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ABSTRACT
Let Φ(x, y) ∈ C[x, y] be a symmetric polynomial of partial
degree d. The graph G(Φ) is defined by taking C as set of
vertices and the points of V(Φ(x, y)) as edges. We study the
following problem: given a finite, connected, d-regular graph
H, find the polynomials Φ(x, y) such that G(Φ) has some
connected component isomorphic to H and, in this case, if
G(Φ) has (almost) all components isomorphic to H. The
problem is solved by associating to H a characteristic ideal
which offers a new perspective to the conjecture formulated
in a previous paper, and allows to reduce its scope. In the
second part, we determine the characteristic ideal for cycles
of lengths ≤ 5 and for complete graphs of order ≤ 6. This
results provide new evidence for the conjecture.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph Theory ; I.1.0 [Computing Methodologies]:
Symbolic and Algebraic Manipulation—General

General Terms
Theory, Algorithms

Keywords
Galois graph, Polynomial graph, Strongly polynomial graph,
Polynomial digraph, Connected component, Characteristic
ideal, Pairing, Variety of a Pairing, Conjecture.

1. INTRODUCTION
In the previous papers [2, 1] there are given basic nota-

tions and descriptions that will be assumed here and we
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refer to them for all not defined concepts. In this paper,
we only consider symmetrical polynomials. Let us recall
two basic definitions restricted to a symmetrical polynomial
Φ(x, y) ∈ C[x, y] of partial degree d. The graph G(Φ) is
defined by taking C as set of vertices and the points of
V(Φ(x, y)) as edges. As shown in [2], for standard symmet-
rical polynomials of partial degree d (defined in [2]), all the
connected components of G(Φ) but a finite number are d-
regular graphs without loops nor multiple arcs nor defective
vertices. The graph G(Φ)∗ is obtained by removing from
G(Φ) the finite set of singular components.

The problem studied here is the following: given a finite,
connected, d-regular graph H, find the polynomials Φ(x, y)
(if any exists), such that H is isomorphic to some (con-
nected) component of G(Φ)∗. If it is the case, the question of
deciding when H is isomorphic to all components of G(Φ)∗

is the matter of the conjecture formulated in [2], which, for
symmetric polynomials, admits the following formulation:
If Φ(x, y) ∈ C[x, y] is a standard symmetric polynomial and
G(Φ)∗ has a finite component, then all components are iso-
morphic.

In Section 2, we define a system S(H,Φ) and a variety
W (H,Φ) associated to a pairing, which is a pair (H,Φ)
formed by a finite, connected, d-regular graph H, and a sym-
metric polynomial of partial degree d. The points (u1, . . . , un)
of W (H,Φ) such that u1, . . . , un induce a component in
G(Φ) form a variety U(H, Φ) ⊆ W (H,Φ). The correspon-
dence between points of U(H,Φ) and components of G(Φ)
is established.

In Section 3 we characterize the finite, connected, d-regular
graphs that are isomorphic to a component of some G(Φ)∗

by its associated characteristic ideal. This leads to an al-
gebraic formulation of the conjecture, and to the reduction
of its scope. It also provides the theoretic frame for con-
structing an algorithm to determine the characteristic ideal
of H.

In Section 4 we show how to improve the initial polyno-
mial system by eliminating undesired solutions in order to
determine the characteristic ideal of a graph. The general
algorithm is applied to find the characteristic ideals of 3-
cycles and 4-cycles.

Because of the complexity of the computations using the
general algorithm, specific algorithms are valuable for some
kind of graphs. In section 5, we give an algorithm for cycles,
providing the characteristic ideal for cycles of length ≤ 5;
and, in Section 6 another for complete graphs, providing
the characteristic ideal for complete graphs of order ≤ 6.
All these results provide further evidence of the conjecture,



besides those obtained in [2].
Finally in the conclusions, some open problems are for-

mulated.
Besides [2], for undefined algebraic concepts we refer to [4,

5], and for graph theoretic ones to [3, 8].

2. THE VARIETY OF A PAIRING
Let H be a finite, connected, d-regular graph and Φ(x, y)

a symmetric polynomial of partial degree d. The immediate
goal is to decide if H is isomorphic to a component of G(Φ)∗.
A pairing (or d-pairing if we wish emphasize the degree of
the graph and the partial degree of the polynomial) is a
pair (H,Φ) where H is a finite, connected, d-regular graph
(d ≥ 1) and Φ(x, y) a symmetric polynomial of partial degree
d. A pairing (H,Φ) is standard (resp. non standard) if the
polynomial Φ(x, y) is standard (resp. non standard). We
shall assume that, if H is of order n, the set of vertices of
H is [n] = {1, . . . , n}. Associate to a d-pairing (H,Φ), with
H = ([n], E), we define the set of polynomials

S = S(H,Φ) = {Φ(xi, xj) : ij ∈ E},

and the variety of S(H, Φ),

W = W (H,Φ) = V(S(H,Φ)).

Note that if H is d-regular of order n, then H has m =
dn/2 edges, and the system S has m polynomials. Moreover
W ⊆ C

n. A point (u1, . . . , un) ∈ W is called a proper point

if ui 6= uj for 1 ≤ i < j ≤ n; otherwise it is an improper

point.

Lemma 1. Let (H,Φ) be a pairing. Then, the dimension

of the variety W (H,Φ) is at most 1.

Proof. Let H be of order n and degree d. Let (u1, . . . , un)
be a point in W . If 1j is an edge of H, then the number
of distinct values of xj in the points of W with x1 = u1 is
at most d, the maximum number of roots of Φ(u1, y). By
induction, if j is a vertex of H at distance r from the vertex
1, then the number of distinct values of xj in points of W
with x1 = u1 is at most dr. Therefore, the number of points
of W with x1 = u1 is finite.

The following theorem shows that for standard pairings
(H, Φ), the proper points of W (H,Φ) correspond to com-
ponents of G(Φ)∗. Given u1, . . . , un ∈ C, we denote by
〈u1, . . . un〉 the subdigraph of G(Φ) induced by u1, . . . , un

(the polynomial Φ(x, y) being implicit).

Proposition 1. Let (H,Φ) be a standard pairing. Then

a point (u1, . . . , un) ∈ W (H,Φ) is a proper point if and only

if 〈u1, . . . un〉 is a component of G(Φ)∗ isomorphic to H.

Proof. Let (u1, . . . , un) ∈ W be a proper point. Define
f : [n] → {u1, . . . , un} by f(i) = ui. For i 6= j we have ui 6=
uj , hence f is injective. As the two sets [n] and {u1, . . . , un}
have the same cardinality n, the mapping f is bijective.

If ij ∈ E, then (ui, uj) is a zero of the polynomial in S
corresponding to the edge ij, that is, ui is adjacent to uj

in G(Φ). As H is connected, the subdigraph 〈u1, . . . , un〉
is connected. Both graphs are d-regular, so f is an isomor-
phism. From the fact that H is a d-regular graph, it follows
that it has neither loops, nor multiple edges, nor defective
vertices. Therefore 〈u1, . . . , un〉 = G(Φ, u1) is not a singular
component of G(Φ).

Conversely, let C be a component of G(Φ)∗ isomorphic
to H. Let f : i 7→ ui be the isomorphism from H onto
C. Clearly, if 1 ≤ i < j ≤ n, then ui 6= uj . For each
polynomial Φ(xi, xj) of S, we have an edge ij ∈ E. As
f is an isomorphism, ui is adjacent to uj in G(Φ), which
is equivalent to Φ(ui, uj) = 0. Therefore, (u1, . . . , un) is a
proper solution of S(H,Φ).

Now consider improper points of W . Recall that, even if
Φ(x, y) is a symmetric polynomial, the singular components
of G(Φ) can be digraphs with loops or multiple arcs. The
following decomposition helps to eliminate solutions of S
which do not correspond to components of G(Φ). For a
given pairing (H,Φ), define

Z = Z(H, Φ) = W (H,Φ)
⋂

(

⋃

i>j
V(xi − xj)

)

;

U = U(H,Φ) = W (H,Φ) \ Z(H, Φ).

Note that Z is the set of improper points of W , and that the
proper points of W are in W \Z, so they are in its algebraic
closure U .

Proposition 2. Let (H,Φ) be a standard d-pairing and

let J be the set of improper points of U(H, Φ). Then

(i) The set J is finite.

(ii) If J 6= ∅, then dim U(H,Φ) = 1.

Proof. (i) If J is empty, the result is trivial. Assume

J 6= ∅. Note that J = U ∩
(

⋃

j<i
V(xi − xj)

)

. We have

J ⊆ U ⊆ W and, by Lemma 1, dim W ≤ 1. Therefore,
dim J ≤ 1. If J were not finite, then 1 = dim J ≤ dim U ≤ 1.
If U is irreducible, then J = U . In this case, W \Z ⊆ U = J ,
and the set W \ Z has no proper points, so it is empty.

Therefore J = U = W \ Z = ∅ = ∅, a contradiction. If
U is reducible, then decompose it as a union of irreducible
varieties U =

⋃s

i=1 Ui and set Ji = J ∩ Ui. For each infinite

Ji, we have Ji = Ui and Ui \ Z = ∅. Therefore U = W \ Z =
⋃s

i=1 Ui \ Z is finite, a contradiction.

(ii) Let u ∈ J . We have u /∈ W \ Z but u ∈ W \ Z.
Thus u is not an isolated point of U . Therefore U is infinite.
By using Lemma 1, we have 1 ≤ dimU ≤ dim W ≤ 1.
Therefore, we conclude dim U = 1.

As a consequence of propositions 1 and 2, we have:

Theorem 1. Let (H,Φ) be a standard pairing. Then the

graph G(Φ)∗ has some component isomorphic to H if and

only if U(H, Φ) 6= ∅.

Proof. Proposition 1 ensures that if G(Φ)∗ has a com-
ponent C isomorphic to H and i 7→ ui is the isomorphism
from H to C, then (u1, . . . , un) is a proper solution, i.e.,
(u1, . . . , un) ∈ W \ Z ⊆ U . Therefore U 6= ∅.

Conversely, assume that there exists u = (u1, . . . , un) ∈
U . If u is a proper point, then Proposition 1 ensures that a
component of G(Φ)∗ is isomorphic to H. If u is an improper
point, then by Proposition 2, dim U = 1. Therefore, W \ Z
is not empty and there exists a proper point u ∈ W \Z. By
Proposition 1, there exists a component of G(Φ)∗ isomorphic
to H.

Consider now non standard pairings.



Proposition 3. Let (H,Φ) be a non standard d-pairing.

If U(H,Φ) 6= ∅ then

(i) Φ(x, y) = f(x)f(y)Φ1(x, y) where deg f(x) ≥ 1 and

Φ1(x, y) is a standard polynomial.

(ii) G(Φ) has universal vertices, say w1, . . . , wr, and it is

connected.

(iii) All non singular components of G(Φ1)
∗ are isomorphic

to Kd+1−r, and H is isomorphic to Kd+1.

Proof. (i) If L(x) = Φ(x, x) is the zero polynomial or
Φ(x, y) 6= rad Φ(x, y) then each point u ∈ W has some re-
peated coordinates. Hence, u ∈ Z. Then, W \ Z = ∅ and
U = ∅. As Φ(x, y) is non standard, it must be of the form
Φ(x, y) = f(x)f(y)Φ1(x, y) with deg f(x) ≥ 1 and Φ1(x, y)
standard.

(ii) The roots w1, . . . , wr of f(x) are the universal ver-
tices. The existence of universal vertices implies that G(Φ)
is connected.

(iii) A point (u1, . . . , un) ∈ U has r coordinates which are
the r universal vertices. The remaining coordinates induce a
subgraph (n− 1− r)-regular. The partial degree of Φ1(x, y)
is d− r. Therefore n−1 = d and the components of G(Φ1)

∗

are isomorphic to Kd+1−r. Moreover H ' 〈u1, . . . , un〉 =
Kd+1.

In the context of graphs, the conjecture stated in [2] is the
following:

Conjecture 1. Let (H,Φ) be a standard pairing. If H is

isomorphic to a component of G(Φ)∗, then H is isomorphic

to all components of G(Φ)∗.

Let (H, Φ) be a standard pairing. The graph H is said to
be Φ-polynomial if it is isomorphic to a component of G(Φ)∗;
H is said to be strongly Φ-polynomial if it is isomorphic to
all components of G(Φ)∗. Conjecture 1 states that if H is
Φ-polynomial, then H is strongly Φ-polynomial.

A finite, connected, d-regular graph H is polynomial (resp.
strongly polynomial) if it is Φ-polynomial (resp. strongly Φ-

polynomial) for some standard polynomial Φ(x, y).
The condition of being strongly polynomial graph is quite

restrictive. Indeed, only vertex-transitive graphs can be
strongly polynomial, as shown in the following theorem.

Theorem 2. Let H be a strongly Φ-polynomial graph.

Then G(Φ)∗ is vertex-transitive. In particular, H is vertex

transitive.

Proof. Each component of G(Φ)∗ is isomorphic to H
and, by Proposition 1, each component provides a proper
point of W . The number of components of G(Φ)∗ is un-
countable so, by Lemma 1, dim W = 1. Therefore, in the
system S, one indeterminate, say x1 is free. For each vertex
u1 of G(Φ)∗, we have some proper point of W of the form
(u1, . . . , un) and an isomorphism fu1

from H to G(Φ, u1)
given by i 7→ ui. Let u1, v1 ∈ C be two vertices in G(Φ)∗.
Then f = fv1

f−1
u1

is an isomorphism from G(Φ, u1) onto
G(Φ, v1) which applies u1 in v1. This implies that G(Φ)∗ is
vertex transitive. In particular, each component of G(Φ)∗,
which is isomorphic to H, is vertex transitive.

Thus, only finite, connected, d-regular, vertex symmetric
graphs can be strongly polynomial. On the other side we

cannot ensure that every finite, connected, d-regular, vertex
symmetrical graph is strongly polynomial. Petersen’s graph
is the smallest d-regular vertex transitive graph for which
we do not know if it is polynomial. Our guess is that it is
not, but the question is not yet settled. All the strongly
polynomial graphs given in [2] are Cayley graphs. The fact
that Petersen’s graph is a well-known example of a vertex
transitive graph which is not a Cayley graph suggests that it
is possible that every strongly polynomial graph is not only
vertex transitive, as Theorem 2 ensures, but also a Cayley
graph.

3. THE CHARACTERISTIC IDEAL OF A
GRAPH

Fix a finite, connected, d-regular, graph H = ([n], E).
If the goal is to find polynomials Φ(x, y) such that H is
isomorphic to one or all components of G(Φ)∗, the coeffi-
cients of Φ(x, y) must be unknowns. Then we define S(H),
W (H), Z(H) and U(H) in a similar way as in the previous
section, but considering the coefficients of the polynomials
also as unknowns. Let m = (d + 1)(d + 2)/2. For each
a = (ad d, ad d−1, . . . , ad 0, ad−1 d−1, . . . , a0 0) ∈ C

m let

Φa(x, y) =
d
∑

i,j=1

ai jx
iyj , where ai j = aj i.

As before, define

S(H) = {Φa(xi, xj) : ij ∈ E},
W (H) = V(S(H)) ⊆ C

m+n,

Z(H) = W (H)
⋂

(

⋃

i>j
V(xi − xj)

)

,

U(H) = W (H) \ Z(H).

A point (c, u) = (cd d, . . . , c0 0, u1, . . . , un) of W (H) is said
to be a proper point if cd j 6= 0 for some j and u is a proper
point of S(H,Φc); otherwise it is an improper point.

In order to decide wether H is polynomial or not, the
following ideals are the key. Define

I(H) = I(U(H)),
Ia(H) = I(H) ∩ C[a],
Ia,x1

(H) = I(H) ∩ C[a, x1].

These three ideals satisfy Ia(H) ⊆ Ia,x1
(H) ⊆ I(H). The

ideal Ia(H) is called the characteristic ideal of H, its name
being justified by Theorem 3. First, let us put aside a special
case.

If H = Kn, then H is circulant, hence strongly polyno-
mial, see [2]. On the other hand, Proposition 3 shows that
there exists a non standard polynomial Φ(x, y) and a point
(u1, . . . , un) ∈ U(H, Φ) such that G(Φ) is connected and
〈u1, . . . , un〉 is isomorphic to H. Thus, we may consider
only the case H 6= Kn.

Theorem 3. Let H, (H 6= Kd+1), be a finite, connected,

d-regular graph. Then, one of the three following statements

holds.

(i) I(H) = Ia(H) = 〈1〉. In this case H is not a polyno-

mial graph.

(ii) I(H) 6= 〈1〉 and Ia,x1
(H) = Ia(H). In this case, for

all c ∈ V(Ia) the polynomial Φc(x, y) is standard, and

H is a strongly Φc-polynomial graph.



(iii) I(H) 6= 〈1〉 and Ia,x1
(H) 6= Ia(H). In this case H is

polynomial but not strongly polynomial.

Proof. First, assume I(H) = 〈1〉. In this case, Ia(H) =
〈1〉, too. By the Nullstellensatz, U(H) = ∅. Then, for all
standard polynomial Φ(x, y), we have U(H,Φ) = ∅. Apply-
ing Theorem 1, we conclude that G(Φ)∗ has no component
isomorphic to H. Therefore, H is not a polynomial graph.

Now, assume I(H) 6= 〈1〉. By the Nullstellensatz we have
V(Ia(H)) 6= ∅. Note that no graph H is Φ-polynomial for
all Φ(x, y). Then, by Proposition 1, there exists Φ(x, y) such
that U(H,Φ) = ∅. This implies Ia 6= {0}.

It is convenient to label vertices 1, . . . , n of H in such a
way that each vertex i ≥ 2 is adjacent to some vertex j < i.
This can be done, for example by putting the labels on the
vertices following the generation of a spanning tree by the
Depth First Search (DFS) algorithm [6].

In the second case, Ia,x1
(H) = Ia(H). Let c ∈ V(Ia(H)).

If Φc is non standard, Proposition 3 implies that H = Kn,
a contradiction. Hence, Φc(x, y) is standard.

Let u1 be a vertex of G(Φc)
∗. Write Φc(x, y) in the form

Φa(x, y) =
∑d

i=0 ai(x)yi. The hypothesis Ia,x1
(H) = Ia(H)

implies (c, u1) ∈ V(Ia,x1
(H)). By induction, suppose that

we have a partial solution (c, u1, . . . , uk) ∈ V(Ia,x1,...,xk
(H)).

Because of the labelling of the vertices of H, for some j <
k+1, the vertex uj is adjacent to the vertex uk+1. Then, the
polynomial Φ(xj , xk+1) belongs to Ia,x1,...,xk+1

(H). More-
over, ad(uj) 6= 0 because uj is a vertex of the non singu-
lar component G(Φc, u1). By the Extension Theorem [4],
the partial solution extends to a solution (c, u1, . . . , uk+1).
Therefore, (u1, . . . , un) is a point of U(H, Φc). By Propo-
sition 1, 〈u1, . . . , un〉 is a component of G(Φc)

∗ isomorphic
to H. Therefore, H is strongly Φc-polynomial for all c ∈
V(Ia(H)).

Finally, assume Ia,x1
(H) 6= Ia(H). As before, U(H) 6= ∅,

and, for any proper point (c, u1, . . . , un) ∈ U(H) the graph
〈u1, . . . , un〉 is a component of G(Φc)

∗. Therefore H is Φc-
polynomial. But as the indeterminate x1 is not free, H is
not strongly Φc-polynomial.

If H = Kn, then I(Kn) 6= 〈1〉 and Ia,x1
(Kn) = Ia(Kn),

as in (ii). In this case, besides the standard polynomials
Φc(x, y) such that Kn is strongly Φc-polynomial, there are
points in V(Ia) corresponding to non standard polynomials
as described in Proposition 3.

The proof of case (ii) provides also some insight about the
singular components:

Proposition 4. Let H be a strongly Φ-polynomial graph.

If C is a singular component of G(Φ) without defective ver-

tices, then there exists an improper point (u1, . . . , un) in

U(H, Φ) such that C = 〈u1, . . . , un〉. Moreover there exists

a graph morphism from H onto C.

Proof. In order to apply the Extension Theorem to The-
orem 3 (ii), the crucial point is the condition ad(uj) 6= 0, that
means that uj is not a defective vertex. Therefore if u1 is
taken in a singular component C without defective vertices,
then (u1, . . . , un) is an improper point in U(H,Φ). It is eas-
ily checked that i 7→ ui is an exhaustive morphism from H
to C.

Conjecture 1 is equivalent to saying that case (iii) in The-
orem 3 never occurs. The following proposition reduces the
scope of the conjecture.

Proposition 5. Let Φ(x, y) be a standard symmetric poly-

nomial of partial degree d. Then,

(i) If G(Φ)∗ has an uncountable number of finite compo-

nents, then all components of G(Φ)∗ are finite and iso-

morphic.

(ii) If G(Φ)∗ has a countable number of finite components,

then each finite component of G(Φ)∗ is not a strongly

polynomial graph.

Proof. (i) There exist a countable number of non iso-
morphic finite graphs. As the number of components of
G(Φ)∗ is uncountable, a finite graph H exists such that an
uncountable number of components of G(Φ)∗ are isomorphic
to H. Then U(H, Φ) is 1-dimensional and, for each vertex u1

of G(Φ)∗, we have a proper point of U(H, Φ) with x1 = u1,
i.e. a component isomorphic to H.

(ii) Let H be a finite component of G(Φ)∗. Consider the
three cases of Theorem 3. As H is a Φ-polynomial graph,
we are not in case (i). As there are only a countable number
of finite components, we are not in case (ii). Then, case (iii)
applies.

Thus, Conjecture 1 is reduced to the following: there ex-
ists no standard symmetric polynomial Φ(x, y) such that
G(Φ)∗ has a countable number of finite components any of
which is isomorphic to a strongly polynomial graph.

On the other side, computational evidence suggests that
if Φ(x, y) is a standard symmetric polynomial and G(Φ)∗

has infinite graphs as components, then it is not true that
all components of G(Φ)∗ are isomorphic. For instance, this
seems to be the case with the polynomial Φ(x, y) = x3 +
y3 + xy − 1.

4. GENERAL ALGORITHM
Given a finite, connected, d-regular graph H, we want to

determine its characteristic ideal Ia(H) = I(U(H)) ∩ C[a].
We start with the system of polynomials S(H), choose the
monomial order lex(xn, . . . , x1, a0 0, a1 0, a1 1, . . . , ad d), and
use the generalized gaussian elimination algorithm gge in
the Maple library dpgb [7] in order to simplify S(H). At
any step before launching Buchberger’s algorithm, we must
eliminate factors of the form xi − xj in every new poly-
nomial generated. Reductions and Buchberger’s algorithm
can be combined, to obtain the Gröbner basis of the ideal
I(H). The polynomials in this basis depending only on the
variables a, are the Gröbner basis of the characteristic ideal
Ia(H). Then we can also test if Ia,x1

(H) = Ia(H) to decide,
by Theorem 3, if H is strongly polynomial.

To make the computation effective it is strictly needed to
add to S(H) as many polynomials in I(U(H)) \ I(Z(H)) as
possible. Before giving a method for obtaining polynomials
of this kind, let us consider an example. Let H be the 4-cycle
C4, and consider the system

S(C4) = {Φ(x1, x2), Φ(x2, x3, Φ(x3, x4), Φ(x4, x1)},

where Φ = Φa. For a given a ∈ C
m and u ∈ C let λ1, λ2 be

the two roots of Φ(u, y). Then (a, u, λ1, u, λ2), (a, u, λ2, u, λ1),
(a, u, λ1, u, λ1) and (a, u, λ2, u, λ2) are improper points in
W (C4). Let now µ1, µ2 be such that u, µi are the two
distinct roots of Φ(λi, y), for i = 1, 2. If µ1 = µ2, then
(a, u, λ1, µ1, λ2) and (a, u, λ2, µ1, λ1) are proper points in
U(C4). Thus, for any a and u there exist a finite number



of solutions in Z(C4, Φa), and this variety is of dimension 1
for any a. But the condition µ1 = µ2 will be satisfied only
if C4 is a Φa-polynomial graph, and there are proper points
in U(C4, Φa). If µ1 = µ2 for any u, then C4 is strongly Φa

-polynomial. The undesired solutions in Z(C4) appear ow-
ing to the fact that no distinction is made in S(C4) between
the y-roots of Φ(u, y).

Let H be a finite, connected, d-regular graph. The follow-
ing method allows to obtain a set of polynomials in I(U(H))
(depending on a vertex of H) that separates roots. Consider
a vertex i0 in H and let xi1 , . . . xid

be the indeterminates
corresponding to the vertices adjacent to i0. In the following
discussion we write xj instead of xij

to avoiding subscripts.
Consider the polynomials Φ(x0, xj), 1 ≤ j ≤ d, in S(H).
Set

Φ0(x0; x1) = Φ(x0, x1),

and define recursively

Φ`−1(x0; x1, . . . , x`) =

Φ`−2(x0; x1 . . . , x`−1) − Φ`−2(x0; x1 . . . , x`−2, x`)

x` − x`−1
.

Proposition 6. The polynomials Φ` have the following

properties:

(i) Φ`−1 is a polynomial of U(H) for 1 ≤ ` ≤ d.

(ii) Φ`−1(x0; x1, . . . , x`) is symmetrical in the set of vari-

ables {x1, . . . , x`}, and its total degree as a polynomial

in the variables x is 2d − ` + 1.

(iii) If Φ(u0, y) has d different roots u1, . . . , ud, then the set

of solutions of the system formed by the d polynomials

Φ0(u0; x1), Φ1(u0; x1, x2), . . . , Φd−1(u0; x1, . . . , xd)
is exactly the set of all permutations of the solution

{x1 = u1, . . . , xd = ud}.

Proof. (i) For ` = 2 we have

Φ0(x0; x1) − Φ0(x0; x2) =
d
∑

i,j=0

aijx
i
0(x

j
1 − xj

2)

=
d
∑

i,j=0

aijx
i
0(x1 − x2)

j
∑

k=1

xj−k
1 xj−1

2 .

Thus Φ1(x0; x1, x2) belongs to U(H) and we have

Φ1(x0; x1, x2) =

d
∑

i,j=0

aijx
i
0

j
∑

k=1

xj−k
1 xj−1

2 .

Iterating, we obtain an explicit formula for Φ`−1:

Φ`−1(x0; x1, . . . , x`) =

d
∑

i,j=0

aijx
i
0

j
∑

k1=1

xj−k1

1

k1
∑

k2=1

xk1−k2

2 . . .

. . .

k`−2
∑

k`−1=1

x
k`−2−k`−1

`−1 x
k`−1−1

` . (1)

showing that it belongs to U(H).
(ii) It can be proved by induction that formula (1) is equiv-

alent to

Φ`−1(x0; x1, . . . , x`) =
d
∑

i,j=0

aijx
i
0

∑

k

xk1

1 · · ·xk`
` ,

where the sum over k is extended to all k = (k1, . . . , k`)

verifying ki ≥ 0 and
∑`

s=1 ks = j − ` + 1. This formula is
explicitly symmetric in the set of variables {x1, . . . , x`}, and
its degree in x is obviously 2d − ` + 1.

(iii) Φ(u0, x1) has exactly the d solutions {x1 = u1, . . . , x1 =
ud}. Then Φ0(u1; ui) = 0 and Φ1(u0; ui, x2) = 0 imply
Φ0(ui; x2) = 0 and thus Φ1(u0; ui, x2) has the same roots
as Φ(u0, x2) except for ui. Similarly, we can prove that
Φ`−1(u0; ui1 , . . . , ui`−1

, x`) has the same roots as Φ(u0, x`)
except for {ui1 , . . . , ui`−1

}. Thus the set of solutions of
S(u0) is the set of all permutations of {x1 = u1, . . . , xd =
ud}.

Let Vi be the set of vertices of H adjacent to the vertex i.
The completed system S′(H) is formed by all the polynomi-
als Φ`−1(x0; xi1 , . . . , xi`

), where {i1, . . . , i`} is a `-subset of
Vi, for all ` ∈ [d] and i ∈ [n]. Note that for ` = 1 we obtain
the polynomials in S(H). The number of polynomials in
S′(H) is

n
d
∑

`=1

(

d

`

)

= n(2d − 1).

Nevertheless, in this account there are repeated polynomi-
als. For instance Φ(xi, xj) = Φ0(xi; xj) appear twice. The
system S′(H) being a set, repetitions have to be crossed out.

In general, the solutions of the completed system S′(H)
are not exactly the points in U(H). Factors xi − xj can
appear in the computing of a Gröbner basis. Often, it is
possible to take into account the symmetry of the graph in
order to eliminate these extraneous solutions, by introducing
a new set of reduced polynomials. For instance, for graphs
with cliques of order ` + 1 the following polynomials are
helpful. Set

Φ`−1,0(x0; x1, . . . , x`) = Φ`−1(x0; x1, . . . , x`),

and, recursively,

Φ`−1,k(x0, . . . , xk; xk+1, . . . , x`) =

(Φ`−1,k−1(x0, . . . , xk−2, xk; xk−1, xk+1 . . . , x`)

− Φ`−1,k−1(x0, . . . , xk−1; xk, . . . , x`)) /(xk−1 − xk).

Proposition 7. Suppose that the vertices {0, 1, . . . , `} is

a clique of H. Then,

(i) Φ`−1,k are polynomials in I(U(H)) for 0 ≤ k ≤ ` − 1.

(ii) Φ`−1,k are symmetric in the second set of variables.

(iii) The degree of Φ`−1,k in x is 2d − ` + 1 − k.

Proof. The fact that each two vertices in 0, . . . , ` are
adjacent implies that Φ`−1,k are polynomials of I(H). The
symmetry of the Φ`−1 in the second set of variables produces
the symmetry of the Φ`−1,k in the second set of variables and
their degree in x is deduced directly from the degree of the
Φ`−1.

4.1 Application
We apply the general algorithm to determine the charac-



teristic ideal of a 3-cycle and of a 4-cycle. Let

Φ(x, y) = a00 + a10(x + y) + a11xy + a20(x
2 + y2)

+a21xy(x + y) + a22x
2y2,

Φ1(x; y, z) = a10 + a11x + a20(y + z)

+ a21x(x + y + z) + a22x
2(y + z),

Φ11(x, y; z) = a11 − a20 + a21(x + y + z)

+a22(xy + yz + zx).

The complete system for the 3-cycle is

S′(C3) = {Φ(x1, x2), Φ(x2, x3), Φ(x3, x1),

Φ1(x1; x2, x3), Φ1(x2; x3, x1), Φ1(x3; x1, x2)}.

As C3 is a complete graph, we add the polynomial Φ11(x1, x2; x3).
Let S′′(H) = S′(H)∪ {Φ11(x1, x2; x3)}. We take the mono-
mial order

lex(x3, x2, x1, a00, a10, a11, a20, a21, a22)

and calculate the Gröbner basis of S′′(C3), which is easily
computed and contains 9 polynomials. The quick compu-
tation is owing to the inclusion of the polynomial Φ11, that
reflects the symmetry. The Gröbner basis provides the fol-
lowing elimination ideal:

Ia(C3) = 〈a00 a22 + a20 a11 − a2
20 − a21 a10〉

and Ia x1
(C3) = Ia(C3).

Consider now 4-cycles. The complete system is:

S′(C4) = {Φ(x1, x2), Φ(x2, x3), Φ(x3, x4), Φ(x4, x1)

Φ1(x1; x4, x2), Φ1(x2; x1, x3), Φ1(x3; x2, x4),

Φ1(x4; x3, x1)}.

The computations become only effective when we add a new
reduced polynomial that reflects the symmetry, and elimi-
nates the extraneous solution x1 = x3, namely:

Ψ(x1, x3; x2, x4) =
Φ1(x1; x2, x4) − Φ1(x3; x2, x4)

x1 − x3

= a11 + a21(x1, x2, x3, x4) + a22(x1 + x3)(x2 + x4).

Take S′′(C4) = S′(C4)∪{Ψ(x1, x3; x2, x4)}. The direct com-
putation of the Gröbner basis, when using an automatic
method, becomes difficult. We use the technique of stop-
ping the computation when a high number of polynomials
have been computed and then use gge routine in the dpgb

library to reduce the basis. The result is a basis of 24 poly-
nomials, which provides the following characteristic ideal:

Ia(C4) =

〈a00a11a22 + 2a21a20a10 − a2
20a11 − a2

21a00 − a2
10a22〉.

and, as before, Iax1
(C4) = Ia(C4).

As shown in [2], the polynomial of partial degree two
Φa(x, y) can be reduced by a translation to a polynomial
with a21 = 0. By performing the above computations in
this case, the number of polynomials in the basis reduces to
8 polynomials for I(S′′(C3)) and 19 for I(S′′(C4)).

5. CYCLES
In [2] a complete study of the components of G(Φ) when

Φ(x, y) is a symmetric polynomial of total degree two is
given. The method can be used to determine conditions on

the coefficients of a polynomial Φ(x, y) = a(x)y2 + b(x)y +
c(x) of partial degree 2 for obtaining cycles of length n as
components of G(Φ)∗. Let

a(x) = a22x
2 + a21x + a20,

b(x) = a21x
2 + a11x + a10,

c(x) = a20x
2 + a10x + a00.

As a polynomial in y, the sum of the two roots of Φ(x, y)
equals −b(x)/a(x). Then, we have the recurrence:

vn = −vn−2 −
b(vn−1)

a(vn−1)
=

pn

qn

.

By iterating the recurrence with free initial values v0 and v1,
we obtain, by substitution and simplification, expressions
for pn and qn, in terms of v0, v1 and of the coefficients a.
To obtain n-cycles we must impose Kn = pn − v0qn = 0
and Φ(v0, v1) = 0. We use the above conditions, dividing
Kn by [Φ(v0, v1)] using a convenient monomial order. The
result is a polynomial that has one factor depending only on
the parameters a. Consequently the polynomial produces
n-cycles for any initial point v0, when the factor containing
only the parameters vanishes. In this way we obtain the
characteristic ideals for 3, 4 and 5 cycles, which are principal
ideals. These are:

∆3 = a22 a00 + a11 a20 − a2
20 − a21a10,

∆4 = a22 a11 a00 − a22 a2
10 − a11 a2

20 + 2a21 a20 a10

− a2
21 a00,

∆5 = a
3

22 a
3

00 − a3
21 a3

10 − 4a22 a3
20 a2

10 + 5 a21 a4
20 a10

+ a2
20 a2

10 a2
21 + a2

10 a2
21 a20 a11 − 4 a10 a21 a3

20 a11

− a2
22 a4

10 − a11 a5
20 − a6

20 + 3 a22 a11 a2
10 a2

20

+ a22 a21 a11 a3
10 − a22 a2

11 a20 a2
10 + a2

11 a4
20

+ 4 a2
22 a20 a2

10 a00 + 3 a11 a2
21 a2

20 a00

− 2 a22 a21 a2
20 a10 a00 − a20 a2

11 a2
21 a00

− 4 a3
20 a2

21 a00 − 3 a2
22 a2

20 a2
00

+ a2
22 a2

10 a11 a00 + a11 a2
21 a22 a2

00

− 3 a2
22 a10 a21 a2

00

+ a10 a11 a3
21 a00 − a22 a2

20 a2
11 a00

− 4 a22 a10 a11 a20 a21 a00 + a22 a20 a3
11 a00

+ 2 a22 a11 a3
20 a00 + 4 a22 a2

21 a20 a2
00

− a11 a2
22 a20 a2

00 + a22 a2
10 a2

21 a00

− a22 a10 a21 a2
11 a00 − a4

21 a2
00 + 3a22 a4

20 a00.

Using the above characteristics ideals, it is easy to obtain
examples of polynomials producing cycles:

Graph Polynomial
C3 x2y2 + x2 + y2 − xy + 2
C4 x2y2 + x2 + y2 + xy + 1
C5 x2y2 + x2 + y2 − 2xy + x + y − 2.

6. COMPLETE GRAPHS
For complete graphs Kd+1 we use a specific technique that

takes into account the symmetry of the graph. We start
writing the system S(H) of polynomials corresponding to
Kd+1. Then, as the number of parameters a is (d + 2)(d +
1)/2, and the number of edges (= equations) is d(d − 1)/2
we can solve the linear system considering the a as variables.



This provides some of the a in terms of the rest. In order to
obtain the correct result, it is important to choose the co-
efficients with greatest indices as parameters and to express
the a with smaller indexes in terms of them. Being careful
we can obtain an expression for some of the a linearly de-
pendent in the rest of the a, and polynomial in the x. Owing
to the symmetry of the complete graph in the vertices, we
can now transform the dependence of these expressions in
the x in terms of the elementary symmetrical polynomials
of the x say s1, s2, . . . , sd.

The resulting system of equations turns out to be linear
in the si and very simple. For K3, K4 and K5 the corre-
sponding set of polynomials defining the systems are:

S(K3) =







a00 − a20 s2 + a21 (−1 + s1),
a10 + a20 s1 + a22 (−1 + s1),
a11 − a20 + a21 s1 + a22 s2.

S(K4) =



























a00 + a30 s3 + a31 s1,
a10 − a30 s2 + a32 s1,
a11 + a30 s1 − a31 s2 − a32 s3 + a33 s1,
a21 − a30 + a31 s1 − a33 s3,
a22 − a31 + a32 s1 + a33 s2,
a20 + a30 s1 + a33 s1.

S(K5) =



























































a00 − a40 s4 + a41 (−1 + s1),
a10 + a40 s3 + a42 (−1 + s1),
a11 − a40 s2 + a41 s3 + a42 s4 + a43 (−1 + s1),
a20 − a40 s2 + a43 (−1 + s1),
a21 + a44 (−1 + s1) + a40 s1 − a41 s2 + a43 s4,
a22 + a44 s4 − a40 + a41 s1 − a42 s2 − a43 s3,
a30 + a44 (−1 + s1) + a40 s1,
a31 + a44 s4 − a40 + a41 s1,
a32 − a44 s3 − a41 + a42 s1,
a33 + a44 s2 − a42 + a43 s1.

As we see, the equations do not depend on sd, the lat-
est elementary symmetrical polynomial. This proves di-
rectly the conjecture, namely the ideal I in the variables
s1, . . . , sd, a has one degree of freedom more than the elimi-
nation ideal in the variables a, and the variable sd is free.

Now we apply the standard method with the new variables
s, using the order �s= lex(s1, s2, . . . , sd−1, a00, a10, . . . , add),
and determine the Gröbner basis of the ideals Ia(Kn). In
this way, we obtain the characteristic ideals for K3, K4, K5

and K6. These are

Ia(K3) = 〈a00 a22 + a20 a11 − a2
20 − a21 a10〉.

Ia(K4) =
〈a11 a33 − a32 a21 + a32 a30 − a2

31 + a31 a22 − a33 a20,
a10 a33 − a32 a20 − a30 a31 + a30 a22,
a10 a21 a32 − a10 a31 a22 − a10 a32 a30 + a10 a2

31

− a11 a32 a20 + a11 a30 a22 − a11 a30 a31 + a32 a2
20

− a20 a30 a22 + a20 a30 a31,
a00 a33 − a31 a20 + a30 a21 − a2

30,
a00 a32 − a31 a10 + a30 a11 − a30 a20,
a00 a22 − a10 a21 + a10 a30 − a2

20 + a20 a11 − a31 a00〉.

Ia(K5) =
〈a22 a44 − a44 a31 + a41 a43 − a43 a32 − a2

42 + a42 a33,
a21 a44 − a44 a30 + a43 a40 − a43 a31 − a41 a42 + a41 a33,
a21 a32 a43 + a43 a41 a30 − a30 a43 a32 − a30 a2

42

+ a30 a42 a33 − a43 a40 a31 + a43 a2
31 + a31 a41 a42

− a31 a41 a33 − a21 a41 a43 + a21 a2
42 − a21 a42 a33

+ a22 a43 a40 − a22 a43 a31 − a22 a41 a42 + a22 a41 a33,
a20 a44 − a43 a30 − a42 a40 + a40 a33,
a20 a32 a43 − a42 a33 a20 − a41 a43 a20 + a2

42 a20

− a22 a43 a30 + a22 a40 a33 − a42 a40 a22 + a31 a43 a30

− a31 a40 a33 + a42 a40 a31,
a20 a31 a43 − a41 a33 a20 + a41 a42 a20 − a21 a43 a30

+ a21 a40 a33 + a43 a2
30 − a30 a40 a33 + a40 a42 a30

− a40 a42 a21 − a40 a43 a20,

a20 a31 a42 + a22 a41 a30 − a42 a30 a21 − a32 a41 a20

− a31 a41 a30 + a2
41 a20 + a42 a2

30 − a40 a32 a30

+ a40 a32 a21 + a40 a2
31 − a22 a40 a31 − a40 a42 a20

− a2
40 a31 + a2

40 a22 + a40 a41 a30 − a40 a41 a21,
a11 a44 − a43 a30 − a42 a31 − a2

41 + a41 a32 + a40 a33,
a11 a43 − a41 a31 + a41 a22 + a42 a30 − a42 a21 − a43 a20,
a11 a33 + a32 a30 − a32 a21 − a2

31 + a31 a22 − a42 a11

− a33 a20 + a42 a20 + a40 a31 − a40 a22 − a41 a30 + a41 a21,
a10 a44 − a42 a30 + a40 a32 − a41 a40,
a10 a43 − a42 a20 + a40 a22 − a40 a31,
a10 a33 + a41 a20 − a10 a42 − a32 a20 − a30 a31 + a30 a22,
a10 a31 a42 − a32 a41 a10 − a40 a10 a42 + a2

41 a10

− a30 a42 a11 + a32 a40 a11 − a41 a40 a11 + a30 a42 a20

− a40 a32 a20 + a40 a41 a20,
a10 a21 a42 − a22 a41 a10 − a30 a10 a42 + a31 a41 a10

− a20 a42 a11 + a22 a40 a11 − a31 a40 a11 + a42 a2
20

− a20 a40 a22 + a20 a40 a31,
a10 a21 a32 − a10 a40 a31 + a22 a40 a10 + a11 a41 a20

−a11 a32 a20 − a11 a30 a31 + a11 a30 a22 − a20 a30 a22

− a10 a31 a22 − a10 a32 a30 − a21 a41 a10 − a41 a2
20

+ a10 a2
31 + a32 a2

20 + a30 a41 a10 + a20 a30 a31,
a00 a44 − a41 a30 + a40 a31 − a2

40,
a00 a43, − a41 a20 − a40 a30 + a40 a21,
a00 a42 − a40 a20 − a41 a10 + a40 a11,
a00 a33 − a41 a10 − a2

30 + a30 a21 + a40 a11 − a31 a20,
a00 a32 − a31 a10 + a40 a10 − a00 a41 − a30 a20 + a30 a11,
a00 a22 − a10 a21 + a10 a30 − a2

20 + a20 a11 − a31 a00〉.

We do not write the characteristic ideal Ia(K6), because it
contains 48 polynomials using the reduced polynomial with
a54 = 0. The Gröbner basis of I(K6) contains 104 poly-
nomials. The following are examples of polynomials Φ(x, y)
such that Kn is strongly Φ-polynomial.



Graph Polynomial

K3 x2y2 + x2 + y2 + 3x + 3y + 1
K4 x3y + xy3 + x2y2 + 1
K5 2x4y4 + 2x4 + 2y4 + x3y + xy3 + x2y2 + 1
K6 x5y5 + x5 + y5 − x4y2 − x2y4 − x3y3 + x + y + 1.
To finish this section, two remarks. First, note that the

complete graph Kd+1 has Kd as induced subgraph. Thus, a
polynomial with coefficients in V(Ia(Kd+1)) having all the
coefficients with some subindex n equal to zero must be in
V(Ia(Kd)). In terms of ideals,

Ia(Kd+1)(a00, a10, . . . , ad−1,d−1, 0, . . . , 0) = Ia(Kd).

Second. As a consequence of Proposition 3, if Kd is strongly
Φ-polynomial, then the polynomial xy Φ(x, y) satisfies the
conditions of Kd+1. Therefore if we substitute aij by ai+1 j+1

in Ia(Kd) the resulting ideal is contained in Ia(Kd+1).
The above relations can be computationally checked be-

tween the ideals K3, K4, K5 and K6.

7. CONCLUDING REMARKS
We have presented and solved a number of questions con-

cerning polynomial graphs. Nevertheless, we are aware that
there are many open questions. Let us remark at least three
of them.

The first one is, obviously, to prove or disprove the conjec-
ture: Either to prove that if (H,Φ) is a standard pairing and
H is Φ-polynomial, then H is strongly Φ-polynomial or to
find a standard pairing (H, Φ) such that H is Φ-polynomial
but not strongly Φ-polynomial.

Second. We have seen that any strongly Φ-polynomial
graph is vertex transitive. But all examples we have are Cay-
ley graphs. Therefore, it is a natural question to ask if every
strongly Φ-polynomial graph is a Cayley graph. In particu-
lar it would be interesting to know if Petersen’s graph, which
is vertex transitive but is not a Cayley graph, is polynomial
(our guess is that it is not).

Third. The discussions in this paper are depending on the
finiteness of H. It would be interesting to develop methods
for d-regular graphs not necessarily finite, and generalize the
conjecture.
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