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Abstract. Kapur-Sun-Wang have recently developed a very e�cient algorithm for com-
puting Comprehensive Gröbner Systems that has moreover the required essential properties
for being used as �rst step of the Gröbner Cover algorithm. We have implemented and
adapted it inside the Singular grobcov library for computing the Gröbner Cover and there
are evidences that it makes the canonical algorithm much more e�ective. In this note we
discuss the performance of GC with KSW on a collection of examples.

Introduction

The Gröbner Cover (GC), described in [9], is a canonical description of the discussion of a
parametric polynomial ideal I ⊂ K[a][x] over a computable in�nite �eld K (whose algebraic
closure is K), a = a1, . . . , am being the parameters and x = x1, . . . , xn the variables. It
consists of a set of pairs of segment and basis GC = {(Si, Bi) : 1 ≤ i ≤ s}, where the
segments Si ⊆ K

m
form a partition of the parameter space K

m
and are locally closed

subsets (i.e. di�erence of varieties), that can be described in canonical form Si =
∪

j(V(pij)\
∪kV(qijk)), where the p's and q's are prime ideals. The basis Bi specializes to the reduced
Gröbner basis of the ideal on every point a0 ∈ Si, and have constant set of leading power
products (lpp) on the whole segment.

Its canonical character is proved in [16]. In [9] we present an algorithm to compute
it, implemented in Singular in the library grobcov.lib, that can be downloaded from the
Singular web [12].

The algorithm has the following steps:

(1) Homogenize the ideal;
(2) Compute a disjoint CGS (Comprehensive Gröbner System) with constant lpp's;
(3) Group the segments by lpp (leading power products) of the reduced Gröbner basis;
(4) Dehomogenize and reduce the bases;
(5) Compute the homogenized-lpp-segments grouped in 3) by adding together all the

segments with the same lpp;
(6) Compute the generic (and the extended) basis for the lpp segments.

Step 2) computes a CGS, which needs to contain disjoint segments with constant lpp's,
and must be described in a canonical form in order to be able to be added together with
the other segments having the same lpp. By Wibmer's Theorem ([16]) its union is locally
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closed and allows a unique basis Bi ⊂ OSi [X]1. In several papers [6, 5], and more precisely
in [9], we present an algorithm (Buildtree) for this purpose.

Other people have proposed algorithms to compute a CGS. We mention [14, 15], who
initiated the research �eld. Then [13] and [10] gave more e�cient algorithms. But these
algorithms do not have the required properties to be used in the canonical description.

Recently [3] have proposed a very e�cient algorithm that moreover produces disjoint seg-
ments with constant lpp's. Thus it is easy to adapt it to be used as the �rst step of the
Gröbner Cover algorithm. We only need to transform the description of the segments into
canonical form. We have implemented this procedure into a new version of the grobcov
library, that is not yet published, increasing considerably the e�ciency of the GC imple-
mentation.

We tested many examples, and give here some results for problems of medium-high di�-
culty. Time is given in seconds using an Intel(R)Core(TM)2 Duo CPU / T7500 @ 2.20 GHz
/ 2.19 GHz, 2.00 GB Ram computer.

Performance of the Gröbner Cover algorithm using KSW / Buildtree inside

Using Buildree Using KSW GrobCov Time ratio
System Time Segments Time Segments Segments KSW/BT
S10 2.64 6 0.45 4 3 0.17
S11 4.79 6 5.86 23 6 1.22
S15 89.54 93 3.45 31 22 0.04
S16 2.64 36 0.72 16 5 0.27
S47 21.21 18 0.72 9 7 0.03
S53 2.62 9 0.55 7 5 0.21
S54 5.43 23 0.86 2 2 0.16
S58 10.14 88 2.48 31 12 0.24
S59 4.98 66 2.24 25 12 0.45

The examples are taken from real applications or from test problems with special di�cul-
ties. S10 discusses the inverse kinematic problem of a simple robot arm [6]. S11 comes also
from robotics [1], as well as S15 [2]. S16 studies a tensegrity problem [11]. S47 is the auto-
matic proof of the nine points circle theorem. S53 is the problem of automatically discover
the conditions for having an isosceles orthic triangle. S54 is also an automatic discovering
theorem problem, proposed in the pastimes section of the French journal �Le Monde� on the
printed edition of Jan. 8, 2007 as a problem of two skaters. Both problems S53 and S54

are discussed in [7]. S58 and S59 are problems where bases containing I-regular functions
described by multiple polynomials are expected and was proposed by the author.

1OSi [X] : Si → K[x] is a set of I-regular functions over Si, and can be represented in some way by
polynomials of K[a][x].
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The parametric ideals are the following:

S10 = s1s2l − c1c2l − c1 + (r),−s1c2l − s1 − c1s2l + (z), s21 + c21 − 1,
s22 + c22 − 1;

S11 = (rd3d4 − r + Z − r22d3d4 + r22 − d33d4 + d23d
2
4 − d3d

3
4 + d3d4)t

4

+(−2rr2d4 + 2r32d4 + 2r2d
2
3d4 − 4r2d3d

2
4 + 2r2d

3
4 + 2r2d4)t

3

+(−2r + 2Z + 4r22d
2
4 + 2r22 − 2d23d

2
4 + 4d24)t

2

+(−2rr2d4 + 2r32d4 + 2r2d
2
3d4 + 4r2d3d

2
4 + 2r2d

3
4 + 2r2d4)t

+(−rd3d4 − r + Z + r22d3d4 + r22 + d33d4 + d23d
2
4 + d3d

3
4 − d3d4);

S15 = (d)s1 + (a), (−d)c1 + (b), (l3)c3 + (l2)c2 + (−d), (l3)s3 + (l2)s2 + (−c),
c21 + s21 − 1, c22 + s22 − 1, c23 + s23 − 1;

S16 = (x− y − z)w5, (z)w4 + (−z)w5, (x+ y − 1)w4 + (−z + 1)w5,
(y − 1)w3 + (y)w4 + (−2z + 1)w5, (x− z)w3 + (−y)w4,
(z − 1)w2 + (z)w3 + (2z − 1)w5, (y − 1)w2 + (y + 2z − 1)w5,
(x− 1)w2 + (z)w3 + (y + 2z − 1)w5;

S47 = x20 + y20 − r2, x
2
0 + y20 + (−2a− 2)x0 + (−2b)y0 − r2 + (a2 + 2a+ b2 + 1),

x20 + y20 + (−2a+ 2)x0 + (−2b)y0 − r2 + (a2 − 2a+ b2 + 1),
x20 + y20 + (−4a)x0 − r2 + (4a2),
x21 + y21 − 2x1x0 + x20 − 2y1y0 + y20 + (2a)x1 + (2b)y1 + (−2a)x0
+(−2b)y0 − r2 + (a2 + b2), x1 + (−a), (a+ 1)x1 + (b)y1 + (−a− 1),
x21 + y21 − 2x1x0 + x20 − 2y1y0 + y20 + 2x1 − 2x0 − r2 + 1,
x21 + y21 − 2x1x0 + x20 − 2y1y0 + y20 − 2x1 + 2x0 − r2 + 1,
(b)x2 + (−a− 1)y2 + (2b), (a+ 1)x2 + (b)y2 + (−2a−2),
x22 + y22 − 2x2x0 + x20 − 2y2y0 + y20 − r2,
(b)x3 + (−a+ 1)y3 + (−2b), (a− 1)x3 + (b)y3 + (2a− 2),
x23 + y23 − 2x3x0 + x20 − 2y3y0 + y20 − r2;

S53 = (−b)x2 + (a− 1)y2 + (b), (a− 1)x2 + (b)y2 + (a− 1),
(b)x3 + (−a− 1)y3 + (b), (a+ 1)x3 + (b)y3 + (−a− 1),
−x22 + x23 − y22 + y23 + (2a)x2 + (−2a)x3;

S54 = x21 + y21 + (−2a)x1 − 2y1, x
2
2 + y22 + (2b)x2 − 2y2,

(a)x1 + y1 + (a2cv − a2 + cv − 1), (−b)x2 + y2 + (b2cw − b2 + cw − 1),
−x1 + (a)y1 + (a2sv + sv),−x2 + (−b)y2 + (b2sw + sw),
−y1x2 + x1y2 − 2x1 + 2x2; a2 + 1 ̸= 0, b2 + 1 ̸= 0, a+ b ̸= 0;

S58 = (a0)x
2 + (b0)y + (c0), (a1)x

2 + (b1)y + (c1);
S59 = (a0)x

2 + (b0)xy + (c0)y
2, (a1)x

2 + (b1)xy + (c1)y
2, (a2)x+ (b2)y;

1. Conclusions

It can be observed that, in problems of medium-high di�culty, in general the performance
of the Gröbner Cover algorithm using KSW is much better than with Buildtree. The speed
increases up to 30 times in the best cases even if there are particular problems for which
it does not gain anything. One of the reasons of the better performance lies not only in
the speed of the KSW algorithm but also in the fact that, in general, KSW produces less
segments than Buildtree, and this makes the remaining parts of the algorithm to be less
expensive.
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For problems of small di�culty there are no particular di�erences between both methods,
and even Buildtree can be more e�cient, but this is not signi�cative. It can be observed that
the e�ciency increases considerably when the number of segments of the CGS is smaller for
KSW than with Buildtree.

Another interesting conclusion we can derive from the analysis of the performance of
both methods is about the canonicity of the Gröbner Cover algorithm. Even if the CGS
computation produces very di�erent results in both procedures, the output of the Gröbner
Cover algorithm after steps 3), 4), 5), 6) becomes always the same (at least as far as we
have veri�ed).
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