 and
L(u) are given in Remark 5.7. Moreover, L(0) = 0, L(u) can be analytically
extended to D0,β and it is well defined on the limit u → ±iπ/(2d), u ∈ D0,β .

2. There exists a constant M such that for all (u, θ) ∈ Dκ,β × Tω:

|P1(u, θ)| ≤ Mδ p+3

| cosh(du)| . (54)

Moreover, in the conservative case P1 can be chosen as:

P1(u, θ) = ∂uC(u, θ)− l3(u, θ)

δ−1α + cZ0(u)+ l3(u, θ)
,

where l3(u, θ) is given by (44).

The proof of this result can be found in Sect. 5.

Remark 2.8 Notice that, if p = −2, the logarithmic term in the function C (see (52))
has the same size as the corresponding one in definition (51) of ξ . However, when
p > −2, the function C is indeed a perturbation term of order O(δ p+2| log δ|) over
complex values of u.

In fact, when p > −2, we do not need the exact form (52) of C , we only need to
know that |C(u, θ)| ≤ K δ p+2 when u ∈ R which is easier to check. However, it is
mandatory in the generic case p = −2.

2.5 Sharp Upper Bound

Even though this is not the final goal of this work, which deals with asymptotic
expressions, in Proposition 2.12 of this section, we provide an upper bound for�(u, θ)
when u, θ ∈ R. On the one hand, we will gain some intuition about the main problems
we will have to overcome, and on the other hand, some of the results proven in this
section will be used in the proof of Theorem 1.1.

A straightforward consequence of Theorem 2.7 is that:

�(u, θ) = cosh2/d(du)(1 + P1(u, θ))
∑
l∈Z
ϒ [l]eilξ(u,θ), (55)

where P1 and ξ are given in Theorem 2.7 and ϒ [l], the Fourier coefficients of the
function k̃(τ ), are unknown. They depend on δ and σ although we do not write it
explicitly.
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Now we are going to study separately the average ϒ [0] in Theorem 2.9 (in fact this
result also deals with the average ϒ [0]

0 of the Melnikov function) and the rest of the
Fourier coefficients ϒ [l], l �= 0 in Lemma 2.11. The sharp upper bound for�(u, θ) is
a straightforward consequence of these results.

Theorem 2.9 Let p ≥ −2. Let ϒ [0] be the average of the function k̃(τ ), given in
Theorem 2.7, and ϒ [0]

0 be the constant defined in (36).

1. In the conservative case, for all 0 < δ < δ0 one has:

ϒ [0] = 0, ϒ
[0]
0 = 0.

2. In the general case, for all 0 < δ < δ0 and |σ | ≤ δ p+3σ ∗

ϒ [0] = ϒ [0]
0 + O(δ p+4), ϒ

[0]
0 = σ I + δ p+3 J̄ (δ, σ ), (56)

being I �= 0 independent of δ and σ and J̄ = J + O(δ) given in (90) and (91),
respectively.
In addition, there exists a curve

σ = σ 0∗ (δ) = − J

I
δ p+3 + O(δ p+4)

such that for all 0 ≤ δ ≤ δ0 one has:

ϒ [0] = ϒ [0](δ, σ 0∗ (δ)) = 0.

Moreover, given constants a1, a2 ∈ R and a3 > 0, there exists a curve

σ = σ∗(δ) = σ 0∗ (δ)+ O(δa2e− a3π
2dδ ) (57)

such that for all 0 ≤ δ ≤ δ0 one has:

ϒ [0] = ϒ [0](δ, σ∗(δ)) = a1δ
a2e− a3π

2dδ .

Along these curves one has:

ϒ
[0]
0 = ϒ [0]

0 (δ, σ∗(δ)) = O(δ p+4).

For the proof of this theorem we refer the reader to Sect. 3.2. We stress that the
item 1 is standard in the usual scenarios of Hamiltonian or reversible vector fields and
symplectic maps. However, in our setting, the proof involves delicate arguments.

Remark 2.10 In the general case, let us now fix some constants a+
1 > 0 and a−

1 < 0
as in the previous theorem. Fix also a+

2 , a
−
2 ∈ R and a+

3 , a
−
3 > 0. Define σ+∗ (δ) as

the curve of Theorem 2.9 corresponding to the constants a+
1 , a

+
2 and a+

3 , and σ
−∗ (δ)
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Fig. 7 The curve σ = σ 0∗ (δ)
and a wedge-shaped domain W
around it. Inside this domain, the
coefficient ϒ [0] is exponentially
small

as the curve in of Theorem 2.9 corresponding to the constants a−
1 , a

−
2 and a−

3 . By (57)
one has that σ−∗ (δ) ≤ σ 0∗ (δ) ≤ σ+∗ (δ) for δ sufficiently small. Define the domain:

W := {(δ, σ ) ∈ R
2 : σ−∗ (δ) < σ < σ+∗ (δ)}

in the parameter plane. This domain is a wedge-shaped domain around σ 0∗ (δ) (see
Fig. 7). Moreover, there exists δ0 > 0 such that for all 0 < δ < δ0 and (δ, σ ) ∈ W , by
(56), the coefficient ϒ [0](δ, σ ) is exponentially small. More precisely, let us denote
ā3 = min{a+

3 , a
−
3 }. Define ā1 = a+

1 and ā2 = a+
2 if the minimum is achieved in a+

3 ,
otherwise we take ā1 = a−

1 and ā2 = a−
2 . Then:

|ϒ [0](δ, σ )| ≤ |ā1|δā2e− ā3π
2dδ , if 0 < δ < δ0, (δ, σ ) ∈ W.

Now we are going to deal with the Fourier coefficients ϒ [l], with l �= 0. From
expression (55) of �, one can see that ϒ [l] are exponentially small with respect to δ.
Indeed, as a first exploration, we can consider the case P1 = χ ≡ 0. This case can
give some insight since, as one can see from the bounds of P1 and χ given in (54)
and (53), respectively, they are “small” functions when we take large κ . If we make
this simplification, using expression (55) of �:

�(u, θ) = cosh2/d(du)
∑
l∈Z
ϒ [l]eil(θ+ξ̃ (u)

with ξ̃ (u) = δ−1αu + d−1(c+ δ p+2αL0) log cosh(du)+ αL(u) (see formula (51) of
ξ and take χ ≡ 0). Then we have that ϒ [l]eil ξ̃ (u) are the Fourier coefficients of the
function �(u, θ) cosh−2/d(du). In other words:

∣∣∣ϒ [l]
∣∣∣ =

∣∣∣∣∣
e−il ξ̃ (u)

2π

∫ 2π

0

�(u, θ)e−ilθ

cosh2/d(du)
dθ

∣∣∣∣∣

≤
∣∣∣e−il ξ̃ (u)

∣∣∣ sup
θ∈[0,2π ]

∣∣∣∣
�(u, θ)

cosh2/d(du)

∣∣∣∣ .

We note that this inequality is valid for all u ∈ Dκ,β = Du
κ,β,T ∩ Ds

κ,β,T . In particular,
taking u = u+ := i(π/(2d) − κδ) for l < 0 and u = u− := −u+ for l > 0 and
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using that the constant L0 ∈ R and that Im log cosh(du±) = arg(cosh(du±)) = 0,
one obtains:

∣∣∣ϒ [l]
∣∣∣ ≤ K (κδ)−2/de−( απ2dδ−ακ−α|Im L(u±)|)|l| sup

θ∈[0,2π ]
|�(u±, θ)| .

Recalling that � = ru1 − r s1 and using that |ru,s1 (u±, θ)| ≤ Mδ pκ−3 by Theorem 2.4,
we obtain readily (renaming K ):

∣∣∣ϒ [l]
∣∣∣ ≤ K

δ p−2/d

κ3+2/d e
−( απ2dδ−ακ−α|Im L(u±)|)|l|.

In particular, there exists a constant K , independent of l such that:

∣∣∣ϒ [±1]
∣∣∣ ≤ K

δ p−2/d

κ3+2/d e
− απ

2dδ+ακ ,

and for |l| ≥ 2:

∣∣∣ϒ [l]
∣∣∣ ≤ K

δ p−2/d

κ3+2/d e
− απ

2dδ
3|l|
4 ,

where we have used that δ|Im L(u±)| is arbitrarily small by bound (53) and condi-
tion (29) on κ .

The following result, whose proof is postponed to Sect. 3, states that the same
exponentially small bounds hold when P1(u, θ) �= 0 and χ(u, θ) �= 0.

Lemma 2.11 Let ϒ [l], l ∈ Z, l �= 0, be the coefficients appearing in expression (55)
of �. Take κ as in Theorem 2.4. There exists a constant M, independent of κ such
that:

∣∣∣ϒ [±1]
∣∣∣ ≤ M

δ p−2/d

κ3+2/d e
− απ

2dδ+ακ ,
∣∣∣ϒ [l]

∣∣∣ ≤ M
δ p−2/d

κ3+2/d e
− απ

2dδ
3|l|
4 , |l| ≥ 2

As a consequence of this result we obtain the sharp upper bound:

Proposition 2.12 Let p ≥ −2, κ be as in Theorem 2.4 and |δ| ≤ δ0. In the general
case we take |σ | ≤ δ p+3σ ∗. Let ϒ [0] = ϒ [0](σ, δ) be the constant provided by
Theorem 2.9. In the conservative case ϒ [0] = 0. Then, for real values of u and θ :

|�(u, θ)| ≤ cosh2/d(du)

(
|ϒ [0]| + M

δ p−2/d

κ3+2/d e
− απ

2dδ+ακ
)
.

for some constant M.
Moreover, in the conservative case, or in the general case if we take the parameters

(δ, σ ) in a wedge-shaped domain W around σ 0∗ (δ) as in Remark 2.10, the distance
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between themanifolds is exponentially small. In particular, if we choose the parameters
a±
3 > α, a

±
2 > p − 2/d, for (δ, σ ) ∈ W one has:

|�(u, θ)| ≤ M̃ cosh2/d(du)δ p−2/de− απ
2dδ ,

for some constant M̃. The bound is also valid in the conservative case taking d = 1.

2.6 First Order of the Difference: End of the Proof of Theorem 1.1

In this section we provide Theorem 2.14 and Corollary 2.17. The former gives a first
order of the difference �(u, θ) also studied in Theorem 2.7 and the latter a measure
of the domain where heteroclinic transversal intersections occur. Moreover, we will
give the proof of Theorem 1.1 and Corollary 1.3 as corollaries of Theorem 2.14 and
Corollary 2.17, respectively.

Recall that ϒ [0] is the average of the function k̃(τ ) of Theorem 2.7. Since we want
to obtain (non-sharp) results also in the case p = −2, we define:

k̃0(τ ) := ϒ [0] +
∑
l �=0

ϒ̂
[l]
0 eilτ , ϒ̂

[l]
0 = ϒ [l]

0 e−ilαd−1L0δ
p+2 log δ, (58)

where L0 ∈ R is given in Theorem 2.7 and ϒ [l]
0 are the constants appearing in the

Fourier coefficients of the Melnikov function, defined in (36). Our candidate to be the
first order of the difference is:

�0(u, θ) = cosh2/d(du)(1 + P1(u, θ))k̃0(ξ(u, θ)), (59)

with ξ defined in (51). We note that we have not chosen the average of k̃0 to be
the coefficient ϒ [0]

0 appearing in the average of the Melnikov function (as one might
expect) but ϒ [0], the average of k̃(τ ) in Theorem 2.7.

Thenext result shows thatϒ [±1], theFourier coefficients of k̃, arewell approximated
by ϒ̂ [±1], the Fourier coefficients of k̃0 defined in (58). The proof of this Proposition
is done in Sect. 3.4.

Proposition 2.13 Let p ≥ −2 and κ a sufficiently large constant. Let ϒ [±1] be the
Fourier coefficients of order ±1 of k̃(τ ), in Theorem 2.7, and ϒ̂ [±1]

0 the ones given
in (58). Then there exists a constant M such that:

∣∣∣ϒ [±1] − ϒ̂ [±1]
0

∣∣∣ ≤ M

(
| log κ|
κ4+ 2

d

δ
2
(
p+1− 1

d

)
+ δ p+3− 2

d

κ1+ 2
d

)
e− α

δ (
π
2d−κδ),

where we assume that, in the general case, |σ | ≤ δ p+3σ∗. Recall that d = 1 in the
conservative case

Now we can state the theorem which gives the asymptotic for the difference of the
invariant manifolds � = ru1 − r s1.
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Theorem 2.14 Let p ≥ −2, and 0 < δ < δ0. Consider the functionsm(w, θ), ϑ(u, δ)
and the constantsC1, C2 defined inTheorem2.5. In the general case take |σ | ≤ δ p+3σ ∗.
Let ϒ [0] = ϒ [0](σ, δ) be the constant provided by Theorem 2.9. In the conservative
case recall that ϒ [0] = 0.

There exists T0 > 0 such that for all u ∈ [−T0, T0] and θ ∈ S
1

�(u, θ) = cosh
2
d (du)ϒ [0](1 + O

(
δ p+3

) )

+ δ p−
2
d cosh

2
d (du)e− απ

2dδ

[
C1 cos

(
θ + ϑ(u, δ)− αd−1L0δ

p+2 log δ
)

+ C2 sin
(
θ + ϑ(u, δ)− αd−1L0δ

p+2 log δ
)

+ O
(
δ p+2 + δ3

) ]
,

where we recall that d = 1 in the conservative case.

Remark 2.15 Even though this result is valid for p ≥ −2, it only provides an asymp-
totic formula for � in the case p > −2. However, when p = −2, it gives an upper
bound which coincides with the one given in Proposition 2.12.

Remark 2.16 Observe that if we take the parameters (σ, δ) belonging to one of the
curves given in Theorem 2.9 with a3 > 0 we obtain that the distance �(u, θ) =
O(e− a3π

2dδ , e− απ
2dδ ) and, therefore, it is exponentially small.

Proof Recalling definition (59) of �0 and the form (50) of � given in Theorem 2.7,
we can write: �(u, θ) = �0(u, θ)+�1(u, θ), where

�1(u, θ) = cosh
2
d (du)(1 + P1(u, θ))

∑
l �=0

(
ϒ [l] − ϒ̂ [l]

0

)
eilξ(u,θ). (60)

First of all we note that since we are taking u ∈ [−T0, T0] and θ ∈ S
1 we have

that all the functions are real and bounded. Then, using Proposition 2.13 to bound(
ϒ [±1] − ϒ̂ [±1]

0

)
, Lemma 2.11 to bound |ϒ [l]| and Theorem 2.5 to bound |ϒ̂ [l]

0 | for
|l| ≥ 2, we obtain

|�1(u, θ)| ≤ K

(
δ
2
(
p+1− 1

d

)
+ δ p+3− 2

d

)
e− απ

2dδ .

Again, we omit the explicit dependence on κ . Since �1 has the size of the remainder
in the asymptotic expansion for �, we only need to deal with �0.

Recall that by (58), ϒ̂ [l]
0 = ϒ

[l]
0 e−ilαd−1L0δ

p+2 log δ so that both have the same

modulus. Then, by the bounds obtained in Theorem 2.5 for the coefficientsϒ [l]
0 , l �= 0

and using the expression (59) of �0 one has that

�0(u, θ) = cosh
2
d (du)(1 + P1(u, θ))

[
ϒ [0] + 2Re

(
ϒ̂

[1]
0 eiξ(u,θ)

)

+ O
(
δ p−

2
d e− 3απ

4dδ

)]
.
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Again, using formula for ϒ [1]
0 in Theorem 2.5 as well as Theorem 2.7 for ξ one has

that

ϒ̂
[1]
0 eiξ(u,θ) = δ p− 2

d e− απ
2dδ

(C
2
ei(θ+αδ−1u+ c

d log(cosh du)− 1
d [c+αL0δ

p+2] log δ) + O(δ p+2)

)

and the result follows taking C1 = Re (C), and C2 = −Im (C), since by Theorem 2.7,
|P1(u, θ)| ≤ K δ p+3 for u ∈ R. ��
Corollary 2.17 Take T0 > 0, and 0 < δ < δ0. Consider the curve σ 0∗ (δ) given in

Theorem 2.9. Take the constants a±
1 = ±

√
C21 + C22 > 0, a±

2 = p − 2/d and a±
3 =

α. Define σ±∗ (δ) as the curves in of Theorem 2.9 corresponding to these constants.
Consider the wedge-shaped domain around σ 0∗ (δ) (see Fig. 7):

W∗ := {(δ, σ ) ∈ R
2 0 < δ < δ0 : σ−∗ (δ) < σ < σ+∗ (δ)}

in the parameter plane. Then, for (δ, σ ) ∈ W∗, and for fixed u ∈ [−T0, T0], the
function �∗(θ) = �(u, θ) is exponentially small and has two simple zeros which
give rise to two transversal heteroclinic orbits between the points S±(δ, σ ). Moreover,
for (δ, σ ) /∈ W∗, �∗(θ) has no zeros and therefore the two-dimensional stable and
unstable manifolds of S±(μ, ν) do not intersect.

Proof This corollary is an easy consequence of the implicit function theorem applied
to formula �(u, θ) = 0 given in Theorem 2.14 and using that, for (δ, σ ) ∈ W∗, one
has that

|ϒ [0]| ≤
√
C21 + C22 δ p−

2
d e− απ

2dδ .

��
Theorem 2.14 and Corollary 2.17 easily yield Theorem 1.1 and Corollary 1.3:

End of the proof of Theorem 1.1 and Corollary 1.3 We point out that �(u, θ) is not
the actual distance between the invariant manifolds, since we computed the difference
in “symplectic” cylindric coordinates. The actual distance is given by:

D(u, θ) =
√
2(R0(u)+ ru1 (u, θ))−

√
2(R0(u)+ r s1(u, θ))

= 1√
2R0(u)

�(u, θ)+ O2(�(u, θ)).

Using definition (19) of R0(u) one obtains:

D(u, θ) =
√

b

d + 1
cosh(du)�(u, θ)+ O2(�(u, θ)).
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And using the results of Theorem 2.14 one obtains:

D(u, θ) =
√

b

d + 1
cosh

2
d+1(du)

{
ϒ [0] (1 + O(σ, δ p+3

)

+ δ p− 2
d e− απ

2dδ

[
C1 cos

(
θ + ϑ(u, δ)− αd−1L0δ

p+2 log δ
)

+ C2 sin
(
θ + ϑ(u, δ)− αd−1L0δ

p+2 log δ
)

+ O
(
δ p+2 + δ3

)]}

Where ϒ [0] is given in Theorem 2.9.
To obtain the formulas given in Theorem 1.1 and Corollary 1.3 we undo the change

of variables in Sect. 2.1, which gives D̄(u, θ) = √
μD(u, θ), we take into account

the notation δ = √
μ, σ = δ−1ν = ν/

√
μ, b = γ2, d = β1 and c = α3 (so that

the conservative case is proven). The wedge-shaped domain Wu,s is the domain W∗
expressed in terms of (μ, ν). ��

The remaining part of this work includes the proofs of the above results. However,
these proofs are not exposed in the order provided in this section. We have preferred to
postpone the most technical but standard demonstrations to the end of this work and
give priority to the ones involving the exponentially small behavior of the difference
�(u, θ) and of the Melnikov function M(u, θ) when u, θ ∈ R, namely, the results in
Sects. 2.3 and 2.6. As any expert in exponentially small phenomena knows, the results
for real values of u, θ are consequence of the results for complex values. Therefore, we
will perform the proofs of the above-mentioned results, assuming that the result about
the existence of complex parameterizations (Theorem 2.4) and the general form of the
difference �(u, θ) for complex values of u (Theorem 2.7) hold true. We will do this
in Sect. 3. Then, we will proof Theorems 2.4 and 2.7 in Sects. 4 and 5, respectively.

All the constants that appear in the statements of the following results might depend
on δ∗, σ ∗ and κ∗, but never on δ, σ and κ . We assume that δ∗ and σ ∗ are sufficiently
small, and κ∗ is sufficiently large satisfying condition (29). Finally, to make formulas
shorter and avoid keeping track of constants that do not play any role in the proofs,
we will use K to denote any constant independent of the parameters δ, σ and κ . These
conventions are valid for all the sections of this work.We shall not write the proofs that
are either for standard results or too technical and that do not provide any interesting
insight. For these proofs we refer the reader to Castejón (2015).

3 The Exponentially Small Behavior

We first begin with the results related to the exponentially small behavior for real
values of u. That is, Theorems 2.5 and 2.9 and Proposition 2.13.

3.1 The Melnikov Function: Proof of Theorem 2.5

Since for real values of (u, θ) the Melnikov function M(u, θ) ∈ R (see (33) for its

definition), one has thatϒ [−l]
0 = ϒ [l]

0 , where the coefficientsϒ [l]
0 were defined in (36).

Hence, we just compute ϒ [l]
0 with l > 0.
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For C ∈ R and l, n, Q ∈ N, we define the following integrals:

I l,Cn,Q =
∫ +∞

−∞
e−δ−1αi |l|s sinhn(ds)
coshQ+1+iC|l|(ds)

ds, Q + 1 > n. (61)

Let us denote by fqkmn , gqkmn and hqkmn the Taylor coefficients of f , g and h,
respectively, namely:

f (δx, δy, δz, δ, δσ ) =
∞∑
q=3

δq
∑

k+m+n≤q

fqkmn(σ )x
k ymzn, (62)

and analogously for g and h. In the following we shall write fqkmn instead of
fqkmn(σ ), but of course these coefficients still depend on σ . Note that one has
fqkmn = fqkmn(0) + O(σ ) = fqkmn(0) + O(δ p+3), since we just consider the case
|σ | ≤ σ ∗δ p+3.

Denote by a[l]
k,m the l-th Fourier coefficient of the function cosk θ sinm θ . Recalling

definition (28) of F , notation (24) and definition (22) of F and H, it can be seen that,
for l > 0, ϒ [l]

0 introduced in (36) writes out as:

ϒ
[l]
0 = ϒ [l]

0, f +ϒ [l]
0,g +ϒ [l]

0,h (63)

with,

ϒ
[l]
0, f = δ p

∞∑
q=3

∑
k+m+n≤q

δq fqkmn

(√
d + 1

b

)k+m+1

a[l]
k+1,m I

l,cd−1

n,k+m+n+2d−1 ,

ϒ
[l]
0,g = δ p

∞∑
q=3

∑
k+m+n≤q

δqgqkmn

(√
d + 1

b

)k+m+1

a[l]
k,m+1 I

l,cd−1

n,k+m+n+2d−1 ,

ϒ
[l]
0,h = δ p

∞∑
q=3

∑
k+m+n≤q

δqhqkmn

(√
d + 1

b

)k+m+2

a[l]
k,m I

l,cd−1

n+1,k+m+n+2d−1 ,

(64)

being I l,Cn,Q the integrals defined in (61). We are interested in bounding these integrals
for |l| ≥ 2:

Lemma 3.1 Let C be fixed. For any M > 0 there exist δ0, K > 0 satisfying that for
all 0 < δ < δ0, |l| ≥ 2, Q ≥ 1 and n such that Q + 1 > n, the following hold:

∣∣∣I l,Cn,Q

∣∣∣ ≤ KMQδ−Qe− απ
2dδ

3|l|
4 .
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Proof Take ρ > 0. Using Cauchy’s theorem, the integration path of the integrals I l,Cn,Q

can be changed to: s = s(t) := − i
d

(
π
2 − ρδ) + t , t ∈ (−∞,∞). Then one obtains:

I l,Cn,Q = e− α
d |l|( π2δ−ρ)

∫ +∞

−∞
e−δ−1αi |l|t sinhn(ds(t))
coshQ+1+iC|l|(ds(t))

dt. (65)

Since for z ∈ C, |zQ+1+iC|l|| ≥ |z|Q+1e−|Cl arg z| and | arg cosh(s(t))| ≤ π/2, then

| coshQ+1+iC|l|(ds(t))| ≥ | coshQ+1(ds(t))|e−|Cl| π2 .

Using this bound in expression (65) of I l,Cn,Q and standard arguments, one can prove
that there exists K > 0 (which is also independent of ρ) such that

∣∣∣I l,Cn,Q

∣∣∣ ≤ K Q+1(ρδ)−Qe− α
d |l|( π2δ−ρ−|C| π2 ).

The proof is finished taking ρ sufficiently large and δ sufficiently small. ��
Our goal nowwill be to find an asymptotic formula for the integrals I l,Cn,Q with l = 1,

which will dominate over the integrals with |l| ≥ 2. First of all, we give a recurrence
that is valid for all l �= 0. The proof follows integrating by parts.

Lemma 3.2 Let C be fixed. Then, for all l �= 0, n ≥ 1 and Q > 0 such that Q+1 > n,
the following recurrence holds:

I l,Cn,Q = −|l|αi
dδ(Q + iC |l|) I

l,C
n−1,Q−1 + n − 1

Q + iC |l| I
l,C
n−2,Q−2.

Now we summarize some properties of the Gamma function that will be needed
later on.

Lemma 3.3 Let z, A ∈ C. Then:

1. �(z)�(z) = |�(z)|2 .
2. (Stirling Formula) If | arg z| < π , then:

�(z) = e−ze

(
z− 1

2

)
log z
(2π)

1
2 (1 + O(z−1)).

3. If z = iy, y ∈ R, then:

|�(iy)| =
√
π

|y sinh(πy)|1/2 .

4. If | arg z| < π and |A| ≤ A∗ for some constant A∗, then:

�(z + A) = �(z)zA(1 + O(z−1)).
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5. There exists a constant M ≥ 3/2 and a function J (z, A) such that for all z ∈ C

with |z| ≥ 3, | arg z| < π , and all A ∈ R with A ≥ 1, one has:

�(z + A) = �(z)zA(1 + z−1 J (z, A)),

and |J (z, A)| ≤ M�(A).

Proof Every item above, except item 5, are standard facts, see for instance
in Abramowitz et al. (1964). To prove item 5, we use previous property for A∗ ≥ 3
and after that we proceed by induction. See the details in Castejón (2015). ��

Finally, we can give an asymptotic formula of I 1,Cn,Q .

Lemma 3.4 Let C be fixed. Then for all Q ≥ 1 and n ≥ 0 such that Q + 1 > n one
has:

I 1,Cn,Q = 2π

d

( α
dδ

)Q+iC (−i)n

�(Q + 1 + iC)
e− απ

2dδ + O
(( α

dδ

)Q−1
e− απ

2dδ

)
,

where the O means uniformly on n, Q and C.

Proof We first deal with the case n = 0 and after that we will proceed by induction.
Performing the change of variables w = tanh(ds), one has that:

I 1,C0,Q = 1

d

∫ 1

−1
(1 + w) d(Q−1+iC)−iδ−1α

2d (1 − w) d(Q−1+iC)+iδ−1α
2d dw.

Naming:

a = d(Q + 1 + iC)+ iδ−1α

2d
, b = Q + 1 + iC,

we can rewrite the last equation (see for instance Abramowitz et al. 1964) as:

I 1,C0,Q = 1

d

∫ 1

−1
(1 + w)b−a−1(1 − w)a−1dw = 2b−1d−1�(b − a)�(a)

�(b)
,

so that we can write:

I 1,C0,Q = 2Q+iCd−1
�C
Q

�(Q + 1 + iC)
, �C

Q := �(b − a)�(a). (66)

We now shall find an asymptotic expression for �C
Q . Let:

A = Q + 1

2
≥ 1, z± = i

dC ± δ−1α

2d
,
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so that b − a = A + z− and a = A + z+. We note that | arg z±| = π/2 < π and
that for sufficiently small δ one has |z±| ≥ 3. Then, by item 5 of Lemma 3.3 we have
�C
Q = �(A + z−)�(A + z+) and consequently:

�C
Q = zA+zA−�(z−)�(z+)

(
1 + 1

z+
J (z+, A)

)(
1 + 1

z−
J (z−, A)

)
,

with|J (z±, A)| ≤ M�(A). Now we are going to give the asymptotic behavior of the
above expression. We have that:

zA+zA− =
( α
2dδ

)Q+1
(
1 − d2C2δ2

α2

) Q+1
2

,

�(z−)�(z+) = 2π
( α
2dδ

)iC−1
e− πα

2dδ (1 + O(δ)),
(
1 + 1

z+
J (z+, A)

)(
1 + 1

z−
J (z−, A)

)
= 1 + |�(Q + 1 + iC)|e π |C |

2 O (δ) . (67)

The first equality is straightforward from definition. The second one has to be proven
by using items 3 and 2 of Lemma 3.3. The third one is the most involved. Taking into
account that |J (z±, A)| ≤ M |�(A)|, A = (Q + 1)/2 and that Q ≥ 1, one checks that

∣∣∣∣
(
1 + 1

z+
J (z+, A)

)(
1 + 1

z−
J (z−, A)

)
− 1

∣∣∣∣ ≤ K δ�(Q + 1). (68)

On the one hand, for C = 0 it is clear that (68) yields (67). On the other hand, for
C �= 0, we have that |�(Q + 1 + iC)| ≥ �(Q + 1)|C�(iC)|. Thus, using item 3 of
Lemma 3.3 we obtain:

�(Q + 1) ≤ |�(Q + 1 + iC)|| sinh(πC)|1/2
(π |C |)1/2 ≤ K�(Q + 1 + iC)e

π |C |
2 . (69)

Equations (68) and (69) yield the last equality in (67).
Substituting the equalities in (67) in expression (66) of I 1,C0,Q and using that |�(Q+

1 + iC)| ≥ K > 0 we obtain the result for n = 0.
For n ≥ 1 and Q + 1 > n we proceed by induction, using the recurrence of

Lemma 3.2. The important fact is that, in the recurrence for I 1,Cn,Q , only the term

involving I 1,Cn−1,Q−1 contributes to I 1,Cn,Q being the other one smaller. ��

End of the proof of Theorem 2.5 First we focus on ϒ [1]
0 . We shall study ϒ [1]

0, f appear-

ing in formula (63) of ϒ [l]
0 taking l = 1, the other two are done analogously. We

decompose ϒ [1]
0, f into

ϒ
[1]
0, f = ϒ [1]

0,0 + ϒ [1]
0,1 (70)
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where, following formula (64) of ϒ [1]
0, f ,

ϒ
[1]
0,0 = δ p

∞∑
q=3

∑
k+m+n=q

δq fqkmn

(√
d + 1

b

)k+m+1

a[1]
k+1,m I

1,cd−1

n,q+2d−1

ϒ
[1]
0,1 = δ p

∞∑
q=3

∑
k+m+n<q

δq fqkmn

(√
d + 1

b

)k+m+1

a[1]
k+1,m I

1,cd−1

n,k+m+n+2d−1 (71)

On the one hand, using Lemma 3.4 with C = cd−1 and Q = q + 2d−1:

ϒ
[1]
0,0 = 2π

d
δ p−

2
d−i cd e− απ

2dδ

∞∑
q=3

∑
k+m+n=q

fqkmn

(√
d+1
b

)k+m+1

(−i)na[1]
k+1,mα

q+ 2
d+i cd

dq+ 2
d+i cd�

(
q + 1 + 2

d + i cd
)

+ δ p− 2
d e− απ

2dδ

∞∑
q=3

∑
k+m+n=q

fqkmn

(√
d+1
b

)k+m+1

a[1]
k+1,mα

q−1+ 2
d+i cd

dq−1+ 2
d+i cd

O(δ)

= 2π

d
δ p−

2
d−i cd e− απ

2dδ

∞∑
q=3

∑
k+m+n=q

fqkmn

(√
d+1
b

)k+m+1

(−i)na[1]
k+1,mα

q+ 2
d+i cd

dq+ 2
d+i cd�

(
q + 1 + 2

d + i cd
)

+ O
(
δ p+1− 2

d e− απ
2dδ

)
, (72)

where we have used that |a[1]
k,m | ≤ 1 for all k and m (because a[1]

k,m are Fourier

coefficients of the functions cosk θ sinm θ ), and we have assumed that the radius of
convergence of f is sufficiently large and thus second sum converges. To boundϒ [1]

0,1,

using again Lemma 3.4 with C = cd−1 and Q = k + m + n + 2d−1 it is easy to see
that:

δq
∣∣∣I 1,cd−1

n,k+m+n+2d−1

∣∣∣ ≤ δq−(k+m+n+ 2
d )
(α
d

)k+m+n+ 2
d
e− απ

2dδ .

Then, ϒ [1]
0,1 in (71) can be bounded by:

∣∣ϒ [1]
0,1

∣∣ ≤ K δ p+1− 2
d e− απ

2dδ , (73)

where again, we have assumed that the radius of convergence of f is sufficiently large.

Remark 3.5 We need to ensure that a point of the form α(x0, y0, z0, 0, 0) is in B(r0),
the ball of analyticity of f . For that, we note that, rescaling δ = εδ̄, we can consider
α = εᾱ as small as we want.
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Using (72) and (73) in (70)we obtain an asymptotic expression forϒ [1]
0, f and reasoning

analogously for the other sums appearing in formula (63) of ϒ [1]
0 we obtain:

ϒ
[1]
0 =2π

d
δ p−

2
d−i cd e− απ

2dδ

⎡
⎢⎢⎢⎣

∞∑
q=3

∑
k+m+n=q

(√
d+1
b

)k+m+1

(−i)nαq+ 2
d+i cd

dq+ 2
d+i cd�

(
q + 1 + 2

d + i cd
)

(
fqkmna

[1]
k+1,m + gqkmna

[1]
k,m+1 − i

√
d + 1

b
hqkmna

[1]
k,m

)]

+ O
(
δ p+1− 2

d e− απ
2dδ

)

Substituting f, g and h by their Taylor’s expansion (62) and using that taking the
two last variables in f equal to zero implies that the second sum in (62) is done
only over the terms k + m + n = q, we have that the function m defined in (38) in
Theorem 2.5 can be written as

m(w, θ) =
∞∑
q=3

∑
k+m+n=q

(√
d + 1

b

)k+m+1

(−i)nwq+1+ 2
d+i cd

cosk θ sinm θ

(
fqkmn cos θ + gqkmn sin θ − i

√
d + 1

b
hqkmn

)
.

Therefore, using definition (37) of the Borel transform, a direct computation shows
the asymptotic expression of ϒ [1]

0 given in Theorem 2.5 and we are done in this case.

To bound ϒ [l]
0 for |l| ≥ 2, we use formula (63) and the bound in Lemma 3.1 with

C = cd−1 and Q = k + m + n + 2d−1 to obtain:

∣∣∣ϒ [l]
0

∣∣∣ ≤ K δ p−
2
d e− απ

2dδ
3|l|
4

⎡
⎣

∞∑
q=3

∑
k+m+n≤q

Mk+m+nδq−(k+m+n)

(√
d + 1

b

)k+m+1

(∣∣ fqkmna
[l]
k+1,m

∣∣ + ∣∣gqkmna
[l]
k,m+1

∣∣ +
√
d + 1

b

∣∣hqkmna
[l]
k,m

∣∣
)]

≤ K δ p−
2
d e− απ

2dδ
3|l|
4 ,

where in the last inequality we have used that q − (k + m + n) ≥ 0 that f, g and h,
are analytic functions and that the constant M in Lemma 3.1 can be taken sufficiently
small so that the series is convergent.

Finally, to prove the asymptotic expression (40) of M(u, θ), we first take defini-
tion (35) of the Melnikov function and use bounds (39) of ϒ [l]

0 with |l| ≥ 2. Then, for
u ∈ R and θ ∈ S

1, one has that:

123

Author's personal copy



J Nonlinear Sci

M(u, θ) = cosh
2
d (du)

[
ϒ

[0]
0 +ϒ [1]

0 ei(θ+δ−1αu+cd−1 log cosh(du))

+ϒ [−1]
0 e−i(θ+δ−1αu+cd−1 log cosh(du)) + O

(
δ p−

2
d e− απ

2dδ
3
2

)]
.

Using the asymptotic formulas for ϒ [1]
0 and ϒ [−1]

0 and the fact that δ−i cd = e−i cd log δ ,
we obtain directly expression (40). ��

3.2 The Average of the Difference: Proof of Theorem 2.9

Note that both,ϒ [0]
0 and M [0](u) (in (36) and (34)) are defined by means of an integral

involving F [0](0) which from (28) turns out to be:

F [0](0)(u) = 2σ R0(u)+ δ p(F(0))[0] + δ p d + 1

b
Z0(u)(H(0))

[0]. (74)

In addition, from definition of F,G and H in (24),

(F(0))[0] = F[0](δR0(u), δZ0(u), δ), (H(0))[0] = H[0](δR0(u), δZ0(u), δ)

with F[0],G[0] and H[0] the average of the functions F,G and H defined by (22).

3.2.1 The Conservative Case

In this subsection we shall prove that the coefficients ϒ [0] and ϒ [0]
0 are zero in the

conservative case. In this setting we have d = 1 and σ = 0. Whenever we refer to
previous formulas and expressions where these parameters appear, we shall substitute
them for these values directly.

Proposition 3.6 If the vector field (16) is conservative, ϒ [0]
0 = 0.

Proof We consider the system

dr

dt
= −2r z + δ pF[0](δr, δz, δ),

dθ

dt
= −α

δ
− cz + δ pG[0](δr, δz, δ),

dz

dt
= −1 + 2br + z2 + δ pH[0](δr, δz, δ).

(75)

As system (16) is conservative, system (75) is still conservative and one has:

∂rF[0](δr, δz, δ) = −∂zH[0](δr, δz, δ). (76)

Using (76) one can easily see that system (75) has the following first integral:

U(r, z) = −r + br2 + r z2 + δ p
∫ r

0
H[0](δs, δz, δ)ds.
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Note that, using definition (36) of ϒ [0]
0 , with F [0](0) in (74), and property (76):

ϒ
[0]
0 =

∫ +∞

−∞
F [0](0)(w)
cosh2w

dw = −
∫ +∞

−∞
d

dw
(U(R0(w), Z0(w))) dw.

Then, we have:

ϒ
[0]
0 = − lim

t→∞ [U(R0(t), Z0(t))− U(R0(−t), Z0(−t))] .

Noting that (R0(±t), Z0(±t)) → (0,±1) as t → ±∞ and that U(0,±1) = 0, we
obtain ϒ [0]

0 = 0. ��
Now we will prove that ϒ [0] = 0. This proof is more involved and requires some

preliminary considerations. We shall use the fact that, in the conservative setting, the
two-dimensional invariant manifolds of S+ and S− always intersect. This can be seen
using standard arguments of volume preservation. Let us introduce some notation
concerning this intersection. We fix θ0 ∈ [0, 2π) and consider the following plane:

�θ0 = {(x, y, z) ∈ R
3 : x sin θ0 − y cos θ0 = 0}.

We define p1 as the first common intersection of the two-dimensional invariant man-
ifolds of S+ and S− contained in the section �θ0 . This point p1 is O(δ p+3)-close
to ( 1b cos θ0,

1
b sin θ0, 0), which is the intersection of the heteroclinic surface with

�θ0 ∩ {z = 0} in the unperturbed case. The orbit of p1, namely:

�p1 := {ϕt (p1), t ∈ R}, (77)

where ϕt stands for the flow the vector field (15), is a heteroclinic orbit and for small
δ it intersects many times the section �θ0 . We define:

t2 = min{t > 0 : ϕt (p1) ∈ �θ0}, p2 = ϕt2(p1),

and:

t3 = min{t > t2 : ϕt (p1) ∈ �θ0}, p3 = ϕt3(p1).

Remark 3.7 Note that, θ̇ < 0 provided that δ is sufficiently small. Indeed, this can
be easily seen since θ̇ = −α/δ − cz + δ pG(δr, θ, δz, δ, δσ ). Then p2 has angular
variable θ0 − π and p3 has angular variable θ0 − 2π .

We define zi and ui as:

zi = πz(pi ), ui = Z−1
0 (zi ) = atanh (zi ), i = 1, 2, 3. (78)

with πz the projection on the third component. See Fig. 8a.
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(a) (b)

Fig. 8 The domains T1 and T2. In red, the unstable manifold of S−, and in blue the stable manifold of
S+. The continuous (respectively, dashed) lines on the left are mapped to the continuous (dashed) lines on
the right with the same color via the flow φ. a The domain T1 on the section �θ0 . b The domain T2 on the
section �θ0 (Color figure online)

We point out that with this notation we can write:

�(ui , θ0) = 0, i = 1, 2, 3,

where as usual �(u, θ) = ru(u, θ)− r s(u, θ).

Lemma 3.8 Let u1 and u3 be defined as in (78). Define:

τ ∗ = ξ(u1, θ0) = θ0 + δ−1αu1 + c log cosh u1 + C(u1, θ0),

where ξ(u, θ) and C(u, θ) are the functions given in Theorem 2.7. Then:

ξ(u3, θ0) = θ0 + δ−1αu3 + c log cosh u3 + C(u3, θ0) = τ ∗ + 2π.

Proof Let s0 > 1. For any s ∈ [−s0, s0], we define u = u(s) as the (unique) solution
of:

ξ(u(s), θ0 − 2πs) = τ ∗. (79)

The fact that Eq. (79) has a unique solution for all s ∈ [−s0, s0] if δ is sufficiently
small can be seen, for instance, by the implicit function theorem. By definition of τ ∗,
the unique solution at s = 0 is u(0) = u1.
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Now, since �(u1, θ0) = 0 and �(u, θ) = cosh2(u)(1 + P1(u, θ))k̃(ξ(u, θ)) by
Theorem 2.7, using that cosh(u1) �= 0 and that P1 is small we have:

0 = k̃(ξ(u1, θ0)) = k̃(τ ∗) = k̃(ξ(u(s), θ0 − 2πs)).

Thus, �(u(s), θ0 − 2πs) = 0. Hence, defining

rh(s) := ru(u(s), θ0 − 2πs) = r s(u(s), θ0 − 2πs),

we have that the curve:

γh(s) := (rh(s), θ0 − 2πs, Z0(u(s)), s ∈ [−s0, s0],

is part of a heteroclinic orbit expressed in the symplectic polar coordinates. Since
u(0) = u1 and p1 in these coordinates is (ru(u1, θ0), θ0, Z0(u1)) = γh(0), clearly
γh(s) is a part of the heteroclinic orbit �p1 , defined in (77).

Taking s = 1, we obtain the point in �p1 with angular variable θ0 − 2π . By
Remark 3.7, this point is precisely p3. This implies that u(1) = u3, and then Eq. (79)
yields.

θ0 − 2π + δ−1αu3 + c log cosh u3 + C(u3, θ0 − 2π) = τ ∗,

and since C(u, θ) is 2π periodic in θ we obtain:

θ0 + δ−1αu3 + c log cosh u3 + C(u3, θ0) = τ ∗ + 2π.

��
Lemma 3.9 Let u1 and u3 be the u−coordinate of the heteroclinic points p1, p3 ∈
�θ0 , respectively, defined in (78). Let ϒ [0] be the average of the function k̃(τ ) given
in Theorem 2.7. Then one has:

ϒ [0] = 1

2π

∫ u3

u1

�(u, θ0)

cosh2(u)(1 + P1(u, θ0))

(
δ−1α + cZ0(u)+ ∂uC(u, θ0)

)
du.

Proof It can be obtained straightforwardly from the fact that:

ϒ [0] = 1

2π

∫ τ∗+2π

τ∗
k̃(τ )dτ,

where τ ∗ = θ0+δ−1αu1+c log cosh u1+C(u1, θ0). Indeed, one just has to perform the
change τ = θ0+δ−1αu+c log cosh u+C(u, θ0). Then, recalling that byTheorem2.7:

�(u, θ0) = cosh2(u)(1 + P1(u, θ0))k̃(θ0 + δ−1αu + c log cosh(u)+ C(u, θ0)),
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and that by Lemma 3.8:

θ0 + δ−1αu3 + c log cosh u3 + C(u3, θ0) = τ ∗ + 2π,

one obtains the claim of the lemma. ��
Proposition 3.10 One has:

∫ u3

u1

�(u, θ0)

cosh2(u)

(
δ−1α + cZ0(u)+ l3(u, θ0)

)
du = 0 (80)

where l3 is defined in (44).

Proof Let us denote by r̃u(z, θ) := ru(Z−1
0 (z), θ) the r−component of the unstable

manifold of S− as a function of z and θ , and similarly r̃ s(z, θ) for the stable manifold
of S+. We denote:

G̃(r, z) = G(δr, θ0, δz, δ),

where G is the function defined in (22) (recall that in the conservative case there is no
dependence on the parameter σ ). We shall prove the following:

∫ z3

z1

∫ r̃u(z,θ0)

r̃ s(z,θ0)
(δ−1α + cz − δ pG̃(r, z))drdz = 0, (81)

with z1 and z3 defined in (78). This yields claim (80). Indeed, assume (81) is true.
Then we make the change:

r = r̃λ := 1

2
(r̃u(z, θ0)+ r̃ s(z, θ0))+ λ

2
(r̃u(z, θ0)− r̃ s(z, θ0)), λ ∈ [−1, 1],

and, denoting �̃(z, θ) = r̃u(z, θ0)− r̃ s(z, θ0), Eq. (81) becomes:

∫ z3

z1

(
δ−1α + cz − 1

2

∫ 1

−1
δ pG̃(r̃λ, z)dλ

)
�̃(z, θ0)dz = 0.

Then, we perform the change z = Z0(u) and recalling definition (78) of u1 and u3,
and definition (44) of l3 we obtain (80).

To prove (81) we shall use basically that the system is divergence free, and apply the
divergence theorem in a suitable three-dimensional domain. However, we first need
to introduce some notation. Consider the intersection of the two-dimensional unstable
manifold of S− and�θ0 . The lower part of this intersection is a curve that joins p1 and
p2, having a shape close to an arch of ellipse. Similarly, if we consider the intersection
of the two-dimensional stable manifold of S+ and �θ0 , its upper part is a curve that
also joins p1 and p2, with a similar shape. We define T1 ⊂ �θ0 as the domain bounded
by these two curves (see Fig. 8a).
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As in (16) we denote by X the vector field defining our system and Xx , Xy and Xz

each of its components. We note that if p ∈ ∂T1 and:

Xx (p) sin θ0 − Xy(p) cos θ0 �= 0

then there exists a unique τ(p) > 0 such that ϕτ(p)(p) is the next intersection of the
orbit going through p and�θ0 . This is clear from the fact that the orbits insideW u(S−)
areO(δ)−close to the orbits of the heteroclinic connection of the unperturbed system
for t ∈ (−∞, T ], for some constant T , and the same happens for the orbits inside
W s(S+) and t ∈ [T,∞). Moreover, there are just two points p∗−, p∗+ ∈ �θ0 (close to
S− and S+, respectively) such that:

Xx (p
∗±) sin θ0 − Xy(p

∗±) cos θ0 = 0.

See Fig. 8a. For such pointswe can define τ(p∗±) = 0.With this definition, the function
ϕτ(p)(p) is continuous for p ∈ ∂T1. Then we define T2 ⊂ �θ0 (see Fig. 8b) as the
domain bounded by ∂T2, where

∂T2 = {ϕτ(p)(p) : p ∈ ∂T1}.

Finally, we define:

T3 = {ϕt (p) : p ∈ ∂T1, t ∈ (0, τ (p))}.

We point out that T3 is tangent to the flow of X . Moreover, T1, T2 and T3 are the
boundary of a closed three-dimensional domain. That is, there exists a closed domain
V ⊂ R

3 such that T1 ∪ T2 ∪ T3 = ∂V . Now we use the divergence theorem in this
domain V . Since divX ≡ 0 we have:

0 =
∫∫∫

V
divXdV =

∫∫
∂V

X · �n∂V dS

=
∫∫

T1
X · �nT1dS +

∫∫
T2

X · �nT2dS +
∫∫

T3
X · �nT3dS, (82)

where �n∂V denotes the unitary normal vector to ∂V pointing outside V , and the same
with �nTi , i = 1, 2, 3. Since T3 is tangent to the flow, X · �nT3 = 0 and moreover,
�nT1 = (− sin θ0, cos θ0, 0) = −�nT2 . Thus, (82) becomes:

0 =
∫∫

D1

(Xx sin θ0 − Xy cos θ0)dS −
∫∫

D2

(Xx sin θ0 − Xy cos θ0)dS, (83)

where D1 = T2\T1 and D2 = T1\T2 (see Fig. 8b). We take the parameterization:

x = √
2r cos θ0, y = √

2r sin θ0, z = z
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and we note that

Xx (
√
2r cos θ0,

√
2r sin θ0, z) sin θ0 − Xy(

√
2r cos θ0,

√
2r sin θ0, z) cos θ0

= √
2r

(
δ−1α + cz − δ pG̃(r, z)

)
.

With this parameterization, equality (83) yields (81). ��
End of the proof of Theorem 2.9 (conservative case) Proposition 3.6 says thatϒ [0]

0 =
0. To see that ϒ [0] = 0 we note that from item 2. in Theorem 2.7, we choose P1 such
that:

δ−1α + cZ0(u)+ ∂uC(u, θ0)
1 + P1(u, θ0)

= δ−1α + cZ0(u)+ l3(u, θ0).

Then, substituting this in the equality of Lemma 3.9 we get:

ϒ [0] = 1

2π

∫ u3

u1

�(u, θ0)

cosh2(u)

(
δ−1α + cZ0(u)+ l3(u, θ0)

)
du.

Finally, Proposition 3.10 yields that ϒ [0] = 0, and the proof is finished. ��

3.2.2 The General Case

In this section we will prove the statements about the coefficients ϒ [0]
0 and ϒ [0] in

Theorem 2.9. We have:

ϒ [0] = 1

2π

∫ 2π

0
k̃(τ )dτ. (84)

We perform the change τ = θ +C(0, θ) in the previous integral, where C(u, θ) is the
function in Theorem 2.7 and we use that by Theorem 2.7 we have:

k̃(θ + δ−1αu + cd−1 log cosh(du)+ C(u, θ)) = �(u, θ)

cosh2/d(du)(1 + P1(u, θ))
.

After this change (84) becomes:

ϒ [0] = 1

2π

∫ θ2

θ1

�(0, θ)

1 + P1(0, θ)
(1 + ∂θC(0, θ))dθ, (85)

where, using bounds for C(0, θ) obtained in Theorem 2.7,

θ1 = 0 + O
(
δ p+3

)
θ2 = 2π + O

(
δ p+3

)
. (86)

Now, on the one hand, by Theorem 2.4 we have:

|�(0, θ)| ≤ |ru1 (0, θ)| + |r s1(0, θ)| ≤ K δ p+3. (87)
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and recalling the notation M(u, θ) = ru10(u, θ)− r s10(u, θ):

|�(0, θ)− M(0, θ)| ≤ |ru11(0, θ)| + |r s11(0, θ)| ≤ K
(
δ2p+6 + δ p+4

)
,

where we have used the bounds of ru,s11 (u, θ) given in Theorem 2.4. On the other hand,
by Theorem 2.7:

|∂θC(0, θ)| ≤ K δ p+3,

∣∣∣∣
1

1 + P1(0, θ)
− 1

∣∣∣∣ ≤ K |P1(0, θ)| ≤ K δ p+3. (88)

Thus, using bounds (86), (87) and (88) in Eq. (85) we obtain:

ϒ [0] = 1

2π

∫ 2π

0
M(0, θ)dθ + O(δ p+4) = M [0](0)+ O(δ p+4), (89)

where we have used that p ≥ −2.
We introduce the following notation:

I = d + 1

b

∫ +∞

−∞
1

cosh
2
d+2(dw)

dw, (90)

J̄ = J̄ (δ, σ ) = δ−3
∫ +∞

−∞
(F(0))[0] + d+1

b Z0(w)(H(0))[0]

cosh
2
d (dw)

dw (91)

and observe that for all w ∈ R:

|F(0)| = |F(δR0(w), θ, δZ0(w), δ, δσ )| ≤ K δ3

and also |H(0)| ≤ K δ3, so that J̄ is bounded as δ → 0. Therefore, we can write

J̄ (δ, σ ) = J + O(δ). (92)

Now, by formula (34) of M [l](u) and expression (74) of F [0], we get:

ϒ
[0]
0 = M [0](0) = σ I + δ p+3 J̄ .

We rewrite (89) as:

ϒ [0] = ϒ [0]
0 + O(δ p+4) = σ I + δ p+3 J + O(δ p+4).

Then, putting σ = σ̂ δ p+3, we have that ϒ [0] = 0 if:

f (σ̂ , δ) := σ̂ I + J + O(δ) = 0.

123

Author's personal copy



J Nonlinear Sci

It is clear that I �= 0, and thus,

f

(
− J

I
, 0

)
= 0,

∂ f

∂σ̂

(
− J

I
, 0

)
= I �= 0,

Then we can apply the implicit function theorem, so that there exists δ0 and a curve
σ̂ 0∗ (δ) = −J/I + O(δ) such that f (σ̂ 0∗ (δ), δ) = 0 for all 0 ≤ δ ≤ δ0. Finally,

σ 0∗ (δ) := σ̂ 0∗ (δ)δ p+3 = − J

I
δ p+3 + O(δ p+4).

To obtain the curves σ∗(δ) we solve the equation:

g(σ, β) := ϒ [0] − β = σ I + δ p+3 J + O(δ p+4)− β = 0.

with β = a1δa2e− a3π
2dδ , where we use that a3 > 0 so that β is small when δ is small.

As:

g(σ 0∗ (δ), 0) = 0,
∂g

∂σ

(
σ 0∗ (δ), 0

)
= I + O(δ p+3) �= 0,

these equations have a solution σ∗(δ) satisfying:

σ∗(δ) = σ 0∗ (δ)+ O(δa2e− a3π
2dδ ).

Clearly, since ϒ [0]
0 = σ I + δ p+3 J , one has:

ϒ
[0]
0 = ϒ [0]

0 (δ, σ∗(δ)) = ϒ [0]
0

(
δ,− J

I
δ p+3 + O(δ p+4)

)
= O(δ p+4).

3.3 The Exponentially Smallness of ϒ[l]: Proof of Lemma 2.11

Let us to introduce the function

F(u, θ) = δα−1(ξ(u, θ)− θ) = u + δα−1
[
cd−1 log cosh(du)+ C(u, θ)

]
,

where ξ and C are defined in Theorem 2.7. In this result it is proven that (ξ(u, θ), θ)
is injective in Dκ,β × Tω then (F(u, θ), θ) is also injective in the same domain.
In particular, for all (u, θ) ∈ Dκ,β × S

1, the change (w, θ) = (F(u, θ), θ) is a
diffeomorphism between Dκ,β × S

1 and its image D̃κ,β × S
1, with inverse (u, θ) =

(G(w, θ), θ). Then, if we define the function:

E(w, θ) =
∑
l∈Z
ϒ [l]eil(θ+δ−1αw).
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one has that G(w, θ) satisfies:

E(w, θ) = �(G(w, θ), θ)

cosh2/d(dG(w, θ))(1 + P1(G(w, θ), θ))
. (93)

Note that E(w, θ) is 2π−periodic in θ , and its l−th Fourier coefficient is:

E [l](w) = ϒ [l]eilδ−1αw.

Hence, we know that for all w ∈ D̃κ,β :

∣∣∣ϒ [l]
∣∣∣ = 1

2π

∣∣∣∣e−iδ−1αwl
∫ 2π

0
E(w, θ)e−ilθdθ

∣∣∣∣ ≤
∣∣∣e−iδ−1αwl

∣∣∣ sup
θ∈S1

|E(w, θ)| . (94)

This inequality is valid for all w ∈ D̃κ,β . Let us denote u± = ±i
(
π
2d − κδ). Then, if

in (94) we takew = w+ := F (u+, θ) ∈ D̃κ,β for l < 0 andw = w− := F (u−, θ) ∈
D̃κ,β for l > 0, one obtains:

∣∣∣ϒ [l]
∣∣∣ ≤ e−( απ2dδ−ακ−|ImC(u±,θ)|)|l| sup

θ∈S1
|E(w±, θ)| . (95)

Recall that F is the inverse of G, so that from (93) we obtain:

E(w±, θ) = �(u±, θ)
cosh2/d(du±)(1 + P1(u±, θ))

.

Thus, using bound (54) for P1, that | cosh(du±)| ≥ K δκ , and taking κ sufficiently
large, bound (95) writes out as:

∣∣∣ϒ [l]
∣∣∣ ≤ K

δ
2
d κ

2
d

e−( απ2dδ−ακ−|ImC(u±,θ)|)|l| sup
θ∈S1

|�(u±, θ)| . (96)

Now, on the one hand, taking into account that the constant L0, given in Theorem
2.7, satisfies L0 ∈ R, we have:

|ImC(u±, θ)| ≤ d−1(c + αL0)|Im log cosh(du±)| + α|L(u±)| + |χ(u±, θ)|.

Since u± is purely imaginary, Im log cosh(du±) = arg(cosh(du±)) = 0. Then,
using (53) in Theorem 2.7, we obtain |ImC(u±, θ)| ≤ K δ p+2. Therefore:

∣∣∣e−( απ2dδ−ακ−|ImC(u±,θ)|)
∣∣∣ ≤ Ke− απ

2dδ+ακ . (97)

Moreover, we take δ sufficiently small so that:

1 − 2dδ

απ
(ακ + |ImC(u±, θ)|) ≥ 3

4
,
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and then, for |l| ≥ 2, one has:

∣∣∣e−( απ2dδ−ακ−|ImC(u±,θ)|)|l|
∣∣∣ ≤ e− απ

2dδ
3|l|
4 . (98)

On the other hand, by Theorem 2.4 we have:

|�(u±, θ)| ≤ |ru1 (u±, θ)| + |r s1(u±, θ)| ≤ K δ p+3

| cosh(du±)|3 ≤ K
δ p

κ3
. (99)

To obtain the claim of the lemma for |l| = 1, we use bounds (97) and (99) in
Eq. (96). Similarly, for |l| ≥ 2 we use bounds (98) and (99) in Eq. (96).

3.4 Fourier Coefficients of �1: Proof of Proposition 2.13

Consider the function �1(u, θ) = �(u, θ)−�0(u, θ) defined in (60):

�1(u, θ) = cosh2/d(du)(1 + P1(u, θ))
∑
l �=0

(
ϒ [l] − ϒ̂ [l]

0

)
eilξ(u,θ),

with ξ(u, θ) = θ+δ−1αu+d−1 log cosh(du)+C(u, θ) defined in (51) andϒ [l], ϒ̂ [l]
0

the Fourier coefficients of k̃ and k̃0 in (50) and (58), respectively. We point out that in
order to obtain sharp bounds for ϒ [±1] − ϒ̂ [±1]

0 we need to take u ∈ Dκ,β ⊂ C (see
(45)), but θ can be taken real. Thus, we will take θ ∈ S

1.
Proceeding as in beginning of the previous Sect. 3.3, one can prove the following

bound for |ϒ [±1] − ϒ̂ [±1]
0 | which is similar to the one for |ϒ [l]| in (96):

∣∣∣ϒ [∓1] − ϒ̂ [∓1]
0

∣∣∣ ≤ K

δ
2
d κ

2
d

e−( απ2dδ−ακ−|ImC(u±,θ)|) sup
θ∈S1

|�1(u±, θ)| ,

where u± = ±i
(
π
2d − κδ). Using bound (97), we obtain:

∣∣∣ϒ [∓1] − ϒ̂ [∓1]
0

∣∣∣ ≤ K

δ
2
d κ

2
d

e− απ
2dδ+ακ sup

θ∈S1
|�1(u±, θ)| . (100)

We claim that there exists a constant K such that for all θ ∈ S
1:

|�1(u±, θ)| ≤ K

(
δ2(p+1)| log κ|

κ4
+ δ p+3

κ

)
. (101)

Indeed, first we write �1 = � − �0 in a more adequate form. We recall that, by
definition (32) of the Melnikov function M , � = M + ru11 − r s11. Then,

�1(u, θ) = M(u, θ)−�0(u, θ)+ ru11(u, θ)− r s11(u, θ).
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It is clear that, by Theorem 2.4,

|ru11(u±, θ)− r s11(u±, θ)| ≤ K

(
δ2(p+1)

κ4
+ δ p+3

κ

)
,

which is smaller than the upper bound in (101). Therefore, to prove (101), it only
remains to study the difference between M and �0.

We introduce some notation:

F0(u) = u + δα−1cd−1 log cosh(du), Ĉ(u, θ) = C(u, θ)− αd−1L0δ
p+2 log(δ)

F̂(u, θ) = F0(u)+ δα−1Ĉ(u, θ). (102)

Notice that F0(u) is injective so that it has an inverse. We also introduce the function

f (u, θ) = F−1
0 (F̂(u, θ))

andwenote that, since by (52) inTheorem2.7, |Ĉ(u±, θ)| ≤ K δ p+2| log κ| (see (102))

| f (u±, θ)− u±| ≤ K δ p+3| log κ|. (103)

Now we rewrite M(u, θ) in (35) as

M(u, θ) = cosh
2
d (du)

∑
l∈Z
ϒ

[l]
0 eil(θ+δ−1αF0(u))

and we observe that

M( f (u, θ), θ) = cosh
2
d (d f (u, θ))

∑
l∈Z
ϒ

[l]
0 eil(θ+δ−1α F̂(u,θ)). (104)

In addition, the function �0 in (59) is:

�0(u, θ) = cosh2/d(du)(1 + P1(u, θ))

⎛
⎝ϒ [0] +

∑
l �=0

ϒ
[l]
0 eil(θ+δ−1α F̂(u,θ))

⎞
⎠

where we have used that ϒ̂ [l]
0 = ϒ [l]

0 e−ilαd−1L0δ
p+2 log δ . As a consequence

M(u, θ)−�0(u, θ) = M(u, θ)− M( f (u, θ), θ)

+ cosh2/d(d f (u, θ))ϒ [0]
0 − cosh2/d(du)(1 + P1(u, θ))ϒ

[0] (105)

+
⎛
⎝∑

l �=0

ϒ
[l]
0 eil(θ+δ−1α F̂(u,θ))

⎞
⎠(

cosh2/d(d f (u, θ))− cosh2/d(du)(1 + P1(u, θ))
)
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We shall prove bound (101) bounding each term in (105), with u = u±.
Recall that M = ru10 − r s10 so that, by Theorem 2.4 and (103)

|M(u±, θ)− M( f (u±, θ), θ)| ≤ K δ p+3|u± − f (u±, θ)| sup
u∈Dκ,β

1

| cosh(du)|4

≤ | log κ|δ
2p+2

κ4
(106)

so this term satisfies bound (101).
By Theorem 2.9, the terms involving ϒ [0]

0 and ϒ [0] in (105) are zero in the conser-
vative case. In the general case, since we take σ = σ∗(δ) these terms satisfy:

| cosh2/d(du±)(1 + P1(u±, θ))ϒ [0]| ≤ K δa2e−
a3π
2dδ ,

∣∣∣cosh2/d(du±)ϒ [0]
0

∣∣∣ ≤ K δ p+4

where we have used that, from Theorem 2.7, |P1(u±, θ)| ≤ K δ p+2κ−1.
Finally, we deal with the last term which (see (104)) we rewrite as

�(θ)

:=
(
M( f (u±, θ), θ)− cosh2/d(du±)ϒ [0]

0

)[
1 − cosh2/d(du±)

cosh2/d(d f (u±, θ))
(1 + P1(u±θ))

]
.

We first note that, since M = ru10−r s10, using Theorem 2.4 to bound ru,s10 , Theorem 2.9

to bound ϒ [0]
0 and (106) one has that

|�(θ)| ≤ K
δ p

κ3

∣∣∣∣1 − cosh2/d(du±)
cosh2/d(d f (u±, θ))

(1 + P1(u±θ))
∣∣∣∣ .

Therefore, using bound (103) of | f (u±, θ)− u±|, one has that
∣∣∣∣
[

cosh2/d(du±)
cosh2/d(d f (u±, θ))

]
− 1

∣∣∣∣ ≤ K
δ p+2| log κ|

κ

and, since |P1(u±, θ)| ≤ K δ p+2κ−1, we conclude that

|�(θ)| ≤ K
δ2(p+1)| log κ|

κ4

and bound (101) for �1(u±, θ) is proven.
Finally, we use bound (101) in (100) and the proposition is proven.
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4 Parameterizations of the Invariant Manifolds

We will prove Theorem 2.4 in Sect. 4.2, as a non-trivial consequence of the existence
result Proposition 4.4. This proposition is proven by using the fixed point theorem and
its proof is given in Sect. 4.1.

The complete proofs of the results in the present section are extremely technical
and can be found with all the details in Castejón (2015). Here we present a summary
of the methodology used in the proof.

We will use the notation and properties stated in Sects. 2.1, and 2.2. Moreover,
as usual, πx , πy, πz will denote, respectively, the projection over the x, y and z-
component of a given vector.

4.1 Existence of Complex Parameterizations

As we explained in Sect. 2.2, on the one hand the parameterizations ru,s(u, θ) in (23)
cannot be extended up to the unbounded domains u ∈ Du,s

κ,β . On the other hand,
the characterization of the unstable and stable manifolds is given for u → ±∞.
To overcome this disagreement, we deal separately with the unstable or the stable
manifold of the equilibrium points S−(δ, σ ) or S+(δ, σ ), respectively, of the vector
field X in (16).

4.1.1 Setting and Result of the Existence of Invariant Manifolds

We perform two different linear changes of variables, Cu and Cs, to the vector field
X , such that they put

• the equilibrium points S∓(δ, σ ) at (0, 0,∓1) and
• the linear part DX (S∓(δ, σ ), δ, δσ ) in their Jordan form.

Here have taken the sign − for the −u− case and + in the case −s−.

Lemma 4.1 Let |σ | ≤ δ p+3σ ∗. We write Ŝ∓ = (0, 0,∓1) and ζ = (x, y, z). The
two equilibrium points S∓(δ, σ ) = (x∓(δ, σ ), y∓(δ, σ ), z∓(δ, σ )) of the vector field
X in (16) are of the form:

x∓(δ, σ ) = O(δ p+5), y∓(δ, σ ) = O(δ p+5), z∓(δ, σ ) = ±1 + O(δ p+4).

There are two linear changes of variables Cu and Cs of the form

ζ̂ = Cu,s(ζ, δ, σ ) = M∓(δ, σ )
(
ζ + S∓(δ, σ )

) − Ŝ∓, (107)

where M∓(δ, σ ) = Id + O(δ p+5) (and therefore Cu,s = Id + O(δ p+4)), such that

dζ̂

dt
= Xu,s(δζ̂ , δ, δσ ) = X0(ζ̂ , δ, σ )+ δ p Xu,s

1 (δζ̂ , δ, δσ ), (108)

with X0 the same as in (16) and
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1. the vector field Xu,s
1 (δζ̂ , δ, δσ ) = O3(δζ̂ , δ, δσ ) and it is real analytic in B3(r̂0)×

B(δ̂0)× B(σ̂0) ⊂ C
3 × C

2.
2. Ŝ∓ = (0, 0,∓1) are equilibrium points of Xu,s, respectively, and the linear part

is in real Jordan form, that is

Xu
1(δ Ŝ−, δ, δσ ) = X s

1(δ Ŝ+, δ, δσ ) = 0,

DXu,s
1 (δ Ŝ∓, δ, δσ ) =

⎛
⎝
O(δ p+3) O(δ p+3) 0
O(δ p+3) O(δ p+3) 0

0 0 O(δ p+3)

⎞
⎠ .

Proof The proof of this result can be encountered in Castejón (2015) and uses that
the vector field X is written up to its normal form of order three, see Remark 2.1. ��

Now we perform the symplectic cylindric change (17) to system (108):

dr

dt
= 2r(σ − dz)+ δ pFu,s(δr, θ, δz, δ, δσ ),

dθ

dt
= −α

δ
− cz + δ pGu,s(δr, θ, δz, δ, δσ ),

dz

dt
= −1 + 2br + z2 + δ pHu,s(δr, θ, δz, δ, δσ ),

where Xu,s
1 = (Fu,s,Gu,s,Hu,s) is defined as

Xu,s
1 (δr, θ, δz, δ, δσ ) =

⎛
⎜⎝

√
2r cos θ

√
2r sin θ 0

− 1√
2r

sin θ 1√
2r

cos θ 0

0 0 1

⎞
⎟⎠ Xu,s

1 (δζ̂ , δ, δσ ) (109)

and ζ̂ denotes ζ̂ = (√2r cos θ,
√
2r sin θ, z).

The invariant manifolds associated with Ŝ∓ = (0, 0,∓1)will be parameterized as:

r = Ru,s(v, θ), z = Z0(v), v ∈ R, θ ∈ S
1

with Ru,s(v, θ)→ 0 as v → ∓∞, respectively. As the equilibrium points are Ŝ∓, one
has

(
√
2Ru,s(v, θ) cos θ,

√
2Ru,s(v, θ) sin θ, Z0(v))→ Ŝ∓ as v → ∓∞.

We look for the parameterizations Ru,s of the form Ru,s = R0+ Ru,s
1 . We introduce

the analogous notation to the one in (24):

X̄u,s
1 (R)(v, θ) = Xu,s

1 (δ(R0(v)+ R(v, θ)), θ, δZ0(v), δ, δσ ),

X̄u,s
1 = (Fu,s,Gu,s, Hu,s).

(110)
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As we did in Sect. 2.2, we will omit the dependence on (v, θ) if there is no danger
of confusion. One can easily check that Ru,s

1 have to satisfy the invariance equation
given by L(Ru,s

1 ) = Fu,s(Ru,s
1 ), where L is the linear differential operator in (27):

L(R) :=
(
−δ−1α − cZ0(v)

)
∂θ R + ∂vR − 2Z0(v)R

and Fu,s are:

Fu,s(R) :=2σ(R0(v)+ R)+ δ pFu,s(R)+ δ p d + 1

b
Z0(v)H

u,s(R)

− δ pGu,s(R)∂θ R −
(
2bR + δ pHu,s(R)

d(1 − Z2
0(v))

)
∂vR. (111)

The functions Ru,s = R0+Ru,s
1 lead to parameterizations of the invariant manifolds

if Ru,s
1 satisfy, respectively:

L(Ru
1) = Fu(Ru

1), lim
v→−∞ Ru

1(v, θ) = 0, (112)

L(Rs
1) = F s(Rs

1), lim
v→+∞ Rs

1(v, θ) = 0. (113)

Problems (112) and (113) can be written as fixed point equations using suitable
right inverses of the operator L. These right inverses can be found easily solving
the ordinary differential equations satisfied by the Fourier coefficients R[l](v) of any
periodic function in θ , R(v, θ) that is a solution of L(R) = φ, for a given function φ.
Indeed, given φ(v, θ), we define:

G∗(φ)(v, θ) :=
∑
l∈Z

G∗[l]
(φ)(v)eilθ , ∗ = u, s,

with G∗[l] as:

G∗[l]
(φ)(v) = cosh

2
d (dv)

∫ 0

∓∞
e−ilδ−1(η∓(v+s)−η∓(v))

cosh
2
d (d(v + s))

φ[l](v + s)ds,

∗ = u, s, (114)

where, on the one hand, we take − sign in the unstable case and + in the stable one
and on the other hand, we have used the notation η∓ introduced in Theorem 2.4:

η∓(w) = αw ∓ δ(cw ∓ cd−1 log(1 + e±2dw)).

We stress that a compact expression for G∗ is given by:

G∗(φ)(v, θ) = cosh
2
d (du)

∫ u

∓∞
φ
(
w, θ − δ−1

(
η∓(w)− η∓(u)

))

cosh
2
d (dw)

dw,

∗ = u, s, (115)
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Remark 4.2 Using that, if w is real η∓(w) = αw + cd−1 log(2 coshw) one obtains
the more natural expression for the Fourier coefficients:

G∗[l]
(φ)(v) = cosh

2
d (dv)

∫ 0

∓∞
e
−il

(
δ−1αs+ c

d log
cosh(d(v+s))
cosh(dv)

)

cosh
2
d (d(v + s))

φ[l](v + s)ds,

∗ = u, s. (116)

However, expressions in (116) are not well defined when we take complex values of
v. For this reason we take definitions (114), which for real values of v coincide with
the ones in (116), and are well defined when we take v ∈ Du,s

κ,β .

Lemma 4.3 One has L ◦ Gu,s = Id. Moreover, if we define the operators:

F̃u,s := Gu,s ◦ Fu,s,

with Fu,s given in (111), we have that if Ru,s
1 satisfy the fixed point equations:

Ru
1 = F̃u(Ru

1), Rs
1 = F̃ s(Rs

1), (117)

then they are solutions of problems (112) and (113), respectively.

Since we will find solutions of the fixed point equation (117) by means of the fixed
point theorem, we now set the Banach spaces we work with. For the unstable case we
will consider functions φ : Du

κ,β×Tω → C, where the domain Du
κ,β is defined in (30)

and Tω is defined in (31) (see also Fig. 5). They can be written in their Fourier series:
φ(v, θ) = ∑

l∈Z φ[l](v)eilθ . We define the norms:

∥∥∥φ[l]
∥∥∥u
n,m

= sup
v∈Du

κ,β,T

∣∣∣coshn(dv)φ[l](v)
∣∣∣ + sup

v∈Du
κ,β,∞

∣∣∣coshm(dv)φ[l](v)
∣∣∣ ,

‖φ‖un,m,ω =
∑
l∈Z

∥∥∥φ[l]
∥∥∥u
n,m

e|l|ω,

�φ�un,m,ω = ‖φ‖un,m,ω + ‖∂vφ‖un+1,m,ω + δ−1‖∂θφ‖un+1,m,ω,

and we consider the Banach spaces:

X u
n,m :=

{
φ : Du

κ,β → C : φ is analytic and ‖φ‖un,m < +∞
}
,

X u
n,m,ω :=

{
φ : Du

κ,β × Tω → C : φ is analytic and ‖φ‖un,m,ω < +∞
}
,

X̃ u
n,m,ω :=

{
φ : Du

κ,β × Tω → C : φ is analytic and �φ�un,m,ω < +∞
}
.

For functions � = (φ1, φ2, φ3) ∈ X u,×
n,m,ω := X u

n,m,ω × X u
n,m,ω × X u

n,m,ω, belonging
to the product space, we will take the norm:

‖�‖u,×n,m,ω := max
{‖φ1‖un,m,ω, ‖φ2‖un,m,ω, ‖φ3‖un,m,ω

}
.
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For the stable case, we consider norms and Banach spaces analogously defined in the
corresponding domains Ds

κ,β and for φ : Tω → C, we will take the Fourier norm:

‖φ‖ω := ∑
l∈Z

∣∣φ[l]∣∣ e|l|ω.
Now we can state the result which guarantees the existence of solutions of the fixed

point equations (117). We will devote the rest of the section to prove it. During this
section we will modify the value of the parameters κ , β T and ω of the domains
Du
κ,β × Tω and Ds

κ,β × Tω a finite number of times. We will abuse notation and use
the same letters for the modified values.

Proposition 4.4 Let p ≥ −2 and 0 < β < π/2 be any constants. There exist
σ ∗, δ∗ > 0 and κ∗ ≥ 1, such that for all 0 < δ ≤ δ∗ if κ = κ(δ) satisfies condition (29)
and σ satisfies |σ | ≤ σ ∗δ p+3, the fixed point equations in (117) have solutions Ru,s

1
defined, respectively, in Du,s

κ,β × Tω.

Moreover, they satisfy that Ru,s
1 = Ru,s

10 + Ru,s
11 with the following properties:

1. Ru,s
10 = F̃u,s(0) ∈ X̃ u,s

3,2,ω and there exists M > 0:

�Ru,s
10 �u,s3,2,ω ≤ Mδ p+3.

2. Ru,s
11 ∈ X̃ u,s

4,2,ω, and there exists a constant M such that:

�Ru,s
11 �u,s4,2,ω ≤ Mδ p+3�Ru,s

10 �u,s3,2,ω.

This result yields the following corollary:

Corollary 4.5 Under the same assumptions of Proposition 4.4, the two-dimensional
invariant manifolds of system (108) can be parameterized, in symplectic polar coor-
dinates as:

r = Ru,s(v, θ) = R0(v)+ Ru,s
1 (v, θ), z = Z0(v), (v, θ) ∈ Du,s

κ,β × Tω,

with Ru,s
1 satisfying the properties in Proposition 4.4.

In the following we will sketch the proof of Proposition 4.4 in the unstable case.

4.1.2 Solutions of the Fixed Point Equation: Proof of Proposition 4.4

Fist, in Lemma4.6,we study the behavior of the linear operatorGu,s acting on functions
φ belonging to the Banach spaces X u

n,m,ω. Secondly, in Lemma 4.8, we deal with the

independent term F̃u(0). Finally, in Lemma 4.9, we check that the operator F̃u,s is a
contraction.

Lemma 4.6 Let n ≥ 0, m ≥ 0 and φ ∈ X u
n,m,ω. There exists a constant M such that

for all l ∈ Z:

1. If n ≥ 1, then ‖Gu[l](φ)‖un−1,m ≤ M
∥∥φ[l]∥∥u

n,m .
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2. If l �= 0 and n ≥ 0, then ‖Gu[l]
(φ)‖un,m ≤ δM

∥∥φ[l]∥∥u
n,m

|l| .

3. As a consequence we have that if n ≥ 1, ‖Gu(φ)‖un−1,m,ω ≤ M‖φ‖un,m,ω. More-

over, if φ[0](v) = 0, then for all n ≥ 0:

‖Gu(φ)‖un,m,ω ≤ Mδ‖φ‖un,m,ω.

4. If n ≥ 0, ‖∂θGu(φ)‖un,m,ω ≤ Mδ‖φ‖un,m,ω.
5. If n ≥ 1, ‖∂vGu(φ)‖un,m,ω ≤ M‖φ‖un,m,ω.
In conclusion, if φ ∈ X u

n,m,ω, n ≥ 1, then Gu(φ) ∈ X̃ u
n−1,m,ω and:

�Gu(φ)�un−1,m,ω ≤ M‖φ‖un,m,ω.

Sketch of the proof The main idea to prove this result is to redefine adequately the
Fourier coefficients Gu[l](φ) changing the path of integration. Take v ∈ Du

κ,β fixed
and consider s = s±(t, v) defined implicitly by (see Fig. 9):

s± − cδ

α
s± + cδ

dα

(
log

(
1 + e2d(v+s±)

)
− log

(
1 + e2dv

))
= −te±i β2 .

It can be proven that the function s±(t, v) is well defined for all t ∈ [0,+∞) and
v ∈ Du

κ,β and moreover that v + s±(t, v) ∈ Du
κ,β . Consider the curve (see Fig. 9):

�R± := {z ∈ C : z = s±(t, v), t ∈ [0, R]} .

Then, one can prove that, if m > 0 and φ ∈ X u
n,m,ω one has:

Gu[l]
(φ)(v) = − lim

R→+∞ cosh
2
d (dv)

∫
�R±

e−ilδ−1(η−(v+z)−η−(v))

cosh
2
d (d(v + z))

φ[l](v + z)dz,

where the coefficients Gu[l] were defined in (114), and we take the integral over �R+
for l ≥ 0 and over �R− otherwise.

The proof of Lemma 4.6 follows now from standard arguments. ��
Now we are going to bound the independent term of the fixed point equation (117)

which is F̃u(0) = Gu ◦ Fu(0) (see (111)) with

Fu(0) = 2σ R0(v)+ δ pFu(0)+ δ p d + 1

b
Z0(v)H

u(0).

Lemma 4.7 Let CR be some constant, and R such that ‖R‖2,2,ω ≤ CR. There exists
a constant M such that:

‖Fu(R − R0)‖u4,2,ω, ‖Gu(R − R0)‖u2,0,ω, ‖Hu(R − R0)‖u3,2,ω ≤ Mδ3,
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Fig. 9 The domain Du
κ,β with

an example of the curves
s+(t, v) and v + s+(t, v). The
discontinuous lines are −teiβ/2

and v − teiβ/2, respectively

with Fu,Gu, Hu defined in (110). In particular, this holds for R = R0.

Proof We will use the properties of Xu
1 := ( f u, gu, hu) stated in Lemma 4.1. We first

prove the bound for Fu being the one forGu analogous. By definitions (110) and (109)

Fu(R − R0)(v, θ) = Fu(δR(v, θ), θ, δZ0(v), δ, δσ )

= √
2R(v, θ) cos θ f u(�(v, θ), δ, δσ )+ √

2R(v, θ) sin θgu(�(v, θ), δ, δσ ).

with

�(v, θ) = (
δ
√
2R(v, θ) cos θ, δ

√
2R(v, θ) sin θ, δZ0(v)

)
.

By Lemma 4.1, f u is of order three in all their variables and f u(0, 0,−δ, δ, δσ ) = 0
for all δ and σ . Therefore, since ‖√2R‖1,1,ω < +∞ and Z0(u) = tanh(du), we have
that

‖ f u(�(v, θ), δ, δσ )‖u3,1,ω ≤ K δ3.

Reasoning analogously, we obtain the same bound for gu, and thus,

‖Fu(R − R0)‖u4,2,ω ≤ K δ3.

With respect to Hu, we have:

Hu(R − R0)(v, θ) = Hu(δR(v, θ), θ, δZ0(v), δ, δσ ) = hu(�(v, θ), δ, δσ ).

Again, hu is of order three in all their variables, hu(0, 0,−δ, δ, δσ ) = 0 and moreover
∂xhu(0, 0,−δ, δ, δσ ) = ∂yhu(0, 0,−δ, δ, δσ ) = 0. The bound for Hu(R − R0)

follows by using the same arguments as above. ��
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Now we deal with the independent term F̃u(0).

Lemma 4.8 Let |σ | ≤ σ ∗δ p+3. There exists M > 0 such that �F̃u(0)�u3,2,ω ≤
Mδ p+3.

Proof By Lemma 4.6 it is enough to prove that ‖Fu(0)‖u4,2,ω ≤ Mδ p+3 (recall that

F̃u = Gu ◦ Fu). This is clear, by Lemma 4.7:

‖Fu(0)‖u4,2,ω ≤ ‖2σ R0‖u4,2,ω + δ p‖Fu(0)‖u4,2,ω + δ p d + 1

b
‖Z0 · Hu(0)‖u4,2,ω

≤ K
(
σ + δ p‖Fu(0)‖u4,2,ω + δ p‖Z0‖u1,0‖Hu(0)‖u3,2,ω

)

≤ K (σ + δ p+3) ≤ K δ p+3.

��

We prove now that the operator F̃u is contractive in an appropriate Banach space.
More precisely we prove the following result:

Lemma 4.9 Let |σ | ≤ σ ∗δ p+3. Assume that φ1, φ2 ∈ X̃ u
3,2,ω satisfy for C > 0 and

i = 1, 2 that �φi�u3,2,ω ≤ Cδ p+3. Then there exists M > 0 such that:

�F̃u(φ1)− F̃u(φ2)�
u
4,2,ω ≤ Mδ p+3�φ1 − φ2�u3,2,ω.

Proof We skip tedious computations and only give an sketch of the proof. See details
in Castejón (2015). Using that Gu is linear and Lemma 4.6:

�F̃u(φ1)− F̃u(φ2)�
u
4,2,ω ≤ M‖Fu(φ1)− Fu(φ2))‖u5,2,ω.

It is only necessary to prove that if �φi�
u
3,2,ω ≤ Cδ p+3, then:

‖Fu(φ1)− Fu(φ2)‖u5,2,ω ≤ K δ p+3�φ1 − φ2�u3,2,ω. (118)

We decompose the operator Fu in (111) into Fu = Fu
1 + Fu

2 + Fu
3 + Fu

4 with

Fu
1 (φ) = 2σ(R0(v)+ φ)+ δ pFu(φ)+ δ p d + 1

b
Z0(v)H

u(φ)

Fu
2 (φ) = −δ pGu(φ)∂θφ

Fu
3 (φ) = −δ p 1

d(1 − Z2
0(v))

Hu(φ)∂vφ

Fu
4 (φ) = 2b

d(1 − Z2
0(v))

φ∂vφ.
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Proceeding as in the proof of Lemma 4.7, one can prove (after tedious but easy com-
putations):

‖Fu(φ1)− Fu(φ2)‖u5,2,ω ≤ Mδ3‖φ1 − φ2‖u3,2,ω.
‖Gu(φ1)− Gu(φ2)‖3,0,ω, ‖Hu(φ1)− Hu(φ2)‖4,2,ω ≤ Mδ3‖φ1 − φ2‖3,2,ω. (119)

As a consequence, the operator Fu
1 satisfies the bound in (118) since ‖Z0‖1,0 ≤ K .

With respect to Fu
2 , we write:

Fu
2 (φ1)− Fu

2 (φ2) = (
Gu(φ1)− Gu(φ2)

)
∂θφ1 + Gu(φ2)∂θ

(
φ1 − φ2).

Then, since φi ∈ X̃ u
3,2,ω,

‖Fu
2 (φ1)− Fu

2 (φ2)‖u5,2,ω ≤‖Gu(φ1)− Gu(φ2)‖u3,0,u‖∂θφ1‖u2,2,ω
+ ‖Gu(φ2)‖u2,0,ω‖∂θ

(
φ1 − φ2)‖u3,2,ω.

(120)

Now we note that:

‖∂θφ1‖u2,2,ω ≤ K
‖∂θφ1‖u4,2,ω
δ2κ2

≤ K
�φ1�

u
3,2,ω

δκ2
≤ K

δ p+2

κ2
≤ K . (121)

and:

‖∂θ (φ1 − φ2)‖u3,2,ω ≤ K

δκ
‖∂θ (φ1 − φ2)‖u4,2,ω ≤ K

κ
�φ1 − φ2�u3,2,ω. (122)

Note that since ‖φi‖u3,2,ω ≤ Cδ p+3, then ‖φi‖u2,2,ω ≤ Cκ−1δ p+2. Therefore,
Lemma 4.7 with R = φ2 applies. Thus, using this lemma and the bounds in (121),
(122) and (119) in inequality (120), we also obtain that the operatorFu

2 satisfies bound
in (118).

We leave to the reader to check that Fu
3 and Fu

4 also satisfy bound (118) using the
fact that ‖(1 − Z2

0)
−1‖u−2,−2,ω ≤ K . ��

End of proof of Proposition 4.4 Proposition 4.4 is a corollary of Lemmas 4.8 and 4.9.
Indeed, let p ≥ −2 and |σ | ≤ σ ∗δ p+3.Define� := 2�F̃u(0)�u3,2,ω and B(�) ⊂ X̃ u

3,2,ω
the ball of radius � centered at zero.

We claim that F̃u has a unique fixed point in B(�). Indeed, we point out that
� ≤ K δ p+3 by Lemma 4.8. We first check that F̃u is contractive. By the properties of
the norm �.�un,m,ω and Lemma 4.9, for φ1, φ2 ∈ B(�):

�F̃u(φ1)− F̃u(φ2)�
u
3,2,ω ≤ K

δκ
�F̃u(φ1)− F̃u(φ2)�

u
4,2,ω ≤ K δ p+2

κ
�φ1 − φ2�u3,2,ω.

Clearly, since p ≥ −2 and κ∗ is large enough, F̃u is contractive in B(�).
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It remains to check that F̃u : B(�)→ B(�). If φ ∈ B(�), by Lemma 4.9:

�F̃u(φ)�u3,2,ω ≤ �F̃u(φ)− F̃u(0)�u3,2,ω + �F̃u(0)�u3,2,ω ≤ K
δ p+2

κ
�φ�u3,2,ω + 1

2
�.

Taking κ∗ ≤ κ large enough, �F̃u(φ)�u3,2,ω < �. That is, F̃u : B(�) → B(�).

Therefore, by the fixed point theorem F̃ has a unique fixed point in B(�).
It is clear that Ru

1 ∈ B(�) is the fixed point of F̃u obtained before. Then, item 1
of Proposition 4.4 is a direct consequence of Lemma 4.8. To prove item 2, we just
need to note that: Ru

11 = Ru
1 − Ru

10 = F̃u(Ru
1) − F̃u(0). Using Lemma 4.9 and that

�Ru
1�

u
3,2,ω ≤ K�Ru

10�
u
3,2,ω, we obtain that:

�Ru
11�

u
4,2,ω ≤ K δ p+3�Ru

1�
u
3,2,ω ≤ K δ p+3�Ru

10�
u
3,2,ω.

��

4.2 Suitable Complex Parameterizations: Theorem 2.4

In this section we shall prove Theorem 2.4 concerning the functions ru1 and r
s
1. The fact

that Ru
1 and R

s
1 satisfy different equations is not adequate for our purposes of comparing

them. We will now proceed to obtain new parameterizations ru,s = R0 + ru,s1 of the
invariant manifolds which will be solutions of the same functional equation. To obtain
such a parameterizations we i) undo the changes (107) until we get a parameterization
of system (15) and ii) perform the symplectic polar change of coordinates.

The technical proofs can be encountered in Castejón (2015).

4.2.1 Setting

Let Ru,s
1 be the functions given by Proposition 4.4. We consider Ru,s = R0 + Ru,s

1
and we introduce the parameterizations of the invariant manifolds of the equilibrium
points Ŝ∓ = (0, 0,∓1) of the vector field Xu,s in (108):

ζ̂ u,s(v, θ) := (√
2Ru,s(v, θ) cos θ,

√
2Ru,s(v, θ) sin θ, Z0(v)

)
. (123)

We define:

ζ u,s(v, θ) := (Cu,s)−1ζ̂ u,s(v, θ) = (xu,s(v, θ), yu,s(v, θ), zu,s(v, θ)) (124)

where Cu,s are given in (107). These are parameterizations of the two-dimensional
unstable (respectively, stable) manifold associated with the equilibrium points
S∓(δ, σ ) of the original system (15).

To compare (xu(v, θ), yu(v, θ)) and (xs(v, θ), ys(v, θ)) on the z−plane (or equiv-
alently in the u−plane given by z = Z0(u)), we implicitly define the functions vu,s

as:
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Z0(u) = zu(vu(u, θ), θ), Z0(u) = zs(vs(u, θ), θ).

The result about the existence of functions vu,s is given below. Its proof is an elementary
application of the fixed point theorem.

Lemma 4.10 Let κ = κ(δ) given in Proposition 4.4. Fix m > 0 a constant indepen-
dent of δ and σ . Let κ̄ = κ̄(δ) satisfying condition (29) and such that κ̄ > κ + m,
and let zu,s(v, θ) be the functions defined in (124) for (v, θ) ∈ Du,s

κ,β,T × Tω. Let T̄

be a constant such that 0 < T̄ < T . Then, if δ is sufficiently small, the functions vu,s

defined implicitly by:

Z0(u) = zu,s(vu,s(u, θ), θ)

are well defined for all u ∈ Du,s
κ̄,β,T̄

and θ ∈ Tω, and there exists a constant M such

that:

|vu,s(u, θ)− u| ≤ Mδ p+4| cosh(du)|2.

We take m > 0 fixed and κ, κ̄, T, T̄ and β as in Lemma 4.10.
Note that, as ζ u,s(v, θ) in (124), the functions ζ u,s(vu,s(u, θ), θ) are other param-

eterizations of the unstable and stable manifolds of S∓(δ, σ ), respectively. We define
ru,s(u, θ) as:

ru,s(u, θ) = 1

2

[
(xu,s(vu,s(u, θ), θ))2 + (yu,s(vu,s(u, θ), θ))2

]
. (125)

We claim that there exists K > 0 such that for all (u, θ) ∈ Du,s
κ̄,β,T̄

× Tω,

ru,s(u, θ) = R0(u)+ Ru,s
1 (u, θ)+ ru,s2 (u, θ),

| cosh(du)ru,s2 (u, θ)| ≤ K δ p+4, (126)

where Ru,s
1 are given in Proposition 4.4. We deal only with the unstable case being

the stable one analogous. We first begin by studying the difference between πx,y ζ̂ u

and πx,yζ u defined, respectively, in (123) and (124). We note that, from Lemma 4.1,
πx,y S−(δ, σ ) = O(δ p+5) and the matrices M−(δ, σ ) in the same lemma have inverse
of the form M−1− (δ, σ ) = Id + δ p+5M̂−1− (δ, σ ) having M̂−1− (δ, σ ) bounded entries.
We denote by πx,y M̂

−1− the two first rows of M̂−1− . Then, using the form of the change
Cu in (107):

πx,yζ
u(v, θ) = πx,y ζ̂ u(v, θ)+ kδ p+5 + δ p+5πx,y M̂

−1− ζ̂ u(v, θ)

for some bounded coefficients k := k(δ, σ ). By Corollary 4.5:

|ζ̂ u(v, θ)| ≤ K

| cosh(dv)| , (v, θ) ∈ Du
κ,β,T × Tω (127)
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and therefore, if (v, θ) ∈ Du
κ,β,T × Tω:

πx,yζ
u(v, θ) = πx,y ζ̂ u(v, θ)+ O(δ p+4). (128)

By definition (125) of ru,s we are interested in computing ζ u(vu(u, θ), θ). For
that we also need to study the difference between ζ̂ u(u, θ) and ζ̂ u(vu(u, θ), θ).
We emphasize that by Lemma 4.10, taking δ sufficiently small we can ensure that
vuλ(u, θ) := vu(u, θ)+λ(vu(u, θ)−u) ∈ Du

κ,β,T for u ∈ Du
κ̄,β,T̄

and λ ∈ [0, 1]. Then
using Proposition 4.4, Lemma 4.10 and the mean value theorem:

|πx,y ζ̂ u(vu(u, θ), θ)− πx,y ζ̂ u(u, θ)| ≤ sup
λ∈[0,1]

|∂vπx,y ζ̂ (vuλ(u, θ))||vu(u, θ)− u|

≤ K δ p+4 sup
λ∈[0,1]

| cosh(du)|2
| cosh(d(vuλ(u, θ)))|2

≤ K δ p+4.

Using this expression in (128) one obtains:

πx,yζ
u(vu(u, θ), θ) = πx,y ζ̂ u(u, θ)+ O(δ p+4).

Then, recalling that πx,yζ u = (xu, yu) and using (127), we obtain:

ru(u, θ) = 1

2

[
(πx ζ̂

u(u, θ))2 + (πy ζ̂ u(u, θ))2
]

+ O
(

δ p+4

cosh(du)

)

= R0(u)+ Ru
1(u, θ)+ O

(
δ p+4

cosh(du)

)

and (126) is proven. We introduce ru1 = Ru
1 + ru2 and therefore, ru is of the form ru =

R0 + ru1 . Note that, by construction, ru1 satisfies the partial differential equation (26).
In addition, by the compact expression of Gu in (115), the dominant part, ru10, of

ru1 , given in Theorem 2.4 is ru10 = Gu ◦F(0), where F is the operator defined in (28).
Then, by using the expression for Ru

1 in Proposition 4.4, we obtain the decomposition:

ru1 = ru10+ru11, ru10 = Gu◦F(0), ru11 = Gu◦(Fu(0)−F(0))+Ru
11+ru2 , (129)

where we have used that the operator Gu is linear.

4.2.2 End of the Proof of Theorem 2.4

It remains to prove the bounds for ru10 and r
u
11 in Theorem 2.4 on Du,s

κ̄,β̄,T̄
×Tω̄. For this,

it is convenient to define the auxiliary norms for functions φ : Du,s
κ,β,T × Tω → C:

‖φ‖κ,β,Tn,ω = sup
θ∈Tω
v∈Du

κ,β,T

∣∣coshn(dv)φ(v, θ)∣∣
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which satisfies ‖φ‖κ,β,Tn,ω ≤ ‖φ‖un,0,ω if φ ∈ X u
n,0,ω. Moreover, if m > 0, then

‖∂uφ‖κ̄,T̄ ,β̄n+1,ω̄ ≤ M‖φ‖κ,T,βn,ω (130)

with κ̄ > κ + m satisfying condition (29), 0 < β̄ < β, 0 < T̄ < T and 0 < ω̄ < ω.
This fact can be checked as Lemma 4.3 in Baldomá (2006).

Along this proof we will use that, if u ∈ Du
κ,β (see (30)), then | cosh(du)| ≥ K δ for

some constant K . We also use decomposition (129) without mentioning it explicitly.
It can be straightforwardly proven (see Castejón 2015) that there exists M > 0,

such that

‖F(0)‖u,s4,0,ω ≤ Mδ p+3,
∥∥F(0)− Fu,s(0)

∥∥u,s
2,0,ω ≤ Mδ p+4.

Therefore, using the properties of Gu in Lemma 4.6 we obtain

�Gu ◦ F(0)�u3,0,ω ≤ K δ p+3, �G(F(0)− Fu,s(0))�u1,0,ω ≤ K δ p+4,

so that the bounds for ru10 are done using that ‖ · ‖κ,β,Tn,ω ≤ ‖ · ‖un,0,ω. In addition, with
respect to Ru

11, using Proposition 4.4, we have �Ru
11�

u
4,2,ω ≤ K δ2p+6 and with respect

to ru2 defined in (126), ‖ru2‖κ̄,β,T̄1,ω ≤ K δ p+4. Therefore, using also property (130), we
have that

‖R11‖κ,T,β4,ω , ‖∂u R11‖κ,T,β5,ω ≤ K δ2p+6 ‖r2‖κ̄,β,T̄1,ω , ‖∂ur2‖κ̄,β̄,T̄1,ω ≤ K δ p+4.

We point out that we have abused notation, using the same κ̄ and T̄ although they are
different from the previous ones.However, they still satisfy κ̄−κ > m and 0 < T̄ < T .
Now we are almost done. Notice that by definition of ru11

|ru11(u, θ)| ≤ | cosh(du)|(�G(F(0)− Fu,s(0))�u1,0,ω + ‖r2‖κ̄,β,T̄1,ω

)

+| cosh(du)|4�Ru
11�

u
4,2,ω

and then, using the above bounds, the statement for ru11 in Theorem 2.4 is checked. The

bound ‖∂uru1‖κ̄,β̄,T̄4,ω̄ ≤ K δ p+3 is straightforward from the above bounds for ∂uru10 =
∂uGu ◦ F(0) and ∂uru11 and from definition ru1 = ru10 + ru11. Finally, using that ru1
satisfies Eq. (26), we easily obtain ‖∂θr1‖κ̄,β̄,T̄4,ω̄ ≤ K δ p+4.

5 The Difference �(u, θ): Proof of Theorem 2.7

In this section we will prove Theorem 2.7. It is clear that the difference �(u, θ) =
ru1 (u, θ)− r s1(u, θ) is defined on (u, θ) ∈ Dκ,β ×Tω, where Dκ,β = Du

κ,β,T ∩ Ds
κ,β,T

(see Fig. 6) so this will be our domain from now on.
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5.1 Preliminary Considerations

As we explained in Sect. 2.4, the difference� = r s1 − ru1 satisfies the linear PDE (41)
and can be expressed in the form (50): �(u, θ) = P(u, θ)k̃(ξ(u, θ)), with

ξ(u, θ) = θ + δ−1αu + cd−1 log cosh(du)+ C(u, θ), (131)

a solution of (47) and

P(u, θ) = cosh2/d(du)(1 + P1(u, θ)) (132)

a solution of (41). A straightforward computation shows that if C is a solution of

(−δ−1α − cZ0(u))∂θC + ∂uC =l2(u, θ)(δ
−1α + cZ0(u)+ ∂uC)

+ l3(u, θ)(1 + ∂θC), (133)

then, ξ is a solution of (47). Conversely, if P1 is a solution of

(
−δ−1α − cZ0(u)

)
∂θ P1 + ∂u P1 =(2σ + l1(u, θ)+ 2Z0(u)l2(u, θ))(1 + P1)

+ l2(u, θ)∂u P1 + l3(u, θ)∂θ P1, (134)

then P as in (132) is a solution of (41).
Therefore, we focus to prove the existence and the properties stated in Theorem 2.7

of the functions C and P1. To this aim, first we point out that the linear operator on
the left-hand side of Eqs. (133) and (134) is in both cases:

L̂(φ) = (−δ−1α − cZ0(u))∂θφ + ∂uφ. (135)

In order to prove the existence of C and P1, we will use a right inverse of the operator
L̂, which we will call Ĝ.

As we did with Gu,s, we look for an expression of Ĝ by solving the ordinary
differential equations that its Fourier coefficients satisfy. Proceeding in this way and
taking into account that our functions are defined in Dκ,β × Tω, we define Ĝ as the
operator acting on functions φ defined in Dκ,β × Tω as:

Ĝ(φ)(u, θ) =
∑
l∈Z

Ĝ[l](φ)(u)eilθ , (136)

where

123

Author's personal copy



J Nonlinear Sci

Ĝ[l](φ)(u) =
∫ u

u+
e
−ilδ−1α(w−u)−ilcd−1 log

(
cosh(dw)
cosh(du)

)
φ[l](w)dw, if l < 0,

Ĝ[0](φ)(u) =
∫ u

uR
φ[0](w)dw, (137)

Ĝ[l](φ)(u) =
∫ u

u−
e
−ilδ−1α(w−u)−ilcd−1 log

(
cosh(dw)
cosh(du)

)
φ[l](w)dw, if l > 0,

and u± = ±i(π/(2d) − δκ) and uR ∈ R is the point of Dκ,β with largest real part
(see Fig. 6 in Sect. 2.4).

In the next section, we introduce the Banach spaces we will work with, give some
bounds of the functions li and finally check that the operator Ĝ is well defined and has
appropriate properties.

5.2 Banach Spaces and Properties of Ĝ

We will consider functions φ : Dκ,β × Tω → C. Again, they can be written in their

Fourier series φ(v, θ) = ∑
l∈Z φ[l](v)eilθ . In a similar way as we did in Sect. 4.1.2

we define the norms:
∥∥∥φ[l]

∥∥∥
n

= sup
v∈Dκ,β

∣∣∣coshn(dv)φ[l](v)
∣∣∣ , ‖φ‖n,ω =

∑
l∈Z

∥∥∥φ[l]
∥∥∥
n
e|l|ω,

�φ�n,ω = ‖φ‖n,ω + ‖∂vφ‖n+1,ω + δ−1‖∂θφ‖n+1,ω

and we consider the Banach spaces endowed with these norms:

Xn,ω :=
{
φ : Dκ,β × Tω → C : φ is analytic, such that ‖φ‖n,ω < +∞

}
,

X̃n,ω :=
{
φ : Dκ,β × Tω → C : φ is analytic, such that �φ�n,ω < +∞

}
.

Remark 5.1 From Theorem 2.4, ru,s1 ∈ X̃3,ω and that there exists a constant M such
that �ru,s1 �3,ω ≤ Mδ p+3.

Next lemma provides bounds for l1, l2 and l3. Its proof is given in Castejón (2015).

Lemma 5.2 Let li (u, θ), i = 1, 2, 3, be the functions defined in (42)–(44). There
exists a constant M such that:

‖l1‖2,ω ≤ Mδ p+3, ‖l2‖1,ω ≤ Mδ p+3, ‖l3‖2,ω ≤ Mδ p+3.

To finish this section we enunciate the properties of the linear operator Ĝ which
turns out to be very similar to the ones of G in Lemma 4.6. Its proof involves several
technicalities and can be found in Castejón (2015).
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Lemma 5.3 Let l ∈ Z, n ≥ 1 and φ ∈ Xn,ω. There exists M > 0 such that:

1. If n > 1, then ‖Ĝ[l](φ)‖n−1 ≤ M
∥∥φ[l]∥∥

n .

2. If l �= 0, then ‖Ĝ[l](φ)‖n ≤ δM
∥∥φ[l]∥∥

n

|l| .

3. As a consequence, if n > 1, ‖Ĝ(φ)‖n−1,ω ≤ M‖φ‖n,ω. Moreover, if φ[0](v) = 0,
then for all n ≥ 1, ‖Ĝ(φ)‖n,ω ≤ δM‖φ‖n,ω.

4. ‖∂θ Ĝ(φ)‖n,ω ≤ δM‖φ‖n,ω.
5. ‖∂u Ĝ(φ)‖n,ω ≤ M‖φ‖n,ω.
6. In conclusion, if n > 1 and φ ∈ Xn,ω, then Ĝ(φ) ∈ X̃n−1,ω and there exists M > 0

such that:

�Ĝ(φ)�n−1,ω ≤ M‖φ‖n,ω.

In the following two sections we will prove the results related to the functions C
and P1.

5.3 Existence and Properties of C

We enunciate the results about the function C that we will prove. They give a more
precise information than the ones in Theorem 2.7.

Proposition 5.4 There exists a particular solution C of (133) of the form:

C(u, θ) = δ−1α

∫ u

0
l[0]2 (w)dw + C1(u, θ), (138)

with l[0]2 (u) the average of the function l2 defined in (43).

‖C1‖1,ω ≤ Mδ p+3, ‖∂uC‖1,ω ≤ Mδ p+2, ‖∂θC‖1,ω ≤ Mδ p+3. (139)

Finally, (ξ(u, θ), θ), with ξ given by (131), is injective in Dκ,β × Tω.

Remark 5.5 Assuming that C actually exists and recalling that � has the form (48),
the function

k(u, θ) := k̃(θ + δ−1αu + cd−1 log cosh(du)+ C(u, θ)),

has to be 2π−periodic in θ , which implies that k̃(τ ) is 2π−periodic in τ .

Now we make some further considerations on the integral
∫ u
0 l[0]2 (w)dw. First of

all, we point out that using Lemma 5.2 and the fact that for w ∈ Dκ,β one has
| cosh(dw)| ≥ K |w2 − π2/(2d)2|, one obtains:

∣∣∣∣δ−1α

∫ u

0
l[0]2 (w)dw

∣∣∣∣ ≤ K δ p+2
∫ u

0
| cosh(dw)|−1dw ≤ K δ p+2| log(δκ)|.

123

Author's personal copy



J Nonlinear Sci

Hence, in the regular case p > −2 this integral is small, even for complex values
of u ∈ Dκ,β , and one can avoid to take into account its contribution to the function
C(u, θ) defined in (138). Notice that when u ∈ R, this integral isO(δ p+2). However,
in the singular case p = −2, one needs to have some more precise knowledge of its
behavior.

The following result dealswith this integral. Its proof is givenwith detail inCastejón
(2015).

Lemma 5.6 Define L0 as the following limit that is well defined:

L0 = lim
u→i π2d

lim
δ→0

δ−p−3l[0]2 (u) tanh
−1(du).

Then, there exist functions L(u) and  (u) such that for all u ∈ Dκ,β :

∫ u

0
l[0]2 (w)dw = δ p+3d−1L0 log cosh(du)+ δL(u)+ δ (u).

Moreover, L0 ∈ R, L(0) = 0 and L(u) is defined on the limit u → iπ/(2d) and
‖L‖0 ≤ Mδ p+2, ‖L ′‖0 ≤ Mδ p+2 and ‖ ‖1 ≤ Mδ p+3, for some M > 0.

Remark 5.7 One can obtain explicit expressions for L0, L(u) and  (u) depending
only on F(0) or equivalently, on F(0),G(0) and H(0) defined in (24). See (Castejón
2015) for details.

We write the formulas for L0 and L(u). We define the constants

ρ0 = (d + 1)

2bd(3d + 2)

[
(d + 1)

4b
( f3120 + g3210 + 3 f3300 + 3g3030)− ( f3102 + g3012)

−d + 1

b
(h3201 + h3021)+ 2h3003

]

H0 = − h3003 + d + 1

2b
(h3021 + h3201) ,

where the coefficients fqkmn, gqkmn and hqkmn were defined as in (62).
In the conservative case, L0 = −h3003 while in the general one:

L0 = −2b

d
ρ0 − 1

d
H0.

With respect to L(u), we define

H1(u) = cosh3(du) limδ→0 δ
−3
(
H(0)

)[0] − H0 sinh(du)

cosh(du)
,

ρ
u,s
1 (u) = δ−(p+3)σ

∫ u

∓∞
R0(w)

cosh4+ 2
d (dw)

dw
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+ cosh
2
d (du)

∫ u

∓∞
F1(w)

cosh4+ 2
d (dw)

dw − ρ0 tanh(du)

cosh2(du)
,

F1(u) = lim
δ→0

δ−p−3 cosh4(u)
[F [0](u)− 2σ R0(u)

]
,

where we take − for the unstable case and + for the stable one. Then

L(u) = −δ p+2
∫ u

0

b

d
cosh2(dw)(ρu1 (u)+ ρs1(w))+

1

d
H1(w)dw.

5.3.1 Proof of Proposition 5.4

Let us define:

l̂2(u, θ) = l2(u, θ)− l[0]2 (u).

It is easy to see that in order that C defined in (138) satisfies (133) it is enough that
C1 satisfies the following equation:

(−δ−1α − cZ0(u))∂θC1 + ∂uC1 = δ−1αl̂2(u, θ)+ l3(u, θ)(1 + ∂θC1) (140)

+ l2(u, θ)(cZ0(u)+ δ−1αl[0]2 (u)+ ∂uC1).

We define the operator A1 as:

A1(φ) = α

δ
l̂2(u, θ)+ l2(u, θ)(cZ0(u)+ α

δ
l[0]2 (u)+∂uφ)+ l3(u, θ)(1+∂θφ). (141)

Then Eq. (140) can be rewritten as L̂(C1) = A1(C1), where L̂ was defined in (135).
It is enough then to solve the fixed point equation:

C1 = Ã1(C1),

where Ã1 = Ĝ ◦ A1, and Ĝ is the operator defined in (136).

Lemma 5.8 For κ big enough and p ≥ −2, the operator Ã1 : X̃0,ω → X̃0,ω.

Moreover, there exists a constant M such that �Ã1(0)�0,ω ≤ Mδ p+2, and Ã1 has a

unique fixed point in the ball B
(
2�Ã1(0)�0,ω

)
⊂ X̃0,ω.

Proof First of all we shall prove that:

�Ã1(0)�0,ω ≤ K δ p+2. (142)

We have:

A1(0) = δ−1αl̂2(u, θ)+ l2(u, θ)(cZ0(u)+ δ−1αl[0]2 (u))+ l3(u, θ).
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To prove (142) we shall bound the Fourier coefficients of A1(0) and then use
Lemma 5.3. On the one hand, since by definition l̂2 has zero average, one has:

A[0]
1 (0) = l[0]2 (u)(cZ0(u)+ δ−1αl[0]2 (u))+ l[0]3 (u).

Using Lemma 5.2 and the properties of the norm:

‖A[0]
1 (0)‖2 ≤ ‖l[0]2 ‖1(c‖Z0‖1 + δ−1α‖l[0]2 ‖1)+ ‖l[0]3 ‖2 ≤ K δ p+3. (143)

Then, by item 1 of Lemma 5.3 one has:

‖Ĝ[0](A1(0))‖1 ≤ K‖A[0]
1 (0)‖2 ≤ K δ p+3. (144)

On the other hand, for the remaining Fourier coefficients one has:

A[l]
1 (0) = l[l]2 (u)(δ

−1α + cZ0(u)+ δ−1αl[0]2 (u))+ l[l]3 (u) l �= 0.

Again, using Lemma 5.2 and the properties of the norm, we obtain:

‖A[l]
1 (0)‖1 ≤ ‖l[l]2 ‖1(δ−1α + c‖Z0‖0 + δ−1α‖l[0]2 ‖0)+ ‖l[l]3 ‖1 ≤ K δ p+2. (145)

Then by item 2 of Lemma 5.3 and taking into account that l �= 0, we have:

‖Ĝ[l](A1(0))‖1 ≤ K δ‖A[l]
1 (0)‖1
|l| ≤ K δ p+3

|l| . (146)

From (144) and (146) we obtain:

‖Ã1(0)‖1,ω ≤ K δ p+3, (147)

and as a consequence:

‖Ã1(0)‖0,ω ≤ K
δ p+2

κ
≤ K δ p+2. (148)

We note that from bounds (143) and (145) we have ‖A1(0)‖1,ω ≤ K δ p+2, and then
from items 4 and 5 of Lemma 5.3 we obtain directly:

‖∂uÃ1(0)‖1,ω ≤ K‖A1(0)‖1,ω ≤ K δ p+2, (149)

and:
‖∂θ Ã1(0)‖1,ω ≤ K δ‖A1(0)‖1,ω ≤ K δ p+3. (150)

From bounds (148), (149) and (150), one obtains bound (142).
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It is not difficult to check that given two functions φ1, φ2 ∈ X̃0,ω:

�Ã1(φ1)− Ã1(φ2)�0,ω ≤ K

κ
δ p+2�φ1 − φ2�0,ω. (151)

To finish the proof, we take κ sufficiently large such that the Lipschitz constant

in (151) is smaller than 1. Then Ã1 sends B
(
2�Ã1(0)�0,ω

)
to itself and since it is

contractive, it has a unique fixed point in this ball. ��
End of the proof of Proposition 5.4 Let us define C1 as the unique fixed point of the

operator Ã1 in the ball B
(
2�Ã1(0)�0,ω

)
, whose existence is proven by Lemma 5.8.

Let C be defined as in (138) and ξ the function defined as (131). It remains to check
that bounds (139) hold and that (ξ(θ, u), θ) is injective.

First we shall see that C1 satisfies the bound in (139). We point out that this is not
given directly by Lemma 5.8, but it can be obtained a posteriori. Indeed, by definition
C1 satisfies: C1 = Ĝ(A1(C1)). By definition (141) of the operator A1, and since Ĝ is
linear, we can write:

C1 = Ĝ(A1(0))+ Ĝ(l2(u, θ)∂uC1 + l3(u, θ)∂θC1). (152)

On the one hand, we recall bound (147) which stated:

‖Ĝ(A1(0))‖1,ω ≤ K δ p+3. (153)

On the other hand, since C1 ∈ B
(
2�Ã1(0)�0,ω

)
, by the definition of the norm �.�0,ω

and the bound of �Ã1(0)�0,ω provided by Lemma 5.8, one has:

‖∂uC1‖1,ω ≤ K δ p+2, ‖∂θC1‖1,ω ≤ K δ p+3. (154)

Then, using Lemma 5.2 and bounds (154) it is easy to see that:

‖l2(u, θ)∂uC1 + l3(u, θ)∂θC1‖2,ω ≤ K δ2p+5,

so that by item 3 of Lemma 5.3 we obtain:

‖Ĝ(l2(u, θ)∂uC1 + l3(u, θ)∂θC1)‖1,ω ≤ K δ2p+5. (155)

Using that p ≥ −2 and bounds (153) and (155) in Eq. (152), we obtain ‖C1‖1,ω ≤
K δ p+3, and then bound (139) is obtained.

The bounds in (139) forC are consequence of (154) andLemma 5.2. It only remains
to prove that (ξ(θ, u), θ) is injective. Let us assume ξ(u1, θ) = ξ(u2, θ). This means:

u1 − u2 = δd−1α−1c(log cosh(du1)− log cosh(du2))

+δα−1(C(u1, θ)− C(u2, θ)).
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On the one hand, for u1, u2 ∈ Dκ,β we have:

δd−1α−1c| log cosh(du1)− log cosh(du2)| ≤ K

κ
|u1 − u2|.

On the other hand, using the mean value theorem and bound (139):

δ|C(u1, θ)− C(u2, θ)| ≤ K δ p+2

κ
|u1 − u2|,

Thus, since p ≥ −2, we know that there exists a constant K such that: |u1 − u2| ≤
κ−1K |u1 − u2|. Taking κ sufficiently large yields u1 = u2. ��

5.4 Existence and Properties of P1

Our goal is to find a particular solution of Eq. (134) satisfying the properties stated in
Theorem 2.7. We introduce the operator

B(φ) = (2σ+l1(u, θ)+2Z0(u)l2(u, θ))(1+φ)+l2(u, θ)∂uφ+l3(u, θ)∂θφ, (156)

in such a way that Eq. (134) can be written as:

L̂(P1) = B(P1). (157)

We distinguish between the general and the conservative case, since in the first case
P1 will be found using a fixed point equation, while in the latter it will be defined in
terms of the function C of Theorem 2.7.

5.4.1 The General Case

In this subsection we will follow the same steps as in Sect. 5.3 to prove the existence
of C1. Since P1 has to be a solution of (157), we shall do it by solving the fixed point
equation:

P1 = B̃(P1), (158)

where B̃ = Ĝ ◦ B, and Ĝ is the operator defined by (136) and (137), and B is defined
in (156).

Lemma 5.9 For κ big enough and p ≥ −2, the operator B̃ : X̃1,ω → X̃1,ω, and it

has a unique fixed point in the ball B
(
2�B̃(0)�1,ω

)
⊂ X̃1,ω. Moreover, there exists a

constant M such that �B̃(0)�1,ω ≤ K δ p+3.

Proof First we deal with B̃(0). Indeed, using Lemma 5.2 and that |σ | ≤ σ ∗δ p+3, it is
straightforward to prove that there exists a constant K such that: ‖B(0)‖2,ω ≤ K δ p+3.
Then item 6 of Lemma 5.3 yields �B̃(0)�1,ω ≤ K δ p+3.
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Next step is to find the Lipschitz constant of the operator B̃. To do so, let us fix

φ1, φ2 ∈ B
(
2�B̃(0)�1,ω

)
. We have:

‖B(φ1)− B(φ2)‖2,ω ≤ 2|σ |‖φ1 − φ2‖2,ω + ‖l1‖1,ω‖φ1 − φ2‖1,ω
+ 2‖Z0‖1,ω‖l2‖0,ω‖φ1 − φ2‖1,ω + ‖l2‖0,ω‖∂u(φ1 − φ2)‖2,ω
+ ‖l3‖1,ω‖∂θ (φ1 − φ2)‖1,ω. (159)

First we note that, since σ = O(δ p+3):

|σ |‖φ1 − φ2‖2,ω ≤ K
δ p+2

κ
‖φ1 − φ2‖1,ω ≤ K

δ p+2

κ
�φ1 − φ2�1,ω. (160)

Similarly, by Lemma 5.2:

‖l1‖1,ω ≤ K
δ p+2

κ
, ‖l2‖0,ω ≤ K

δ p+2

κ
, ‖l3‖1,ω ≤ K

δ p+2

κ
. (161)

Finally, we just need to note that:

‖∂θ (φ1 − φ2)‖1,ω ≤ K

δκ
‖∂θ (φ1 − φ2)‖2,ω ≤ K�φ1 − φ1)�1,ω. (162)

Using the definition of the norm �.�1,ω, the fact that ‖Z0‖1,ω ≤ K and the previous
bounds (160), (161) and (162) in Eq. (159) we immediately obtain

‖B(φ1)− B(φ2)‖2,ω ≤ K
δ p+2

κ
�φ1 − φ2�1,ω.

Again, by item 6 of Lemma 5.3

�B̃(φ1)− B̃(φ2)�1,ω ≤ K
δ p+2

κ
�φ1 − φ2�1,ω. (163)

To finish the proof, we take κ large enough such that the Lipschitz constant in (163)
is smaller than 1. Then the fixed point theorem yields the result. ��

The fact P1 satisfies Eq. (157) (and consequently (134)) is clear since it is a solution
of Eq. (158). Clearly, using Lemma 5.9, one has, �P1�1,ω ≤ 2�B̃(0)�1,ω ≤ K δ p+3.
Since:

sup
(u,θ)∈Dκ,β×Tω

|P1(u, θ)| ≤ �P1�1,ω sup
(u,θ)∈Dκ,β×Tω

| cosh−1(du)| ≤ K
δ p+2

κ
,

taking κ sufficiently large we obtain |1 + P1(u, θ)| ≥ 1 − Kκ−1δ p+2 �= 0. Finally,
since cosh2/d(du) �= 0 for u ∈ Dκ,β we can ensure that, for (u, θ) ∈ Dκ,β × Tω,
P(u, θ) = cosh2/d(du)(1 + P1(u, θ)) �= 0.
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5.4.2 The Conservative Case

We recall that in the conservative case we have d = 1 and σ = 0. Let:

P1(u, θ) = ∂uC(u, θ)− l3(u, θ)

δ−1α + cZ0(u)+ l3(u, θ)
, (164)

where C(u, θ) is the function given by Proposition 5.4 and l3(u, θ) is defined in (44).
First let us check that it satisfies bound (54), that is:

|P1(u, θ)| ≤ K

κ
δ p+2, (165)

for all (u, θ) ∈ Dκ,β×Tω.On the onehand, note that byProposition 5.4 andLemma5.2
we have:

|∂uC(u, θ)| ≤ K

κ
δ p+1, |l3(u, θ)| ≤ K

κ2
δ p+1. (166)

On the other hand, taking κ sufficiently large, we also have:

∣∣∣∣
1

δ−1α + cZ0(u)+ l3(u, θ)

∣∣∣∣ ≤ K δ. (167)

Then (165) follows directly from using (166) and (167) in (164).
It only remains to prove that P1 defined in (164) satisfies Eq. (134):

(
−δ−1α − cZ0(u)

)
∂θ P1 + ∂u P1 = (l1(u, θ)+ 2Z0(u)l2(u, θ))(1 + P1)

+ l2(u, θ)∂u P1 + l3(u, θ)∂θ P1. (168)

Tedious but standard computations yield that P1 is a solution of

(−δ−1α−cZ0(u)− l3(u, θ))∂θ P1 + ∂u P1
= (∂ul2(u, θ)+ ∂θ l3(u, θ))(1 + P1)+ l2(u, θ)∂u P1. (169)

Therefore, Eqs. (169) and (168) are the same, if and only if:

l1(u, θ)+ 2Z0(u)l2(u, θ) = ∂ul2(u, θ)+ ∂θ l3(u, θ).

This equality can be checked using the definitions of l2 and l3 as well as the fact that
the vector field is divergence free, that is:

∂z H(r)+ ∂θG(r) = −∂r F(r).
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