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a b s t r a c t

Gröbner bases are the computational method par excellence for
studying polynomial systems. In the case of parametric polynomial
systems one has to determine the reduced Gröbner basis in
dependence of the values of the parameters. In this article, we
present the algorithm GröbnerCover which has as inputs a finite
set of parametric polynomials, and outputs a finite partition of
the parameter space into locally closed subsets together with
polynomial data, fromwhich the reduced Gröbner basis for a given
parameter point can immediately be determined. The partition
of the parameter space is intrinsic and particularly simple if the
system is homogeneous.
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Introduction

LetK be a field andK be an algebraically closed extension ofK (e.g.K = Q andK = C). A parametric
polynomial system over K is given by a finite set of polynomials p1, . . . , pr ∈ K [a, x] in the variables
x = x1, . . . , xn and parameters a = a1, . . . , am, and one is interested in studying the solutions of the
algebraic systems {p1(a, x), . . . , pr(a, x)} ⊂ K [x] which are obtained by specializing the parameters
to concrete values a ∈ K

m
.

The computational approach par excellence for studying algebraic systems is the method of
Gröbner bases and several articles have already been dedicated to the application of the ideas of
Gröbner bases in the parametric setting, e.g. (Gianni, 1987;Weispfenning, 1992; Becker, 1994; Kapur,
1995; Duval, 1995; Kalkbrenner, 1997; Van Hentenryck et al., 1997; Moreno-Maza, 1997; Dellière,
1999; González-López et al., 2000; Gómez-Díaz, 2000; Fortuna et al., 2001; Montes, 2002; O’Halloran
and Schilmoeller, 2002; Gao andWang, 2003;Weispfenning, 2003; Sato and Suzuki, 2003; Sato, 2005;
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González-Vega et al., 2005; Nabeshima, 2005;Manubens andMontes, 2006; Nabeshima, 2006; Suzuki
and Sato, 2006; Wibmer, 2007; Chen et al., 2007; Inoue et al., 2007; Inoue and Sato, 2007; Manubens,
2008; Manubens and Montes, 2009).
The first very important step was the proof of the existence of a Comprehensive Gröbner Basis

together with an algorithm to obtain one via Gröbner systems in Weispfenning (1992). These
algorithms have been implemented by Schönfeld (1991), Pesch (1994) and Dolzmann et al. (2006).
To explain this fundamental concept we fix a monomial order �x on the variables and an ideal
I ⊂ K [a][x] = K [a, x] (with generating set {p1, . . . , pr}). For a ∈ K

m
we denote by Ia ⊂ K [x] the

ideal generated by all p(a, x) ∈ K [x] for p ∈ I .
A Gröbner system for I and�x is a finite set of pairs {(S1, B1), . . . , (Ss, Bs)} such that

(i) The Si’s are locally closed subsets of K
m
such that K

m
= ∪Si.

(ii) The Bi’s are finite subsets of K [a][x] and Bi(a) = {p(a, x) : p ∈ Bi} is a Gröbner basis of Ia with
respect to�x for every a ∈ Si.

(iii) For p ∈ Bi the function a 7→ lpp(p(a, x)) is constant on Si. In particular, a 7→ lpp(Ia) is constant
on Si because of (ii), and so lpp(Si) = lpp(Ia) for some a ∈ Si is well-defined. (Here lpp denotes
the leading power products with respect to�x.)

The Si’s are called the segments of the Gröbner system. Depending on the context one can also assume
that the segments are arbitrary constructible subsets (as e.g. in Manubens and Montes (2009)), or
locally closed subsets of the special form{

a ∈ K
m
: f1(a) = 0, . . . , fs(a) = 0, g1(a) 6= 0, . . . , gt(a) 6= 0

}
= V(f1, . . . , fs) r V

(∏
gj
)

with f1, . . . , fs, g1 . . . , gt ∈ K [a] as inWeispfenning (1992). In amore algorithmic context one usually
replaces Siwith some polynomial data in the parameters that determines Si. Some authors (e.g. Suzuki
and Sato (2006)) also drop condition (iii). If one requires Bi ⊂ I then the Gröbner system is called
faithful. From a faithful Gröbner system one can obtain a comprehensive Gröbner bases B simply by
B = ∪Bi. Our focus is on Gröbner systems rather than on comprehensive Gröbner bases because we
think that the decomposition of the parameter space is very important in the applications.
After Weispfenning (1992), the effort has gone in two directions. Weispfenning (2003) and other

authors (Manubens and Montes, 2009) worked in the direction of obtaining a canonical discussion
only associated to the given ideal and monomial order, focusing on nice properties of the discussion.
Other authors (Kapur, 1995; Kalkbrenner, 1997; Suzuki and Sato, 2006, 2007; Nabeshima, 2006) fixed
their objective on effectiveness and speed.
A common problem with algorithms for the computation of Gröbner systems is that, mainly due

to the large number of segments generated, the interpretation of the output can become quite tedious
for the user.
Therefore themain focus of this article is not on the efficiency of the algorithm but on computing a

Gröbner system that has as few segments as possible and satisfies some additional nice properties, so
that the compact output allows an easy interpretation and the algorithm is easy to use in applications.
Thus for us the crucial topic is how to actually represent all the reduced Gröbner bases for varying
a ∈ K

m
in the most simple and canonical way on the computer.

There is a certain difficulty with (reduced) Gröbner systems: Let S ⊂ K
m
be a locally closed subset

such that a 7→ lpp(Ia) is constant on S and t an element of the minimal generating set of lpp(S).
For a ∈ S let g(a) denote the element of the reduced Gröbner basis of Ia with lpp(g(a)) = t . It
is in general not possible to describe the function g on S by a single polynomial p ∈ K [a, x]. One
reason for this can be that p might specialize to zero at a certain point a ∈ S, in other words, if we
normalize p and consider it as element inK(a)[x] then p(a, x)might not bedefined for all a ∈ S because
some denominator specializes to zero. To avoid this kind of ‘‘singularities’’ we propose to use regular
functions as in Wibmer (2007). We illustrate the above described phenomena with an example.

Example 1. Let I = 〈ax+ by, cx+ dy〉 ⊂ C[a, b, c, d][x, y]. We use a term-order with x > y. It is easy
to see how the parameter space is partitioned according to lpp:
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Segment lpp Basis

S1 C4 r V(ad− bc) {y, x} {y, x}

S2 V(ad− bc) r V(a, c) {x} {x+
{ b
a ,
d
c

}
y}

S3 V(a, c) r V(a, b, c, d) {y} {y}

S4 V(a, b, c, d) { } { }

There are four locally closed subsets ofC4 with constant lpp. On S2 neither ax+ by or cx+dy alone
is sufficient to describe the element of the reduced Gröbner bases of the specialized ideals because
one of the leading coefficients always specializes to zero at a certain point in S2. In fact the reader may
convince himself that there does not exist a polynomial p ∈ K [a, b, c, d][x, y] such that p(̃a, x, y) is a
Gröbner basis of Ĩa for every ã ∈ S2. This means that every Gröbner system necessarily decomposes
S2 in more than one segment (at least if (iii) is required or the Gröbner system is reduced). We think
that it is undesirable to break up S2 because intuitively the Gröbner basis structure of Ĩa is the same
for every ã ∈ S2 and we want to keep the number of segments as small as possible. Furthermore it
seems that such a breaking up of S2 can only be made in a canonical way if one uses some additional
structure, like a term-oder in a, b, c, d as in Weispfenning (2003). We note that if f : S2 → C is the
regular function given by f (a, b, c, d) = b

a if a 6= 0 and f (a, b, c, d) =
d
c if c 6= 0 then the polynomial

x+ fy ∈ O(S2)[x] gives us precisely what we need.
In Weispfenning (2003) proposed a canonical form of comprehensive Gröbner bases along with

a canonical Gröbner system. His recursive construction depends on an auxiliary well-quasi-order on
the parameter ring K [a] and the number of segments in the canonical Gröbner system is not minimal.
For example if I = 〈ax, bx〉 ⊂ C[a, b][x] and we use the well-quasi-order on C[a, b] induced from the
lexicographic order with a > b. Then the canonical Gröbner system is{(

C2 r V(b), {bx}
)
, (V(b) r V(a, b), {ax}) , (V(a, b), {})

}
.

Also the fact that the segments in the canonical Gröbner system are required to be irreducible causes
more segments than strictly necessary and the segments need not be disjoint.
Here we will use a slightly different approach. We do not use bases Bi that are subsets of K [a][x]

but we use bases Bi that are subsets of O(Si)[x], where O(Si) denotes the ring of regular functions on
Si. To emphasize this difference we call the resulting concept analogous to that of a Gröbner system
a Gröbner cover. (See Section 1 for a precise definition.) In addition to the phenomena described in
Example 1 the advantage of Gröbner covers is that the bases Bi are uniquely determined (by I,�x
and Si). Even though this uniqueness is quite tautological we think it is preferable to have then an
uniquely defined object of which we are computing a maybe non-unique representation than to have
no uniqueness or only some weak kind of uniqueness (uniqueness under additional hypothesis) as in
Weispfenning (2003).
Following Wibmer (2007) we also propose a canonical form of Gröbner covers. The precise

definition of the canonical Gröbner cover is given in Section 1. The canonical Gröbner cover is uniquely
determined by I and�x and it is intrinsic in the sense that it does not depend on any algorithm. At all
events if I ⊂ K [a][x] is homogeneous with respect to the variables then the canonical Gröbner cover
of K

m
with respect to I and�x is a set of pairs {(S1, B1), . . . , (Ss, Bs)}with the following properties:

(i) The Si’s are pairwise disjoint, locally closed subsets of K
m
with K

m
=
⋃
Si.

(ii) For a, b ∈ K
m
we have lpp(Ia) = lpp(Ib) if and only if there exists an i such that a, b ∈ Si.

(iii) The Bi’s are finite subsets of O(Si)[x]where O(Si) denotes the ring of regular functions on Si.
(iv) For a ∈ Si it holds that lpp(Bi) is the minimal generating set of lpp(Ia) and evaluating every

element of Bi at a ∈ Si yields the reduced Gröbner basis of Ia with respect to�x.

In the above simple example the canonical Gröbner cover is{(
C2 r V(a, b), x

)
, (V(a, b), {})

}
.

The table in Example 1 also gives the canonical Gröbner cover. The canonical Gröbner cover has the
nice property that it groups together all the values of the parameters forwhich the systemof equations
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has the same type of solutions. This is in general not possible when one only uses polynomials instead
of regular functions.
For non-homogeneous ideals a result as above is in general not obtainable (see Example 2 below),

but using a process of homogenizing and dehomogenizing our algorithm GröbnerCover will give a
similar result only that condition (ii) is not necessarily satisfied.
Example 2. Consider the non-homogeneous ideal I = 〈ax+ 1, bx+ 1〉 ⊂ C[a, b][x]. It is easy to see
what we get if we somewhat inconsiderately simply partition the parameter spacewith respect to the
lpp:

Segment lpp Basis

1
(
C2 r V(a− b)

)
∪ V(a, b) {1} {1}

2 V(a− b) r V(a, b) {x} {x+ 1
a }

The first segmentwith basis {1} is not locally closed, i.e. it is not the difference of two closed sets. So
condition (i) is not realized. But it is the union of the two disjoint locally closed setsC2r V(a−b) and
V(a, b) and the reasons why we have basis {1} over the point V(a, b) and why we have basis {1} over
C2rV(a−b) are fundamentally different. This difference can easily be detected using homogenization
with respect to a new variable t . Homogenizing the system leads to 〈ax+ t, bx+ t〉. Now segment 1
splits into two segments 1a and 1bwith distinct lpp as follows:

Segment lpp Basis Dehomogenized basis

1a C2 r V(a− b) {x, t} {x, t} {1}

1b V(a, b) {t} {t} {1}

2 V(a− b) r V(a, b) {x} {x+ t
a } {x+

1
a }

Now all segments are locally closed but if we dehomogenize the segments 1a and 1bwill of course
have again the same lpp.
In 2006 Sato and Suzuki introduced a new very simple algorithm (Suzuki and Sato, 2006, 2007) to

obtain a (comprehensive)Gröbner system. It seems very efficient in someproblemsbut it is not a priori
predicted which Gröbner system the algorithm will compute. Also the segments are not assumed to
be disjoint and the algorithm might produce more segments than necessary. There are also concrete
problems where these algorithms have been applied successfully (see e.g. González-López and Recio,
1993; Montes, 1998; Emiris, 1999; Rychlik, 2000; Yang et al., 2001; Coste, 2004; Montes and Recio,
2007).
The GröbnerCover algorithm is the outcome of a fruitful combination of the Minimal Canonical

Comprehensive Gröbner System algorithm (Manubens and Montes, 2009) and the more theoretical
results presented in Wibmer (2007). Depending on the point of view one can see this article as an
intrinsic version of Manubens and Montes (2009) or an algorithmic version of Wibmer (2007).
Our algorithm has a long history (which is detailed in a series of papers of the first author (Montes,

2002; Manubens and Montes, 2006, 2009)), and many improvements have been made to fix the
algorithms (see Manubens (2008)).
In fact, the GröbnerCover algorithm is the latest in a long line of algorithms (DisPGB, BuildTree,

MCCGS) which have been introduced by the first author. The GröbnerCover algorithm uses some
parts of these earlier algorithms. Since these parts are scattered over several articles and the results
are not always present in exactly the way we would need it, we choose to give a new completely
self-contained presentation. The very basic idea of the algorithm is still the same as in Weispfenning
(1992) and the previouswork of the first author. One uses a Buchberger like algorithmwhich branches
whenever one needs to decide if a certain leading coefficient encountered in Buchberger’s algorithm
is zero or non-zero.
The essentially new contribution of this article starts when the Buchberger like algorithm

BuildTree ends. New routines are LCUnion, Combine and Extend, as well as the method of homog-
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enizing and dehomogenizing for non-homogeneous ideals that preserves the canonical character of
the Gröbner cover. The global new thing is the complete algorithm that produces the Gröbner cover
predicted in Wibmer (2007). Nevertheless we have also improved previous algorithms.
A critical point for a canonical description of a parametric ideal is the need of computing the

radical of some sets of leading coefficients as was pointed out inWeispfenning (2003). Even the prime
decomposition of these ideals in the parameters is needed. The first algorithm to compute prime
decomposition of ideals was given in Gianni et al. (1988), and since there it has been improved. The
interesting references for this are Giusti and Heintz (1990), Alonso and Raimondo (1990), Eisenbud
et al. (1992) and Caboara et al. (1995). For further reading on the subject see Mora (2005) and
references therein. It is known that this is a difficult problem (Heintz and Morgenstern, 1993), and so
its use has been avoided by many authors. Nevertheless, in the discussion of parametric polynomial
systems, the ideals in the parameters occurring in the computations are in general much simpler
than the general ideals involved, and so the computation of prime decompositions is feasible. The
algorithms involving radicals and primary decomposition are described in Section 2.1. There avoid
the abusive use of primary decomposition. We also comment in Section 4.3 some details on how the
routines involving radicals and primary decomposition should be implemented.
We now describe the content of the paper. Section 1 is purely theoretical and accurately defines

the objects which will be computed in the subsequent sections. In particular the existence and
uniqueness of a canonical partition of the parameter space is discussed. The main tool is a theorem
for homogeneous ideals which, roughly speaking, states that in this case, the reduced Gröbner basis
of Ia depends on a in an algebraic way as long as a is varied in subsets over which the lpp is constant.
Most of the results of Section 1 have already been presented in Wibmer (2007) in a more general but
maybe less accessible form.
In Section 2we explain how the abstract concepts of Section 1 can be represented in a way feasible

for computations. In 2.1 we first describe how we can represent locally closed sets. We introduce the
canonical representation (C-representation) and the canonical prime representation (P-representation).
Then, for the special locally closed sets used in BuildTree we introduce the reduced representation
(R-representation). Then in 2.1.1 we describe the algorithm called Locally Closed Union (LCUnion)
which computes the union of locally closed sets if their union is locally closed.
Then in the Sections 2.2 and 2.3 we explain how we represent regular and I-regular functions

respectively and howwe can effectively perform the corresponding operations. We introduce the full
and the generic representation.
In Section 3 we describe the algorithm GCover, which is the heart of GröbnerCover algorithm.

It computes the canonical Gröbner cover of a homogeneous ideal. After introducing some auxiliary
algorithms (Section 3.1), we explain the BuildTree algorithm (Section 3.2) that yields a first disjoint
reduced Gröbner System. Then GCover uses LCUnion to join together all the segments obtained by
BuildTreewith the same lpp to obtain the locally closed lpp-segments. Finally in 3.3 we describe the
algorithm Basis that yields generic representations of the basis elements in the canonical Gröbner
cover.
In Section 4we present themain algorithmGröbnerCover. It distinguishes the two cases, whether

the ideal under consideration is homogeneous or not. If it is not homogeneous the algorithm first
homogenizes the ideal before calling GCover and then dehomogenizes, minimizes and reduces the
bases in the output of GCover. At the end GröbnerCover converts the generic representations
obtained by Gcover into full representations. Finally, in Section 4.3, we make some comments about
some strategies that can be used in practical problems and in the implementation.
In Section 5 we give an illustrative example.
The full GröbnerCover algorithm is currently being implemented in Singular and will be available

freely.

1. Existence and uniqueness of the canonical partition of the parameter space

We first fix some notation which will be used throughout the paper: With K we denote a
computable field and with K an algebraically closed field extension of K . (We do not insist that
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K is the algebraic closure of K .) We fix m, n ≥ 1 and an ideal I ⊂ K [a1, . . . , am, x1, . . . , xn] =
K [a, x] = K [a][x]. We call a = a1, . . . , am the parameters and x = x1, . . . , xn the variables. We also
fix a term-order �x on the variables. If p is a polynomial in the variables with coefficients in some
ring (e.g. p ∈ K [a][x], p ∈ K [x]) then lpp(p) and lc(p) denote its leading power product (=leading
monomial) and leading coefficient with respect to�x respectively. A polynomial is called monic if its
leading coefficient is equal to one.
The parameter space is K

m
.We consider it as a topological space bymeans of the K -Zariski topology.

So a subset S of K
m
is closed if and only if it is of the form

S = V(N) :=
{
a ∈ K

m
: g(a) = 0 ∀ g ∈ N

}
for some subset N of K [a] = K [a1, . . . , am].
If N is a subset of a ring we denote with 〈N〉 the ideal generated by N . For N ⊂ K [a] of course

V(N) = V(〈N〉). If a is an ideal of some ring then
√

a denotes the radical of a.
Each point a ∈ K

m
defines a morphism of K -algebras σa : K [a][x] → K [x] by sending the variables

x to themselves and specializing the parameters with the concrete values given by a. We call σa the
specialization corresponding to a.
Our goal is to describe the reduced Gröbner basis of Ia := 〈σa(I)〉 ⊂ K [x] (with respect to �x) in

dependence of a ∈ K
m
.

We stress the point that although, for geometric purposes, we consider points a ∈ K
m
, on the

algebraic side everythingwill be done over K (and not over K ). In particular all the polynomials we use
have coefficients in K (and not in K ) and our algorithms (which will be detailed in the later sections)
only use computations over K . Also it is important to notice that we always consider the K -Zariski
topology on K

m
(and never the K -Zariski topology). We need to consider points in K

m
to be able to use

Hilbert’s Nullstellensatz (Becker and Weispfenning, 1993, p. 313) which asserts that for every ideal a
of K [a]

I(V(a)) =
√

a,

where for a subset V of K
m
we define

I(V ) = {g ∈ K [a] : g(a) = 0 for all a ∈ V } .

From this it follows that V defines a bijection between the set of radical ideals of K [a] and the closed
subsets of K

m
, the inverse mapping is given by I. Under this bijection prime ideals correspond to

irreducible closed subsets of K
m
in the K -Zariski topology.

A subset S of K
m
is called locally closed if it is open in its closure, or equivalently if it is the

intersection of an open and a closed set. A function f : S → K is called regular if for every a ∈ S
there exists an open neighborhood U ⊂ S of a (i.e. U = S r V (M), with a ∈ U) such that

f (b) =
p(b)
q(b)

for all b ∈ U

where p, q ∈ K [a] and q(b) 6= 0 for all b ∈ U . We denote the ring of regular functions on S by O(S).
Coarsely speaking, the ultimate goal of our algorithm GröbnerCover is to describe the function,

that assigns to each a ∈ K
m
the reducedGröbner basis of Ia (with respect to�x) in ‘‘themost simple and

natural way’’. Of course we will describe this function by using polynomials in some way or another
and it seems reasonable to split K

m
into segments Si such that for all a ∈ Si the reduced Gröbner bases

of Ia are of the same type, where we still need to make precise what we mean by ‘‘of the same type’’.
It should mean firstly that T := lpp(Ia) does not depend on a ∈ Si. As demonstrated in Example 2 (see
also Example 3 in Wibmer (2007)) this first requirement is not enough and so we demand secondly
that for each minimal generator t of T , the function that assigns to a ∈ Si the element of the reduced
Gröbner basis of Ia with leading power product equal to t , depends on a ∈ Si in an algebraic way. The
following two definitions make precise this idea.
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Definition 3 (I-regular Function). Let S be a locally closed subset of Km. We call a function f : S →
K [x] regular with respect to I (or simply I-regular for short) if the following holds:
For each a ∈ S there exists an open subset U of S with a ∈ U and

f (b) =
p(b, x)
q(b)

∈ K [x] for all b ∈ U, (1)

where p ∈ I and q ∈ K [a] such that q(b) 6= 0 for all b ∈ U .

The set of all I-regular functions on S is denoted by I(S). Obviously we can interpret I(S) as an ideal in
the polynomial ringO(S)[x]. In particular the leading power product and leading coefficient is defined
for an element of I(S). Intuitively we can think of I(S) as being the restriction of I = I(K

m
) to S.

Definition 4 (Parametric Set). A locally closed subset S of Km is called parametric for I (with respect
to �x) if there exist monic I-regular functions g1, . . . , gr ∈ I(S) such that {g1(a), . . . , gr(a)} is the
reduced Gröbner basis of Ia for every a ∈ S.

From the uniqueness of reduced Gröbner bases it follows immediately that if S ⊂ K
m
is parametric

then themonic I-regular functions g1, . . . , gm ∈ I(S) of Definition 4 are uniquely determined.We call
them the reduced Gröbner basis of I over S (with respect to�x). Also the definition immediately implies
that if a, b lie in a parametric set S then lpp(Ia) = lpp(Ib). So we may define lpp(S) = lpp(Ia) and call
lpp(S) the leading power products of I over S.
The reader is referred to Wibmer (2007) for basic properties of parametric sets.

Remark 5. Let S be a locally closed subset of Km such that lpp(Ia) = lpp(Ib) for all a, b ∈ S and let
t1, . . . , tr be the minimal generating set of lpp(Ia) = lpp(Ib). For each i ∈ {1, . . . , r} consider the
function gi : S → K [x] which sends a ∈ S to the unique element of the reduced Gröbner basis of Ia
with lpp equal to ti. Then S is parametric if and only if for each i = 1, . . . , r the function gi has the
following natural property:
For each a ∈ S there exists an open neighborhood U of a in S and a polynomial p ∈ I such that

coef(p, ti)(b) 6= 0 for all b ∈ U and

gi(b) =
p(b, x)

coef(p, ti)(b)
∈ K [x]

for all b ∈ U .

Definition 6 (Gröbner Cover). By a Gröbner cover of Km with respect to I and �x we mean a finite set
of pairs {(S1, B1), . . . , (Sr , Br)} such that

• the Si’s are parametric and Bi is the reduced Gröbner basis of I over Si for i = 1, . . . , r and
• the union of all Si’s equals K

m
.

The Si’s are called the segments of the Gröbner cover. The Gröbner cover is called disjoint if the Si’s
are pairwise disjoint.

Our main algorithm GröbnerCoverwill compute a disjoint Gröbner cover of K
m
. But of course we

want to specify a priori which Gröbner cover it will compute and surely this should be a particularly
simple one. To give the definition of this unique canonical Gröbner cover the following theoremwhich
was proved in Wibmer (2007) is essential.

Theorem 7. Let I ⊂ K [a][x] be a homogeneous ideal (with respect to the variables) and a ∈ Km. Then the
set

S :=
{
b ∈ K

m
: lpp(Ib) = lpp(Ia)

}
is parametric. In particular S is locally closed.

FromTheorem7 the definition of the canonical Gröbner cover is quite obvious if I is a homogeneous
ideal:

Please cite this article in press as: Montes, A., Wibmer, M., Gröbner bases for polynomial systems with parameters. Journal
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Theorem 8 (Canonical Gröbner Cover). If I ⊂ K [a][x] is homogeneous (with respect to the variables)
then there exists a unique Gröbner cover of K

m
with minimal cardinality which we call the canonical

Gröbner cover of K
m
(with respect to I and �x). It is disjoint and two points a, b ∈ K

m
lie in the same

segment if and only if lpp(Ia) = lpp(Ib). The segments of this Gröbner cover will be called lpp-segments.

1.1. The case of arbitrary ideals

For non-homogeneous ideals the situation is somewhatmore complicated. But aswewill see below
we can use the method of homogenization to exploit Theorem 7 also in this case. For the rest of
this section our focus is on the case that I is a non-homogeneous ideal. Our aim is to generalize the
definition of the canonical Gröbner cover to arbitrary ideals.
For homogenization we introduce a new variable x0 and extend �x to the monomials in

x0, x1, . . . , xn by setting

xαxi0 �x,x0 x
βxj0

if xα �x xβ or xα = xβ and i > j. If p is a homogeneous polynomial in the variables x, x0 with
coefficients in some ring then the dehomogenization of p is denoted with τ(p), i.e. τ(p) = p(x, 1).
It is immediately seen that�x,x0 is amonomial order with the property that τ(lpp(p)) = lpp(τ (p))

and lc(τ (p)) = lc(p) for every homogeneous polynomial p.

Lemma 9 (cf. Eisenbud, 1994, Exercise 15.39, p. 375). Let I ′ ⊂ K [x] be an ideal and J ′ ⊂ K [x, x0] a
homogeneous ideal such that τ(J ′) = I ′. If {g1, . . . , gr} is a Gröbner basis of J ′ with respect to �x,x0 and
the gi’s are homogeneous then {τ(g1), . . . , τ (gr)} is a Gröbner basis of I ′ with respect to�x.

Proof. Let p ∈ I ′. Then there exists q ∈ J ′ homogeneous such that τ(q) = p. Since q ∈ J ′ there exists
an i such that lpp(gi) divides lpp(q), say lpp(q) = tlpp(gi). But then

lpp(p) = lpp(τ (q)) = τ(lpp(q)) = τ(tlpp(gi)) = τ(t)lpp(τ (gi)),

so that lpp(p) is divisible by lpp(τ (gi)) and τ(g1), . . . , τ (gr) is a Gröbner basis of I ′. �

Nevertheless it is not true that τ preserves reduced Gröbner bases. Consider, for example, the ho-
mogeneous ideal F = 〈x2y−yt2+ t3, x2− t2〉. Its reduced Gröbner basis with respect to grevlex(x, y) ·
lex(t) is G = {t3, x2 − t2}, that specializes to G = {1, x2 − 1} for t = 1. This is really a Gröbner basis
of Ft=1 but not the reduced one which is G0 = {1}.

Proposition 10. Let J ⊂ K [a][x, x0] be a homogeneous ideal such that τ(J) = I and S ⊂ K
m
parametric

with respect to J and�x,x0 . Then S is parametric with respect to I and�x.

Proof. Let h1, . . . , hr ∈ O(S)[x, x0] be the reduced Gröbner bases of J over S. We note that since J
is homogeneous also Ja ⊂ K [x, x0] is homogeneous for every a ∈ S. The reduced Gröbner basis of
a homogeneous ideal is homogeneous and so also h1, . . . , hr are homogeneous. Because lc(τ (p)) =
lc(p) for homogeneous polynomials pwe see that τ(h1), . . . , τ (hr) ∈ O(S)[x] are monic polynomials.
Because h1, . . . , hr are J-regular, also τ(h1), . . . , τ (hr) are I-regular. Let f1, . . . , fs denote the monic
I-regular functions obtained from τ(h1), . . . , τ (hr) by discarding those τ(hi)’s whose leading power
product is divisible by some lpp(τ (hj)) for i 6= j. Further let g1, . . . , gs ∈ O(S)[x] be the monic
I-regular functions obtained by reducing fi modulo {f1, . . . , fs}r {fi}. To finish the proof we will show
that g1(a), . . . , gs(a) is the reduced Gröbner basis of Ia for every a ∈ S. So choose a ∈ S. Since
h1(a), . . . , hr(a) is Gröbner basis of Ja it follows fromLemma9 that τ(h1(a)), . . . , τ (hr(a)) is aGröbner
basis of τ(Ja) = Ia. Therefore

〈lpp(Ia)〉 = 〈lpp(τ (h1)(a)), . . . , lpp(τ (hr)(a))〉 = 〈lpp(τ (h1)), . . . , lpp(τ (hr))〉
= 〈lpp(f1), . . . , lpp(fs)〉 = 〈lpp(g1), . . . , lpp(gs)〉.

This shows that g1(a), . . . , gs(a) is a Gröbner basis of Ia and since the gi’s are mutually reduced also
the gi(a)’s are mutually reduced. Consequently g1(a), . . . , gs(a) is the reduced Gröbner basis of Ia. �

Please cite this article in press as: Montes, A., Wibmer, M., Gröbner bases for polynomial systems with parameters. Journal
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Definition 11 (Canonical Gröbner Cover). Let I ⊂ K [a][x] be an arbitrary ideal and let J ⊂ K [a][x, x0]
denote its homogenization. By Proposition 10 the segments of the canonical Gröbner cover of K

m
with

respect to J and�x,x0 are parametric with respect to I and�x. The disjoint Gröbner cover of K
m
with

respect to I and �x thus obtained will be called the canonical Gröbner cover of K
m
with respect to I

and�x.

In general homogenization does not commute with specialization. For example if we homogenize
the polynomial a1x1 + 1 and then evaluate at a1 = 0 we get x0, but if we first evaluate and then
homogenize we get 1. However, since the homogenization of a homogeneous polynomial is of course
just the polynomial itself, there is no such problem if we only have to deal with homogeneous
polynomials. So if I ⊂ K [a][x] already was homogeneous we immediately see that for a ∈ K

m
the

reduced Gröbner basis of Ja with respect to�x,x0 equals the reduced Gröbner basis of Ia with respect to
�x. From this observation it follows that the definition of the canonical Gröbner cover is unambiguous.
I.e. if the ideal I in Definition 11 is already homogeneous then Definition 11 agrees with the definition
in Theorem 8.

2. Representations and some associated computations

In Section 1 we defined the canonical Gröbner cover (see Theorem 8 and Definition 11). But before
explaining the algorithm to compute this object, we need to know how we can actually represent
all the objects (locally closed sets, regular functions, I-regular functions) appearing in the definitions.
And we also need to be able to perform the evident operations (e.g. boolean combinations of locally
closed sets, addition and multiplication of regular functions, reduction modulo I-regular functions)
with this representations. This is the objective of this second chapter.

2.1. Representation of locally closed sets

In this section we introduce the canonical representation (C-representation) and the prime
representation (P-representation) of locally closed sets. We also present the reduced representation
(R-representation)which only applies to a special class of locally closed setswhichwill be used during
the BuildTree algorithm. We recall that a subset S ⊆ K

m
is called locally closed if it is open in its

closure. This is equivalent to saying that S is of the form S = V(a) r V(b) for subsets a, b of K [a].

Definition 12 (C-representation). Let S ⊂ Km be a locally closed set. There exist uniquely determined
radical ideals a, b of K [a], with S = V(a) r V(b) and a ⊂ b, such that

• S = V(a) and
• S r S = V(b).

The pair (a, b) is called the C-representation of S.

Proof. Since S is open in S we see that S r S is closed. Existence and uniqueness now follows from
the one to one correspondence between closed sets and radical ideals. �

Remark 13. A locally closed set is closed if and only if b = 〈1〉.

Definition 14 (P-representation). Let S ⊂ Km be a locally closed set. There exists uniquely determined
prime ideals

{(pi, {pij : 1 ≤ j ≤ ri}) : 1 ≤ i ≤ r} (2)

of K [a], with S =
⋃
i

(
V (pi) r

⋃
j V(pij)

)
and pi ⊂ pij for all i, j, such that

• S = V(p1) ∪ · · · ∪ V(pr) and
• (S r S) ∩ V(pi) = V(pi1) ∪ · · · ∪ V(piri)

are the minimal decompositions into irreducible closed sets. We call (2) the P-representation of S. The
pi’s are called the components of S and the pij are called the holes of pi (with respect to S).

Please cite this article in press as: Montes, A., Wibmer, M., Gröbner bases for polynomial systems with parameters. Journal
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Table 1
RrepNN algorithm.

(a′, h′)← RrepNN(a, h, f )
Input:

(a, h) an R-representation
f ∈ K [a] assumed to be non-null on the restriction of S = V(a) r V(h).

Output:
(a′, h′): the R-representation of S1 = V(a) r V(hf )

begin
h1 := hf
a′ := a : 〈h1〉
h′ := squarefree(h1)

enda

a In practical implementation h1 should be reduced modulo a and a′ .

Proof. Since S r S is closed the existence and uniqueness follows from the existence and uniqueness
of the minimal decomposition of a closed set into irreducible closed sets. �

In the first step BuildTree of the GröbnerCover algorithm, appear a special kind of locally closed
sets for which the following definition and representation is needed.

Definition 15 (R-representation). Let S ⊂ Km be a locally closed subset of the form

S = S((a, h)) = V(a) r V(h),

where a ⊂ K [a] is an ideal and h ∈ K [a]. We say that the pair (a, h) is an R-representation of S if

• a is radical,
• S = V(a),
• h is square-free (radical).2

Remark 16. For a locally closed set allowing an R-representation, the ideal a in the R-representation
is the same as in the C-representation, but the polynomial h is not unique. For example consider
the locally closed set S defined by the R-representation (〈a − b2〉, a2 − b). It is easy to see that
(〈a− b2〉, b(b− 1)(b2 + b+ 1)) is also a (better) R-representation representing S.

Proposition 17. Let (a, h) be an R-representation of the locally closed set S, and let f ∈ K [a] be such
that f 6∈ a. Then, the algorithm RrepNN of Table 1 computes an R-representation of the locally closed set
S1 = V(a) r V(hf ).

Proof. We can decompose the proof in simpler steps. Let a, b, p be ideals of K [a] and g ∈ K [a]. Then

(a) If g ∈ b then b : 〈g〉 = 〈1〉.
(b) If p is prime and g 6∈ p then p : 〈g〉 = p.
(c) If a is radical and a = ∩ipi is its prime decomposition then a : 〈h〉 =

⋂
h6∈pi

pi = a′ (also radical).
(d) If a is radical and S = V(a) r V(h) then S = V(a : 〈h〉). Thus setting a′ = a : 〈h〉 the
R-representation of S is (a′, h).

Proposition 17 follows from (d). We let the proofs as an exercise. �

Proposition 18. Let (a, h) be an R-representation of the locally closed set S, and let f ∈ K [a] be such
that f 6∈ a. Then, the algorithm RrepN of Table 2 computes an R-representation of the locally closed set
S0 = V(a+ 〈f 〉) r V(h).

2 In practical implementation h should be reduced modulo a, but this is not needed for theoretical purposes.

Please cite this article in press as: Montes, A., Wibmer, M., Gröbner bases for polynomial systems with parameters. Journal
of Symbolic Computation (2010), doi:10.1016/j.jsc.2010.06.017



ARTICLE  IN  PRESS
A. Montes, M. Wibmer / Journal of Symbolic Computation ( ) – 11

Table 2
RrepN algorithm.

(a′, h′)← RrepN(a, h, f )
Input:

(a, h) an R-representation
f ∈ K [a] assumed to be null on the restriction of S = V(a) r V(h).

Output:
(a′, h): the R-representation of S0 = V(a+ 〈f 〉) r V(h)

begin
a1 :=

√
a+ 〈f 〉

a′ := a1 : 〈h〉
end

Proof. The proof of Proposition 18 follows as the proof of Proposition 17, and we let it as an
exercise. �

The usefulness of reduced representations comes from the following

Proposition 19 (Split). Let (a, h) be the R-representation of the locally closed set S = V(a)rV(h) ⊂ K
m

and f ∈ K [a]. Then

(i) f (a) = 0 for all a ∈ S if and only if f ∈ a.
(ii) f (a) 6= 0 for all a ∈ S if and only if RrepN(a, h, f ) = (〈1〉, h′).
(iii) If neither f (a) = 0 nor f (a) 6= 0 holds for all a ∈ S then S is the disjoint union of the two non-empty

disjoint locally closed sets

S0 = S (RrepN(a, h, f )) and S1 = S (RrepNN(a, h, f ))

and f (a) = 0 for all a ∈ S0 whereas f (a) 6= 0 for all a ∈ S1.
(iv) If f 6∈ a then the algorithm Split in Table 3 outputs two new R-representations (a0, h0) and (a1, h1)

that splits S into two disjoint sets S0 = V(a0) r V(h0) and S1 = V(a1) r V(h1) such that
– S0 ∪ S1 = S and S0 ∩ S1 = ∅,
– f (a) = 0 for all a ∈ S0 and f (a) 6= 0 for all a ∈ S1,
– a0 = 〈1〉 if and only if S0 = ∅, so that no splitting is necessary.

Proof.

(i) Obviously, if f ∈ a then f (a) = 0 for all a ∈ S((a, h)). For the reciprocal, if f (a) = 0 for all
a ∈ S((a, h)) then f also vanishes on the closure S((a, h)) = V(a). Thus, as a is radical, by Hilbert’s
Nullstellensatz it follows that f ∈ a.

(ii) The set of all points of S = V(a)\V(h)where f vanishes isV(a+〈f 〉)\V(h). Thus f (a) 6= 0 for all
a ∈ S((a, h)) if and only ifV(a+〈f 〉)\V(h) = ∅ and this is equivalent toRrepN(a, h, f ) = (〈1〉, 1).

(iii) Obvious from Definition 15.
(iv) Follows from (iii). �

As it is described later, GröbnerCover builds the first Gröbner system using BuildTree that uses
R-representations, but when it finishes one needs to transform them into P-representations. The
algorithm RtoPrep in Table 4 will do it. It uses the PrimeDecomp algorithm. PrimeDecomp computes
the minimal prime ideals of the radical of a given ideal of K [a] (see Gianni et al., 1988; Mora, 2005).
We have already commented in the Introduction the complexity of the prime decomposition (Heintz
and Morgenstern, 1993). Nevertheless it should be noted that RtoPrep needs only 2 special types
of prime decompositions. In the first one, we already know that the given ideal is radical, and in the
secondwe compute the prime decomposition of a prime ideal plus a square-free polynomial (and non-
reducible modulo the prime ideal). These operations are simpler as the general prime decomposition,
and special algorithms for this should be designed.
A further observation is that the ideals involved in parametric polynomial discussions are usually

not very complex and so the operations involved are not so time consuming.
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Table 3
Split algorithm.
((a0, h0), (a1, h1))← Split(f , (a, h))
Input:

(a, h): an R-representation of S = V(a) r V(h)
f ∈ K [a]: a new polynomial not in a

Output:
(a0, h0): R-representation of the points a ∈ S with f (a) = 0
(a1, h1): R-representation of the points a ∈ S with f (a) 6= 0

begin
(a0, h0) := RrepN(a, h, f )
if a0 = 〈1〉 then
(a1, h1) := (a, h)

else
(a1, h1) := RrepNN(a, h, f )

end if
end

Table 4
RtoPrep algorithm.
T ← RtoPrep(a, h)
Input:

(a, h) an R-representation.
Output:

T = {(pi, {pij : 1 ≤ j ≤ si}) : 1 ≤ i ≤ s}: the P-representation of
V(a) r V(h)

begin
T := ∅
D := PrimeDecomp(a)
for p ∈ D do
Tp := PrimeDecomp(p+ 〈h〉)
T := T ∪ {p, Tp}

end for
end

2.1.1. Computing the union of locally closed sets
Let S1, . . . , Sr be locally closed subsets of K

m
. In this subsection we present the algorithm LCUnion

(see Table 5) which computes their union S = S1 ∪ · · · ∪ Sr under the assumptions that S is locally
closed and the Si’s are pairwise disjoint. In our main algorithm GröbnerCover such a situation will
occur when Buildtree has finished, because of Theorem 7. The computational aspects of boolean
operations with locally closed sets have already been treated in the literature (see e.g. O’Halloran and
Schilmoeller (2002), Chen et al. (2009) andManubens andMontes (2009)). But in general the union of
locally closed sets need not be locally closed and the above mentioned two assumptions can be used
to significantly simplify and speed up the computation.
The first while loop in AddPart is present for efficiency reasons as it will do, in a simpleway, ‘‘most

of thework’’, but the true algorithm is the secondwhile loop. These routines use SelectMinIdeals that
from a set of prime ideals selects the minimal ideals that do not contain each others.

Proposition 20. Let S1, . . . , Sr be pairwise disjoint, locally closed subsets of K
m
such that their union

S = S1 ∪ · · · ∪ Sr is locally closed. Then LCUnion computes the P-representation of S.

Proof. As in the algorithm we assume that Si is given in the P-representation{(
pij, {p

i
jk : 1 ≤ k ≤ r

i
j }
)
: 1 ≤ j ≤ r i

}
.

Since S = S1 ∪ · · · ∪ Sr = V(∩i,jpij) it is clear that the minimal elements of the set
{
pij : 1 ≤ i ≤ r,

1 ≤ j ≤ rj
}
are the components of S. Therefore we already see that LCUnion yields the correct
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Table 5
LCUnion algorithm.
T ← LCUnion(S1, . . . , Sr )
Input:

S1, . . . , Sr ; pairwise disjoint locally closed subsets of K
m
such that their union is locally closed

Output:
The P-representation of S = S1 ∪ · · · ∪ Sr

begin
Assume that the Si ’s are given in the P-representation{(

pij, {p
i
jk : 1 ≤ k ≤ r

i
j }
)
: 1 ≤ j ≤ r i

}
.

P := SelectMinIdeals
(
{pij : 1 ≤ i ≤ r, 1 ≤ j ≤ r

i
}

)
T := ∅
for p ∈ P do
Let H = {q1, . . . , qs} be the holes of p.

C :=
{(

pij, {p
i
j1, . . . , p

i
jr ij
}

)
: 1 ≤ i ≤ r, p is not a component of Si, for 1 ≤ j ≤ r i

}
T := T ∪

{
(p,AddPart(H, C))

}
end for

end

components. It remains to prove that LCUnion yields the correct holes. For this we fix a component
p of S. As seen above p is also a component of some Si0 . Since the Si’s are pairwise disjoint this Si0 is
uniquely determined.Wehave to show that algorithmAddPart transforms the holesH = {q1, . . . , qs}
of pwith respect to Si0 into the holes of pwith respect to S. More precisely, let as in the algorithm C be
the set whose elements are of the form

(
pij, {p

i
j1, . . . , p

i
jr ij
}
)
with i ∈ {1, . . . , r}r{i0} and 1 ≤ j ≤ r i and

{q′1, . . . , q
′

s′} = AddPart(H, C). Then, according to Definition 14 we have to show that V(q′1) ∪ · · · ∪
V(q′s′) is theminimal decomposition of (SrS)∩V(p) into irreducible closed sets. Because of the usage
of SelectMinIdeals there are no inclusions between the q′j ’s and therefore it suffices to show that

(S r S) ∩ V(p) = V(q′1) ∪ · · · ∪ V(q′s′). (3)

During algorithmAddPart the setQ of prime ideals getsmodified in every step.When a new element,
say p′, is being added to Q then it always satisfies p′ % q for some q which is being deleted from Q .
In particular in every step the closed set ∪q∈QV(q) gets strictly smaller. This shows that AddPartwill
terminate. Also as we have p $ qi for the ‘‘initial’’ holes {q1, . . . , qs} of pwith respect to Si0 we obtain
p $ q for every q ∈ Q in every step. In particular V(q′i) ⊂ V(p) for i = 1, . . . , s′.
Dually the set V(p) r (∪q∈QV(q)) gets strictly larger in every step of AddPart and the algo-

rithm works in such a way that V(p) r (∪q∈QV(q)) will always be a subset of S because in every
step the set V(p) r (∪q∈QV(q)) is only enlarged with elements contained in some Si. In particular
V(p) r (V(q′1) ∪ · · · ∪ V(q′s′)) ⊂ S or equivalently

(S r S) ∩ V(p) = V(p) r S ⊂ V(q′1) ∪ · · · ∪ V(q′s′).

It remains to prove the inclusion ‘‘⊃’’ of Eq. (3).We have already observed above thatV(q′i) ⊂ V(p).
So suppose for a contradiction that there exists q′ ∈ {q′1, . . . , q

′

s′} such that V(q′) is not contained in
S r S, or equivalently V(q′)∩ S 6= ∅. But then, as S is locally closed, V(q′) is a non-empty open subset
of V(q′) and therefore

V(q′) = V(q′) ∩ S =
r⋃
i=1

V(q′) ∩ Si.
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Table 6
AddPart algorithm.
Q ← AddPart(H, C)
Input:

H = {q1, . . . , qs} set of prime ideals (the holes of some component p of some Si)
C = {Cj : 1 ≤ j ≤ l}where Cj =

(
pj, {pjk : k = 1 . . . rj}

)
are the P-representations which will be used to ‘‘fill the holes’’.

Output:
Q = {q′1, . . . , q

′

s′ } the holes of the component p of S = S1 ∪ · · · ∪ Sr

begin
Q := H
while there exists q ∈ Q and j ∈ {1, . . . , l}with q = pj do

Q := SelectMinIdeals
(
(Q r {q}) ∪ {pj1, . . . , pjrj }

)
end while
while there exists q ∈ Q and j ∈ {1, . . . , l}

with q ⊃ pj and q + pjk for k = 1, . . . , rj do

Q := SelectMinIdeals

(
(Q r {q})

rj⋃
k=1

PrimeDecomp(q+ pik)

)
end while

end

Since V(q′) is irreducible we must have V(q′) = V(q′) ∩ Si for some i ∈ {1, . . . , r}. As V(q′) ⊂ V(qj)
for some hole qj of pwith respect to Si0 we haveV(q′)∩Si0 = ∅ and therefore i 6= i0. Furthermore since

Si =
r i⋃
j=1

(
V(pij) r V

(
pij1 ∩ · · · ∩ pi

jr ij

))
it follows

V(q′) =
r i⋃
j=1

(V(q′) ∩ V(pij)) r V(pij1 ∩ · · · ∩ pi
jr ij
)

and again by irreducibility of V(q′)we obtain

V(q′) = (V(q′) ∩ V(pij)) r V(pij1 ∩ · · · ∩ pi
jr ij
) (4)

for some j ∈ {1, . . . , r i}. In particularV(q′) ⊂ V(q′)∩V(pij) so that p
i
j ⊂ q′. FurthermoreV(q′) * V(pijk)

for k = 1, . . . , r ij because else the right-hand side of Eq. (4) would be the empty set. Summarily we
have found i, j, (i 6= i0) such that q′ ⊃ pij and q′ + pijk for k = 1, . . . , r

i
j . This contradicts our assumption

that AddPart has terminated (Table 6). �

2.2. Representation of regular functions

In this section we will explain how we represent regular functions and how we can add and
multiply them effectively. We also present two algorithms (Combine and Extend) which facilitate
the conversion between different types of representations of regular functions.
Let S ⊂ K

m
be a locally closed set and f : S → K a regular function. By the very definition of

a regular function (and quasi-compactness of locally closed sets) there exists a finite open covering
{U1, . . . ,Ur} of S and polynomials p1, . . . , pr , q1, . . . , qr ∈ K [a] such that f (a) =

pi(a)
qi(a)
for a ∈ Ui and
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i = 1, . . . , r . Since we already know (see Section 2.1) how to represent the locally closed sets Ui we
see that the data{(

U1,
p1
q1

)
, . . . ,

(
Ur ,
pr
qr

)}
(5)

determines the regular function f . But this representation can be significantly improved.We can avoid
to make the U ′i s explicit because the fractions

pi
qi
∈ K(a) can be chosen in such a way that they have

the correct value on every point of S where they are defined (i.e. where the denominator qi does not
vanish).
Definition 21 (Full Representation of Regular Functions). Let f : S → K be a regular function on the
locally closed set S. Let p1, . . . , pr , q1, . . . , qr ∈ K [a]. We say that (p1, . . . , pr; q1, . . . , qr) is a full
representation of f if the following conditions are satisfied.

(i) f (a) = pi(a)
qi(a)
for every a ∈ S with qi(a) 6= 0,

(ii) for every a ∈ S there exists j ∈ {1, . . . , r} such that qj(a) 6= 0 and
(iii) pi(a)qj(a) = qi(a)pj(a) for all a ∈ S and 1 ≤ i, j ≤ r .
It follows from (ii) and (iii) that pi(a) = 0 if qi(a) = 0 for some a ∈ S. Note that it is not

required that S r V(qi) is dense in S. We will see later in this section that every regular function
admits a full representation as defined above. Conversely, it is obvious that if p1, . . . , pr , q1, . . . , qr ∈
K [a] satisfy conditions (ii) and (iii) then there exists a unique regular function f : S → K such
that (p1, . . . , pr; q1, . . . , qr) is a full representation of f . In the examples we usually write the full
representation more intuitively as { p1q1 , . . . ,

pr
qr
}.

Definition 22 (Full Representation of I-regular Functions). Let S ⊂ K
m
be a locally closed set and

f : S → K [x] an I-regular function. We say that a polynomial
∑

α cαx
α is a full representation of f

if for every α the coefficient cα is a full representation of coef(f , α) ∈ O(S).
In practice we will only have to deal with monic I-regular functions with cα0 = 1.

Definition 23 (Generic Representation of Regular Functions). Let S be a locally closed set, f : S → K a
regular function and p, q ∈ K [a]. We say that the pair (p; q) is a generic representation of f if
(i) S r V(q) is dense in S and
(ii) f (a) = p(a)

q(a) for all a ∈ S r V(q).

If (p; q) is a generic representation of f : S → K and a ∈ S with q(a) = 0 then also p(a) = 0. To see
this we observe that by the very definition of regular functions we can find polynomials p′, q′ ∈ K [x]
such that q′(b) 6= 0 and f (b) = p′(b)

q′(b) for all b in an open neighborhoodU of a in S. For b ∈ U∩(SrV(q))
we have

p(b)
q(b)
= f (b) =

p′(b)
q′(b)

so that (pq′ − qp′)(b) = 0 for all b ∈ U ∩ (S r V(q)). Since S r V(q) is dense in S also U ∩ (S r V(q))
is dense in U and so (pq′ − qp′)(b) = 0 for all b ∈ U . Since a ∈ U, q(a) = 0 and q′(a) 6= 0 we must
have p(a) = 0.
Unfortunately it is not always possible to find a full representation (p; q) of the regular function

f : S → K given by a single pair of polynomials (cf. Example 1). However, as we will see below, one
can always find a generic representation of f . Also a generic representation (p; q) of f already uniquely
determines f . This is because if a regular function g which is defined on a dense open subset U of S
can be extended to a larger open subset of S then this extension is unique. (Short proof: Let g1, g2 be
extensions of g to an open subset V of S. Since U is dense in S the closure of U in V equals V . But U is
contained in the closed subset V ′ = {a ∈ V : g1(a) = g2(a)} of V so that V = V ′, i.e. g1 and g2 agree
on all of V .)
The advantage of the generic representation is that it is very convenient for computations, the

disadvantage is that one cannot immediately determine the value of f at a ∈ S if the denominator q
vanishes at a.
For an I-regular function we can give a similar definition.
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Table 7
Delta algorithm.
{δ1, . . . , δs, δ} ← Delta(p1, . . . , ps)
Input:

p1, . . . , ps ⊂ K [a] prime ideals
It is assumed that p1 ∩ · · · ∩ ps is a minimal prime decomposition.

Output:
{δ1, . . . , δs, δ} ⊂ K [a] such that δi(a) = 0 on

⋃
j6=i V(pj),

δ(a) = δi(a) 6= 0 on Ui ⊂ V(pi)with Ui = V(pi)

begin
a1 := p1; bs := ps
for i = 2 . . . s− 1 do ai := ai−1 ∩ pi
for i = s− 1 . . . 2 do bi := pi ∩ bi+1
h1 := b2; hs := as−1
for i = 2 . . . s− 1 do hi := ai−1 ∩ bi+1
for i = 1 . . . s choose δi an element of gb(hi) that does not lie in pi
δ :=

∑s
i=1 δi

end

Definition 24 (Generic Representation of I-regular Functions). Let F : S → K [x] be a monic I-regular
function on the locally closed set S. We say that P ∈ K [a][x] is a generic representation of F if
(i) S r V(q) is dense in S, where q = lc(P) ∈ K [a]
(ii) F(a, x) = P(a,x)

q(a) for all a ∈ S r V(q).
(iii) P(a, x) = 0 for all a ∈ V(q) ∩ S.
The purpose of algorithm Combine is to compute a generic representation. And the task of

algorithm Extend is to compute a full representation from a generic representation.
Computing a generic representation of a regular function f : S → K is a special case of the com-

putation of a generic representation of a monic I-regular function F : S → K [x]. So the algorithm
Combine is designed for the second option, and is nothing else than a Chinese remainder method
(Becker and Weispfenning, 1991).
Before using Combine, a previous algorithm Deltamust be applied.

Lemma 25 (Delta). Let {p1, . . . , ps} be a minimal prime decomposition. Then the algorithm Delta of
Table 7 computes polynomials {δ1, . . . , δs, δ} ⊂ K [a] such that
(i) δi(a) 6= 0 for all a in an open subset a ∈ Ui ⊂ V(pi), i.e. Ui = V(pi),
(ii) δi(a) = 0 for all a ∈ (V(pi) r Ui)

⋃(⋃
j6=i V(pj)

)
,

(iii) δ(a) 6= 0 for all a in an open and dense subset a ∈ U =
⋃
j Uj ⊂

⋃
j V(pj), and δ(a) = δi(a) for all

a ∈ Ui,
(iv) δ(a) = 0 for all a ∈

(⋃
j V(pj)

)
r U.

Proof. The algorithm computes hi =
⋂
j6=i pj. Thus if h ∈ hi then h(a) = 0 for all a ∈

⋃
j6=i V(pj). Then

it chooses a δi of gb(hi) that does not lie in pi, so that we have δi(a) 6= 0 on an open subset Ui ⊂ V(pi),
and δi(a) = 0 for all a ∈ (V(pi) r Ui)

⋃(⋃
j6=i V(pj)

)
. Finally δ is the sum of all the δi and thus it has

the desired properties. �

Now we are prepared to present algorithm Combine (see Table 8), whose action is summarized in
the following
Lemma 26 (Combine). Let F : S → K [x] be a monic I-regular function on the locally closed segment S
whose components are {p1, . . . , ps}. Let {δ1, . . . , δr , δ} ⊂ K [a] be the output functions of Delta applied
to S, and assume that we are given polynomials Pi ∈ K [a][x], i = 1 . . . s such that

lt(Pi) = qi(a)xα0 ,
where qi = lc(Pi), xα0 = lpp(Pi) = lpp(F),
Pi(a, x)/qi(a) = F(a, x) for all a ∈ V(pi) ∩ S.
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Table 8
Combine algorithm.
P ← Combine ((p1, P1, δ1), . . . , (ps, Ps, δs), δ)
Input:

p1, . . . , ps ⊂ K [a] are the components of the locally closed segment S, (i.e. S = V
(⋂

i pi
)
),

P1, . . . , Ps ∈ K [a][x]with lt(Pi) = qixα0 and qi(a) 6= 0 on a non-empty open subset of V(pi)
where Pi(a, x)/qi(a) = F(a, x), and F is a monic I-regular function F : S → K [x], δ1, . . . , δs, δ ∈ K [a]
are the output of the algorithm Delta.

Output: P ∈ K [a][x] a generic representation of F on S

begin
For i ∈ {1, . . . , s} set
qi := lc(Pi)
Ji := {k ∈ {1, . . . , s} : qi ∈ pk}

q̃i = qi +
∑
j∈Ji
δj

P̃ :=
P1δ1
q̃1δ
+ · · · +

Psδs
q̃sδ

P = eliminate denominators(P̃)
end

Then the algorithm Combine on Table 8 computes a generic representation P ∈ K [a][x] of F on S with
lc(P) = q so that P(a, x)/q(a) = F(a, x) on each point a of an open and dense subset of S.

Proof. Let Ui and U =
⋃
j Uj be the segments where the δi(a) have the desired properties. Taking into

account the properties of δi(a), the polynomial q̃i verifies:

q̃i(a) = qi(a) if a ∈ V(pi)
q̃i(a) = qi(a) if a ∈ V(pk) and qi 6∈ pk
q̃i(a) = δi(a) if a ∈ V(pk) and qi ∈ pk.

Thus Pi(a,x)δi(a)q̃i(a)δ(a)
has a denominator that is non-null for all a ∈ U ′ = S ∩U ⊂ S, where U ′ is an open and

dense subset of S and is null on S rU ′. For a ∈ U ′i = Ui ∩ S there is q̃i(a) = qi(a) and δi(a) = δ(a) and
thus

Pi(a, x)δi(a)
q̃i(a)δ(a)

=
Pi(a, x)
qi(a)

and for a ∈ U ′k for k 6= i is δi(a) = 0 and the denominator is non-zero, so that

Pi(a, x)δi(a)
q̃i(a)δ(a)

= 0.

Thus adding together all these terms and eliminating denominators, the polynomial will be non-zero
on U ′ and 0 on S r U ′ and the result follows. �

Example 27. Let a = p1 ∩ p2 ⊂ K [a1, a2]with p1 = 〈a1〉, p2 = 〈a2〉 and

S = V(a1a2) r (V(a1, a2 − 1) ∪ V(a1 − 4, a2) ∪ V(a1, a2)).

Define a monic I-regular function F : S → K [x] by P1 = (a2−1)x+ (a22−4) onV(a1)\ (V(a1, a2−1)
∪V(a1, a2)) and P2 = (a1− 4)x+ (a31− 16) on V(a2)r (V(a1− 4, a2)∪V(a1, a2)). We compute first
Delta and obtain δ1 = a2, δ2 = a1, δ = a1 + a2. Then we apply Combine and obtain:

P̃ =
a2

a1 + a2

(a2 − 1)x+ (a22 − 4)
a2 − 1

+
a1

a1 + a2

(a1 − 4)x+ (a31 − 16)
a1 − 4

=
(a1a22 − 5a1a2 − 4a

2
2 + 4a2 + a

2
1a2 + a

2
1 + 4a1)x+ a

4
1a2 − a

4
1 + a1a

3
2 − 20a1a2 + 16a1 − 4a

3
2 + 16a2

(a1 + a2)(a1 − 4)(a2 − 1)
.

Eliminating denominators and reducing modulo awe obtain

P = (−a21 + 4a1 − 4a
2
2 + 4a2)x+ (−a

4
1 + 16a1 − 4a

3
2 + 16a2).
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Table 9
Extend algorithm.
(p1, . . . , ps; q1, . . . , qs)← Extend(S, p, q)
Input:

S ⊂ K
m
locally closed

p, q ∈ K [a] such that

• S r V(q) is dense in S,
• there exists a regular function f : S → K such that f (a) = p(a)

q(a) for every a ∈ S r V(q).

Output: A full representation of f

begin

Let a ⊂ K [a] be the radical ideal such that V(a) = S, and
(
p1
q1

)
, . . . ,

(
ps
qs

)
a generating set of the K [a]-module{(

g
h

)
∈ K [a]2 : gq+ h(−p) ∈ a

}
which describes the syzygies of (q,−p)modulo a.

end

We observe that P specializes to non-null in all V(a) except the points (0, 0), (0, 1), (4, 0), and when
normalized, specializes to the normalized P1 on V(a1) and to the normalized P2 on V(a2), and is 0 on
the excluded points (0, 0), (0, 1), (4, 0).

If the generic representation (p; q) of f : S → K
m
obtained by Combine algorithm does not satisfy

q(a) 6= 0 for all a ∈ S, then we can use the following algorithm Extend to compute a complete
representation (p1, . . . , ps; q1, . . . , qs) of f .
We note that the K [a]-module defined in algorithm Extend on Table 9 can be computed using

standard Gröbner bases techniques.

Proposition 28 (Extend Algorithm). Let S ⊂ Km be locally closed and f : S → K a regular function. Let
p, q ∈ K [a] such that S r V(q) is dense in S and f (a) = p(a)

q(a) for all a ∈ S r V(q). Then algorithm Extend
computes a full representation of f .

Proof. We have to show that (p1, . . . , ps; q1, . . . , qs) = Extend(S, p, q) is a representation of f . Let
i ∈ {1, . . . , s}. By construction piq− qip ∈ a so that pi(a)qi(a)

=
p(a)
q(a) for all a ∈ S r V(qqi). Since S r V(q)

is dense in S we see that (S r V(q)) ∩ (S r V(qi)) = S r V(qqi) is dense in S r V(qi). Therefore, if
the regular function defined by pq on S r V(qqi) can be extended to S r V(qi) then this extension is

unique. But both f and piqi define such extensions. Consequently f (a) =
pi(a)
qi(a)
for all a ∈ S r V(qi) and

(i) of Definition 21 is proved.
To verify (ii) fix a ∈ S. The open subsets of S of the form S r V(q′)with q′ ∈ K [a] are a basis of the

topology of S. Thus there exists polynomials q′, p̃, q̃ ∈ K [a] such that a ∈ SrV(q′) and f (b) = p̃(b)
q̃(b) for

all b ∈ S r V(q′). In particular q̃(b) 6= 0 for all b ∈ S r V(q′). This means that V(̃q) ∩ S ⊂ V(q′) ∩ S. If
a ⊂ K [a] is the radical ideal with V(a) = S then V(a+ 〈̃q〉) ⊂ V(a+ 〈q′〉). Therefore q′ ∈

√
a+ 〈̃q〉.

So we can find n ≥ 1, h ∈ K [a] and g ∈ a such that q′n = h̃q+ g . Then we have for b ∈ S r V(q′)

f (b) =
p̃(b)
q̃(b)
=
p̃(b)h(b)
q̃(b)h(b)

=
p′(b)
q′(b)n

with p′ = p̃h.
We claim that (p′q − q′np)q′ lies in a. Because S r V(q) is dense in V(a) it suffices to see that

(p′(b)q(b) − q′n(b)p(b))q′(b) = 0 for all b ∈ S r V(q). But if b ∈ S ∩ V(q′) this is trivial and if
b ∈ S r V(q′q) then p′(b)q(b)− q′(b)np(b) = 0 because

p′(b)
q′(b)n

= f (b) =
p(b)
q(b)

.
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Consequently there exist h1, . . . , hs ∈ K [a] such that(
p′q′

q′n+1

)
= h1

(
p1
q1

)
+ · · · + hs

(
ps
qs

)
.

Now if qi(a)was equal to zero for every i ∈ {1, . . . , r} then also q′(a)would be equal to zero which is
not the case as a ∈ S r V(q′). Therefore (ii) is proved.
Finally to verify (iii) of Definition 21 let i, j ∈ {1, . . . , s}. Multiplying the equation piq − qip ∈ a

with qj and replacing qjpwith pjqwe obtain qjpiq− qipjq ∈ a so that

q(piqj − qipj) ∈ a = p1 ∩ · · · ∩ pr .

Since q /∈ p1, . . . , pr we see that piqj − qipj ∈ a and (iii) is proved. �

Example 29. To understand the power of Extend algorithm, we apply it to the result of Example 27,
even if it was not necessary. Applying Extend to the generic representation obtained for f : S → K
we obtain the pair of syzygies:(

a32 − 4a2, a
3
1 + 4a

2
2 − 16; a

2
2 − a2, a1 + 4a2 − 4

)
.

Observe that whether the first pair is zero on V(p1), the second one is non-null in all points of S and
it extends f to S ′ = S ∪ {(0, 0)}, as it assigns to f (0, 0) the value 4, as expected by the initial data. So
we only need the second syzygy.

p
q
=
a31 + 4a

2
2 − 16

a1 + 4a2 − 4
.

This provides the full representation of the I-regular function

P = (a1 + 4a2 − 4)x+ (a31 + 4a
2
2 − 16)

showing that f can be defined as regular function in the larger set S ′ ⊃ S.

2.3. Computations with I-regular functions

For performing computations with I-regular functions the generic representation is very practical
as the addition and multiplication of the regular functions can be performed by the usual computa-
tions in K(a).
If P is a generic representation of f : S → K [x] and a ∈ S with lc(P)(a) = 0 then P(a, x) = 0. This

follows immediately from Definition 24.
Using generic representations it is very easy to perform computations like reduction with monic

I-regular functions. The disadvantage of the generic representation is that the value of f at a ∈ S
cannot immediately by determined from p if lc(p)(a) = 0. However we only need to apply Extend to
the coefficients to convert a generic representation into a full representation. I.e.∑

α

Extend(S, pα, lc(p))xα

is a full representation of f .
Computations (like reduction) with monic I-regular functions are most easily performed using the

generic representation. The actual computations take place in K [a, x] and the operations with the
I-regular functions simply correspond to the usual operations in K [a, x] only that we occasionally
have to multiply with the leading coefficient of a generic representation to avoid denominators.

3. The GCover algorithm

In this section we describe the algorithm GCover (see Table 10). It is the heart of the main
algorithm GröbnerCover. Algorithm GCover takes as input a finite set of homogeneous polynomials
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Table 10
GCover algorithm.
G = ((Si, Bi) : i = 1, . . . , s)← GCover(F ,�x).
Input: F ⊂ K [a][x]: finite set of homogeneous polynomials generating the ideal I
Output: G = ((Si, Bi) : i = 1, . . . , s): the canonical Gröbner cover of I ,

the basis elements are given in generic representation

begin
BT := the terminal vertices of BuildTree(F)
L := the list of all lpp’s occurring in BT
G := ∅
for each T ∈ L do
M := the list of all segments ((a, h), B) given in BT with lpp equal T
H := M without the bases
S := LCUnion(H)
Let p1, . . . , pr denote the components of S.
For i = 1, . . . , r let ((ai, hi), Bi) denote the unique segment inM such that ai has component pi .
#{This has already been computed internally by LCUnion}

B := Basis(((p1, B1), . . . , (pr , Br )))
G := G ∪ {(S, B)}

end do
end

(with respect to the variables) which generate the ideal I and computes the canonical Gröbner cover
of I as given in Theorem 8. The I-regular functions in the bases are given in generic representation.
Throughout Section 3 we assume that I ⊂ K [a][x] is a homogeneous ideal given by a finite set of

homogeneous generators. The case of non-homogeneous ideals will be treated in Section 4. Of course
we also have a fixed term-order�x on the variables but it will usually not be indicated.
We now describe the action of GCover. It has three main steps: BuildTree, LCUnion and Basis.

We start with the call to BuildTree. Algorithm BuildTree (described in Theorem 30 in Section 3.2)
is the first part of our main algorithm. It builds a discussion tree, whose terminal vertices contain a
disjoint, reduced comprehensive Gröbner system. This reduced Gröbner system can equivalently be
interpreted as a Gröbner cover where the elements of the bases are given in a generic representation.
The lpp-segments are partitioned into smaller segments and in each of these segments the I-regular
functions in the Gröbner basis can be fully represented by a single polynomial. More explicitly the
result of BuildTree consists of a set of pairs {(Si, Bi) : 1 ≤ i ≤ s}, where the Si are parametric subsets
of K

m
given in R-representation (see Section 2.1), and the Bi are subsets of K [a][x] such that, lpp(Bi)

is the minimal generating set of lpp(Si) and evaluating the elements of Bi at a ∈ Si yields the reduced
Gröbner basis of the specialized ideal Ia up to normalization.
In the next stepwe group together all the segments Siwith the same leading power products: From

Theorem 7 we know that the union of all Si’s with the same lpp is locally closed and parametric. Thus
we can use algorithm LCUnion to compute this union. First we transform the R-representations of the
Si’s into P-representations and thenwe apply algorithm LCUnion to obtain the complete lpp-segments
in P-representation. Thus we have already found the segments of the canonical Gröbner cover.
It remains to compute the generic representations of the basis elements. This is the task of

algorithm Basiswhich is described in Section 3.3.

3.1. Auxiliary algorithms

In this subsection we discuss two algorithms that are used throughout the whole computations:
Pdiv and PNormalForm.

Pdiv is the Hironaka reduction of a polynomial p ∈ K [a][x] modulo {p1, . . . , ps} over a locally
closed segment S = V(a) r V(b). For details see Montes (2002). It is assumed that, for all a ∈ S and
for all i, lc(pi)(a) 6= 0. The reduction is:

hp = q1p1 + · · · + qsps + r (6)
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Table 11
BuildTree algorithm.
T ← BuildTree(F)
Input: F ⊂ K [a][x] a finite set of homogeneous polynomials generating the ideal I
Output: T : the tree where all data are stored. At the terminal vertices these data form a disjoint Gröbner cover.

begin
T := a global empty tree
((a, h), B, l, P) := ((〈0〉, 1), F , 0,∅)
Let r be the root node of the initially empty tree T .
RecBuildTree(r, (a, h), B, l, P)

end

satisfying
1. q1, . . . , qs, r ∈ K [a][x],
2. h ∈ K [a] is a power product in lc(p1), . . . , lc(ps),
3. lpp(qipi) ≤ lpp(p) for i = 1, . . . , s,
4. No power product in the support of r is divisible by lpp(pi) for i = 1, . . . , s.

It is easy to prove (Montes, 2002) that the specialization of the Pdiv reduction for any a ∈ S
h(a)p(a, x) = q1(a, x)p1(a, x)+ · · · + qs(a, x)ps(a, x)+ r(a, x)

is the usual division of p(a, x) by {p1(a, x), . . . , ps(a, x)} on K [x]. The input–output scheme of
algorithm Pdiv is

r ← Pdiv(p, {p1, . . . , ps}).
Given a polynomial p ∈ K [a][x] and the R-representation (a, h) of a locally closed subset S the

second algorithm PNormalForm computes a ‘‘normalform’’ r ∈ K [a, x] of p on S. It first reduces the
coefficients of pmodulo a and then eliminates all factors of p that are elements ofK [a] and are non-null
on all points of S.
The input–output scheme is
r ← PNormalForm(p, (a, h)).

3.2. The BuildTree algorithm

Webegin now thediscussion of the first crucial part of our algorithmGCover, namely the algorithm
BuildTree (see Table 11).
This subsection is organized in descending design. So we present first the main algorithm

BuildTree, then the recursive algorithm RecBuildTree called by BuildTree, and finally the two
sub-algorithms DiscussPolys and DiscussSPolys used by RecBuildTree. At the end we also detail
the auxiliary algorithms ReduceGB. It is recommended to read this section first in the given order
(without regarding the proofs) and then read the proofs in the opposite order: DiscussPolys,
DiscussSpolys and finally BuildTree.

BuildTree is a Buchberger like algorithm for computing a Gröbner basis. As here the coefficients
of the polynomials are polynomials in the parameters, the algorithm branches every time when it has
to deal with a polynomial of the basis or an S-polynomial whose leading coefficient vanishes at some,
but not at all points of the locally closed set under consideration. It builds up a dichotomic binary tree,
whose branches at each vertex correspond to the annihilation or not of a new polynomial of K [a].
So, at a vertex, some polynomials, say N ⊂ K [a] have been assumed to be null and some others, say
W ⊂ K [a], have been assumed to be non-null. This determines a locally closed subset S of K

m
, of the

special kind for which R-representations can be used (see Section 2.1). i.e.

S = V(N) r V(h) ⊂ K
m
, with h =

∏
w∈W

w ∈ K [a].

A vertex of the tree is given by a list of zeros and ones which describes its position in the tree. At each
vertex of the tree BuildTree stores the vertex data ((a, h), B, l, P). Where
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Table 12
RecBuildTree algorithm.
RecBuildTree(v, (a, h), B, l, P)
Input:

v: current vertex of the global tree T at which RecBuildTree is called ((a, h), B, l, P): the vertex data of v
Output:

Builds recursively the tree T , storing the vertex data at the vertices.

begin
Store ((a, h), B, l, P) in v.
B′ := B
if l < |B| then
(B′, (a0, h0), l0, P0, (a1, h1), l1, P1) := DiscussPolys((a, h), B, l, P)
l := l0

end if
if l = |B′| and B′ 6= ∅ then
(B′, (a0, h0), l0, P0, (a1, h1), l1, P1) := DiscussSPolys(B′, (a, h), l, P)

end if
if a0 6= 〈1〉 then
Create two new vertices v0 and v1 descending from v
RecBuildTree(v0, (a0, h0), B′, l0, P0)
RecBuildTree(v1, (a1, h1), B′, l1, P1)

else # {then P = ∅}
B′ := RedGB(MinGB(B′))
Store ((a, h), B′) in v.

end if
end

• (a, h) is an R-representation of S = V (a) r V(h),
• B is a finite list of polynomials in K [a, x] such that for every a ∈ S the polynomials obtained from
B by specialization are a generating set of Ia. The i-th element in this list will be denoted with B[i].
• 0 ≤ l ≤ |B| is an integer such that for i = 1, . . . , l we have lc(B[i])(a) 6= 0 for all a ∈ S and so far
the algorithm has not obtained information about the vanishing behavior of lc(B[l+ 1]) on S,
• P is a list of pairs of elements of {1, . . . , l} such that for each pair (i, j) ∈ P the S-polynomial of B[i]
and B[j] has not yet been considered in the algorithm.

Using R-representations it is very easy to split recursively into two dichotomic branches when the
algorithm has to decide if a new polynomial f ∈ K [a] is null or non-null on the given locally closed
set S. This is done by the recursive algorithm RecBuildTree that uses the algorithm Split (see Table 3)
already discussed in Section 2.

Theorem 30 (BuildTree Algorithm). Given a finite set F ⊂ K [a][x] of homogeneous polynomials gener-
ating the ideal I, the algorithm BuildTree builds a finite binary tree T with root such that at each terminal
vertex v of T the data ((av, hv), Bv) with the following properties is stored.

(i) (av, hv) is an R-representation of the locally closed set Sv = S((av, hv)) and Bv is a finite subset of
K [a, x].

(ii) Sv is parametric, lpp(Bv) is the minimal generating set of lpp(Sv) and Bv specializes to the reduced
Gröbner basis of Ia (up to normalization) for every a ∈ Sv .

(iii) The Sv ’s are pairwise disjoint and cover the whole K
m
(as v ranges over all terminal vertices).

So in essence the terminal vertices of BuildTree give a disjoint Gröbner cover of K
m
with respect to I.

Proof. The algorithm BuildTree only creates the root vertex of the tree T and then calls the recursive
algorithm RecBuildTree (see Table 12).
If RecBuildTree is called at vertex v with the vertex data ((a, h), B, l, P) then either v becomes

a terminal vertex or the algorithm has to split, so that v has two successor vertices v0 and v1 and
RecBuildTree calls itself at v0, v1 with the new vertex data ((a0, h0), B0, l0, P0), ((a1, h1), B1, l1, P1)
respectively. We note that in the second case we have a0 6= 〈1〉 and a0 % a by Lemmas 31 and 32.
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If we follow RecBuildTree along a path from the root down the tree thenwe find that it essentially
performs the usual Buchberger algorithm: First RecBuildTree repeatedly calls DiscussPolys until we
obtain a basis B such that the leading coefficient of every polynomial in B is non-zero at every point of
the current locally closed set S (i.e. l = |B|). Thenwe callDiscussSPolys and advance in the Buchberger
algorithm. If at some vertex vwe take the right branch to v0whenDiscussSPolys has found a splitting,
then the newvertex data (a0, h0), B0, l0, P0) at v0 satisfies l0 = |B0|−1 andDiscussPolyswill be called.
If we take the right branch to v1 then the new vertex data ((a1, h1), B1, l1, P1) satisfies l1 = |B1| and
DiscussSPolyswill advance in the Buchberger algorithm.
We now prove that the tree is finite, i.e. the algorithm terminates. Suppose that BuildTree creates

an infinite tree. Then there is an infinite path starting from the root. At a vertex v of the path, the path
can either turn left to v1 or right to v0. If the path would turn right an infinite number of times then
we would obtain an infinite strictly increasing sequence of ideals in K [a] which is not possible. Thus
from a certain vertex onwards the path always keeps left, making only new non-null assumptions.
But then the finiteness follows from the termination of the usual Buchberger algorithm.
Suppose the algorithm eventually reaches a terminal vertex v. This can only happen if the current

list P is empty andwe see from Lemma32 that for each a in the current locally closed subset S = Sv the
current basis B′ specializes to a Gröbner basis of Ia. Now for RecBuildTree it only remains tominimize
and to reduce the basis. The algorithm stores the new basis in v and quits. Thus, as claimed in (ii), we
see that lpp(Bv) is theminimal generating set of lpp(Ia) and that Bv specializes, up to normalization, to
the reducedGröbner basis of Ia for every a ∈ Sv . Nextwewill prove that Sv is parametric. In general the
elements of Bv need not lie in I , because we have reduced themmodulo the assumed null-conditions.
But by construction for every p ∈ Bv there are polynomials p′ ∈ I and q′ ∈ K [a] such that q′(a) 6= 0
and q′(a)p(a, x) = p′(a, x) for all a ∈ Sv and so

p(a, x)
lc(p)(a)

=
q′(a)p(a, x)
q′(a)lc(p)(a)

=
p′(a, x)

coef(p′, lpp(p))(a)

for all a ∈ Sv and we see that Sv is parametric (cf. Remark 5).
Claim (i) is obvious and Claim (iii) is immediate from the algorithm and Lemmas 31 and 32. �

If we are given the vertex data ((a, h), B, l, P) then we already know that, for all a ∈ S((a, h)) and
i = 1, . . . , l, is lc(B[i])(a) 6= 0 . The task of DiscussPolys (see Table 13) is to obtain new information
about the vanishing behavior of the leading coefficients of the next polynomials B[l+ 1], B[l+ 2], . . .
in the list until a splitting is necessary. The result of DiscussPolys is summarized in the following

Lemma 31 (DiscussPolys Algorithm). Suppose that DiscussPolys is called with the vertex data ((a, h),
B, l, P). Then two new vertex data ((a0, h0), B′, l0, P0) and ((a1, h1), B′, l1, P1) with the following
properties are obtained:

(i) S = S0 ] S1 where S = S((a, h)), S0 = S((a0, h0)) and S1 = S((a1, h1)),
(ii) – either a0 = 〈1〉, i.e. S0 = ∅, S1 = S and then l1 = |B′|, whichmeans that all the leading coefficients

of polynomials in B′ have been tested and are non-null on all of S = S1,
– or a0 6= 〈1〉 and then a0 % a, l0 = l1 − 1.

(iii) P1 and P0 are updated using the standard strategy and the Buchberger criterion of eliminating the
pairs with disjoint set of variables of their lpp.3

Proof. First of all we note thatDiscussPolyswill only be called with l < |B|. The list B′ of polynomials
is initially equal to B. The algorithm starts with testing if B[l + 1] specializes to zero for every point
of S. If this is the case we can simply delete B[l + 1] from our list of polynomials and continue with
considering the next polynomial B[l + 2] = B′[l + 1] in the list. If we eventually find a polynomial
which does not vanish identically on S, i.e. f 6= 0, then we use algorithm Split to test if there is an
a ∈ S with lc(f )(a) = 0, i.e. a0 6= 〈1〉. If this is the case we have found a proper splitting, and the two

3 This is what is done in the present implementation, but this should be improved using better strategies as those developed
in Gebauer and Möller (1988), Giovinni et al. (1991) and Faugère (2002).
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Table 13
DiscussPolys algorithm.

(B′, (a0, h0), l0, P0, (a1, h1), l1, P1)← DiscussPolys((a, h), B, l, P)
Input:

((a, h), B, l, P): the current vertex data
Output:

((a0, h0), B′, l0, P0): a new vertex data making a new null assumption
((a1, h1), B′, l1, P1): a new vertex data making a new non-null assumption

begin
B′ := B
split := false
while split = false and l < |B′| do
f := PNormalForm(B′[l+ 1], (a, h))
if f = 0 then B′ := B′ with B′[l+ 1] deleted
else B′ := B′ with B′[l+ 1] replaced by f
((a0, h0), (a1, h1)) := Split(lc(f ), (a, h))
if a0 6= 〈1〉 then split := true
l0 := l; l1 := l+ 1;
P1 := P ∪ {(j, l1) : 1 ≤ j < l1, (B[j], B[l1]) ∈ Buchberger pair selection}
P0 := P
else l := l+ 1
P := P ∪ {(j, l) : 1 ≤ j < l, (B[j], B[l]) ∈ Buchberger pair selection}
end if

end if
end while
if split = false then
(a1, h1) := (a, h); (a0, h0) := (〈1〉, h); l0 := |B′|; l1 := |B′|; P0 := P; P1 := P

end if
end

appropriate new vertex data are returned. If lc(f )(a) 6= 0 for all a ∈ S, i.e. a0 = 〈1〉, then no splitting
is necessary and we continue with the next polynomial in the list.
If it happens that we reach the end of the list then we must have split = false and the last ‘‘if’’-

statement guarantees that we get back the correct result.
So (i) is a direct consequence of Proposition 19 and the remaining claims are immediate from the

algorithm. �

The algorithm DiscussSPolys has some similarities with DiscussPolys (see Table 14). However
DiscussPolys is always called with a vertex data ((a, h), B, l, P) satisfying l < |B|whereas the vertex
data for DiscussSPolys always satisfies l = |B|. In other words if DiscussSPolys is called with vertex
data ((a, h), B, l, P) then lc(p)(a) 6= 0 for all p ∈ B and a ∈ S = S((a, h)). The task of DiscussSPolys is
simply to carry on with the usual Buchberger algorithm until the next splitting is necessary, i.e until
we encounter a leading coefficient which vanishes on some but not at all points of S.
The action of DiscussSPolys is summarized in Table 14.

Lemma 32 (DiscussSPolys Algorithm). Suppose that DiscussSPolys is called with the vertex data
((a, h), B, l, P). Then two new vertex data ((a0, h0), B′, l0, P0) and ((a1, h1), B′, l1, P1)with the following
properties are obtained:

(i) S = S0 ] S1 where S = S((a, h)), S0 = S((a0, h0)) and S1 = S((a1, h1)),
(ii) – Either a0 = 〈1〉, i.e. S0 = ∅, S1 = S and then lc(p)(a) 6= 0 for all a ∈ S = S1 and p ∈ B′. Also

P1 = ∅, so that all the S-polynomials of pairs of elements of B′ reduce to zero over S = S1. In
particular B′ specializes to a Gröbner basis of Ia for every a ∈ S.

– Or a0 6= 〈1〉 and then a0 % a, l0 = |B′| − 1, l1 = |B′|.
(iii) P1 and P0 are updated using the current strategies.

Proof. We recall that lc(p)(a) 6= 0 for all p ∈ B and a ∈ S = S((a, h)). The algorithm starts with
picking a pair of polynomials of B′ = B specified in P1 = P . This pair is removed from the list and
we test if the reduction of the corresponding S-polynomial modulo B′ vanishes identically on S, i.e. if
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Table 14
DiscussSPolys algorithm.

(B′, (a0, h0), l0, P0, (a1, h1), l1, P1)← DiscussSPolys((a, h), B, l, P)
Input:

(B, (a, h), l, P): the current vertex data
Output:

((a0, h0), B′, l0, P0): a new vertex data making a new null assumption
((a1, h1), B′, l1, P1): a new vertex data making a new non-null assumption

begin
B′ := B; P1 := P
split := false
while split = false and P1 6= ∅ do
Pick (i, j) ∈ P1 #{standard choice}
P1 := P1 \ {(i, j)}
f := lc(B[j])B[i] − lc(B[i])B[j]
f := PNormalForm(Pdiv(f , B′), (a, h))
if f 6= 0 then
B′ := B′ ∪ {f }
((a0, h0), (a1, h1)) := Split(lc(f ), (a, h))
if a0 6= 〈1〉 then split := true
l0 := |B′| − 1; P0 := P1
l1 := |B′|; P1 := P1 ∪ {(j, l1) : 1 ≤ j < l1, (B[j], f ) ∈ BPS}

else l := l+ 1; P1 := P1 ∪ {(j, l) : 1 ≤ j < l, (B[j], f ) ∈ BPS}
end if

end if
end while
if split = false then
(a1, h1) := (a, h); (a0, h0) := (〈1〉, h); l0 := |B′|; l1 := |B′|; P0 := ∅; P1 := ∅

end if
end

f = 0. If this is the case the algorithm continues by picking the next pair from P1. Otherwise, i.e. if
f 6= 0 we add f to the basis and use algorithm Split to test if there is an a ∈ S with lc(f )(a) = 0,
i.e. a0 6= 〈1〉. If this is the case we have found a proper splitting, and the two appropriate new vertex
data are returned. If lc(f )(a) 6= 0 for all a ∈ S, i.e. a0 = 〈1〉, then no splitting is necessary and we
continue by picking the next pair in P1.
If it happens that we remove the last element from P1 then we must have split = false and the last

‘‘if’’-statement guarantees thatwe return the correct result.We note that only in this casewewill have
a0 = 〈1〉. That the list P1 is empty means that for each pair from the current basis B′ = {p1, . . . , pr}
the corresponding S-polynomial reduces to zero modulo B′ over S. In other words for every a ∈ S
the polynomials {p1(a, x), . . . , pr(a, x)} satisfy Buchberger’s criterion and thus are a Gröbner basis
of Ia. �

Finally, we give the details for algorithm ReduceGB. It is the obvious generalization of the final
steps in the usual Buchberger algorithm. It is described in Table 15. First it minimizes the Gröbner
basis and then fully reduces the minimized Gröbner basis.

3.3. Computing the bases

The last main step in algorithm GCover is Basis. The algorithm Basis determines generic
representations of the monic I-regular functions in the bases of the canonical Gröbner cover. It is
called by GCover for each lpp-segment.
When Buildtree has finished GCover has already obtained a finite partition of K

m
into parametric

subsets S1, . . . , Ss and bases B1, . . . , Bs ⊂ K [a, x] such that lpp(Bi) is the minimal generating set of
lpp(Si) and evaluating Bi at a ∈ Si yields the reduced Gröbner basis of Ia (up to normalization) for
i = 1, . . . , s.
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Table 15
ReduceGB algorithm.

B′ ← ReduceGB(B)
Input: B: a finite subset of K [a][x] such that for every a in a certain locally closed subset S of K

m

we have lc(p)(a) 6= 0 for all p ∈ B and B(a) ⊂ K [x] is a Gröbner basis.
Output: B′: a finite subset of K [a][x] such that B′(a) is (up to normalization)

the reduced Gröbner basis of 〈B(a)〉 ⊂ K [x] for every a ∈ S.

begin
Let B′ ⊂ B be the set of all polynomials in Bwith minimal lpp.
for p ∈ B′ do
B′ := B′ r {p}
p := Pdiv(p, B′)
B′ := B′ ∪ {p}

end do
end

The next step is to compute the lpp-segments (see Theorem8). For a fixed occurring set T of leading
power products the corresponding lpp-segment

S =
⋃

lpp(Si)=T
Si

is computed with algorithm LCUnion which was already explained in Section 2.1.1. If p1, . . . , pr are
the components of S (see Definition 14) then for each i ∈ {1, . . . , r} there exists a unique j = j(i) such
that lpp(Sj) = T and Sj has pi as component (cf. the beginning of the proof of Proposition 20). This Sj
is already determined by LCUnion. The input for algorithm Basis then is

((p1, Bj(1)), . . . , (pr , Bj(r))).

Proposition 33 (Basis Algorithm). Let I ⊂ K [a][x] be a homogeneous ideal and S an lpp-segment with
respect to I. Then algorithm Basis (see Table 16) computes generic representations of the elements in the
reduced Gröbner basis of I over S.

Proof. From the theoretical point of view thewhile loop in algorithmBasis is not necessary. Algorithm
Combine (see Table 8) would give the desired result in any case. So we only need to explain the while
loop.
As in the algorithm fix t ∈ T and for i = 1, . . . , r let pi ∈ Bi denote the unique element of Bi

with lpp(pi) = t . Let f denote the monic I-regular function in the reduced Gröbner basis of I over S
with lpp(f ) = t . The purpose of the while loop is simply to test if already one of the pi’s is a generic
representation of f . Fix i ∈ {1, . . . , r}.
We claim that pi is a generic representation of f if and only if for each j ∈ {1, . . . , r} we have

lc(pi) /∈ pj and the coefficients of lc(pi)pj − lc(pj)pi lie in pj.
But lc(pi) /∈ pj for j = 1, . . . , r is equivalent to saying that S r V(lc(pi)) is dense in S and that the

coefficients of lc(pi)pj − lc(pj)pi lie in pj means that

pi(a, x)
lc(pi(a))

=
pj(a, x)
lc(pj(a))

= f (a)

for every a ∈ S ∩ V(pj) r V(lc(pi)lc(pj)) and j = 1, . . . , r . Thus the claim is immediate from Defini-
tion 24. �

4. The GröbnerCover algorithm

In this section we present our main algorithm GröbnerCover (see Table 17). It takes as input a
finite generating set of the ideal I ⊂ K [a, x] (and of course the term-order �x on the variables) and
computes the canonical Gröbner cover of K

m
with respect to I and �x (Definition 11). The monic I-

regular functions in the bases are given in full representation. The ideal I need not be homogeneous
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Table 16
Basis algorithm.
B← Basis(H)
Input:

H = ((p1, B1), . . . , (pr , Br )): The pi ’s are pairwise distinct prime ideals of K [a] and they are the components of an
lpp-segment S. The Bi ’s are subsets of K [a][x] all having the same lpp T .

Output:
B: a finite subset of K [a][x]with lpp(B) = T and such that each element of B is a generic representation of the
corresponding element in the Gröbner Basis of I over S

begin
B := ∅
for each t ∈ T do
For i = 1, . . . , r let pi denote the polynomial of Bi with lpp(pi) = t .
i := 1; generic := false
while generic = false and i ≤ r do

if lc(pi) /∈ pj and the coefficients of lc(pi)pj − lc(pj)pi lie in pj
for j = 1, . . . , r

then generic := true; p := pi
end if
i := i+ 1

end while
if generic = false then
p := Combine(((p1, p1), . . . (pr , pr )))

end if
B := B ∪ {p}

end do
end

Table 17
Algorithm GröbnerCover.
G← GröbnerCover(F ,�x)
Input:

F : a finite generating set of the ideal I ⊂ K [a][x]
Output:

G: the canonical Gröbner cover of K
m
with respect to I

begin
if all the elements in F are homogeneous then
((S1, B1), . . . , (Sr , Br )) := GCover (F ,�x)

else
let f1, . . . , fs ∈ K [a][x, x0] be a generating set of the homogenization of I
((S1, B1), . . . , (Sr , Br )) := GCover

(
{f1, . . . , fs},�x,x0

)
for i = 1, . . . , r do
Bi := ReduceGB(Bi(x, 1))

end do
end if
G := ∅
for i = 1, . . . , r do B := ∅

for p ∈ Bi do
B := B ∪ {ExtendPoly(Si, p)}

end do
G := G ∪ {(Si, B)}

end do
end

but nevertheless GröbnerCover will distinguish the two cases whether or not the generators are
homogeneous.
If the generators are homogeneous then GröbnerCover calls algorithm Gcover (see Table 10) to

obtain the canonical Gröbner cover. In this case it only remains to convert the generic representations
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Table 18
Algorithm ExtendPoly.
q← ExtendPoly(S, p)
Input:

S: a locally closed subset of K
m

p =
∑

α pαx
α
∈ K [a][x]: a generic representation of a monic I-regular function f on S

Output:
q: a full representation of f on S

begin
Let (a, b) be the C-representation of S.
if b ⊆

√
a+ 〈lc(p)〉 then q :=

∑
α(pα; lc(p))x

α

else
q :=

∑
α Extend(S, pα, lc(p))x

α

end if
end

of the basis elements given byGcover into full representations. This is done by algorithm ExtendPoly
(see Table 18).
If not all the generators are homogeneous we first need to compute the homogenization J of I .

Then we apply Gcover to a finite generating set of J and obtain the canonical Gröbner cover of K
m

with respect to J . By definition the segments of the canonical Gröbner cover with respect to I are the
segments of the canonical Gröbner cover with respect to J . And the bases in the canonical Gröbner
cover with respect to I are obtained from the bases in the canonical Gröbner cover with respect to J
by dehomogenizing, minimizing and reducing (as demonstrated in the proof of Proposition 10). Thus
we only have to apply algorithm ReduceGB (see Table 15) to obtain the generic representations of the
basis elements in the canonical Gröbner cover with respect to I . As in the homogeneous case we apply
ExtendPoly in the end to obtain full representations (Table 16).
The GröbnerCover algorithm is given in Table 17.

4.1. The case of arbitrary ideals

As explained above, if the ideal I is not homogeneous then algorithm GröbnerCover will need to
compute its homogenization. The purpose of this short subsection is to show how this can be done.
Throughout this subsection we suppose that I ⊂ K [a][x] is an arbitrary ideal and as always we also
have a fixedmonomial order�x on the variables. As in Section 1 we consider the ring K [a][x, x0]with
the extended monomial order�x,x0 defined by

xαxd0 �x,x0 x
βxe0

if xα �x xβ or xα = xβ and d > e. For a polynomial P ∈ K [a][x]we denote with deg(P) its total degree
with respect to x and with η(P) ∈ K [a][x, x0] its homogenization, i.e. η(P) = x

deg(P)
0 P

(
x1
x0
, . . . , xnx0

)
.

With J we denote the homogenization of I , i.e.

J =
〈
η(P) : P ∈ I

〉
⊂ K [a][x, x0].

Proposition 34 (Basis of Homogenization). Let I ⊂ K [a][x] be an arbitrary ideal,>x a graded term-order
on x and>x,a a product order considering also the parameters a as variables. If g1, . . . , gm is a Gröbner basis
of I with respect to>x,a. Then η(g1), . . . , η(gm) is a generating set of the homogenization J ⊂ K [a][x, x0]
of I.

Proof. Let g ∈ I ⊂ K [a, x]. Since g1, . . . , gm is a Gröbner basis there exist polynomials f1, . . . , fm ∈
K [a, x] such that g = f1g1 + · · · + fmgm with lppx,a(g) ≤x,a lppx,a(figi) for every i. Since >x,a is a
product order this implies lppx(g) ≤x lppx(figi) for every i, and thus, >x being a graded order also
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deg(figi) ≤ d = deg(g). Therefore

η(g) = xd−deg(f1g1)0 η(f1g1)+ · · · + x
d−deg(fmgm)
0 η(fmgm)

= xd−deg(f1g1)0 η(f1)η(g1)+ · · · + x
d−deg(fmgm)
0 η(fm)η(gm)

∈ 〈η(g1), . . . , η(gm)〉.

Consequently J = 〈η(g1), . . . , η(gm)〉. �

4.2. The ExtendPoly algorithm

The task of the ExtendPoly algorithm is to convert a generic representation of a monic I-regular
function into a full representation.
So let S ⊂ K

m
be a locally closed subset, f : S → K [x] a monic I-regular function and p =∑

α pαx
α
∈ K [a][x] a generic representation of f (see Definition 24). Generic representations are very

practical to handle on the computer and allow us to manipulate with monic I-regular function easily,
however they have the drawback that the value f (a) of f at a point of a ∈ S cannot immediately
be determined if lc(p)(a) = 0. This is why ExtendPoly is applied at the very end in GröbnerCover
algorithm.
If lc(p)(a) 6= 0 for all a ∈ S there is no need to take action, and formally the polynomial

∑
α(pα;

lc(p))xα is a full representation of f . Otherwise we simply apply Extend algorithm to the coefficients:
We know that (pα; lc(p)) is a generic representation of coef(f , α) ∈ O(S) and so Extend(S, pα, lc(p))
provides a full representation of coef(f , α) and∑

α

Extend(S, pα, lc(p))xα

is a full representation of f .
To test if lc(p)(a) 6= 0 for all a ∈ S we can use the following simple lemma.

Lemma 35. Let q ∈ K [a], a, b ideals of K [a] and S = V(a)r V(b). Then q(a) 6= 0 for all a ∈ S if and only
if

b ⊆
√

a+ 〈q〉.

Proof. q(a) 6= 0 for all a ∈ S if and only if V(q) ∩ S = ∅. We have:

V(q) ∩ S = ∅ ⇔ V(q) ∩ (V(a) r V(b)) = ∅ ⇔ V(a) ∩ V(q) ∩ (V(a) r V(b)) = ∅

⇔ V(a+ 〈q〉) ∩ (V(a) r V(b)) = ∅ ⇔ V(a+ 〈q〉) ⊆ V(b)⇔ b ⊆
√

a+ 〈q〉. �

The correctness of ExtendPoly algorithm given in Table 18 is immediate from the above
explanations.

4.3. Some remarks on implementation issues

When presenting our algorithms in this article we have tried to keep things as simple as possible.
Our goal was to clearly state what the algorithm does without giving too much technical details. For
the sake of a clear exposition and to keep this paper at a reasonable length we have sometimes left
out improvements that are present in the actual implementation. The purpose of this subsection is to
give some hints on this improvements and to give some insights into the practical performance of the
GröbnerCover algorithm.
A critical aspect for the efficiency of the whole GröbnerCover algorithm is the use of primary

decomposition, that is essential in every algorithm that tries to obtain a canonical discussion of
parametric polynomial systems. At this effect, it should be noted, that in the first BuildTree part
of the algorithm where most of the computation is done, the incremental algorithms RrepNN and
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RrepN avoid the complete use of primary decomposition, and only simple incremental radicals are
used (in RrepN). Only after BuildTree is finished, the R-representations must be transformed into
P-representations, and then the routine RtoPrep involves primary decomposition. An appropriate
design of the special primary decompositions involved there is mandatory for effectiveness.
There is another critical problem inside Buildtree, namely the computation of the ‘‘generic’’ case,

i.e. when the algorithm follows the path to the left most terminal vertex making only new non-null
assumptions. There is some work in progress to speed up the computation in the generic case.
For example, when the generic basis is {1}, and this is usual in automatic theorem discovering, we

can use an alternative strategy. Computing the Gröbner basis with respect to the product of a graded
order in x and an order in the parameters (what is needed to compute the homogenized ideal) we
obtain also the elimination ideal in the parameters I0 = I ∩ K [a]. If I0 is non-null, then the generic
basis is {1} and the generic segment can be obtained, in P-representation by simply compute the
prime decomposition of I0, and taking the whole parameter space minus V (I0). Let {p1, . . . , pr} be the
minimal primes of I0. Then,we can compute separately the particular trees for each of the components
with the restriction of V(pi), which will be much simpler to do, and then summarize the result.
We note that in the implementation one can optionally specify a certain locally closed subset S of

K
m
and then GröbnerCoverwill only compute the canonical Gröbner cover of S.
Practical experiments show that if the generators p1, . . . , pr of our ideal I under consideration are

not homogeneous then Buildtree applied to generators of the homogenization of I usually has amuch
longer running time then Buildtree applied to p1, . . . , pr . This seems to be duemainly to the fact that
in general one has many generators of the homogenization of I .
Thus in computationally hard problems it is recommended to avoid the computation of the

homogenization but to simply apply our algorithms to the homogenizations η(p1), . . . , η(pr) of
p1, . . . , pr . We note that Buildtree(p1, . . . , pr) and Buildtree(η(p1), . . . , η(pr)) essentially perform
the same computations. This way one is not guaranteed to obtain the canonical Gröbner cover with
respect to I but the result will be reasonably simple.
Concerning memory consumption we remark that it is not necessary that algorithm Buildtree

stores the vertex data of intermediate (i.e. non-terminal) vertices. This has been done historically for
didactic purposes, but it is unnecessary.
The algorithm Combine tends to produce rather complicated polynomials but one can always

reduce them modulo a where a ⊂ K [a] is the radical ideal with S = V(a) and S is the locally closed
set over which we are working. In algorithm Combine one can collect together all the components of
the lpp-segment which are coming from the same Buildtree segment to simplify and speed up the
computation.
On the contrary Extend often produces quite simple polynomials which sometimes are even

simpler and more ‘‘generic’’ then those originally found by Buildtree. For example it might happen
that on a certain lpp-segment S none of the polynomials found by Buildtree gives the correct value
on all points of S but with Extend respectively ExtendPoly we are able to obtain a polynomial with
this property (cf. Examples 27, 29 and example in Section 5).
One could also consider the possibility of replacing Buildtree with an alternative algorithm such

as Suzuki–Sato Algorithm (Suzuki and Sato, 2006) in case Buildtree is not able to finish within
reasonable time. Onewould only need to transform the output of Suzuki–Sato algorithm into a disjoint
reduced comprehensive Gröbner system to be able to apply our algorithms.
The full representation of an I-regular function as given in Definition 22 is a bit awkward to handle

in a computer algebra system.One can use instead the representation given in the following definition.

Definition 36 (Complete Representation). Let S ⊂ Km be locally closed and f : S → K [x] a monic
I-regular function. Let p1, . . . , pr ∈ K [a][x]. We say that (p1, . . . , pr) is a complete representation of f
if

(i) f (a) = pi(a,x)
lc(pi)(a)

for every a ∈ S with lc(pi)(a) 6= 0,
(ii) for every a ∈ S there exists i ∈ {1, . . . , r} such that lc(pi)(a) 6= 0 and
(iii) lc(pi)(a)pj(a, x) = lc(pj)(a)pi(a, x) for all a ∈ S and 1 ≤ i, j ≤ r .

We note that (ii) and (iii) imply that pi(a, x) = 0 for a ∈ S with lc(pi)(a) = 0.
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Fig. 1. Orthic triangle.

From the theoretical point of view the usage of I-regular functions instead of just polynomials
in K [a][x] is very important. The results about I-regular functions in the first section are needed to
establish the main algorithms in the sections three and four. However in the practical examples it
appears that most of the time the monic I-regular functions in the bases of the canonical Gröbner
cover can be completely represented by a single polynomial, although it is not difficult to construct
examples where several polynomials will be needed.
There is an obviousway of converting a full representation into a complete representation by clear-

ing denominators. This seems to create a large number of polynomials in the complete representation,
since one has to consider all possible combinations. Howeverwe can drastically reduce this number. It
suffices to take a subset {p1, . . . , pr}with the property that for every a ∈ S there exists i ∈ {1, . . . , r}
with lc(pi)(a) 6= 0, i.e.V(〈lc(p1), . . . , lc(pr)〉)∩ S = ∅, or equivalently b ⊂

√
a+ 〈lc(p1), . . . , lc(pr)〉.

One can also attempt to find such subsets by using the segments obtained by Buildtree.
In this way one usually never finds more then two or three polynomials in a complete

representation in the final output of GröbnerCover, (except in examples which have been cooked
up for this purpose).

5. Example

To fix ideas, let us give an application using theGröbnerCover algorithm.We present the problem,
the concise answer obtained by the algorithm and its geometrical interpretation. We also comment
on the complexity of the computations during the algorithm.
We consider the following problem: Find the points C = (a, b) on the plane for which the triangle

ABC of Fig. 1 has an orthic triangle (the triangle P1P2P3 through the foots of the heights) that is isosceles
(with sides P1P2 = P1P3).
We have P1 = (a, 0). Joining the equations defining the points P2 and P3 and the condition for the

orthic triangle to be isosceles, we have the following ideal representing the system of equations:

I = 〈(a− 1)y2 − b(x2 − 1), (a− 1)(x2 + 1)+ by2,
(a+ 1)y3 − b(x3 + 1), (a+ 1)(x3 − 1)+ by3,
(x3 − a)2 + y23 − (x2 − a)

2
− y22〉.

Applying the fullGröbnerCover algorithm, using�x= grevlex(x2, x3, y2, y3), we obtain the following
very concise result:

1. Segment with lpp = {1} Generic segment
Basis: {1}.
P-representation of the segment:

(
〈0〉, (〈a2 − b2 − 1〉, 〈a2 + b2 − 1〉, 〈a〉)

)
.
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2. Segment with lpp = {y3, y2, x3, x2}
Basis:

{(a2 + b2 + 2a+ 1)y3 + (−2ab− 2b),
(a2 + b2 − 2a+ 1)y2 + (2ab− 2b),
(a2 + b2 + 2a+ 1)x3 + (−a2 + b2 − 2a− 1),
(a2 + b2 − 2a+ 1)x2 + (a2 − b2 − 2a+ 1)}.

P-representation of the segment:(
〈a2 + b2 − 1〉, (〈b, a− 1〉, 〈b, a+ 1〉)

)
;(

〈a2 − b2 − 1〉, (〈b, a− 1〉, 〈b, a+ 1〉, 〈b2 + 1, a〉)
)
;(

〈a〉, (〈b2 + 1, a〉)
)

3. Segment with lpp = {y3, x3, x22}
Basis: {y3, x3 − 1, x22 + y

2
2 − 2x2 + 1}.

P-representation of the segment: (〈b, a− 1〉, (〈1〉))

4. Segment with lpp = {1}
Basis: {1}.
P-representation of the segment:

(
〈b2 + 1, a〉, (〈1〉)

)
5. Segment with lpp = {y2, x2, x23}

Basis: {y2, x2 + 1, x23 + y
2
3 + 2x3 + 1}.

P-representation of the segment: (〈b, a+ 1〉, (〈1〉)) .

We observe that there are only 5 segments in the canonical Gröbner cover and the single repeated
lpp corresponds to segments 1 and 4.
The bases of the segments 1 and 4 are {1}, showing that there does not exists any solution in those

segments. The important segment for our problem is segment 2 with lpp = {y3, y2, x3, x2} (i.e. the set
of variables), as it shows that in this segment it exists a unique solution for the points P2 and P3 (that
are determined by the basis). We obtain three branches of the solution, namely

(1) a = 0
(2) a2 + b2 − 1 = 0
(3) a2 − b2 − 1 = 0

except the pointsA = (−1, 0) and B = (1, 0) corresponding to degenerate triangles, and two complex
points M = (i, 0), N = (−i, 0). Branch (1) represents isosceles triangles and is an obvious solution.
Branch (2) (circle) represents rectangular triangles for which the orthic triangle is isosceles with basis
of length 0 and is also obvious. But branch (3) gives points on a hyperbola for which the given triangle
ABC is neither isosceles nor rectangle but has an orthic triangle that is isosceles and is not an obvious
solution.
Segments 3 and 5 correspond respectively to the degenerate triangles with C = A = (1, 0)

and C = B = (−1, 0). Finally segment 4 represents the two imaginary points C = M(0, i) and
C = N(0,−i) for which no solution exists as for the points in segment (1), but these points are not
summarized into a single segment by the canonical Gröbner cover. The fundamental reason for this
is that they come from two segments of the homogenized ideal with different lpp. We also remark
that the union of segment 1 and segment 4 is not locally closed. This is another good reason why the
canonical Gröbner cover does not summarize them into a single segment.
Let us now give some clarifying details about the development of the algorithm and its complexity.

Even if the final output of the discussion with GröbnerCover is very simple and concise, the
computations to obtain it are not so simple. In fact, we choose this example because all the resources
of the powerful algorithm are used.
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First of all, the given ideal I is non-homogeneous. So to compute the canonical Gröbner cover we
first need to homogenize it. To compute the homogenization J of I we need a graded order in the
variables. We use the graded order>x = grevlex(x2, x3, y2, y3) and grevlex(a, b) for the parameters.
We must first compute a Gröbner basis of I with respect to the product order (>x ·grevlex(a, b)) and
then homogenize it using the new variable x0. The result is a basis with 22 homogeneous polynomials.
Now begins the algorithm GCover for homogeneous ideals. We must now use the product order

of �x (that we take also to be �x = grevlex(x2, x3, y2, y3)) and grevlex(x0), resulting in �x,x0 =
(�x ·grevlex(x0)). We could also use another discussion order�x, for example lex(x2, x3, y2, y3), but
we expect that the discussion will be simpler with this choice. We apply BuildTree, then select the
terminal vertices, group them by lpp and transform the reduced representations of the segments into
P-representations.

BuildTree obtains 16 little segments for the first lpp-segment of the canonical Gröbner cover
with lpp = {1}, 7 little segments for the second lpp-segment with lpp = {y3, y2, x3, x2} and
a single segment for each of the three remaining lpp-segments. The fourth lpp-segment having
lpp = {t, y22, x3, x2} reduces to basis {1} after dehomogenization producing two final segments with
lpp = {1}. Buildtree also obtains full representations of the bases for segments 1, 3, 4, 5, and the
algorithm does not need to use neither Combine nor Extend algorithm for these.

LCUnionmust be used to compute the P-representation of the union of the 16 respectively 7 little
segments obtained by Buildtree. The result is the simple description of the final output given above.
Now let us detail what happens with the bases in the 7 little segments forming segment 2

of the canonical Gröbner cover with lpp = {y3, y2, x3, x2}. The segment has three components,
corresponding to p1 = 〈a2 + b2 − 1〉, p2 = 〈a2 − b2 − 1〉 and p3 = 〈a〉, with bases obtained by
BuildTree as follows: Basis B1 = {p1, p2, p3, p4} for p1 and p2 where

p1 = 2b(2a+ b2 + 1)y3 + (a3 + a2b2 − a2 − 3ab2 − a− b4 − 4b2 + 1)x0,
p2 = 2b(2a+ b2 + 1)y2 + (3a3 + a2b2 + 3a2 − ab2 − 3a− b4 − 3)x0,
p3 = 2(2a+ b2 + 1)x3 + (a3 − 2a2 − ab2 − 3a+ 2b2 − 2)x0,
p4 = 2(2a+ b2 + 1)x2 + (a3 − 2a2 − ab2 − 3a+ 2b2 − 2)x0,

and B2 = {q1, q2, q3, q4} for p3, where

q1 = (b2 + 1)y3 + (−2b)x0,
q2 = (b2 + 1)y2 + (−2b)x0,
q3 = (b2 + 1)x3 + (b2 − 1)x0,
q4 = (b2 + 1)x2 + (−b2 + 1)x0.

We shall only discuss what happens with the first polynomial of the bases, the other three having
the same comportment. First the algorithm verifies that neither p1 specializes to q1 on an open set of
V(p3) nor q1 specializes to p1 on an open set of V(p1 ∩ p2). So the algorithm continues applying:

Combine((p1, p1), (p2, p1), (p3, q1)) = h

where

h = (2a5b3 + 2a5b+ a4b5 + 6a4b3 + 5a4b+ 2a3b5 − 2a3b− 2a2b5

− 8a2b3 − 6a2b− 2ab7 − 4ab5 − 2ab3 − b9 − 2b7 + 2b3 + b)y3
+ (a6b2 + a6 + a5b4 − 4a5b2 − a5 − 5a4b4 − 7a4b2 − 2a4 − a3b6

− 6a3b4 + 5a3b2 + 2a3 + 7a2b4 + 8a2b2 + a2 + 5ab6 + 5ab4 − ab2

− a+ 2b8 + 2b6 − 2b4 − 2b2)x0,

is know to specialize well in an open and dense subset ofV(p1)∪V(p2)∪V(p3). Nevertheless one can
verify that h reduces to zero on some points of the segment, so we will need to use Extend algorithm.
But before this, we dehomogenize, minimize and reduce the bases.
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Then we apply Extend on the corresponding segment. The result are 3 polynomials h1, h2, h3,
where

h1 = (a2 + b2 + 2a+ 1)y3 + (−2ab− 2b),
h2 = (2ab2 − 2b2 − 2a− 2)y3 + (a3b− ab3 − 2a2b+ ab+ 4b),
h3 = (−2b3 − 4ab− 2b)y3 + (a4 − a2b2 − a3 + 3ab2 − a2 + 4b2 + a),

that are known to form a full representation of the I-regular function on the whole segment. The
algorithm continues analyzing for all the 6 little segments if the polynomials h1, h2, h3 remain non-
null on them. It realizes that h1 alone is non-null on all the 6 little segments, so that h2 and h3 are
unnecessary. Finally it outputs the full representation of the I-regular function f1 consisting of the
single polynomial h1, even if Extend has been used.
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