
Tutorial for the DPGB Library for Discussing

Parametric Polynomial Systems

Montserrat Manubens, Antonio Montes∗

Departament de Matemàtica Aplicada II.
Universitat Politècnica de Catalunya.

C/ Jordi Girona 1-3, 08034-Barcelona, Spain.
{montserrat.manubens, antonio.montes}@upc.edu

Tel.: +34 934137695, +34 934137704
http://www-ma2.upc.edu/∼montes

Abstract

This is a tutorial describing the use of the DPGB software library,
developed in the CAS system Maple, for discussing polynomial sys-
tems with parameters. This kind of problems appear very often in
engineering as well as in applied mathematics. Starting with a set of
polynomial equations with rational coefficients containing parameters,
the main routine of the library DISPGB builds up a discussion tree
containing all the necessary information about the solutions depending
on the values of the parameters.

Keywords: parametric polynomial system, discriminant ideal, compre-
hensive Gröbner bases, discussing polynomial systems.

MSC: 68W30, 13P10, 13F10.

1 Introduction

DPGB (Discussing Parametric Gröbner Bases) is a software library develo-
ped for the CAS (Computer Algebra System)Maple for discussing polynomial

∗Work partially supported by the Ministerio de Ciencia y Tecnoloǵıa under project
BFM2003-00368, and by the Generalitat de Catalunya under project 2001 SGR 00224

1

systems with parameters. This kind of problem is very common in engineer-
ing (robotics, electrical networks (Mo95; Mo98), chemical models, modelling,
etc.) as well as in applied mathematics (finding the dimension and size of
parametric varieties, automatic theorem proving, quantifier elimination, de-
formation of commutative algebras, etc).

The theoretical background of the current algorithms in use today is Com-
prehensive Gröbner Bases (CGB) introduced by V. Weispfenning (We02).
Based on these ideas, in 2000 A. Montes began to develop a more efficient
algorithm DISPGB. Its basic idea is to build up a dichotomic tree using an
almost canonical description of the specifications. The first public Release
1.4 is described in (Mo02).

Inspired by (Mo02), Weispfenning (We02; We03) defined a discriminant
ideal that was used to obtain a canonical description of the discussion tree.
Notwithstanding its canonicity, this new algorithm (CCGB) has a higher
degree of complexity than DISPGB, and to date has not been implemented.

Based on the idea of discriminant ideals, DISPGB has been developed
to rebuild the initial DISPGB tree to obtain a more compact one. Release
2.4 is described in (MaMo05a; MaMo05b), and uses only one discriminant to
rebuild the tree. This tutorial refers to the new improved Release 3.0. which
is available on the web1. It uses iteratively the discriminant ideals to obtain
a very compact discussion. The rewritten tree, even if it is not completely
canonical, is very compact. This last Release contains options to stop the
rebuilding of the tree at the stage of Releases 1, 2 or at any desired level.

We provide a practical description of how to use DPGB for non spe-
cialists, and assume no specific knowledge on the theory involved. For a
general comprehension of the Computer Algebra theory involved, we refer to
(BeWe93; CoLiSh) as well as to the above cited references.

In Section 2, the basic concepts involved are roughly described in order to
obtain a sufficient perspective on how to use the software. In Section 3, a very
simple linear system with parameters is discussed using the software to show
the practical interest and simplicity of using DPGB. Section 4 can be left out
on a first reading. It describes how the compact discussion tree obtained in
Release 3 is built from the initially computed tree, and how the initial tree
can be accessed. Other facilities for a deeper understanding of the software
are also discussed. In Section 5, a more interesting problem, namely the
inverse kinematic problem for a simple robot is studied, and the geometrical
interpretation of the discussion is analyzed. Section 6 shows how to obtain
a Comprehensive Gröbner Basis (CGB) for a given parametrical system.
CGB’s are of more theoretical than practical interest. Nevertheless, the

1http://www-ma2.upc.edu/∼montes/

2

software is able to construct one and to test if a given basis is a CGB. Section
7 is devoted to another practical control problem: a tensegrity structure.
Finally, some benchmarks for the software are presented in Section 8.

2 Description of basic concepts

In this Section we describe the basic concepts used in the software. More
specific details will be given in the examples.

Let S be a set of polynomial equations in the variables x = x1, . . . , xn

and the parameters a = a1, . . . , am with rational coefficients. From the
system S = {f1(x, a) = 0, . . . , fs(x, a) = 0} take the set of polynomials
F = {f1(x, a), . . . , fs(x, a)}. F is said to be a basis of the ideal I = 〈F 〉
which consists of all the polynomial consequences of the equations S, namely
all the polynomials of the form f =

∑s

i=1 hi(x, a) fi(x, a), where the hi are
arbitrary polynomials. There are infinitely many bases generating an ideal.
Gröbner bases are the best bases for obtaining the solutions in an algebraic
form. For a more precise and formal definition see Chapter 2 of (CoLiSh).

Substituting the values of the parameters by specific numbers is a spe-

cialization of the system. The solutions of the system depend on the special-
ization. Nevertheless, specializing a Gröbner basis relative to variables and
parameters does not, in general, provide a specialized Gröbner basis. The
algorithm dispgb provides specifications Σ for the classes of specializations
of the system having the same behavior, and the corresponding specialized
Gröbner bases B giving the algebraic description of the solutions. These
specifications Σ of the parameters are determined by the pair (N,W), where
N is the null-condition ideal and W is a set of non-null conditions.

In order to obtain the discussion of S we need to choose a monomial
order Âx in the variables and another Âa in the parameters. Usually one
chooses lexicographical orders for variables and parameters. In Maple they
are denoted xord := plex(x1, . . . , xn) and pord := plex(a1, . . . , am).

Then we assign the result of the call to the basic routine dispgb of
the library to a variable T . The call is

> T:=dispgb(F,xord,pord):

The routine dispgb builds up a binary dichotomic tree T containing all the
necessary information about the discussion. The inner vertices of T corre-
spond to dichotomic decisions about certain polynomials in the parameters.
These polynomials are supposed null in the right branch and not null in
the left branch. In the first example we will specify how to interpret these
decisions.

3

Vertices in the tree are labelled as a sequence of 0 and 1. For example,
a vertex v that is located at distance 3 from the top vertex for which two
consecutive null decisions and a non-null decision over the parameters have
been taken is labelled [0,0,1]. The decision taken to branch, the actual spe-
cification Σ = (N,W) and the specialized base B are stored at the vertex in
the tree structure T .

All the data stored in the tree T can be directly accessed. Nevertheless
it is not convenient to print out the whole content of the table T . There
exist two auxiliary output routines tplot and finalcases which select the
relevant data of T in an ordered way.

The routine tplot plots a graphical output of the discussion tree. At
each branching vertex v, the branching condition is shown (in red). tplot

also prints the leading power products of the fundamental polynomials of the
specialized systems (Gröbner bases) at the corresponding terminal vertices
(in black). This provides a first simple scheme of the discussion.

Terminal vertices represent the specifications of the initial system in which
the different types of solutions are grouped. finalcases outputs a list of lists
containing the most relevant algebraic data stored at each terminal vertex.
For a detailed description of its output see Section 3.

It must be noted that the discussion is done over the complex field C.
In most practical cases we are interested only in the real solutions. The
restriction to R must be studied particularly for each case.

First, the dpgb package must be read to start using the library:

> read(‘<path>/Dpgb30.mpl‘):

> with(dpgb);

> libname:=libname,‘<path>‘:

The last call includes the maple.hdb help library of dpgb –that must be
located at the corresponding help path– to the name libname that includes
all the help calls that are available by Maple in the session and will allow to
use help calls on the routines of dpgb in the form ?dpgb, or the name of a
concrete routine.

3 A ray tracing example

Aas a first example let us consider the following linear system which describes
the impact of a simple ray tracing model to the plane x = 1 with the virtual
viewpoint located at the origin.

4

Calling (vx, vy, vz) the direction of the ray, and (x, y, z) the impact point of
the ray on the plane x = 1, the system is:

x = 1
vy x− vx y = 0
vz x− vx z = 0

This example is very simple and easy to compute by hand. Nevertheless it
is instructive to compare with the automatic computation.

Consider the corresponding polynomial basis

F := [x− 1, vy x− vx y, vz x− vx z].

Now define monomial termorders for the variables and the parameters:

> xord:=plex(x,y,z): pord:=plex(vx,vy,vz):

Then use the routine dispgb to build up the discussion tree.

> T:=dispgb(F,xord,pord):

The tplot routine provides a graph showing the essential features of
the discussion:

> tplot(T);

nullnot null

[vz, vy]

[vx]

[x][1]

[z, y, x]

5

This scheme makes the discussion easy to understand. At the vertices
the discriminant ideals are shown (in red). Discriminant ideals separate the
generic case (in the given specialization) from the more specialized cases. A
more detailed description of discriminant ideals is given in Section 4.

The top discriminant ideal is ∆[] = [vx], meaning that, at vertex [],
the decision vx = 0 is taken on the right null branch and vx 6= 0 on the
left non-null branch. It is clear that this is a dichotomic branching. The
discussion proceeds by computing the new discriminant ideal ∆[1] = [vz, vy].
All polynomials in ∆[1] are considered null on the right null branch and
at least one of them non-null on the left non-null branch. This is again a
dichotomic decision. In this example, the discriminant ∆[] = [vx] at the top
level is principal (it consists of a single polynomial), but this is no longer so
at vertex [1], where it consists of two polynomials.

At the terminal vertices, explicit proper non-overlapping specifications
are obtained for which the solutions are of the same kind. At them, only
the set of leading power products (lpp) of the polynomials in the specialized
Gröbner basis of the solutions are shown, as they provide the basic features
of the solutions. As it can be observed in the picture, the discussion provided
by Release 3 is totally compact. To obtain a deeper comprehension on how
the algorithm works, we comment in Section 4 how this discussion is obtained
from the initial one.

To display the algebraic content of the tree we call the routine finalcases.
This routine outputs a list of a lists containing the most important alge-
braic objects for each terminal case. The call is:

> fc:=finalcases(T);

The result can be visualized as:

Case = [[1], [−vz + vx z, −vy + vx y, x− 1], [], {vx}, [z, y, x]]
Case = [[0, 1], [1], [vx], {[vy, vz]}, [1]]
Case = [[0, 0], [x− 1], [vz, vy, vx], { }, [x]]

There are 3 cases in this example, respectively labelled [1], [0, 1] and [0, 0].
For each terminal vertex v the corresponding list contains the following

objects:

[〈label of v〉, 〈basis〉, 〈null conditions〉, 〈non-null conditions〉, 〈lpp〉〉]

There exist some options to get more information from the tree (namely the
history on the assumptions or the decomposition of each case). Let us now
explain the 5 default objects provided by finalcases:

1. The label, denoted with zeroes and ones, records the decisions leading
up to the current node.

6

2. The reduced Gröbner basis of the specialized system. For example, in
the generic case [1] it is B = [−vz + vx z, −vy + vx y, x− 1].

3, 4. The specification summarizing the complete specialization of the case in
the semi-canonical form N, W , where N is the reduced Gröbner basis
of the null condition ideal given as a list, and W is a set of non-null
conditions. W is presented in the form

{c1, . . . , ct, [ct+1, . . . , ct+s]}.

This must be understood as meaning that all the polynomials ci for
1 ≤ i ≤ t are non-null, and at least one of the polynomials ci for
1+ t ≤ i ≤ t+ s is non-null. Notice that either t or s or both can be 0.

5. The set of lpp of the current specialized Gröbner basis. This set char-
acterizes the degrees of freedom of the solution. For example, in the
generic case [1] it is [x, y, z] which corresponds to a consistent system
with unique solution (Cramer). In the case [0, 1] the lpp set is [1], an
inconsistent system (i.e. without solution). And in the case [0, 0] its
lpp set is [x]. This represents a solution with two degrees of freedom.

It is easy to give a geometrical interpretation of the discussion using the
above outlined data: The generic case is obtained by the assumption vx 6= 0.
This is the unique condition ensuring that the ray intersects the plane, and
the solution is easily obtained from the basis, namely: z = vz/vx, y = vy/vx,
x = 1, as expected. Case [0, 1] corresponds to vx = 0 and at least one
of vy or vz not null. This represents a ray parallel to the plane with no
intersection whose direction is defined by a non null vector. Finally, case
[0, 0] is a degenerated case corresponding to a ray defined by a null vector.
The solution is now the entire plane x = 1.

4 From Release 1 to Release 3

We recommend to read this Section to readers interested in a deeper knowl-
edge of the algorithm or in obtaining faster results.

The use of discriminant ideals was introduced by Weispfenning (We03)
and a different kind of discriminant ideal was implemented for the first time
in Release 2 of dpgb (MaMo05a; MaMo05b) and used in the whole tree in
the current Release 3. At the top level, the discriminant ideal provides the
most general condition ensuring that whenever some polynomial in it is non-
null, the system specializes to the generic case. It is called discriminant ideal

7

because for all special cases all the polynomials in it are zero, and whenever
some of them is non-null then the specialization is generic.

The initial tree built up by dispgb does not use discriminant ideals at
all but uses simple polynomials to branch at each step. Release 2 first com-
putes the discriminant ideal from the data in the initial tree, and outputs a
rewritten tree containing the discriminant ideal at the root node. In Release
3 the rebuilding technique is iterated at each level and there all the decisions
are based on discriminant ideals resulting a more compact discussion tree.

The different rebuilt forms of the tree can be obtained with the option
rebuild = n. We give here the results for the preceding example. The
first tree is:

> T0:=dispgb(F,xord,pord,rebuild=0);

> tplot(T0);

nullnot null

vzvxvx

vxvz

vy

[x][1][1][z, y, x][1][z, y, x]

[z, y, x]

> finalcases(T0);

Case = [[1, 1, 1], [−vz + vx z, −vy + vx y, x− 1], [], {vy, vx, vz}, [z, y, x]]
Case = [[1, 1, 0], [1], [vx], {vy, vz}, [1]]
Case = [[1, 0, 1], [z, −vy + vx y, x− 1], [vz], {vy, vx}, [z, y, x]]
Case = [[1, 0, 0], [−vy], [vz, vx], {vy}, [1]]
Case = [[0, 1], [−vz + vx z, y, x− 1], [vy], {vx}, [z, y, x]]
Case = [[0, 0, 1], [−vz], [vy, vx], {vz}, [1]]
Case = [[0, 0, 0], [x− 1], [vz, vy, vx], {}, [x]]

The first rewritten tree can be accessed with the call

> T1:=dispgb(F,xord,pord,rebuild=1): tplot(T1);

8

nullnot null

vz

vy

[vx]

[x][1]

[1]

[z, y, x]

> fc1:=finalcases(T1):

Case = [[1], [−vz + vx z, −vy + vx y, x− 1], [], {vx}, [z, y, x]]
Case = [[0, 1], [1], [vx], {vy}, [1]]
Case = [[0, 0, 1], [−vz], [vy, vx], {vz}, [1]]
Case = [[0, 0, 0], [x− 1], [vz, vy, vx], {}, [x]]

Observe that using rebuild=1 option, the root discriminant ideal [vx] is
already used and the tree is more compact than without rebuilding but less
than the complete rebuilding.

We can also stop the computation of the tree during the execution of
the algorithm. In this case, the already computed parts of the tree can
be accessed by a global variable called UU. Let us see what happens if
we stop the computation before it terminates:

> dispgb(S,xord,pord,rebuild=0):

Warning, computation interrupted

> tplot(__UU);

nullnot null

vzvzvx

vxvz

vy

[x][1][z, y, x][z, y, x][1][‘-act-‘]

[‘-pend-‘]

The computation of the tree is carried out in pre-order and, by default,
beginning by the null branch. As shown in the picture, the computation was
stopped when the vertex [1, 0, 1] was being evaluated and vertex [1] was not
yet started.

9

ϕ2

ϕ1

l
(r, z)

Figure 1: A two arms robot.

5 Inverse kinematic problem of a simple robot

We consider now a more interesting problem for which the system of equa-
tions is not linear in the variables, namely the simple two arms robot of
Figure 1.

The inverse kinematic problem consists of finding the angles ϕ1, ϕ2 of the
robot arms to reach a given position (r, z). This is of practical interest for
commanding the robot. Thus we take the angles as variables and the position
as parameters. We also add l as a parameter, which models that the second
arm has variable length.

The system of equations describing this problem is:

{

r = cosϕ1 + l cos(ϕ2 − ϕ1)
z = sinϕ1 + l sin(ϕ2 − ϕ1)

A typical technique for transforming this trigonometric system into a poly-
nomial one consists of setting ci = cosϕi, si = sinϕi, for i = 1, 2 and adding
the two equations sin2 ϕi + cos2 ϕi = 1 for i = 1, 2. We obtain an equivalent
polynomial system F in the variables c1, s1, c2, s2 to which we can apply the
algorithm:

> F:=[r-c1-l*c1*c2+l*s1*s2,z-s1-l*c1*s2-l*s1*c2,
> c1^2+s1^2-1,c2^2+s2^2-1]:

> xord:=plex(s1,c1,s2,c2): pord:=plex(r,z,l):

> T:=dispgb(F,xord,pord):

> tplot(T);

10

nullnot null

[l]

[-l+l^3, z*l, l*r, r^2+z^2+l^2–1]

[l^3*z-z*l, -l*r+l^3*r]

[r^2*l+l*z^2]

[s2^2, c1, s1][c2, s2, s1^2]

[1]

[c2, s2, c1, s1]

[c2, s2^2, c1, s1]

> finalcases(T);

Case = [[1], [l2 + 2 l c2 + 1− z2 − r2, 4 l2 s2
2 − 2 l2 + l4 − 2 z2 l2

−2 l2 r2 + 1− 2 z2 − 2 r2 + z4 + 2 r2 z2 + r4,
l2 r − r z2 − r3 − r − 2 z l s2 + (2 r2 + 2 z2) c1,
l2 z − z3 − z r2 − z + (2 r2 + 2 z2) s1 + 2 l s2 r],
[], {l, r2 + z2}, [c2, s

2
2, c1, s1]]

Case = [[0, 1], [1 + l2 + 2 l c2, r − l2 r + 2 z l s2, 1− 4 z2 − 2 l2 + l4 + (4 l2 r − 4 r) c1,
l4 − 2 l2 + 1 + 4 z2 + (4 l2 z − 4 z) s1], [r

2 + z2],
{l, l − 1, l + 1, r, z}, [c2, s2, c1, s1]]

Case = [[0, 0, 1], [1], [z l (l − 1) (l + 1), l r (l − 1) (l + 1), l (r2 + z2)],
{[l (l − 1) (l + 1), z l, l r, r2 + z2 + l2 − 1]}, [1]]

Case = [[0, 0, 0, 1], [l c2 + 1, s2, c
2
1 + s2

1 − 1], [(l − 1) (l + 1), z, r], {l},
[c2, s2, s

2
1]]

Case = [[0, 0, 0, 0], [c22 + s2
2 − 1, −r + c1, −z + s1], [l, −1 + z2 + r2], { },

[s2
2, c1, s1]].

It is now easy to make a geometrical interpretation of the solutions.
The generic case [1] corresponds to l 6= 0 and the end of the arm not at

the origin: r2 + z2 6= 0. In this case, two solutions, corresponding to the two
symmetrical positions of the arms relative to the direction (r, z) are obtained
which can be computed by finding the variables from the basis:

c2 = 1
2 l
(r2 + z2 − l2 − 1)

s2 = ± 1
2 l

√

((r2 + z2 − (l − 1)2) ((l + 1)2 − (r2 + z2))
c1 = 1

2(r2+z2)
(2 z l s2 + r (r2 + z2 − l2 + 1))

s1 = 1
2(r2+z2)

(−2 r l s2 + z (r2 + z2 − l2 + 1))

The two solutions correspond to the two signs of the angle ϕ2. Then the
angle ϕ1 is uniquely determined by fixing the sign of s2.

It must be noticed that these solutions always exist in the complex field,
but in practice we are only interested in real ones. So, for real solutions, we

11

must restrict to values of −1 ≤ c2 ≤ 1 in the formula. Using the formula
for cosϕ2 this implies (l − 1)2 ≤ r2 + z2 ≤ (l + 1)2. This restriction has
an evident geometrical interpretation, namely the end of the arm must lie
between the circles of radius l− 1 and l+1. This also ensures real values for
the two angles.

Consider now the rest of special cases.
The case [0, 1] corresponds to the specification r2+z2 = 0, and l, l−1, l+

1, r, z 6= 0. This has no real solutions in the parameters. Its solutions are of
the form z = i r over C. So we need not consider [0, 1] for the real case.

The case [0, 0, 1] summarizes all the inconsistent cases (B = [1]). Nev-
ertheless the compact form obtained with the complete rebuild of the
tree contains three cases, that become apparent with the option rebuild

= 2, and can also be retrieved from the complete rebuild tree using the
splitcase routine. Applying it to the case [0, 0, 1] the specification splits
into the following ones:

> splitcase([0,0,1],T);

[[[z, r], {l, l− 1, l+1}], [[(l− 1)(l+1), r2 + z2], {l, z, r}], [[l], {z2 + r2− 1}]]

Let us give a geometrical interpretation of all these special sub-cases. The
first one corresponds to the origin z = r = 0 with l 6= 1 and l 6= −1, which
is obviously inconsistent. The second sub-case corresponds, as in case [0, 1],
to r2 + z2 = 0 and r, z 6= 0, but now also l = 1 or l = −1. This sub-case is
not only complex (z = i r) but also inconsistent because of the specification
of l. The third sub-case corresponds to a length 0 of the second arm, which
implies r2 + z2 = 1. However, the specification is just r2 + z2 − 1 6= 0 so this
is also obviously inconsistent.

The case [0, 0, 0, 1] corresponds to the origin r = z = 0 and l = 1 or
l = −1 (and l 6= 0 which is a redundant specification). Now clearly the angle
ϕ1 is free, and the angle ϕ2 = π for l = 1 and ϕ2 = 0 for l = −1 (this second
option has no proper geometrical interpretation as lengths are considered
positive). This is exactly the result provided by the automatic discussion.

The case [0, 0, 0, 0] represents the degenerated case with arm length l = 0
and the end-point on the circle z2 + r2 = 1. In this case, the angle ϕ2 is
free and the angle ϕ1 is determined by its sine and cosine from cosϕ1 = z,
sinϕ1 = r.

6 Comprehensive Gröbner Bases

A Comprehensive Gröbner Basis (CGB) of an ideal is a basis specializing
to a Gröbner basis for every specialization of the parameters, i.e. when

12

the parameters are replaced, the result is always a basis that contains the
fundamental polynomials from which the algebraic content of the solutions
can be directly obtained. It must be noticed that the specialized bases will
not be reduced and can contain redundant polynomials.

A first candidate for a CGB is the Gröbner basis computed wrt the pro-
duct order of variables and parameters. It is well known (Gi87) that it does
not always specialize to a Gröbner basis. Weispfennning (We92) gave the first
algorithm to obtain a CGB and more recently he has given an algorithm to
compute a Canonical Comprehensive Gröbner Basis (We03) (CCGB). This
algorithm has high complexity and has not been implemented yet. Never-
theless, dispgb is more efficient and can also be used to compute a CGB,
which is however not necessarily canonical.

CGB has a theoretical interest but, in practice, we are interested in the
discussion of the solutions rather than in a CGB. Anyway, its computation
is currently feasible with the dpgb library although it is very expensive in
computing time. The call to cgb makes an internal call to dispgb with the
option rebuild=0 to obtain the discussion tree. The remaining algorithm
uses the product order combining variables and parameters what is much
more time consuming than working separately wrt variables and parameters.
First it computes the Gröbner basis wrt the product order. Then it detects
the cases not specializing to Gröbner bases and finally it builds up pre-images
of the corresponding polynomials.

Let us consider the same example of the ideal defined in Section 5:

F = [r − c1 − l c1 c2 + l s1 s2, z − s1 − l c1 s2 − l s1 c2, c
2
1 + s2

1 − 1, c22 + s2
2 − 1]

Using the dpgb library

> G:=cgb(F,xord,pord,’numpols’);

the result is:

G := [c21 + s2
1 − 1, c22 + s2

2 − 1, 4 s1 z
3 + 4 c21 r

2 + 4 c21 z
2 + 4 z s1 r

2 − 2 l c2 r
2

−2 l c2 z
2 + 4 l2 c1 r − l2 r2 − l2 z2 + l4 − 4 c1 r − r2 − 5 z2 − 2 l2 + 1,

2 c1 r
2 + 2 c1 z

2 − 2 z l s2 − r + l2 r − r z2 − r3,
l2 + 2 l c2 + 1− z2 − r2, 2 s1 z + 2 c1 r − r2 − z2 + l2 − 1,
s2 s1 + c2 c1 + l c1 − s2 z − c2 r, s1 r − z c1 + l s2,
4 s2 z c1 + 4 c2 c1 r + 4 l c1 r − 4 s2 z r − 2 c2 r

2 + 2 c2 z
2 − 2 c2 − l r2 − l z2

+l3 − 3 l, −2 c2 z c1 − 2 z l c1 + s2 z
2 + 2 z c2 r + 2 s2 r c1 − s2 r

2 + l2 s2 − s2,
2 l2 s1 − 2 s1 − 4 l c1 s2 + 2 l s2 r − r2 z − z3 + l2 z + 3 z,
c2 s1 + s1 l − s2 c1 + s2 r − c2 z]

The optional variable ’numpols’ takes the value 1, meaning that only 1
single polynomial has been added to the Gröbner basis wrt variables and
parameters to obtain a CGB.

13

P6(x, y, z)

P5

P4

P3

P2

P1

Figure 2: Tensegrity framework: oblique triangular prism.

To understand the concept of CGB we may explore what happens if
we specialize G to l = 0, r = 1, z = 1, which corresponds to the case
[0,0,1] and has no solutions, as we know from the discussion in Section 5.

> G0:=subs(l=0,r=1,z=1,G);

G0 := [c21 + s2
1 − 1, c22 + s2

2 − 1, 8 s1 + 8 c21 − 4 c1 − 5, 4 c1 − 3, −1,
2 s1 + 2 c1 − 3, s2 s1 + c2 c1 − s2 − c2, s1 − c1,
4 s2 c1 + 4 c2 c1 − 4 s2 − 2 c2, −2 c2 c1 − s2 + 2 c2 + 2 s2 c1,
−2 s1 + 1, c2 s1 − s2 c1 + s2 − c2]

We can observe that G0 contains the constant polynomial −1. This implies
that the system is not consistent (−1 6= 0), as we wanted to show. If we
directly specialize F the result would not be explicit.

7 A tensegrity problem

Consider now the following tensegrity problem (GuOr04): given the five
points

P1(0, 0, 0), P2(1, 1, 1), P3(0, 1, 0), P4(1, 0, 0), P5(0, 0, 1)

determine a sixth one P6(x, y, z) such that the framework (Figure 2) with
vertices {P1, . . . P6} admits non-null scalar stresses wij assigned to the edges
forming a complete graph minus the edges {P1 P6, P2 P4, P3 P5} (non-null
self-stress problem). The equilibrium condition must be fulfilled at every

14

vertex i:
∑

j : ij edge

wij(Pi − Pj) = 0

The system of equations corresponding to this particular example is:

S = [w12 + w14, w12 + w13, w12 + w15, w12 + w23 + w25 − w26x+ w26,
w12 + w25 − w26y + w26, w12 + w23 − w26z + w26, w23 + w34 + xw36,
w13 + w34 − w36y + w36, w23 + zw36, w14 + w34 + w45 − w46x+ w46,
w34 + yw46, w45 + zw56, w15 + w45 − zw56 + w56,
−w26 + w26x+ xw36 − w46 + w46x+ w56x,
−w26 + w26y − w36 + w36y + yw46 + w56y,
−w26 + w26z + zw36 + w46z − w56 + zw56].

S is a linear homogeneous system in the variables wij with the parameters
x, y, z. The generic solution is clearly inconsistent as the system is over-
determined. It is easy to eliminate variables using the generalized Gaussian

elimination (gge routine) implemented in the library. The gge routine per-
forms iterated pseudo-divisions of the given polynomials wrt the product
order and obtains a new simpler basis of the initial ideal. Set

xpord := plex(w12, w13, w14, w15, w23, w25, w34, w45, w26, w36, w46, w56, x, y, z),

and call

> B:=gge(S,xpord);

The output gge basis can be particularly expressed as B = B1 ∪ B2,
where B2 is the elimination ideal wrt the variables w26 = w2, w36 = w3,
w46 = w4, w56 = w5 (i.e. the ideal containing all the polynomials involving
only these variables) and B1 expresses the remaining variables linearly in
terms of w2, w3, w4, w5:

B1 = [w45 + zw5, w34 + yw4, w25 + w5y, w23 + zw3, w15 − 2zw5 + w5,
w14 − 2zw5 + w5, w13 − 2zw5 + w5, w12 + 2zw5 − w5]

B2 = [−zw5 + w5x− w5y,−zw5 + w4z, w4x+ yw4 − w4 − zw5 + w5,
w3y − w3 + yw4 − 2zw5 + w5, xw3 − yw4 − zw3,
w2z − w2 + zw3 + 2zw5 − w5, w2y − w2 + w5y + 2zw5 − w5,
w2x− w2 + zw3 + w5y + 2zw5 − w5].

So, the discussion is reduced to the system B2. Calling now dispgb for
B2 the discussion becomes:

> T:=dispgb(B2,plex(w2,w3,w4,w5),plex(x,y,z)):

> tplot(T);

15

nullnot null

[z, 2*y–1]

[-z+x-y]

[y*x-x-y^2+y+z]

[y*z]

[y*z^2-y*z]

[y^2*z-y*z, x*z-z^2, x^2-x-y^2+y-z^2+z]

[w5, w3, w2][w4, w3, w2]

[w5, w4, w2]

[w5, w3, w2]

[w5, w4, w3]

[w5, w4, w2]

[w5, w4, w3, w2]

> finalcases(T);

Case = [[1], [w5, w4, w3, w2], [], {[y z (y − 1), z (x− z),
x2 − x− y2 + y − z2 + z]}, [w5, w4, w3, w2]]

Case = [[0, 1], [w5, w4, (z − 1)w2 + z w3], [y − 1, x− z], {y, z − 1, z},
[w5, w4, w2]]

Case = [[0, 0, 1], [w5, w4, w3], [z − 1, y − 1, x− 1], {y, z}, [w5, w4, w3]]
Case = [[0, 0, 0, 1], [w5, (y − 1)w3 + y w4, w2], [y z, z (x− z),

x2 − x− y2 + y − z2 + z], {y x− x− y2 + y + z}, [w5, w3, w2]]
Case = [[0, 0, 0, 0, 1], [w5, w4, w2], [y z, z (x− z), y x− x− y2 + y + z,

x2 − x− y2 + y − z2 + z], {−z + x− y}, [w5, w4, w2]]
Case = [[0, 0, 0, 0, 0, 1], [w4 − w5, w3 + (−1 + 2 z)w5, w2 + (−2 z + 1)w5]]
[y z, −z + x− y], {[2 y − 1, z]}, [w4, w3, w2]]
Case = [[0, 0, 0, 0, 0, 0], [w5, w3 − w4, w2], [z, 2 y − 1, 2x− 1], { },

[w5, w3, w2]]

The generic case corresponds to the trivial 0 solution for the stresses wij and
is just the non interesting case. The discriminant is

∆[] := [y z (y − 1), z (x− z), x2 − x− y2 + y − z2 + z]

and the system has no trivial solutions only when all the polynomials in ∆[]

are zero.
Table 1 summarizes the real points corresponding to the specifications of

the null self-stress cases fulfilling all the solutions of the discriminant ideal
∆[]. Figure 3 shows the geometric locus of these points that corresponds to
four straight lines lying on the hyperboloid x2 − x− y2 + y − z2 + z = 0:

16

Case Points Exceptions

[0, 1] {(t, 1, t) : t ∈ R} (1, 1, 1), (0, 1, 0)
[0, 0, 1] (1, 1, 1)
[0, 0, 0, 1] {(1− t, t, 0) : t ∈ R} (0, 1, 0), (1

2
, 1

2
, 0)

[0, 0, 0, 0, 1] (0, 1, 0)
[0, 0, 0, 0, 0, 1] {(t, t, 0) : t ∈ R} (1

2
, 1

2
, 0)

{(t, 0, t) : t ∈ R}
[0, 0, 0, 0, 0, 0] (1

2
, 1

2
, 0)

Table 1: Non-null self-stress solutions

P5

P4

P3

P2

P1

Figure 3: Graphic of the non-null self-stress solutions

17

8 Benchmarks

We tested the current implementation, Release 3.0 in M aple 8, of dispgb
using a 2 GHz Pentium 4 at 512 MB to a set of several examples taken from
the literature. Table 2 summarizes computing times of dispgb algorithm for
a subset of these examples without rebuilding the tree, with 1 rebuild and
totally rebuilt. The bases of the different examples are detailed below:

• S11. [(d4d3R + r2
2 − d4d3r

2
2 + d2

4d
2
3 − d4d

3
3 − d3

4d3 + d4d3 + Z −R)t4

+ (−2r2d4R + 2r2d
3
4 + 2r2d4d

2
3 − 4r2d3d

2
4 + 2r3

2d4 + 2r2d4)t
3

− (2r2
2 − 2R + 4d2

4r
2
2 + 4d2

4 + 2Z − 2d2
4d

2
3)t

2

+ (−2r2d4R + 2r2d4d
2
3 + 2r2d4 + 2r2d

3
4 + 4r2d3d

2
4 + 2r3

2d4)t
+ r2

2 + d3
4d3 − d4d3R + d4d3r

2
2 + Z −R− d4d3 + d2

4d
2
3 + d4d

3
3];

• S12. [a− l3c3 − l2c1, b− l3s3 − l2s1, c
2
1 + s2

1 − 1, c23 + s2
3 − 1];

• S14. [t3−cut2−uv2−uw2, t3−cvt2−vu2−vw2, t3−cwt2−wu2−wv2];

• S15. [a+ds1, b−dc1, l2c2+ l3c3−d, l2s2+ l3s3−c,s
2
1+c21−1, s2

2+c22−1,
s2
3 + c23 − 1];

We tested several other problems and in some of them only partial results
have been reached. We present two significant examples:

• S17. [axt2 + bytz − x(x2 + cy2 + dz2), ayt2 + bzxt− x(y2 + cz2 + dx2),
azt2 + bxyt− x(z2 + cx2 + dy2)]

• S18. [(3x2 + 9v2 − 3v − 3x)t21t
2
2 + (3v2 − 3v + 6vx− 3x+ 3x2)t22

+ (3v+3v2 +3x2− 3x− 6vx)t21− 24v2t1t2 +9v2− 3x+3x2 +3v,
(3x2 + 9v2 − 3v − 3x)t22t

2
3 + (3v + 3v2 + 3x2 − 3x− 6vx)t22

+ (3v2− 3v+6vx− 3x+3x2)t23− 24v2t2t3 +9v2− 3x+3x2 +3v,
(3x2 + 9v2 − 3v − 3x)t23t

2
1 + (3v2 − 3v + 6vx− 3x+ 3x2)t21

+ (3v+3v2 +3x2− 3x− 6vx)t23− 24v2t3t1 +9v2− 3x+3x2 +3v]

For S17 (GoTrZa00), dispgb gets bogged down after computing 35 terminal
vertices in 1375 sec. It is unable to finish the whole discussion tree, and so
no rebuilding using the discriminant ideal can be achieved. The label of the
35th vertex is [1, 1, 0, 1, 0, 0], thus all vertices beginning with [1, 0, . . .] have
been already determined (the tree is built up in pre-order beginning with the
0 vertices).

S18 corresponds to the benzene molecule studied in (EmMo99). The
situation reached by dispgb is similar to S17, getting bogged down after 45
seconds when the 9th vertex labelled [1, 1, 0, 0] has been computed.

18

Identification CPU time CPU time CPU time
rebuild=0 rebuild=1 complete

S10. Section 5 6.8 8.7 19.8
Two arms robot

S11. (Co04) 9.6 13.9 62.7
Coste robot

S12. (Ry00) 5.2 9.7 75.4
Rychlik robot

S14. (GoTrZa00) 8.1 8.2 8.6
Hilbert functions

S15. (GoRe93; De99) 12.4 24.1 371.2
Romin robot

S16. Section 7, (GuOr04) 12.8 29.1 63.2
Tensegrity

Table 2: Benchmarks (in sec.)

As one can observe in Table 2, rebuilding the tree is time consuming.
In many practical cases, the best discussion appears to be setting the option
rebuild=1 to the dispgb call, which rebuilds only the generic case. We would
recommend to use in general this option as the quickest practical discussion.

9 Acknowledgements

We would like to thank Professors Pelegŕı Viader and Julien Pfeifle for their
many helpful comments and his insightful perusal of our first draft.

References

[BeWe93] T. Becker, V. Weispfenning. Gröbner Bases: A Computational
Approach to Commutative Algebra. Springer, New-York, 1993.

[Co04] M. Coste. Classifying serial manipulators: Computer Algebra and
geometric insight. Plenary talk. (Personal communication). Proceedings
of EACA-2004, 323–323, 2004.

[CoLiSh] D. Cox, J. Little, D. O’Shea. Ideals, Varieties and Algorithms.
Springer, New-York, 2nd edition, 1996.

19

[De99] S. Dellière. Triangularisation de systèmes constructibles. Applica-
tion à l’évaluation dynamique. Thèse Doctorale, Université de Limoges.
Limoges, 1995.

[Du95] D. Duval. Évaluation dynamique et clôture algébrique en Axiom.
Journal of Pure and Applied Algebra, 99:267–295, 1995.

[EmMo99] I. Z. Emiris, B. Mourrain. Computer Algebra Methods for Study-
ing and Computing Molecular Conformations. Algorithmica 25: 372-
402, 1999.

[Gi87] P. Gianni. Properties of Gröbner Bases under Specializations. In: J.H.
Davenport (ed.), EUROCAL’87. Springer LCNS 378:293–297. 1987.

[GoRe93] M.J. González-López, T. Recio. The ROMIN inverse geometric
model and the dynamic evaluation method. In: Computer Algebra in
Industry. Ed. A.M. Cohen, Wiley & Sons, 117–141, 1991.

[GoTrZa00] M.J. González-López, L. González-Vega, C. Traverso, A. Zanoni.
Gröbner Bases Specialization through Hilbert Functions: The Homoge-
neous Case. SIGSAM BULL, Issue 131, 34:1, 1-8, 2000.

[GuOr04] M. de Guzmán, D. Orden. Finding tensegrity structures: geo-
metric and symbolic aproaches. Proceedings of EACA-2004, 167–172,
2004.

[MaMo05a] M. Manubens, A. Montes. Improving DISPGB Algorithm Using
the Discriminant Ideal. Proceedings of Algorithmic Algebra and Logic
2005, 159–166, 2005.

[MaMo05b] M. Manubens, A. Montes. Improving DISPGB Algorithm Using
the Discriminant Ideal. To be published in Jour. Symb. Comp.

[Mo95] A. Montes. Solving the Load Flow Problem Using the Gröbner Bases.
SIGSAM Bull., 29:1–13, 1995.

[Mo98] A. Montes. Algebraic solution of the load-flow problem for a 4-nodes
electrical network. Math. and Comp. in Simul. 45:163–174, 1998.

[Mo02] A. Montes. New Algorithm for Discussing Gröbner Bases with Pa-
rameters. Jour. Symb. Comp., 33(1-2):183–208, 2002.

[Ry00] M. Rychlik. Complexity and Applications of Parametric Algorithms
of Computational Algebraic Geometry. In: Dynamics of Algorithms. Ed.
R. del la Llave, L. Petzold, and J. Lorenz. IMA Volumes in Mathematics
and its Applications, Springer-Verlag 118:1–29, 2000.

20

[We92] V. Weispfenning. Comprehensive Gröbner Bases. Jour. Symb. Comp.

14:1–29, 1992.

[We02] V. Weispfenning. Canonical Comprehensive Gröbner Bases. Proceed-
ings of ISSAC 2002. ACM-Press, 270–276, 2002.

[We03] V. Weispfenning. Canonical Comprehensive Gröbner Bases. Jour.

Symb. Comp. 36:669–683, 2003.

21

