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Let C(n,p) be the set of p-compositions of an integer n, i.e., the set of p-tuples o = (a1, ..., ap) of
nonnegative integers such that aq + -+ + ap = n, and x = (x1,...,xp) a vector of indeterminates.
For v and B two p-compositions of n, define (x + @)? = (x1 4+ a1)? - - (zp + ap)PP. In this paper
we prove an explicit formula for the determinant deto, gec (n,p) ((X+ a)P). In the case z1 = - = @
the formula gives a proof of a conjecture by C. Krattenthaler.
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1 Introduction

Let us start with some notation. If u = (uy,...,uy) and v = (v1,...,vp)
are two vectors of the same length, we define u¥ = u(" ---u;* (where, to be
consistent 00 = 1). In our case, the entries u; and v; of u and v will be
nonnegative integers or polynomials. We use x = (z1,...,2,) to denote a
vector of indeterminates and 1 = (1,...,1). The lengths of x and 1 will be
clear from the context. If u = (uy,...,us), then s(u) denotes the sum of the
entries of u, i.e. s(u) = u; + -+ uy, and u denotes the vector obtained from
u by deleting the last coordinate, u = (uq,...,us—1).

Let C'(n,p) be the set of p-compositions of an integer n, i.e., the set of p-
tuples o = (a1, . .., @) of nonnegative integers such that a; +- - -+, = n. If
a=(o,...,op) and B8 = (f1,..., ) are two p-compositions of n, using the

above notation, we have a® = af R agp. In [1] the following explicit formula
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for the determinant A(n, p) = detq, gec(np) () was proved:

p

min{n,p} n—k+1 . ()
Amn,p) =[] (n("ﬁ) I1 Jn=iD (7 )> , (1)

k=1 i=1

In a complement [4] to his impressive Advanced Determinant Calculus [3],
C. Krattenthaler mentions this determinant, and after giving the alternative
formula

A(n,p) =nl" D Tt 0005T) 2)
=1

he states as a conjecture a generalization to univariate polynomials. Namely,
let x be an indeterminate and

A(n,p,x) = aﬁggt(n ) ((m 1+ a)ﬁ) :

Note that (z -1+ )P = (z+a1)? - (x + ap).

Conjecture [C. Krattenthaler]:

ntp—i—1

A(n,p,x) = (pr + n)(“g‘l) ﬁi(n—i+1)( s ) 3)
=1

fAs (n—i+1) (”+5:;_1) =(p-1) (”“'gj_l), formula (2) can be written in the
orm

Anp) = ol [0
i=1

and Krattenthaler’s Conjecture (3) in the form

n+p7i71)
p—1

A(n,p,z) = (pxr + n)(ﬁgil) ﬁi(p_l)( (4)

i=1

The main goal of this paper is to prove a generalization of formula (4) for p
indeterminates. For this, let x = (z1,...,2p) be a vector of indeterminates,
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and let

Ampx)= det ((x+)f).

(Recall that (x+a)P = (z1+a1)? - - (¥,+5,)"). Then, we prove the following
formula (Theorem 5.1):

Afnp.x) = (s + )T 000257, )

i=1

As s(x) = 1+ -+ xp, if 21 = -+ = 2, = z, then s(x) = pzr and the
conjectured identity (4) follows.

We also prove a variant of this result for proper compositions. A proper p-
composition of an integer n is a p-composition a = (a, ..., ap) of n such that
a; > 1foralli=1,...,n. Denote by C*(n,p) the set of proper p-compositions
of n and define

stenn=, i, (5

The determinant A*(n, p,x) has the following factorization (Theorem 6.1):

p n—p+l1 n—p+1

A*(n,p,x) = (s() +m) ) (T TT Gy +aC=) | T =050,
j=1 =1

i=1

(6)

The paper is organized as follows. In the next section we collect some combi-

natorial identities for further reference. In Section 3 we prove the equivalence

between the formula (2) given by Krattenthaler and (1). In Section 4 we prove

two lemmas. The first one is a generalization of the determinant A(n,2,x).

The second lemma uses the first and corresponds to a property of a sequence

of rational functions which appear in the triangulation process of the determi-

nant A(n,p,x). Section 5 contains the proof of the main result, Theorem 5.1.
Finally, Section 6 is devoted to proving (6).

2 Auxiliary summation formulas

LEMMA 2.1 Leta,b,c,d,m andn be nonnegative integers. Then, the following
equalities hold.

(1) dkez (c—(fl—k) (dik) = (Z‘Iﬁ):
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. k k 1

(11) Zkgn (ajl_ ) = Zkgn (a—/% ) = (n:—?——li_ );
(i) (") = ()

Proof (i) is the well known Vandermonde’s convolution, see [2, p. 169]. The
formulas in (ii) are versions of the parallel summation [2, p. 159]. Part (iii)

follows from
n—1 k

Zr(n—i-a—r) _ i:r(n—&-a—r) _ ZZ(a:i)

r=1 r=1 k=0i=0
_n_1<a+k+1) B (a+n+1>
o a+1 a+2

3 Equivalence between the two formulas for x = 0

Here we prove the equivalence beetween the formulas (1) and (2) for A(n, p).
Obviously, the result of substituting = 0 in formula (3) of the Conjecture
gives formula (2) for A(n,p).

PROPOSITION 3.1 Formulas (1) and (2) are equivalent.

Proof We derive formula (2) from (1), which was already proved in [1]. First,
note that if p < k < n, the binomial coefficient (i) is zero. Thus, we can
replace min{p,n} by n in formula (1). Analogously, if n —k+1 < i < n,
the binomial coefficient (”,:;1) is zero, and we can replace the upper value

n —k + 1 by n in the inner product. Second, the case a =n—1,b=d =p
and ¢ = 0 of Lemma 2.1 (i) yields

G T BT T T L
and, if i > 1, by takinga =n—i—1,b=d =p and ¢ = —2 in Lemma 2.1 (i),

we obtain

CLLN0-S 0050,

Therefore,

min{n,p}  nktl o ()
A(n,p) = H (n( * ) H i(n_z""l)( k—2 )>
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_ (Hnm )(HH i Mw))
k=1 k=11i=

1

(n+p*1)_1 <n ! (7’L Z+1)( e 1)) 4 (71)(13)
—n . i p—2 n k=1 \k—-2 k

1

7

_ ()4 IHIanJrl) mrTh)

n+P 1 H (TL Z+1 n+p i— 1)

4 A recurrence

The next lemma evaluates the determinant

Dy(n,y,2) = det ((y—i)"7(z+1i)),

0<i,j<r

by reducing it to a Vandermonde determinant. Note that D, (n,z; + n,xzs) =

A(n,2,x).
LEMMA 4.1
Dr(n,y,2) = (y+2)("2) (H(y _ i)n—r) (H z’T—i“) '
=0 i=1
Proof
(y—0)"(2+0)° (y —0)" L (z+0)" -+ (y—0)" " (2 +0)"
D (n y ) (yfl)n(erl)O (yfl)n 1(Z+1) (yil)nfr(z+1)r

(y—mﬂz+m°@—mw4u+m1~«y—mmﬂz+mr

: RERR A B
<H(y—i)"> . Y
i=0

iw+mﬂy—m~'u+m7@—mr
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4 z+5 z+1
-( <y—z‘>") (=)

1=0 0<i<j<r Yy J Y

( - (y+= (J — i)

=0 0<7,<]<r y y - Z)
7” 1Zr i+1

(+2)% ’

];[ Z o(y i)"

(Ll -9 )(H, ")

LEMMA 4.2 Define f,:Ng x Ny — Q(y, z) recursively by
foli,§) = (2 +);
fT’+1(Za.7):f’r‘(Za.7) Zf jST’,

o Jj—r . .
rnliod) = fisd) = (U2 ) EEDIRD

Then
(l) f?"—i—l(r,j) =0 fOTj > ‘|" 1;

7!
i) folrr) = (g + 2 =
Ty — )
Proof Part (i) is trivial using induction. To obtain f, = f.(r,r), we take n > r
and calculate D(n,y, z) = Dyn(n,y, 2) by Gauss triangulation method.
The entry (i, 1) of D(n, y, 2) i (y—i)" 3 (z-+1)) = (y—i)" fo(i, ). 11§ > 1.
add to the column j the column 0 multiplied by

_ 1 fO(Oaj)
(y —0)770 fo(0,0)

Then, the entry (4,7) with j > 1 is modified to

1 fO(Ovj)
(y = 0)7=9 f0(0,0)

_  a\n—j Co y—1 -0 fO(ka)fO(ka.])
_(y Z) J{fO(lv.]) <y_0> fo(0,0) }

(y =" foli, 3) = (y — )"~ fo(5,0)
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_ N\ — y . .
= (y — )" f1(,9).

Therefore, D(n,y,z) = deto<i j<r ((y — )" f1(i, 7)) and f1(0,5) = 0 for j >
1.

Now, assume that D(n,y, z) = deto<ij<n ((y — )" fi(i, §)) for k > 1 with
frx(i,4) =0 for k,j > i. Add to the column j > k4 1 the column k multiplied
by

(y — k)I=F fu(k, k)

The entry (,7) is modified to

(y = k)= fulk, k)

. i—k . .
A LN = e )

(y = )" fiis ) = (y = )" " fuli k) -

fk(k7 k)

= (y = )" for1 (i, 9).

Clearly fxi1(k,7) =0 for j > k. After n iterations, we get the determinant of
a triangular matrix. Hence

n

Pn.y.2) = et (=0 *5itk) = [T =14

The principal minor of order 7+1 is Dy.(n, y, 2) = [[}_o(y—k)" " fi. Therefore,

D,(n,y,z)

Dra(niys) (y—r)"""fr. (7)

On the other hand, by Lemma 4.1 we obtain

Di(nyy,2)  (y+2)U2) (Tigly — ") (I )

r

Draln9:2) (42 (Tt i) (i )

(y—r)" "

= 2) el
L VT
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Comparing with (7), we have arrived at

7!
fr=(y+2) H::_&(y_z)

5 Proof of the main theorem

We sort C(n,p) in lexicographic order. For instance, for n =5, and p = 3, we

obtain
C(5a 3) = { (570a O)a (4’ 170)7 (37 Q,O)a (27 3, 0)7 (1747 0)7 (0, 9, 0),
(4,0,1),(3,1,1),(2,2,1),(1,3,1),(0,4, 1),
(3, 0, 2), (2, 1, 2), (1, 2, 2), (0, 3, 2),
(2,0,3). (1.1,3). (0.2.3).
(1,0,4), (0, 1,4),
(0.0.5) }.

Let M(n,p,x) be the matrix with rows and columns labeled by the p-
compositions of n in lexicographic order and with the entry (e, 3) equal to
(x + a)P. We have A(n,p,x) = det M(n, p,x).

An entry (x + )P in M(n,p,x) can be written in the form (% + &)P(z, +
ap)P. For 0 <i,j <n,let S;j be the matrix with entries (x+a)P where o and
3 satisfy a, =i and (3, = j. Thus, the submatrix of M (n, p,x) formed by the
entries labeled (a,8) with a;, = i and 8, = j can be written (Sj;(zp +1)7).
Note that

Skk :M(n—k,p— 1,)2).

Define fo(i,7) = (xp + i)7. Therefore, M (n,p,x) admits the block decomposi-
tion

M(n,p,x) = (Sij fo(i, J))o<ij<n-

The idea is to put M(n,p,x) in block triangular form in such a way that at
each step only the last factor of each block is modified.

THEOREM 5.1

A,y = (560 +m) T D L0055,

=1
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Proof The proof is by induction on p. For p = 1, A(n,p, z) is the determinant
of the 1 x 1 matrix ((z+n)"). Hence A(n,p,x) = (x+n)™. This value coincides
with the right hand side of the formula for p = 1.

Consider now the case p = 2. Any 2-composition of n is of the form (n—1i,1)
for some i, 0 < i < n. The determinant to be calculated is A(n,2,x) =
deto<i j<n ((:Ul +n—i)" I (zg + Z)J) By taking r =n, y = 21 +n and z = 9
in Lemma 4.1, we get

n
A(n,2,x) = Dyp(n,z1 +n,22) = (1 + 22 + n)(nf) Hi”_”l.
i=1

Therefore, the formula holds for p = 2.

Now, let p > 2 and assume that the formula holds for p — 1. Begin with the
block decomposition of the matrix M (n,p,x) = (Si; fo(i,7))o<ij<n-

Assume A(n,p,x) = det(S;; f,(i,5)) where S;; = ((X + &)P), with o, = i,
Bp =j, and fr(i,j) =0 for i <r and j > i.

Fix a column 8 with 3, = j > r. For each v € C(n,p) with 7, = r and
Yk > B for k € [p — 1], add to the column 8 the column ~ multiplied by

T a8 o

The differences 6 = 4 — 3 are exactly the (p — 1)-compositions of j — r. Also
note that by the multinomial theorem,

(s(2) +n—i 7 = (@1 + o)+ F (@pat ) =D (j 5 ) (s + @)’

Then, a term of column 3 is modified to

X _B'Z‘A— %j_rm,—( &)Y £ (i1
(% + &) £:(i,5) ;(s(i)+n—r)f>r(&—B>fr(r,r)( +8)7 f(i,7)

= (x+a&)P i'—; jiridgw
(x+a) {frm) P (Z( 5 )&+ >) oo }

s

L@k )i}

= &®+a)? fr(i)
= o+ @ {fr00.0) - S DI

Now, define fr—i—l(i:j) = fr(la]) forj <r and

(s) +n—i) ™" folr, ) fr (i)
(s(x) +n—ry="  fo(rr)

f?"+1(iaj) = fT(Zvj) -
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for j > r. Note that f,41(r,j) = 0 for j > r. After n iterations, we arrive
at the block matrix (Si;fn(i,7))o<ij<n where f(i,7) = 0 for j > i. Thus,
the determinant A(n,p,x) is the product of the determinants of the diagonal
blocks:

A(n,p,x) = H det(Spr fr(r,7)).

r=0

Now, S, = M(n —r,p — 1,X), a square matrix of order (" ;er 2) Therefore

n

A(n,p,x) = H (A(n —r,p—1,%)f(r, r)(n_;tg_z)) .

r=0

Now, observe that the rational funcions f, satisfy the hypothesis of Lema 4.2
with y = s(X)+n=x1+ -+ xp—1 +n and z = z;,. Thus,

7!
fr= o) = G +n)" e o Ty

By the induction hypothesis,

A@mJW:IIQd@+n—r lﬁlezpm +p20
r=0 i=1

11.77‘#»}772)
n

("
: s(x)+n)"-r!- L ) '
E)(( SRS i (= Fry

It remains to count how many factors of each type there are in the above
product.

The number of factors (s(x)+n)is > ._, 7‘("+§:;_2). From Lemma 2.1 (iii)
(n—i—p—l)‘

p

for a = p — 2 this coefficient is

The number of factors s(x)+n—i, for 0 < i <n—1, is (by using Lemma 2.1
(i) with a = p — 2)

—i+p—2 - - -2 —i+p—2 —i+p—2
Gt T o Gt B (i B (i B

Finally, for 1 < i < n, the number of factors equal to i is

(p_Q)g(n—i-p—_i—r—Q)+i(n+p—r—2> _
=0 r=i

p—2 p—2
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(p_Q)(n—l—p—i—r—l)+(n+p—r—1):(p_l)(n-i-p—r—l).

p—1 p—1 p—1
O
6 Proper compositions
A proper p-composition of an integer n is a p-composition o = (a1, ..., ap) of

n such that o; > 1 for alli = 1,...,n. We denote by C*(n, p) the set of proper
p-compositions of n. In [1] the following formula was given:

n—p+1 )
A = det (@®) = nl) T s,
(np)=_ det (af)=n £!%

Here, we study the corresponding generalization

* — B
N(mpx) = det ((x+a)).

THEOREM 6.1 Ifp < n, then

n7p+l p i—1 n—p n—i—1
A*(n,p,x) = (s(x) + ) ) | T T s+ | T 000,
i=1 j=1 i=1
Proof The mapping C*(n,p) — C(n — p,p) defined by a = (a1,...,0a;,) —
a—1= (a1 —1,...,0p — 1) is bijective. Thus, we have
A*(n,p,x) = det +a)P
(npx) = det ((x+a))
= det +1+a-—1)°P 1
a,BECG*(n,p) <(X * ) )
= det x+1+a)Px+1+a)t
o,B€C(n—p,p) <( A ) )
=A(n—p,p,x+1) H (x+1+a)t

acC(n—p,p)

The number of times that an integer i, 0 < ¢ < n — p appears as the first

entry of p-compositions of n — p is the number of solutions (az,...,an—p) of
i+ ag+ -+ ap, =n—p, which is ("_p;;p_Q) = (”;j;Q) The count is the

same for every coordinate. Then, in the product []ec(n—pp(x+1+ a)l, the
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n—i—2
p—2

the number of factors equal to x; + 1 is (";i;l). Therefore,

number of factors equal to x;+1417 is ( ); equivalently, for 1 < i < n—p+1,

A*(n,p,x) =An—ppx+1) [ x+1+a)

aeC(n—p,p)

n—p+1l p n—p

= (s)+m) )T s+ ) T 0050,
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