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Abstract

Let C(n,p) be the set of p-compositions of an integer n, i.e., the set of p-
tuples & = (a1, . . ., o) of nonnegative integers such that oy +---+a, =n, and
x = (x1,...,2p) a vector of indeterminates. For v and 3 two p-compositions of
n, define (x+a)P = (z1+a1)" - - (z,+a,)%. In this paper we prove an explicit
formula for the determinant deta gec(np)((x+@)?). In the case z1 = --- =z,
the formula gives a positive answer to a conjecture by C. Krattenthaler.

1 Introduction

Let us start with some notation. If u = (uy,...,us) and v = (v1,...,v) are two
vectors of the same length, we define u¥ = wuj"-- ~u2’£ (where, to be consistent
0° = 1). In our case, the entries u; and v; of u and v will be nonnegative integers or
polynomials. We use x = (x1,...,2,) to denote a vector of indeterminates and 1 =
(1,...,1). The lengths of x and 1 will be clear from the context. If u = (u1, ..., up),
then s(u) denotes the sum of the entries of u, i.e. s(u) = u;+---+uy, and u denotes
the vector obtained from u by deleting the last coordinate, u = (uq,...,us—1).

Let C(n,p) be the set of p-compositions of an integer n, i.e., the set of p-tuples
a = (ai,...,a,) of nonnegative integers such that ay + -+ ap = n. If a =
(a,...,0p) and B = (f1,...,[0p) are two p-compositions of n, using the above
notation, we have a® = o' --- agp. In [1] the following explicit formula for the
determinant A(n,p) = detq gec(n,p) (aP) was proved:

min{n,p} ) n—k+1 i (5:)
Amp) = ] <n<"?> I] i >> | (1)

k=1 =1
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In a complement [4] to his impressive Advanced Determinant Calculus [3], C. Krat-
tenthaler mentions this determinant, and after giving the alternative formula

Aln,p) =n" ) L0057 (1.2)
=1

he states as a conjecture a generalization to univariate polynomials. Namely, let x
be an indeterminate and

— . B
A(n,p,z) = a,BCEIgC(n,p) ((:c 1+ a) ) .

Note that (z -1+ )P = (z + 1) - (2 + o).
Conjecture [C. Krattenthaler]:

("5

A(n,p,r) = (pr + n)("+§_l) Hi(n—iﬂ)
i=1

(1.3)

The main goal of this paper is to prove the generalization of the formula (1.3) for p

indeterminates. For this, let x = (z1,...,2p) be a vector of indeterminates, and let
A(n,p,x) = det (x—l—a/j).
(n. 7. ) o,BeC(n,p) ( )

(Recall that (x + )P = (21 + a1)P -+ (2, + 8p)?). Then, we prove the following
formula (Theorem 4.1):

Aln,p,x) = (s(x) +n) ("5 D T +00057), (1.4)
i=1
As s(x) =x1+ -+ xp, if v =+ = 2, = 2, then s(x) = pr and the conjectured

identity (1.3) follows.

We also prove a variant of this result for proper compositions. A proper p-
composition of an integer n is a p-composition a = (aq,...,q;,) of n such that
a; > 1foralli=1,...,n. Denote by C*(n,p) the set of proper p-compositions of n
and define

Stunn= i, (i r)

We also prove the following identity (Theorem 5.1):

n—1 p n—p+1 n—i—1 TL—p+1 . n—i—1
A*(n,p,x) = (s(x) +n)( ») H H (2, —1—1)( ) H == (" 550
j=1 i=1 i=1

(1.5)

The paper is organized as follows. At the end of this section we collect some com-
binatorial identities for further reference. In next section we prove the equivalence
between the formula (1.2) given by Krattenthaler and (1.1). In Section 3 we prove



two lemmas. The first one is a generalization of the determinant for p = 2. The
second lemma, uses the first and corresponds to a property of a sequence of rational
functions which appear in the triangulation process of the determinant. Section
4 contains the proof of the main theorem (4.1). Finally, Section 5 is devoted to
proving (1.5).

Lemma 1.1. Let a,b,c,d,m and n be nonnegative integers. Then, the following
equalities hold.

(1) Drez (cik)(dfk) =:(313);

(1) Ppen (“0F) = Tpen (4F) = (70011
(i) Sy r (e ) = ("h )
(iv) S t(eF) = m - D)%) - (459).

Proof. (i) is the well known Vandermonde’s convolution, see [2, p. 169]. The formulas
in (ii) are versions of the parallel summation [2, p. 159]. We prove (iii) and (iv).
Part (iii) follows from

n n n—1 k .
n+a—r _ n+a—r\ a+1
e (a+tk+1\  [a+n+1
B a+1 )\ a+2 )
For (iv), let S be the sum to be calculated. Consider the sum
_— <a+0)+m5m+(a+o>
a a
+<a+1>+@5n+(a+1>
a a

+<a+m—1>+(m.—.l)+<a+m—1>.
a a

a+m
a+1

). Now S is exactly the sum of the

-1 i <a+t>
a
t=0
1 .
a+i1+1
- a+1 >

_ a+m
_ S+(M),

Summing by columns gives T' = (m — 1)(
terms below the diagonal. Thus,

m(53) = 7 -

W
+
Al

I
n
+
3
s |

and the formula for S follows. [



2 Equivalence between the two formulas for x =0

Here we prove the equivalence beetween the formulas (1.1) and (1.2) for A(n,p).
Obviously, the result of substituting = 0 in formula (1.3) of the Conjecture gives
formula (1.2) for A(n,p).

Proposition 2.1. Formulas (1.1) and (1.2) are equivalent.

Proof. We derive formula (1.2) from (1.1), which was already proved in [1]. First,
note that if p < k < n, the binomial coefficient (i) is zero. Thus, we can replace
min{p,n} by n in formula (1.1). Analogously, if n — k + 1 < ¢ < n, the binomial
coefficient ( e 21) is zero, and we can replace the upper value n — k 4+ 1 by n in the
inner product. Second, the case a =n —1,b=d = p and ¢ = 0 of Lemma 1.1 (i)

TR0 £ )

and, if ¢ > 1, bytakinga:n—z—l,b—d—pandc:—2inLemma 1.1 (i), we

B (R [ (e | A B LR

Therefore,

P

min{n,p} - n—k+1 A - (k)
A(n,p) = H (n( k) H =i (" )>

k=1 =1

/o N
- H(nm = >>
k=1 =1
- ({0 (o)
k=1 k=1i=1
_ e (’ﬁgn—m)(n*g_m) Wi ()0
1=1

N 1Hzn (Y

e | L= A=

3 A recurrence

The next lemma evaluates the determinant

Di(n,y,z) = det ((y— )" (2 +1i)),

which corresponds to a variation of the determinant A(n, 2, x).



Lemma 3.1.

Proof.

D, (n,y,z)

(y— )" (e )

(z+0)"/(y = 0)"
(z+1)7/(y—1)"

(24 0) (g — )

1 (/-1 -
n z+j  z+i
=9 0<g<r <y—J y—@')
(v-+2)(—1)
0<i<j<r ¥ — 1)
T eriJrl
-0 P R
-51) H(y B i)n_r> (H ir—z+1> n
=0 =1

Lemma 3.2. Define f,: Ng x Ng — Q(y, 2) recursively by

fO(Zvj)
f7‘+1(ivj)

fTJrl(iaj)

Then

(i) fre1(ry3) =0 forj>r+1;

(i) fr(r,r) = (y+2)"

(z + )7
fv"(ivj) Z.f jSTS‘
. y—i\'"" fel,r) fr(rg) L
fr(z’])_(y—r> ) if j>
r!
[y —i)

Proof. Part (i) is trivial using induction. To obtain f,. = f.(r,7), we take n > r
and calculate D(n,y, z) = D,(n,y, z) by a triangulation method.



The entry (i,j) of D(n,y,z) is (y — )" /(2 + 1)) = (y —9)" 7 fo(i,j). 1 j =1,
add to the column j the column 0 multiplied by

1 fO(Oa.j)
(y —0)770 fo(0,0)

Then, the entry (7, 7) with 7 > 1 is modified to

\n—j .o N\ — . 1 fO(OaJ)
(y—Z) fO(Zaj) - (y—z) Ofo(’L,O) (y_o)j—O fo(()’())

. Nn—i . y—1 =0 fO(ka)fO(k:7])
= (y—19) J{fo(m)—<m> —}

fO(O’ O)
= (y—9)"7fili,]).

Therefore, D(n,y,z) = deto<;j<r ((y — )" 7 f1(4,5)) and f1(0,5) =0 for j > 1.
Now, assume that D(n,y,z) = deto<ij<n ((y — )" 7 fr(i,7)) for k > 1 with
fx(i,j) =0 for k,j > i. Add to the column j > k + 1 the column k& multiplied by

(y - k)j_k fk(k7 k) .

The entry (i,7) is modified to

(y —0)" 7 frliy §) — (y — )" fuli, k) - W=k T k)

. coi L (=i T Sl k) fik )
- (y—’L) {fk(zvj)_ <y—]€> ‘ fk(k',kk‘)

= (y—0)"7 frg1(i, ).

Clearly fri1(k,j) = 0 for j > k. After n iterations, we get the determinant of a
triangular matrix. Hence

D(n,y,z) = det ((y - k)”*kfk(k, k:)) = H(y — k)”*kfk.

0<k<
=rsn r=0

The principal minor of order 7 + 1 is D, (n,y, 2) = [[1—o(y — k)" % fx. Therefore,

D"'(”? y? Z) n—r
= (y— . 3.6
Drfl(nv Y, Z) (y T) fr ( )
On the other hand, by Lemma 3.1 we obtain

r+1

D, (n,y. 2) v+ ([ioly — )" (Mg 1)
D,_1(n,y, 2) (y +2)®) (H:;& (y — Z‘)n—r—l) (H::—ll Z‘r—i)
(y—r)""
[Tz (y — i)

= (y+2) -rl



Comparing with (3.6), we have arrived at

7!
=yt —— . O
A 17 T

4 Proof of the main theorem

We sort C(n,p) in lexicographical order. For instance, for n = 5, and p = 3, we
obtain

C(5,3) = {(5,0,0),(4,1,0),(3,2,0),(2,3,0),(1,4,0),(0,5,0)
(4,0,1),(3,1,1),(2,2,1),(1,3,1),(0,4,1),
(3,0,2),(2,1,2),(1,2,2),(0,3,2),

(2,0,3), (1,1,3), (0,2,3),
(1,0,4),(0,1,4),
(0,0,5) }.

Let M (n,p,x) be the matrix with rows and columns labeled by the p-compositions
of n in lexicographical order and with the entry (o, 3) equal to (x + a)?. We have
A(n,p,x) = det M (n,p, x). )

An entry (x+ )P in M(n,p,x) can be written in the form (%X + &)P(x, + )7,
For 0 <i,j <mn, let S;; be the matrix with entries (X + @)P where o and S satisfy
a, =1 and 3, = j. Thus, the submatrix of M (n,p,x) formed by the entries labeled
(o, B) with oy, = i and B, = j can be written (S;(z, +1)7). Note that

Spr = M(n—k,p— 1,%).
Define fy(i,j) = (z, +)7. Therefore,

The idea is to triangulize the matrix M (n,p,x) by blocks (i, 7) in such a way that
at each step only the last factor of each block is modified.

Theorem 4.1.

n+p 1 n—i n+p 1 1
Aln,p,x) = (s(x) H =),

Proof. The proof is by induction on p. For p = 1, A(n,p,z) is the determinant of
the 1 x 1 matrix ((z +n)"). Hence A(n,p,x) = (z 4+ n)". This value coincides with
the right hand side of the formula for p = 1.

Consider now the case p = 2. Any 2-composition of n is of the form (n —
i,1) for some i, 0 < i < n. The determinant to be calculated is A(n,2,x) =



deto<ij<n ((xl +n—0) " (zg + 2)3) By taking r = n, y = 1 +n and 2 = 25 in
Lemma 3.1, we get

n
A(n,2,x) = Dyp(n,z1 +n,z2) = (x1 + 2 + n)(n;rl) Hi”_”l.
i=1

Therefore, the formula holds for p = 2.

Now, let p > 2 and assume that the formula holds for p — 1. Begin with the
matrix M(n,p,x) = (S;; fo(i,j)). i

Assume A(n,p,x) = det(S;;f-(i,7)) where S;; = ((x + @)P), with o, = i,
Bp = j, and f.(i,j) = 0 for j > r,i.

Fix a column 3 with 8, = j > r. For each v € C(n,p) with v, = r and v, > (%
for k € [p — 1], add to the column 3 the column ~ multiplied by

) | <j—7:>fr(7“,j)
& +n—1 7 \5-8) ()
The differences 6 = 4 — 3 are exactly the (p — 1)-compositions of j — 7. Also note
that by the multinomial theorem,

(s(R) +n—i)) 7 = (@ + )+ + (@por + 1)) =D (j 5 7”) (s + @)’
8

Then, a term of column G is modified to

0160~ e (4 Feg
— (x+a)? i) — ! Jtr x4+ a)? M
= &+a) {fr(”) GE +n_ri— <Z( 5 >( * )> Fr(r.7) }

s

(s(%) +n—i)™" fr(r,4)fr(i7) }
(s(x) +n—r)i=r  fulr,r) '

Now, define fr11(4,j) = f-(i,j) for j <r and

= x+a)P {ﬁ(m) -

(s(x) +n —0)7" fr(r,4) fr(s7)
(sx)+n—r)=r  fu(r,r)

fTJrl(ivj) = fT(Z7]) -
for j > r. Note that f,y1(r,7) = 0 for j > r. After n iterations, we arrive at the

matrix (Si; fn(4,7)) where f(i,5) = 0 for j > i. Thus, the determinant A(n,p,x) is
the product of the determinants of the diagonal blocks:

A(n,p,x) = [ [ det(Spf(r,7)).
r=0

Now, S,» = M(n —r,p — 1,X), a square matrix of order ("7;?2972). Therefore

A(n,p,x) = ﬁ (A(n —r,p—1,2)f(r, T)("‘;f§‘2)> .

r=0



Now, observe that the rational funcions f, satisfy the hypothesis of Lema 3.2 with
y=sX)+n=x1+---+xp_1 +nand z = . Thus,

r!
= ) = e s

By the induction hypothesis,

A(n,p,x) - H ((S(X)—i—n—r n ;:er 2 H n—r— z+1) ” T+p3L 2))

n—'r+p—2)

("L
. s(x)+n)" -r!- ! )
L1 <( O T ew a0

r=0

It remains to count how many factors of each type there are in the above product.
The number of factors (s(x) +n) is Y, r(’”g:;*Q). JFrom Lemma 1.1 (iii)
for a = p — 2 this coefficient is (n+£_1).

The number of factors s(X) +n — i, for 0 < i < n — 1, is (by using Lemma 1.1
(ii) with a = p — 2)

—i4+p—2 = - -2 —i+p—2 —i4+p—2
n—1t+p _ Z n—r—+p _(n 1+ p _[n 1+ p —0
p—1 S p—2 p—1 p—1

Finally, for 1 <14 < n, the number of factors equal to ¢ is

nz_i(nri+1)<n+pp Lo >+i<n+pr2).

r=0

By takingt =n—r—i+1,a=p—3and m =n —i+ 2 in Lemma 1.1 (iv), the
first sum is

— _ n+p—i—r—2 . n+p—i—1 n+p—i—1
i1 —(n—i+1 - .
oo (L) o) (1)

According to Lemma 1.1 (ii), the second sum is

i nt+p—r—2\ [(n+p—i—1
r=t p_2 - p_l .

n+p7i71) O

Hence, the number of factors i is (n —i + 1) i

5 Proper compositions

A proper p-composition of an integer n is a p-composition a = (aq,...,ap) of n
such that o; > 1 for all ¢ = 1,...,n. We denote by C*(n,p) the set of proper
p-compositions of n. In [1] the following formula was given:

ﬂ (nfl) n—p+l ( +1)(n i— 1)
A*(n,p) = aﬂeclcef(mp)(a )=n\r Zl;Il i .



Here, we study the corresponding generalization

* — B
N(mpx)=  det (x+a)?).

Theorem 5.1. If p < n, then

n—1 n—p+1 P n—i—1 TL—p+1 . n—i—1
A*(n,p.x) = () +m)s )| T TG+ 02| I a0,
i=1 j=1 i=1
Proof. The mapping C*(n,p) — C(n—p,p) defined by o = (a1,...,0p) m ax—1 =
(a1 —1,...,ap — 1) is bijective. Thus, we have
A*(n,p,x) = det <x+a'8>
(n.p,x) o,B€C*(n,p) ( )
= det ((x +1+a-— l)ﬁf”l)
o,B€C*(n,p)
— det ((x+1+a)ﬁ(x+1+a)1>
= An-ppx+1) [ +1+a)
aeC(n—p,p)

The number of times that an integer 7, 0 < i < n — p appears as the first entry of
p-compositions of n—p is the number of solutions (aw, ..., an—p) of i+as+-- -+, =
n — p, which is ("_p;f;p _2) = (";52) The count is the same for every coordinate.
Then, in the product Haec(n_np)(x + 1 + «)!, the number of factors equal to

rj+1+1is (";;2), equivalently, for 1 < ¢ < n—p+ 1, the number of factors equal
to xj +1is (n;;l) Therefore,
A*(n,p,x) = A(n—p,p,x+1) H (x+1+a)t
aeC(n—p,p)
n—1 n_p+1 L4 n—i—1 n_p+1 . n—i—1
= (s(x) +n)( P ) H H(g;j —|—Z)( p—2 ) H Z-(n—z—p—i-l)( > ) O

i=1 j=1 i=1
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