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Abstract

In 1992, V. Weispfenning proved the existence of Comprehensive Gröbner Bases
(CGB) and gave an algorithm to compute one of them. The algorithm was not very
efficient and not canonical. Using his suggestions, A. Montes obtained in 2002 a more
efficient algorithm (DISPGB) for Discussing Parametric Gröbner Bases. Inspired in the
philosophy of DISPGB, V. Weispfenning defined, in 2002, how to obtain a Canonical
Comprehensive Gröbner Basis (CCGB) for polynomials over a ring of polynomials on
a set of parameters, and provided a constructive method.

In this paper we use Weispfenning’s CCGB ideas to make substantial improvements
on the DISPGB algorithm. It now includes rewriting of the discussion tree using the
discriminant ideal and provides a compact and effective discussion. We also describe
the new algorithms in the DPGB library containing the improved DISPGB as well as new
routines to check whether a given basis is a CGB or not, and to obtain a CGB.

Keywords: discriminant ideal, comprehensive Gröbner bases, parametric polyno-
mial system.
MSC: 68W30, 13P10, 13F10.

1 Introduction

Let R = k[a] be the polynomial ring in the parameters a = a1, . . . , am over the field k,
and S = R[x] the polynomial ring over R in the set of variables x = x1, . . . , xn. Let Âx

be a monomial order wrt the variables x, Âa a monomial order wrt the parameters a and
Âxa the product order. In 1992, Professor Volker Weispfenning [We92] proved the existence
of a Comprehensive Gröbner Basis CGB wrt Âx for any ideal I ⊂ S such that for every
specialization σa : R→ K ′ of the parameters, σa(CGB) is a Gröbner basis of the specialized
ideal σa(I) ·K ′, denoted in the following σa(I). He also provided an algorithm to compute
it. In fact the proof in [We92] applies to more general integral domains R. There are two
known implementations of this algorithm [Pe94],[Sc91].

In 1995, A. Montes [Mo95], one of the authors, used classical Gröbner basis theory to
study the load-flow problem in electrical networks [Mo98]. V. Weispfenning recommended

∗Work partially supported by the Ministerio de Ciencia y Tecnoloǵıa under project BFM2003-00368, and
by the Generalitat de Catalunya under project 2001 SGR 00224
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him to use the Comprensive Gröbner Basis algorithm [We92][Pe94] for this problem. This
was the origin of a fruitful dialog. Its use in the load-flow problem provided interesting infor-
mation over the parameters, but was rather complicated and not very efficient. Moreover,
it was not canonical and V. Weispfenning was interested in obtaining a canonical descrip-
tion of parametric Gröbner bases, i.e. not algorithm depending. Working on the subject,
Montes [Mo02] provided a more efficient new algorithm (DISPGB) to Discuss Parametric
Gröbner Bases, but it continued being not canonical. DISPGB produces a set of non-faithful,
canonically reduced Gröbner bases (Gröbner system) in a dichotomic tree discussion about
the vanishing or not of some polynomials in R, for the different specifications of special-
izations, each of which are semi-canonically determined. The ideas in DISPGB were used
by V. Weispfenning [We02] to prove the existence of a Canonical Comprehensive Gröbner
Basis (CCGB), as well as to give a method to obtain it. The main idea for building up
the canonical tree is the obtention of an ideal J ⊂ R, structurally associated to the ideal
I ⊂ S and the order Âx, which clearly separates the essential specializations not included
in the generic case. Let us denote it Weispfenning’s discriminant ideal of (I,Âx). In the
new Weispfenning’s algorithm, J can be defined and must be computed at the beginning of
the discussion using a method that is relatively time consuming.

The discriminant ideal was one of the lacks of the old DISPGB, and an insufficient alter-
native algorithm GENCASE was provided. In this paper, following Weispfenning, we obtain
a discriminant ideal denoted as N , which can be determined from the data obtained after
building the DISPGB tree using a less time consuming algorithm and, moreover, we prove
that J ⊂ N . We conjecture that J = N . We have verified it in more than twenty different
examples, and no counter-example has been found. The ideal N allows to rewrite the tree,
getting a strictly better discussion.

We also prove that for a large set of parametric polynomial systems (at least for all
prime ideals I) the discriminant ideal is principal, and in this case we have a unique dis-

criminant polynomial to distinguish the generic case from the essential specializations. All
the theoretical results commented above are detailed in section 2.

In section 3, we describe the improvements introduced in the algorithms. We made a
complete revision of the ancient release, simplifying the algorithm and highly increasing
its speed. New routines CANSPEC and PNORMALFORM are given that perform semi-canonical
specifications of specializations and reductions of polynomials. The algorithm is completely
rewritten and the flow control simplified. Further reductions of the tree, eliminating similar
brother terminal vertices, are performed using the algorithm COMPACTVER.

Following P. Gianni [Gi87], we are interested in knowing whether some basis of I is
a comprehensive Gröbner basis or not. In particular the question arises for the reduced
Gröbner basis of I wrt the product order Âxa. We give, in section 4, a simple algorithm
ISCGB that uses DISPGB tree to answer that question. We also give an algorithm PREIMAGE

to compute a faithful pre-image of the non-faithful specialized polynomials in the reduced
bases. This allows to construct a CGB that can be chosen minimal in some sense, but not
canonical. It will be interesting to compare our CGB with Weispfenning’s CCGB when
implemented.

Finally, in section 5, we have selected two illustrative examples that show well the power
of the algorithm.
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The new DISPGB 1 algorithm is efficient and provides a compact discussion of parametric
systems of polynomial equations. An incipient version of it was presented in [MaMo04].

2 Generic case, discriminant ideal and special cases

Set K = k(a) be the quotient field of R. Consider G = gb(I ·K,Âx), the reduced Gröbner
basis of I ·K wrt Âx. As K is a field, it can be computed trough the ordinary Buchberger
algorithm. The polynomials in G have leading coefficient 1. With this normalization g can
have denominators in R. Let dg ∈ R be the least common multiple of the denominators of
g. To obtain a polynomial in S corresponding to g, it suffices to multiply g by dg. Following
Weispfenning [We02], for each g ∈ G we can obtain a minimal lifting, agg, of g such that
ag ∈ R, agg ∈ I and ag is minimal wrt Âa. Doing this for all g ∈ G we obtain G′, a minimal
lifting of G that Weispfenning calls the generic Gröbner basis of (I,Âx). Of course, dg | ag.
We will use a sub-lifting of G with the polynomials G′′ = {dgg : g ∈ G} ⊂ S, and this will
be our generic case basis, because it is simpler to compute, and corresponds to our standard
form of reducing polynomials, as it will be seen in section 3.

A specialization σ for which the set of lpp (leading power products) of the reduced
Gröbner basis of σ(I) is not equal to the set of lpp(G,Â x) is a singular specialization.

DISPGB builds up a binary dichotomic tree T (I,Âx,Âa), branching at the vertices decid-
ing about some p ∈ R whether it is null or not. Each vertex v ∈ T contains the pair (Gv,Σv).
Σv = (Nv,Wv) is the semi-canonical specification of the specializations in v, where Nv is the
radical ideal of the current null-conditions assumed (from which all factors of polynomials
in Wv are dropped), and Wv is the set of irreducible polynomials (conveniently normalized
and reduced by Nv) of the current non-null conditions assumed. Considering W ∗

v the mul-
tiplicative closed set generated by Wv, then Gv ⊂ (W ∗

v )
−1 (K[x]/Nv) is the reduced form of

the basis of σ(I) for the specification of the specialization σ ∈ Σv. At a terminal vertex, the
basis Gv is the reduced Gröbner basis of σ(I), up to normalization, for all specializations
σ ∈ Σv.

V. Weispfenning [We02] introduces the following ideal associated to each g ∈ G:

Jg = {a ∈ R : ag ∈ I} = dg · (I : dgg)
⋂

R

the second formula being computable with ordinary Gröbner basis techniques. Then the

radical of the intersection J =
√⋂

g∈G Jg is used to separate the generic case in his algo-

rithm. We shall call J Weispfenning’s discriminant ideal. A specialization σ is said to be
essential (for I,Âx), if for some g ∈ G is Jg ⊆ ker(σ).

V. Weispfenning proves the following two theorems:
W1: J =

⋂ {ker(σ) : σ is essential }.

W2: Let σ be an inessential specialization. Then

(i) σ(G) is defined for every g ∈ G and lpp(σ(g),Âx) = lpp(g,Âx).

(ii) σ(G) is the reduced Gröbner basis of the ideal σ(I).

1Release 2.3 of the library DPGB, actually implemented in Maple and available at the site http://www-
ma2.upc.edu/∼montes/
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On the other side, in the DISPGB tree T (I,Âx,Âa) specializations are grouped into
disjoint final cases i by the specification Σi, and for all specializations in Σi the reduced
Gröbner bases have the same set of lpp wrt Âx.

Numerate the terminal vertices using 1 ≤ i ≤ k. Final cases for which lpp(Gi,Âx) 6=
lpp(G,Âx) are said to be singular cases. Denote by A the set of indexes of the singular
cases:

A = {1 ≤ i ≤ k : lpp(Gi,Âx) 6= lpp(G,Âx)}.
The tree, being dichotomic, provides a partition of (K ′)m into disjoint specifications, and
thus

(K ′)m =

k⋃

i=1


V(Ni) \

⋃

w∈Wi

V(w)


 = Us

⋃
Ug,

where Us is the set of points a ∈ (K ′)m corresponding to singular specifications, i.e.

Us(I,Âx) = {a ∈ (K ′)m : σa is singular } =
⋃

i∈A


V(Ni) \

⋃

w∈Wi

V(w)


 .

Let us call N(I,Âx) = I(Us) the discriminant ideal. We have

Theorem 2.1. The discriminant ideal N(I,Âx) = I(Us) is N =
⋂

i∈A Ni.

This theorem allows to compute N from the output of BUILDTREE, i.e. the first tree
construction in DISPGB. (See section 3).

Proof. We prove both inclusions:

⊆: For all f ∈ N = I(Us) and a ∈ Us is f(a) = 0. Thus σa(f) = 0 for all a ∈ Us. Taking
now a such that σa ∈ Σi this imply that f ∈ Ni. As this can be done for all i ∈ A, it
follows that N ⊆ ⋂

i∈A Ni.

⊇: For all f ∈ ⋂
i∈A Ni and all a ∈ Us it exists i ∈ A such that σa ∈ Σi and of course

f ∈ Ni. Thus σa(f) = 0, i.e. f(a) = 0 for all a ∈ Us. Thus f ∈ I(Us) = N .

Before proving the next theorem we need the following

Lemma 2.2. Any singular specialization (defined here) is essential (defined by V. Weispfen-

ning).

Proof. Let σa be a singular specialization. If it were not essential, the reduced Gröbner
basis of σ(I) would be the generic basis G by Weispfenning theorem (W2), and this is a
contradiction with the definition of singular specialization. Thus σa is essential.

Theorem 2.3. J ⊆ N .
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Proof. By Weispfenning’s theorem (W1), if f ∈ J then, for all essential σa, f ∈ ker(σa),
and thus f(a) = 0. So, by lemma 2.2, for all singular σa, f(a) = 0. This implies that for
all i ∈ A and σa ∈ Σi is f(a) = 0, and thus f ∈

√
Ni = Ni. Finally, by proposition 2.1,

f ∈ N .

Conjecture 2.4. We formulate two forms

(i) (Strong conjecture). All essential specializations are singular.

(ii) (Weak conjecture). J ⊇ N .

Proposition 2.5. The strong formulation of conjecture 2.4 implies the weak formulation.

Proof. If f ∈ N then, for all i ∈ A, f ∈ Ni. Thus, for all singular specialization σa, f(a) = 0
and, if the strong form of the conjecture is true, then also for all σa essential, f(a) = 0, and
thus f ∈ ker(σa). Thus, by Weispfenning’s theorem (W1), f ∈ J .

In any case, by definition, N is discriminant, i.e. for any a 6∈ V(N) the Gröbner basis
of σa(I) is generic, whether any singular specification is in V(N). Thus, what we called
minimal singular variety in [Mo02] is described by N . If the strong formulation of the
conjecture is true, then every specialization σ for which N ⊂ ker(σ) is not only essential
but also singular, and so the corresponding set of lpp of its reduced Gröbner basis cannot
be generic.

We have tested our conjecture for more than twenty examples and we have not found any
counter-example of any of the two formulations. Nevertheless the weak formulation is the
most interesting one, and a failure of the strong formulation does not invalidate necessarily
the weak formulation.

In most cases Weispfenning’s discriminant ideal J is principal, as stated in the following

Theorem 2.6. If I ⊂ S is a prime ideal and the generic Gröbner basis G wrt Âx is not

[1], then the discriminant ideal J(I,Âx) is principal, and is generated by the radical of the

lcm of all the denominators of the polynomials in G.

Proof. Let g ∈ G. We have Jg = dg · (I : dgg)
⋂
R. If h ∈ Jg then dg | h as dgg has no

common factor with dg. Thus (h/dg) · (dgg) ∈ I. By hypothesis dgg 6= 1 and I is prime.
As h/dg ∈ R, we have h/dg 6∈ I. Thus, necessarily dgg ∈ I and dg ∈ Jg. As dg | h for

all h ∈ Jg it follows that Jg = 〈dg〉 is principal. As J =
√⋂

g∈G Jg is the intersection of

principal ideals, the proposition follows.

Not only prime ideals have principal discriminant ideals as the following example shows.
Take

I = 〈ax1 + x2 + x3 + b, x− 1 + ax2 + x3 + b, x1 + x2 + ax3 + b〉.
Computing the Gröbner basis of I wrt lex(x1, x2, x3, a, b) one sees that

I = 〈(a+ 2)x3 + b, x2 − x3, x1 + x2 + ax3 + b〉 ∩ 〈a− 1, x1 + x2 + ax3 + b〉

and I is not prime. The generic Gröbner basis wrt lex(x1, x2, x3) is in this case G = [x3 +
b/(a+2), x2+b/(a+2), x1+b/(a+2)]. Thus dg = a+2 for each g ∈ G. It is easy to compute
J for this example and one obtains J = 〈(a+2)(a− 1)〉, which is still principal, even if I is
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Routines of the
old algorithm

Routines of the new
algorithm

Improvements Obsolete
routines

DISPGB

BRANCH

DISPGB

BUILDTREE

DISCRIMINANTIDEAL

REBUILDTREE

COMPACTVERT

The action of building the
tree of the old DISPGB is
done by the new BUILDTREE.
The actual DISPGB includes
also rebuilding of the tree
(REBUILDTREE) and its com-
pactatification (COMPACTVERT).

GENCASE

BRANCH

NEWVERTEX

BUILDTREE Better flow control, no incompa-
tible branching.

BRANCH

NEWCOND CONDTOBRANCH More robust, ensures that no in-
compatible branches will start.

NEWCOND

CANSPEC CANSPEC Uses radical ideal. More robust.

- PNORMALFORM Standard polynomial reduction
wrt Σ.

CONDPGB CONDPGB Uses CONDTOBRANCH and Weis-
pfenning’s standard pair selec-
tion.

- DISCRIMINANTIDEAL Determines the discriminant
ideal N .

- REBUILDTREE Rebuilds the tree beginning the
discussion with N .

GENCASE

(external)

- COMPACTVERT Eliminates brother terminal
vertices with the same lpp sets.

Table 1:

not prime and has a prime component with generic Gröbner basis [1]. It would be interesting
to characterize which ideals I have principal discriminant and which do not. But it is now
clear that in the most interesting cases one has principal discriminants. This gives new
insight into our concept of singular variety used in the algorithm [Mo02], to understand the
parallelism and differences between the new Weispfenning’s [We02] algorithm and DISPGB,
and allows to improve our old algorithm.

Under that perspective, we have completely revised the old algorithm [Mo02] and ob-
tained a much more efficient and compact discussion. An intermediate version was presented
in [MaMo04]. We shall describe now the improvements introduced in the new DPGB library,
and refer to [Mo02], that describes the old DPGB, for all unexplained details.

3 Improved DISPGB algorithm

In this section, we describe the improvements introduced in DISPGB algorithm. Table 1
summarizes the basic differences between old [Mo02] and new algorithms.
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T ← DISPGB(B,Âx,Âa)
Input:
B ⊆ R[a][x] : basis of I,
Âx, Âa : termorders wrt the variables x and the parameters a respectively.
Output:
T : table with binary tree structure, containing (Gv,Σv) at vertex v
BEGIN
T := φ, global variable
v := [ ] # (label of the current vertex)
Σ := ([ ], φ) # (current specification)
BUILDTREE(v,B,Σ) # (recursive, stores the computations in T )
N := DISCRIMINANTIDEAL(T )
COMPACTVERT(T ) # (compacts T )
REBUILDTREE(T,N) # (rebuilds T )
COMPACTVERT(T ) # (compacts T )
END

Table 2:

First, we have improved the construction of the discussion tree T (I,Âx,Âa) in order
to have a simpler flow control and to make it faster by avoiding unnecessary and useless
time-consuming computations. This part of the algorithm is now BUILDTREE. In the old
algorithm this was done by the recursive routine BRANCH and was the unique action of
DISPGB. As we explain later, it has been strongly reformed.

Then DISCRIMINANTIDEAL computes the discriminant ideal N =
⋂

i∈A Ni, which, as
shown in section 2, can be determined from BUILDTREE output.

Then DISPGB calls REBUILDTREE. This algorithm builds a new tree setting the discrimi-
nant ideal N at the top vertex and the generic case at the first non-null vertex denoted [1].
At the first null-vertex the conditions N are added and the old tree is rebuilt under it, re-
computing the specifications and eliminating incompatible branches. The result is a drastic
reduction of branches in the new tree. In the old DPGB library, this work was partially done
by the external algorithm GENCASE, that now has become useless.

To further compact the tree, a new algorithm COMPACTVERT is used. This summarizes
brother terminal vertices with the same set of lpp into their father vertex. It is called before
and after REBUILDTREE. Table 2 shows DISPGB algorithm.

3.1 Building up the discussion tree: BUILDTREE.

We have simplified the flow control from the ancient DISPGB, and dropped useless operations.
Now, all the hard work of the discussion is done by the recursive algorithm BUILDTREE which
replaces the old BRANCH and makes NEWVERTEX useless. The discussion obtained is equivalent
to that given by the old DISPGB, but now is more compact.

It computes the discussion tree faster than the old one, because now it assembles the
discussion over the coefficients of the current basis in one single algorithm, avoiding unnec-
essary branchings and useless computations.
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BUILDTREE(v,B,Σ)
Input:
v, the label of the current vertex,
B ⊆ R[ā][x̄], the current basis,
Σ = (N,W ) the current reduced specification.
Output: No output, but the data are stored in the global tree variable T .
BEGIN
cf := false
(cb, cd, G,Σ0,Σ1):=CONDTOBRANCH(B,Σ)
IF cd THEN # (cd is true if all lc(g), g ∈ G are decided non-null, false otherwise)
(cb, cf , G,Σ0,Σ1):=CONDPGB(G,Σ)
END IF
Tv := (G,Σ) # (Store data in the global tree variable T )
IF cf THEN # (cf is true if the new vertex is terminal, false otherwise)
RETURN()
ELSE
IF cb THEN # (cb is true if null and non-null conditions are both compatibles)
BUILDTREE((v, 0), G,Σ0)
BUILDTREE((v, 1), G,Σ1)
ELSE
BUILDTREE(v,G,Σ1) # (and BUILDTREE continues in the same vertex) a

END IF
END IF
END

aIn this case, if CONDPGB has already started, then the list of known S-polynomials reducing to 0 can
be kept.

Table 3:

Given a set of polynomials B generating the current ideal, BUILDTREE is a recursive
algorithm that takes the current basis Bv at the vertex v, specialized wrt the current
reduced specification Σv = (Nv,Wv), and builds a binary tree T , containing the discussion
under the vertex v, and stores the data at the vertices of T . It substitutes the old BRANCH

and NEWVERTEX. See table 3.
Theorem 16 in [Mo02] still applies to the reformed BUILDTREE, thus we can assert the

correctness and finiteness of the algorithm.
Next we comment the most important algorithms used by BUILDTREE.

The algorithm CONDTOBRANCH substitutes the old NEWCOND and is more robust. It is used
each time that BUILDTREE is recursively called and also inside CONDPGB, applying it to each
new S-polynomial not reducing to zero. This avoids stopping Buchberger algorithm and
saves incompatible branches.

Each time we need to know whether a given polynomial f ∈ R, for example the lc
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(cb, cd, G,Σ0,Σ1)← CONDTOBRANCH(B,Σ)
Input:
B ⊆ R[ā][x̄], the current basis
Σ = (N,W ) a reduced specification.
Output:
G is B reduced wrt Σ,
Σ1 is the reduced specification for the not null branch
Σ0 is the reduced specification for the null branch
cb is true whenever Σ0 exists, and false otherwise.
cd is true if all g ∈ G have lc(g) decided to not null, and false otherwise.
BEGIN
G := PNORMALFORM(B,Σ)
IF there is g ∈ G with lc = lc(g) not yet decided to not null wrt Σ THEN
cd := false
(t,Σ1) := CANSPEC(NΣ,WΣ

⋃{lc})
(t,Σ0) := CANSPEC(〈NΣ, lc〉,WΣ)
IF t THEN cb := true ELSE cb := false ENDIF
ELSE
cd := true
ENDIF
END

Table 4:

(leading coefficient) of a new S-polynomial is zero or not for the given specification, we
will reduce it by Σ = (N,W ) using PNORMALFORM and then test if the remainder is or not
compatible with choosing it null and non-null for the given specification using CANSPEC.
The whole task is done by CONDTOBRANCH. See table 4.

At a given point BUILDTREE needs to use a Buchberger-like algorithm taking into account
the specification and intending to determine a specializing Gröbner basis. This is CONDPGB
(Conditional Parametric Gröbner Basis). The basic improvements on CONDPGB in the new
version are: the call to CONDTOBRANCH instead of the old NEWCOND, and improving Buchberger
algorithm by considering Weispfenning’s normal strategy of pair selection [BeWe93]. We
do not detail these improvements.

CANSPEC has also been modified. At each vertex v of the tree there is stored a pair
(Gv,Σv), where Σv = (Nv,Wv) is a specification of specializations. This means that for all
σ ∈ Σv, σ(Nv) = 0 and σ(w) 6= 0, ∀w ∈ Wv. From the geometric point of view, a given
Σ = (N,W ) describes the set of points of the affine space V(N) \ (⋃w∈W V(w)) ⊆ (K ′)m.

By proposition 5 in [Mo02], one can see that Σ = (N,W ) and Σ′ = (
√
N,W ) describe

equivalent specialization sets. And, by proposition 7, the same happens with Σ̃ = (Ñ , W̃ ),

where Ñ has no factor laying in W and is radical, and W̃ is the set of the irreducible factors
of W with multiplicity one reduced modulus Ñ . So we choose the following representant of
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the specification describing equivalent specialization sets:

Definition 3.1. We will call Σ = (N,W ) a reduced specification of specializations if it is a
specification such that

(i) 〈N〉 is a radical ideal, and N = gb(〈N〉,Âa),

(ii) there is no factor of polynomials of 〈N〉 laying in W ,

(iii) W is a set of distinct irreducible polynomials not laying in 〈N〉,

(iv) W
N

= W .

We note that the setW is not uniquely determined. There are infinitely many polynomi-
als that cannot be null for the given specification. For example, suppose that N = [a2− 1].
Then, obviously, any polynomial in a with no root 1 nor -1, is not null. Perhaps previous
decisions have taken a 6= 0, and the current reduced specification is W = {a}, N = [a2− 1].
The condition a 6= 0 is compatible with N , but in this case is redundant. We can also add
to W other polynomials. Thus there is no unique reduced specification, but our choice is
convenient. The task of obtaining reduced specifications is done by the reformed CANSPEC.
See table 5.

Proposition 3.2. Given any specification of specializations Σ = (N,W ), if CANSPEC (Σ)
returns t = true, then it computes Σ̃ a reduced specification of Σ, and moreover it does this

in finitely many steps. Else it returns t = false.

Proof. At the end of each step Na is a radical ideal, Wa is a set of irreducible polynomials

with multiplicity one reduced wrt Na, so Wa
Na

= Wa. And finally, as Nb is built by
dropping from Na all those factors lying in Wa, when the algorithm stops Nb is still radical.
As at each completed step (Nb,Wb) satisfies the conditions of definition 3.1, if the algorithm
returns true, then Σ̃ is a reduced specification of specializations.

Let us now see that this is done in finitely many steps. The algorithm starts with N0 =
N . At next step it computes N1, and then N2, etc... These satisfy N0 ⊆ N1 ⊆ N2 ⊆ · · · .
By the ACC, the process stabilizes. Only a finite number of factors can exist, so the action
of dropping factors is also finite.

The second necessary task is to reduce a given polynomial in S wrt Σ. This is done
now in a standard form by PNORMALFORM. As now N is radical, to eliminate the coefficients
reducing to zero for the given specification, it suffices to compute the remainder of the
division by N . The non vanishing coefficients will also be reduced wrt N . Then we also
eliminate all the factors that are in W in order to simplify further the polynomials. See
table 6.

Nevertheless, the reduction using PNORMALFORM does not guarantee that all the coeffi-
cients of the reduced polynomial are not null for any specialization σ ∈ Σ. To decide if
some coefficient can become 0 we need to apply CONDTOBRANCH and see if adding the new
coefficient to the null conditions is compatible with Σ.
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(t, Σ̃)← CANSPEC(Σ)
Input: Σ = (N,W ) a specification not necessarily reduced.
Output:
t: a boolean valued variable.
Σ̃: is a reduced specification if t = true and φ otherwise (in this case
incompatible conditions have been found).
BEGIN
Na := N, Nb :=

√
N

Wa := W, Wb := the irreducible factors of W without multiplicity and reduced wrt Na;
IF

∏
q∈Wb

q = 0 THEN RETURN(false,φ) ENDIF
WHILE (Na 6= Nb AND Wa 6= Wb) DO
Na := φ
FOR p ∈ Nb DO
p := drop from p all irreducible factors laying in Wb

IF p = 1 THEN RETURN(false,φ) ENDIF
Add p into Na

END FOR
Wa := Wb

Nb :=
√
Na

Wb := the irreducible factors of Wa without multiplicity and reduced wrt Nb

IF
∏

q∈Wb
q = 0 THEN RETURN(false,φ) ENDIF

END WHILE
Σ̃ := (Na,Wa)
RETURN(true, Σ̃)
END

Table 5:

f̃ ← PNORMALFORM(f,Σ)
Input: f ∈ R[x̄] a polynomial, Σ = (N,W ) a reduced specification,
Output: f reduced versus Σ
BEGIN
f̃ := the product of the factors of f

N
not laying in W , conveniently normalized

END

Table 6:
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Another difficulty in PNORMALFORM is the following: suppose we have two polynomials f, g
in I reducing to proportional polynomials σ(f) and σ(g) for every particular specialization
σ ∈ Σ. (In this case we say that σ(f) and σ(g) are equivalent). It can happen that the
reduced forms of f and g wrt Σ computed by PNORMALFORM, fΣ and gΣ, are not identical
even if they are equivalent. For example, consider Σ = (N = [a2 − 1],W = {a}). It can
happen that the reductions of f and g become ax − 1 and x − a. They are not identical,
but they are equivalent, because a = 1/a, taking into account N . It suffices to normalize
with lc(p) = 1 to obtain the same expression. PNORMALFORM is not able to reduce them to
the same polynomial. Nevertheless we have the following

Proposition 3.3. Given two polynomials f, g ∈ S and a reduced specification Σ, consider
the reduced forms fΣ, gΣ by PNORMALFORM. Then, for every σ ∈ Σ, fΣ ∼ gΣ wrt Σ iff

(i) lpp(fΣ) = lpp(gΣ) and

(ii) PNORMALFORM applied to lc(gΣ)fΣ − lc(fΣ)gΣ = 0.

Proof. If (i) holds, then lc(gΣ)fΣ and lc(fΣ)gΣ are equally normalized. If both expressions
are now identical for every σ ∈ Σ then their difference is in N and thus PNORMALFORM

reduces it to zero. Obviously if one of both hypothesis fail, the reduced expressions are not
equivalent wrt Σ.

Thus PNORMALFORM does not obtain a canonical reduction of f wrt Σ, but it can canon-
ically recognize two equivalent reduced expressions.

3.2 Reduction of brother final cases with the same lpp

In many practical computations and after applying these algorithms to many cases, we
have observed that some discussion trees have pairs of terminal vertices hung from the
same father vertex with same lpp set of their basis. As we are only interested in those bases
having different lpp set, then each of these brother pairs, {v0, v1}, can be summarized in
one single terminal vertex compacting them into their father v, eliminating the distinction
of the latter condition decided in v.

Regarding this construction, we can define a partial order relation between two trees if
one can be transformed into the other this way.

Definition 3.4. Let S and T be two binary trees. We will say that S > T if
(i) T is a subtree of S with same root and same intermediate vertices, and

(ii) for each terminal vertex v ∈ T there is in S either the same vertex v ∈ S such that
(GvT

,ΣvT
) = (GvS

,ΣvS
), or a subtree S ⊂ S pending from vertex v ∈ S with all

its terminal vertices u ∈ S with lpp(Gu
S
) = lpp(GvT

).

So now, given a discussion binary tree T , we may find the minimum tree T̃ within the
set of all trees which can be compared with T regarding this relation. This is done by a
recursive algorithm called COMPACTVERT.

Let us just note that the minimum tree will not have any brother terminal vertices with
same lpp sets of their bases.
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3.3 Rewriting the tree with the discriminant ideal

The tree T built by BUILDTREE can be rebuilt using the discriminant ideal N (see section
2). By theorem W2, if given σa there exists some δ ∈ N for which σa(δ) 6= 0, then σa(I)
corresponds to the generic case. Thus, placing N as the top vertex denoted [ ] in the new
tree T ′, for its non-null son vertex we will have T ′

[1] = (G[1],Σ[1]), where G[1] is the generic
basis and Σ[1] is a union of specifications from T corresponding to

Σ[1] = {σ : ∃ δ ∈ N such that σ(δ) 6= 0}.

No other intermediate vertices hang on this side of the top vertex. If the strong formulation
of conjecture 2.4 holds, then no generic cases will hang from the first null-vertex.

The tree under the top vertex in the side of the null son, for which the choice is σ(N) = 0,
will be slightly modified from the original T . The terminal vertices corresponding to singular
cases that hang under it will not be modified, as for all of them, by construction, the
condition is verified by the corresponding specifications.

Thus we can rebuild the tree using a recursive algorithm REBUILDTREE which goes
through the old tree T and rewrites the new one T ′. At each vertex v, it tests whether
the condition N is already included in Nv. If it is the case, then it copies the whole subtree
under it. Else it adds N to the null ideal Nv and calls CANSPEC to check whether the new
condition is compatible or not. If the condition is compatible, then the basis will be reduced
using PNORMALFORM and continue the algorithm. If it is not, then the recursion stops.

This algorithm produces a better new tree with possible less terminal cases (only generic
type cases can be dropped). The reconstruction of the tree is very little time consuming.

3.4 New generalized Gaussian elimination GGE

We add here a short description of the improvements on the generalized Gaussian elimina-
tion algorithm GGE.

We realized, by analyzing the procedure of the old GGE (see [Mo02]), that there were
some special cases for which we could know the result of the divisions at each step and thus
we could skip them. These improvements reduced its computation time to the half.

But now, even though it is more efficient and faster, it has become less useful because
the new improvements in DISPGB, detailed above, make, in general, DISPGB work faster
without using GGE.

So, now the use of GGE within the execution of DISPGB is just optional (not used by
default). However, it can be very useful for other applications like in the tensegrity problem
shown in section 5 to eliminate some variables and simplify a given basis.

4 Comprehensive Gröbner basis

In [We02] the main goal is to obtain a comprehensive Gröbner basis, i.e. a basis of the ideal
I ⊂ R[x̄] such that for every specialization of the parameters it specializes to a Gröbner
basis of the specialized ideal.

With this aim, we have built an algorithm to test whether a given basis G is a compre-
hensive Gröbner basis for I. It is called ISCGB. It uses PNORMALFORM algorithm to specialize

15



B̃ ← CGB(B, T )
Input:
B = gb(I,Âxa)
F = {(Gi,Σi) : 1 ≤ i ≤ k} obtained from DISPGB

Output: B̃ a CGB of I
BEGIN
B̃ = B
F̃ = SELECT cases from F for which ISCGB(B,Âx) is not a CGB.
WHILE F̃ is non empty DO
TAKE the first case (G1,Σ1) ∈ F̃
B̃ = B̃

⋃ {PREIMAGE(g,Σ1, B) : g ∈ G1}
F̃ = SELECT cases from F̃ for which ISCGB(B̃,Âx) is not a CGB.
END DO
END

Table 7:

G for every terminal case in the discussion tree and tests whether the lc of the specialized
polynomials are non-zero wrt Σ. Then it checks if lpp(σ(G)) includes the set of lpp of the
reduced Gröbner basis wrt Σ for every terminal case. If so for every final case, then ISCGB

returns true and else false.
The algorithm also informs, for a given basis B ⊂ S of I, for which cases it is not a

CGB. Thus we can compute pre-images of the polynomials in the cases for which B does
not specialize to a Gröbner basis and add them to the original basis in order to obtain a
comprehensive Gröbner basis.

Consider the case (Gv,Σv) and g ∈ Gv. To simplify notations we do not consider the
subindex v. Let Hg = {f1, . . . , fr} be a basis of the ideal Ig = I

⋂〈g,N〉, whose polynomials
are of the form qg + n, where q ∈ S and n ∈ 〈N〉. Ig contains all the polynomials in I

that can specialize to g (for those whith σ(q) a non-null element of R for Σ). Let f ′i = fi
N
.

Obviously H ′
g = {f ′1, . . . , f ′r} is a basis of σ(Ig). Using Gröbner bases techniques we can

express g ∈ σ(Ig) in the form g =
∑

i αif
′
i where the αi’s are reduced wrt N , as we are in

Ig/N . Then h =
∑

i αifi specializes to g, and is a pre-image of g in I. This is used to build
an algorithm PREIMAGE that computes a pre-image of g.

Combining ISCGB and PREIMAGE, we compute a CGB using the following algorithm. Let
B = gb(I,Âxa) which is a tentative CGB[FoGiTr00],[Ka97], and F = {(Gi,Σi) : 1 ≤ i ≤ k}
the set of final cases of the tree discussion built up by DISPGB. We take them as input for
the algorithm. See table 7.

This algorithm computes a CGB for the initial ideal I, although the construction is not
canonical. We must comment that the construction of a CGB is much more time consuming
than building the DISPGB tree. The reason is that for this purpose we are working wrt the
product order Âxa instead of working wrt Âx and Âa separately.
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5 Examples

We have widely tested the implementation on a high number of examples from the literature.
We have selected here two simple significative examples. The first one is the classical robot
arm, that has a very nice geometrical interpretation, and the second one is the study of a
tensegrity problem described by a linear system with the trivial null solution in the generic
case and has a non principal discriminant ideal.

5.1 Simple robot

The following system represents a simple robot arm (compare with the same example in
[Mo02]):

B = [s21 + c21 − 1, s22 + c22 − 1, l (s1 s2 − c1 c2)− c1 + r,
l (s1 c2 + c1 s2) + s1 − z]

Using the orders lex(s1, c1, s2, c2) and lex(r, z, l), respectively for variables and parameters,
DISPGB produces the following outputs: The discriminant ideal is principal

N = J = [l (z2 + r2)].

The set of final cases expressed in the form Ti = (Gi, (Ni,Wi)) is:

T[0,0,0] = ([s22 + c22 − 1, c1 − r, s1 − z], ([l, r2 + z2 − 1], { })),
T[0,0,1] = ([1], ([l], {r2 + z2 − 1})),
T[0,1,0,0] = ([l c2 + 1, s2, s

2
1 + c21 − 1], ([l2 − 1, z, r], {l})),

T[0,1,0,1] = ([1], ([l2 − 1, r2 + z2], {z, l})),
T[0,1,1,0] = ([1], ([z, r], {l + 1, l, l − 1})),
T[0,1,1,1] = ([2 l c2 + l2 + 1, 4 (l2 − 1) r c1 + 2 z l s2 − (l2 − 1) r,

(l2 − 1)2 − 4 z2, 4 (l2 − 1) z s1 + (l2 − 1)2 + 4 z2],
([z2 + r2], {z, l + 1, r, l, l − 1})),

T[1] = ([2 l c2 + l2 + 1− z2 − r2, 4 l2 s22 + (l2 − 1)2

−2 (l2 + 1) (r2 + z2) + (z2 + r2)2,
2 (r2 + z2) c1 − 2 z l s2 − r (r2 + z2 − l2 + 1),
2 (r2 + z2) s1 + 2 l r s2 + z (l2 − r2 − z2)], ([ ], {l (r2 + z2)})).

The generic case T[1] gives the usual formula for the robot and, for this problem, is the
most interesting solution. It is characterized by the discriminant ideal N . The singular
cases have simple geometrical interpretation, and give information about the degenerated
cases.

A graphic plot of the tree is also provided in the library. At the intermediate vertices,
the deciding polynomials are visualized, and at the terminal vertices the lpp sets of the
reduced Gröbner bases are shown. See figure 1.

Now we apply ISCGB to GB = gb(B, lex(s1, c1, s2, c2, r, z, l) wrt the obtained tree. The
result is false, and a list of specializations for all the final cases is provided.
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nullnot null

zz

–1+z^2+r^2(l–1)*(l+1)

l

l*z^2+l*r^2

[c2, s2, s1^2][1][1][c2, s2, c1, s1]

[s2^2, c1, s1][1]

[c2, s2^2, c1, s1]

Figure 1: DISPGB’s graphic output for the robot arm.

[[0, 0, 0], {s1, s2c1, s2s1, c1, c2s1, s21, s22}, {s1, c1, s22}, true],
[[0, 0, 1], {1, s1, s2c1, s2s1, c1, c2s1, s21, s22}, {1}, true],
[[0, 1, 0, 0], {s2, s2c1, s2s1, c2s1, c2, s21, s22}, {s2, c2, s21}, true],
[[0, 1, 0, 1], {s1, s2, s2c1, s2s1, c2s1, c2, s21, s22}, {1}, false],
[[0, 1, 1, 0], {1, s1, s2, s2s1, c2s1, c2, s21, s22}, {1}, true],
[[0, 1, 1, 1], {s1, s2, s2c1, s2s1, c2s1, c2, s21, s22}, {s1, s2, c1, c2}, false],
[[1], {s1, s2c1, s2s1, c1, c2s1, c2, s21, s22}, {s1, c1, c2, s22}, true]]

There are only two cases for which GB is not a CGB. We now reconstruct the basis
calling CGB. Only the last polynomial has been added to GB to obtain a CGB.

CGB = [2lc2 + l2 + 1− z2 − r2, c22 + s22 − 1, 2(z2 + r2)c1 − 2zls2
+r(l2 − 1− z2 − r2), 4zs2c1 − 4zrs2 + 4rc2c1 + 4lrc1
+2(z2 − r2 − 1)c2 − l(z2 + r2 − l2 + 3), 2rc1s2 − 2zc1c2 − 2zlc1
+(−r2 + z2 − 1 + l2)s2 + 2zrc2, 2(l2 − 1)s1 − 4lc1s2 + 2ls2r
−z(r2 + z2 − l2 − 3), 2s1z + 2c1r − r2 − z2 + l2 − 1,
rs1 − zc1 + ls2, s1c2 + ls1 − c1s2 + rs2 − zc2, s1s2 + c1c2
+lc1 − zs2 − rc2, c

2
1 + s21 − 1, 4(r2 + z2)c21 − 4r(1 + z2 + r2 − l2)c1

+(r2 + z2 − l2 + 1)2 − 4z2].

5.2 Tensegrity problem

We study here a problem formulated by M. de Guzmán and D. Orden in [GuOr04].
Suppose we are given the five points P1(0, 0, 0), P2(1, 1, 1), P3(0, 1, 0), P4(1, 0, 0), P5(0, 0, 1)

and a sixth one P6(x, y, z) with unknown coordinates, to be determined under the conditions
that the framework with vertices {P1, . . . , P6} and edges

(
{P1,...,P6}

2

)
\ {P1P6, P2P4, P3P5}

stays in general position and admits a non-null self-stress.
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nullnot null

2*y–1y–1z–1

zz

-z+x-y

[-z*y+y^2*z, x*z-z^2, x^2-y^2-z^2-x+y+z]

[w5, w3, w2][w4, w3, w2][w5, w4, w2][w5, w3, w2][w5, w4, w3][w5, w4, w2]

[w4, w3, w2]

[w5, w4, w3, w2]

Figure 2: DISPGB graphic output for the tensegrity problem.

The system describing this problem is the following:

B = [w12 + w14, w12 + w13, w12 + w15, w12 + w23 + w25 − w26x+ w26,
w12 + w25 − w26y + w26, w12 + w23 − w26z + w26, w23 + w34 + xw36,
w13 + w34 − w36y + w36, w23 + zw36, w14 + w34 + w45 − w46x+ w46,
w34 + yw46, w45 + zw56, w15 + w45 − zw56 + w56,
−w26 + w26x+ xw36 − w46 + w46x+ w56x,
−w26 + w26y − w36 + w36y + yw46 + w56y,
−w26 + w26z + zw36 + w46z − w56 + zw56]

In order to simplify the system, we compute the generalized Gaussian elimination of B wrt
lex(w12, w13, w14, w15, w23, w25, w34, w45, w26, w36, w46, w56, x, y, z).

Let us denote w26 = w2, w36 = w3, w46 = w4, w56 = w5. The GGE basis is B′ = B′
1 ∪B′

2,
where:

B′
1 = [w45 + zw5, w34 + yw4, w25 + w5y, w23 + zw3, w15 − 2zw5 + w5,
w14 − 2zw5 + w5, w13 − 2zw5 + w5, w12 + 2zw5 − w5]

B′
2 = [−zw5 + w5x− w5y,−zw5 + w4z, w4x+ yw4 − w4 − zw5 + w5,
w3y − w3 + yw4 − 2zw5 + w5, xw3 − yw4 − zw3,
w2z − w2 + zw3 + 2zw5 − w5, w2y − w2 + w5y + 2zw5 − w5,
w2x− w2 + zw3 + w5y + 2zw5 − w5]

B′
1 allows to express the variables w12, w13, w14, w15, w23, w25, w34, w45 in terms of w2, w3, w4, w5

and the parameters x, y, z. So, we only need to discuss B ′
2.

Then, using the orders lex(w2, w3, w4, w5) and lex(x, y, z), respectively for variables and
parameters, DISPGB produces the following outputs: The discriminant ideal is not principal

N = J = [y2z − yz, zx− z2, x2 − y2 − z2 − x+ y + z].
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Figure 3: Location of the sixth point for non null self-stress.

The set of final cases (see figure 2) expressed in the form Ti = (Gi, (Ni,Wi)) is:

T[0,0,0,0] = ([w5, w3 − w4, w2], ([z, 2y − 1, 2x− 1], { })),
T[0,0,0,1] = ([w5 + 2yw4 − w4, 2w3y − w3 + w5, w2 + w5],

([z, x− y], {2y − 1})),
T[0,0,1] = ([−w5 + w4, w3 + 2zw5 − w5, w2 − 2zw5 + w5],

([y, x− z], {z})),
T[0,1,0,0] = ([w5, w4, w2], ([z, y − 1, x], { })),
T[0,1,0,1] = ([w5, yw4 + w3y − w3, w2], ([z, y − 1 + x], {2y − 1, y − 1}),
T[0,1,1,0] = ([w5, w4, w3], ([z − 1, y − 1, x− 1], { })),
T[0,1,1,1] = ([w5, w4, w2z − w2 + zw3], ([y − 1, x− z], {z, z − 1}),
T[1] = ([w5, w4, w3, w2], ([ ],

{[y2z − yz, zx− z2, x2 − y2 − z2 − x+ y + z]}))

The generic solution is trivial (w5 = w4 = w3 = w2 = 0). In this problem, the interesting
non trivial solutions are given by the conditions over the parameters described by the
discriminant ideal:

V(N) = V(z, x− y)
⋃

V(y, x− z)
⋃

V(z, x+ y − 1)
⋃

V(y − 1, x− z)

These are 4 straight lines included in the hyperboloid x2 − y2 − z2 − x + y + z = 0
illustrated in figure 3.

For this problem the Gröbner basis wrt variables and parameters is already a compre-
hensive Gröbner basis.
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