
Improving DISPGB Algorithm Using the

Discriminant Ideal

Montserrat Manubens 1, Antonio Montes 1

Departament de Matemàtica Aplicada II.

Universitat Politècnica de Catalunya. Spain.

Abstract

In 1992, V. Weispfenning proved the existence of Comprehensive Gröbner Bases
(CGB) and gave an algorithm to compute one. That algorithm was not very effi-
cient and not canonical. Using his suggestions, A. Montes obtained in 2002 a more
efficient algorithm (DISPGB) for Discussing Parametric Gröbner Bases. Inspired in
its philosophy, V. Weispfenning defined, in 2002, how to obtain a Canonical Com-
prehensive Gröbner Basis (CCGB) for parametric polynomial ideals, and provided
a constructive method.

In this paper we use Weispfenning’s CCGB ideas to make substantial improve-
ments on Montes DISPGB algorithm. It now includes rewriting of the discussion
tree using the Discriminant Ideal and provides a compact and effective discussion.
We also describe the new algorithms in the DPGB library containing the improved
DISPGB as well as new routines to check whether a given basis is a CGB or not,
and to obtain a CGB. Examples and tests are also provided.

Key words: discriminant ideal, comprehensive Gröbner bases, parametric
polynomial system.
MSC: 68W30, 13P10, 13F10.

∗ Corresponding author: Antonio Montes.
Email addresses: montserrat.manubens@upc.edu, antonio.montes@upc.edu

(Antonio Montes).
URL: http://www-ma2.upc.edu/∼montes (Antonio Montes).

1 Work partially supported by the Ministerio de Ciencia y Tecnoloǵıa under project
BFM2003-00368, and by the Generalitat de Catalunya under project 2001 SGR
00224

Preprint submitted to Elsevier Science 2 February 2005

1 Introduction

Let R = k[a] be the polynomial ring in the parameters a = a1, . . . , am over
the field k, and S = R[x] the polynomial ring over R in the set of variables
x = x1, . . . , xn. Let Âx denote a monomial order wrt the variables x, Âa a
monomial order wrt the parameters a and Âxa the product order. The problem
we deal with consist of solving and discussing parametric polynomial systems
in S.

Since Gröbner bases were introduced various approaches have been developed
for this problem. The most relevant ones are:

• Comprehensive Gröbner Bases (CGB) (We92).
• Specific Linear Algebra Tools for Parametric Linear systems (Si92).
• Dynamic Evaluation (Du95).
• Newton Algorithm with Branch and Prune Approach (HeMcKa97).
• Triangular Sets (Mor97).
• Specialization through Hilbert Functions (GoTrZa00).
• DISPGB Algorithm (Mo02).
• Alternative Comprehensive Gröbner Bases (ACGB) (SaSu03).
• Canonical Comprehensive Gröbner Bases (CCGB) (We03).

This paper describes some improvements made on DISPGB. Trying to solve
some of the examples given in the references cited above using the improved
DISPGB has been an interesting challenge (see section 5).

In (We92), Professor Volker Weispfenning proved the existence of a Compre-
hensive Gröbner Basis CGB wrt Âx for any ideal I ⊂ S such that for every
specialization of the parameters σa : R → K ′ extended to R[x] → K ′[x],
σa(CGB) is a Gröbner basis of the specialized ideal σa(I). He also provided
an algorithm to compute it. There are two known implementations of this
algorithm (Pe94; Sc91).

In (Mo95) and (Mo98), A. Montes used classical Gröbner bases theory to study
the load-flow problem in electrical networks. V. Weispfenning recommended
him to use the Comprehensive Gröbner Basis algorithm (We92; Pe94) for
this problem. The use of CGB in the load-flow problem provided interesting
information over the parameters, but was rather complicated and not very
efficient. Moreover, it was not canonical, i.e. it was algorithm depending.

In Montes (Mo02) provided a more efficient algorithm (DISPGB) to Discuss
Parametric Gröbner Bases, but it was still non-canonical. DISPGB produces a
set of non-faithful, canonically reduced Gröbner bases (Gröbner system) in a
dichotomic discussion tree whose branches depend on the cancellation of some
polynomials in R. The ideas in DISPGB however, inspired V. Weispfenning in

2

(We02; We03) to prove the existence of a Canonical Comprehensive Gröbner
Basis (CCGB) as well as to give a method to obtain one.

The main idea for building up the canonical tree is the obtention of an ideal
J ⊂ R, structurally associated to the ideal I ⊂ S and the order Âx, which
clearly separates the essential specializations not included in the generic case.
Let us denote J as the Weispfenning’s discriminant ideal of (I,Âx). In the
new Weispfenning’s algorithm, J must be computed at the beginning of the
discussion using a relatively time-consuming method. The discriminant ideal
was one of the lacks of the old DISPGB and an insufficient alternative algorithm
GENCASE was provided.

In this paper we obtain, following Weispfenning, a discriminant ideal denoted
as N , which can be determined from the data obtained after building the
DISPGB tree using a less time consuming algorithm and, moreover, we prove
that J ⊂ N . We conjecture that J = N . We have verified it in more than
twenty different examples, and no counter-example has been found. The ideal
N allows to rewrite the tree getting a strictly better discussion.

We also prove that for a large set of parametric polynomial ideals (at least
for all prime ideals I) the discriminant ideal is principal and in this case we
have a unique discriminant polynomial to distinguish the generic case from
the essential specializations. All the theoretical results commented above are
detailed in section 2.

In section 3, we describe the improvements introduced in the algorithms. We
have made a complete revision to the old release simplifying the algorithm
and highly increasing its speed. New routines CANSPEC and PNORMALFORM which
perform semi-canonical specifications of specializations and reductions of poly-
nomials are given. The algorithm has been completely rewritten and the flow
control has been simplified. Further reductions of the tree, eliminating similar
brother terminal vertices, have been performed using algorithm COMPACTVERT.

Following P. Gianni (Gi87), we are interested in guessing whether some basis
of I is a comprehensive Gröbner basis or not, in particular for the reduced
Gröbner basis of I wrt the product order Âxa. We give, in section 4, a simple
algorithm ISCGB which uses the DISPGB output tree to answer that question.
We also give an algorithm PREIMAGE to compute a faithful pre-image of the
non-faithful specialized polynomials from the reduced bases. This allows to
construct a CGB. It will be interesting to compare our CGB with Weispfen-
ning’s CCGB when implemented.

Finally, in section 5, we give two illustrative examples and a table of bench-
marks for DISPGB applied to several parametric systems from which the power
of the algorithm is clearly shown.

3

It is stated in the same section that the new DISPGB
2 algorithm is efficient and

provides a compact discussion of parametric systems of polynomial equations.
An incipient version of it was presented in (MaMo04).

2 Generic Case, Discriminant Ideal and Special Cases

Let K = k(a) be the quotient field of R and IK the ideal I extended to the
coefficient field K. Consider G = gb(IK,Âx), the reduced Gröbner basis of
IK wrt Âx. As K is a field, G can be computed through the ordinary Buch-
berger algorithm. The polynomials in G have leading coefficient 1. With this
normalization g can have denominators in R. Let dg ∈ R be the least common
multiple of the denominators of g. To obtain a polynomial in S corresponding
to g it suffices to multiply g by dg. Following Weispfenning (We02; We03), for
each g ∈ G we can obtain a minimal lifting of g, agg, such that agg ∈ I and
ag ∈ R is minimal wrt Âa. Doing this for all g ∈ G we obtain G′, a minimal
lifting of G which Weispfenning calls the generic Gröbner basis of (I,Âx). Of
course, dg | ag. We will use a sub-lifting of G, G′′ = {dgg : g ∈ G} ⊂ S,
and this will be our generic case basis because it is simpler to compute and
corresponds to our standard form of reducing polynomials, as it will be seen
in section 3.

We call singular specialization a specialization σ for which the set of lpp (lead-
ing power products) of the reduced Gröbner basis of σ(I) is not equal to the
set of lpp(G,Â x).

DISPGB builds up a binary dichotomic tree T (I,Âx,Âa) branching at the ver-
tices whenever a decision about the cancellation of some p ∈ R has been
taken. Each vertex v ∈ T contains the pair (Gv,Σv). Σv = (Nv,Wv) is the
semi-canonical specification of the specializations in v, where Nv is the radical
ideal of the current assumed null conditions (from which all factors of polyno-
mials in Wv have been dropped), and Wv is the set of irreducible polynomials
(conveniently normalized and reduced by Nv) of the current assumed non-null
conditions. Considering W ∗

v the multiplicatively closed set generated by Wv,
then Gv ⊂ (W ∗

v)
−1 (K[x]/Nv) is the reduced form of the basis of σ(I) for the

specification of the specializations σ ∈ Σv. At a terminal vertex, the basis Gv is
the reduced Gröbner basis of σ(I), up to normalization, for all specializations
σ ∈ Σv.

Weispfenning (We02) introduces the following ideal associated to each g ∈ G:

Jg = {a ∈ R : ag ∈ I} = dg (I : dgg)
⋂
R

2 Release 2.3 of the library DPGB, actually implemented in Maple and available at
the site http://www-ma2.upc.edu/∼montes/

4

the second formula being computable via ordinary Gröbner bases techniques.
Then the radical of their intersection J =

√⋂
g∈G Jg is used to distinguish

the generic case in the algorithm. We call J the Weispfenning’s discriminant

ideal. A specialization σ is said to be essential (for I,Âx) if Jg ⊆ ker(σ) for
some g ∈ G.

V. Weispfenning proves the following two theorems:

W1: J =
⋂ {ker(σ) : σ is essential }.

W2: Let σ be an inessential specialization. Then
(i) σ(G) is defined for every g ∈ G and lpp(σ(g),Âx) = lpp(g,Âx).
(ii) σ(G) is the reduced Gröbner basis of the ideal σ(I).

In the DISPGB tree T (I,Âx,Âa) specializations are grouped into disjoint final
cases i by the specification Σi, and for all specializations in Σi the reduced
Gröbner bases have the same set of lpp wrt Âx.

Let 1 ≤ i ≤ k number the terminal vertices. We call singular cases the final
cases for which lpp(Gi,Âx) 6= lpp(G,Âx). Let A be the set of indexes of the
singular cases:

A = {1 ≤ i ≤ k : lpp(Gi,Âx) 6= lpp(G,Âx)}.

We denote V(I) the variety of I and I(V) the ideal of the variety V . The tree,
being dichotomic, provides a partition of (K ′)m into disjoint sets of specifica-
tions, and thus

(K ′)m =
k⋃

i=1

V(Ni) \

⋃

w∈Wi

V(w)

 = Us

⋃
Ug,

where Us is the set of points a ∈ (K ′)m corresponding to singular specifications,
i.e.

Us(I,Âx) = {a ∈ (K ′)m : σa is singular } =
⋃

i∈A

V(Ni) \

⋃

w∈Wi

V(w)

 .

Theorem 1 Let us call N(I,Âx) = I(Us) the discriminant ideal. Then

N(I,Âx) =
⋂

i∈A

Ni.

This theorem allows to compute N from the output of BUILDTREE, i.e. the
first tree construction in DISPGB. (See section 3).

5

PROOF. We prove both inclusions:

⊆: f(a) = 0 for all f ∈ N = I(Us) and a ∈ Us. Thus σa(f) = 0 for all a ∈ Us.
Taking now a such that σa ∈ Σi this implies that f ∈ Ni. As this can be
done for all i ∈ A, it follows that N ⊆ ⋂

i∈A Ni.
⊇: For all f ∈ ⋂

i∈A Ni and all a ∈ Us there exists i ∈ A such that σa ∈ Σi

and, of course, f ∈ Ni. Thus σa(f) = 0, i.e. f(a) = 0 for all a ∈ Us. Thus
f ∈ I(Us) = N .

Before proving the next theorem we need the following

Lemma 2 Any singular specialization is essential.

PROOF. Let σa be a singular specialization. If it were not essential, by
Weispfenning theorem (W2), then the reduced Gröbner basis of σ(I) would
be the generic basis G, and this contradicts the definition of singular special-
ization. Thus σa must be essential.

Theorem 3 J ⊆ N .

PROOF. By Weispfenning’s theorem (W1), if f ∈ J then f ∈ ker(σa) for all
essential σa, and thus f(a) = 0. So, by lemma 2, f(a) = 0 for all singular σa.
This implies that f(a) = 0 for all i ∈ A and σa ∈ Σi and thus f ∈

√
Ni = Ni.

Finally, by proposition 1, f ∈ N .

Conjecture 4 We formulate two forms

(i) (Strong conjecture). All essential specializations are singular.

(ii) (Weak conjecture). J ⊇ N .

Proposition 5 The strong formulation of conjecture 4 implies the weak for-

mulation.

PROOF. If f ∈ N then, for all i ∈ A, f ∈ Ni. Thus, f(a) = 0 for all singular
specialization σa and, if the strong form of the conjecture is true, then f(a) = 0
also for all σa essential and thus f ∈ ker(σa). So, by Weispfenning’s theorem
(W1), f ∈ J .

In any case, by definition N is discriminant, i.e. for any a 6∈ V(N) the Gröbner
basis of σa(I) is generic, and every singular specification is in V(N). Thus,
what we called minimal singular variety in (Mo02) is described by V(N). If

6

the strong formulation of the conjecture is true then every specialization σ,
for which N ⊂ ker(σ), is not only essential but also singular and thus the
corresponding set of lpp of its reduced Gröbner basis cannot be generic.

We have tested our conjecture in more than twenty examples and we have
not found any counter-example of any of the two formulations. Nevertheless
the weak formulation is the most interesting one and a failure of the strong
formulation would not necessarily invalidate the weak formulation.

In most cases Weispfenning’s discriminant ideal J is principal, as states the
following

Theorem 6 If I ⊂ S is a prime ideal and the generic Gröbner basis G wrt

Âx is not [1], then the discriminant ideal J(I,Âx) is principal and is generated

by the radical of the lcm of all the denominators of the polynomials in G.

PROOF. Take g ∈ G. We have Jg = dg (I : dgg)
⋂
R. If h ∈ Jg then dg | h, as

dgg has no common factor with dg. Thus dgg (h/dg) ∈ I. By hypothesis, dgg 6=
1 and I is prime. So, as h/dg ∈ R, we have h/dg 6∈ I. Thus, necessarily dgg ∈ I
and dg ∈ Jg. As dg | h for all h ∈ Jg, it follows that Jg = 〈dg〉 is principal. As
J =

√⋂
g∈G Jg is the intersection of principal ideals, the proposition follows.

Not only prime ideals have principal discriminant ideals as the next example
shows: Take

I = 〈ax+ y + z + b, x− 1 + ay + z + b, x+ y + az + b〉.

Computing the Gröbner basis of I wrt lex(x, y, z, a, b) one can see that

I = 〈(a+ 2)z + b, y − z, x+ y + az + b〉 ∩ 〈a− 1, x+ y + az + b〉

and I is not prime. The generic Gröbner basis wrt lex(x, y, z) is, in this case,
G = [z + b/(a + 2), y + b/(a + 2), x + b/(a + 2)]. Thus dg = a + 2 for each
g ∈ G. For this example it is easy to compute J = 〈(a + 2)(a − 1)〉 which is
still principal even if I is not prime and has a prime component with generic
Gröbner basis [1].

It would be interesting to characterize which ideals I ⊂ S have principal
discriminant and which do not. But it is now clear that in the most interesting
cases we have principal discriminants. This gives a new insight into our concept
of singular variety used in the algorithm (Mo02) in order to understand the
parallelism and differences between the new Weispfenning’s algorithm (We02;
We03) and DISPGB, and allows us to improve the old algorithm.

7

Under that perspective, we have completely revised (Mo02) and obtained
a much more efficient and compact discussion. An intermediate version was
presented in (MaMo04). We shall describe now the improvements introduced
in the new DPGB library and refer to (Mo02), where the old DPGB is described,
for all unexplained details.

3 Improved DISPGB Algorithm

In this section we describe the improvements introduced in DISPGB algorithm.
Table 1 summarizes the basic differences between old (Mo02) and the new
algorithms used in it.

First, we have improved the construction of the discussion tree T (I,Âx,Âa) in
order to have a simpler flow control and to make it faster by avoiding unneces-
sary and useless time-consuming computations. In the old algorithm this was
done by the recursive routine BRANCH which was the unique action of DISPGB,
but now it is done by BUILDTREE. As we explain later, it has been strongly
reformed.

Then, DISCRIMINANTIDEAL computes the discriminant ideal N =
⋂

i∈A Ni

which, as shown in section 2, can be determined from BUILDTREE output.

After that, DISPGB calls REBUILDTREE. This algorithm builds a new tree set-
ting the discriminant ideal N at the top vertex and the generic case at the
first non-null vertex labelled as [1] (see figure 1 in section 5.1). The old tree
is rebuilt under the first null vertex recomputing the specifications and elim-
inating incompatible branches. The result is a drastic reduction of branches
in the new tree. In the old DPGB library, this work was partially done by the
external algorithm GENCASE which has become useless.

To further compact the tree, a new algorithm COMPACTVERT is used. It sum-
marizes brother terminal vertices with the same set of lpp into their father
vertex. COMPACTVERT is called before and after REBUILDTREE. DISPGB algorithm
is sketched in table 2.

3.1 Building up the Discussion Tree: BUILDTREE.

We have simplified the flow control from the ancient DISPGB and dropped
useless operations. Now all the hard work of the discussion is done by the
recursive algorithm BUILDTREE which replaces the old BRANCH routine and
makes NEWVERTEX useless. The obtained discussion is equivalent to the one
given by the old DISPGB, but now is more compact.

8

Routines of the
old algorithm

Routines of the new
algorithm

Improvements Obsolete
routines

DISPGB

BRANCH

DISPGB

BUILDTREE

DISCRIMINANTIDEAL

REBUILDTREE

COMPACTVERT

BUILDTREE replaces old
BRANCH.
Current DISPGB includes
also rebuilding of the
tree (REBUILDTREE) and
COMPACTVERT.

GENCASE

BRANCH

NEWVERTEX

BUILDTREE Better flow control, no
incompatible branching.

BRANCH

NEWCOND CONDTOBRANCH More robust, ensures no
incompatible branches.

NEWCOND

CANSPEC CANSPEC Uses radical ideal. More
robust.

- PNORMALFORM Standard polynomial re-
duction wrt Σ.

CONDPGB CONDPGB Uses CONDTOBRANCH and
Weispfenning’s standard
pair selection.

- DISCRIMINANTIDEAL Determines the discrim-
inant ideal N .

- REBUILDTREE Rebuilds the tree start-
ing the discussion with
N .

GENCASE

(external)

- COMPACTVERT Drops brother terminal
vertices with same lpp
sets.

Table 1

It computes the discussion tree faster than the old one because now it as-
sembles the discussion over the coefficients of the current basis in one single
algorithm, avoiding unnecessary branching and useless computations.

Given B, a set of polynomials generating the current ideal, BUILDTREE takes
the current basis Bv at vertex v, specialized wrt the current reduced specifi-
cation Σv = (Nv,Wv), builds a binary tree T containing the discussion under
vertex v, and stores all the data at the vertices of T . It is a recursive algorithm
and substitutes the old BRANCH and NEWVERTEX. See table 3.

Theorem 16 in (Mo02) still applies to the reformed BUILDTREE, thus we can
assert the correctness and finiteness of the algorithm.

9

T ← DISPGB(B,Âx,Âa)
Input:

B ⊆ R[a][x] : basis of I,
Âx, Âa : termorders wrt the variables x and the parameters a respectively.

Output:
T : table with binary tree structure, containing (Gv,Σv) at vertex v

BEGIN
T := φ, # global variable
v := [] # (label of the current vertex)
Σ := ([], φ) # (current specification)
BUILDTREE(v,B,Σ) # (recursive, stores the computations in T)
N := DISCRIMINANTIDEAL(T)
COMPACTVERT(T) # (compacts T)
REBUILDTREE(T,N) # (rebuilds T)
COMPACTVERT(T) # (compacts T)

END

Table 2

The most important algorithms used by BUILDTREE are commented below.

The algorithm CONDTOBRANCH substitutes the old NEWCOND. It is used each
time that BUILDTREE is recursively called and also inside CONDPGB, applying
it to each new not-reducing-to-zero S-polynomial. This prevents Buchberger
algorithm from stopping and saves incompatible branches.

Each time we need to know whether a given polynomial f ∈ R – for example
the lc (leading coefficient) of a new S-polynomial – is zero or not for a given
specification, we will reduce it by Σ = (N,W) using PNORMALFORM and then
test whether the remainder is compatible or not with taking it null and non-
null for each of the specifications using CANSPEC. The whole task is done by
CONDTOBRANCH. See table 4.

BUILDTREE uses a Buchberger-like algorithm – CONDPGB (Conditional Para-
metric Gröbner Basis) – taking the specification into account and intending to
determine a specializing Gröbner basis. The basic improvements on CONDPGB

in the new version are: the call to CONDTOBRANCH instead of old NEWCOND and
improving Buchberger algorithm by considering Weispfenning’s normal strat-
egy of pair selection (BeWe93). We do not detail these improvements.

CANSPEC has also been modified.

At each vertex v of the tree a pair (Gv,Σv) is stored, where Σv = (Nv,Wv)
is a specification of specializations. This means that for all σ ∈ Σv one has
σ(Nv) = 0 and σ(w) 6= 0 ∀w ∈Wv. From the geometric point of view, a given
Σ = (N,W) describes the set of points V(N) \ (⋃w∈W V(w)) ⊆ (K ′)m.

10

BUILDTREE(v,B,Σ)
Input:

v, the label of the current vertex,
B ⊆ R[ā][x̄], the current basis,
Σ = (N,W) the current reduced specification.

Output: No output, but the data are stored in the global tree variable T .
BEGIN
cf := false
(cb, cd, G,Σ0,Σ1):=CONDTOBRANCH(B,Σ)
IF cd THEN # (cd is true if all lc(g), g ∈ G are decided non-null, false

otherwise)
(cb, cf , G,Σ0,Σ1):=CONDPGB(G,Σ)

END IF
Tv := (G,Σ) # (Store data in the global tree variable T)
IF cf THEN # (cf is true if the new vertex is terminal, false otherwise)
RETURN()

ELSE
IF cb THEN # (cb is true if null and non-null conditions are both

compatibles)
BUILDTREE((v, 0), G,Σ0)
BUILDTREE((v, 1), G,Σ1)

ELSE
BUILDTREE(v,G,Σ1) # (and BUILDTREE continues in the same vertex) a

END IF
END IF

END

a In this case, if CONDPGB has already started then the list of known S-
polynomials reducing to 0 can be kept.

Table 3

By proposition 5 in (Mo02), one can see that Σ = (N,W) and Σ′ = (
√
N,W)

describe equivalent specialization sets. And, by proposition 7, the same hap-
pens with Σ̃ = (Ñ , W̃), where Ñ has no factor laying in W and is radical,
and W̃ is the set of the irreducible factors of W with multiplicity one reduced
modulus Ñ . So we choose the following representative for the specifications
describing equivalent specialization sets:

Definition 7 We call Σ = (N,W) a reduced specification of specializations
if it is a specification such that

(i) 〈N〉 is a radical ideal, and N = gb(〈N〉,Âa),
(ii) there is no factor of any polynomials in 〈N〉 laying within W ,

(iii) W is a set of distinct irreducible polynomials not laying within 〈N〉,
(iv) W

N
= W .

11

(cb, cd, G,Σ0,Σ1)← CONDTOBRANCH(B,Σ)
Input:

B ⊆ R[ā][x̄], the current basis
Σ = (N,W) a reduced specification.

Output:
G is B reduced wrt Σ,
Σ1 is the reduced specification for the not null branch
Σ0 is the reduced specification for the null branch
cb is true whenever Σ0 exists, and false otherwise.
cd is true if all g ∈ G have lc(g) decided to not null, and false otherwise.

BEGIN
G := PNORMALFORM(B,Σ)
IF there is g ∈ G with lg = lc(g) not yet decided to not null wrt Σ THEN
cd := false
(t,Σ1) := CANSPEC(NΣ,WΣ

⋃{lg})
(t,Σ0) := CANSPEC(〈NΣ, lg〉,WΣ)
IF t THEN cb := true ELSE cb := false ENDIF

ELSE
cd := true

ENDIF
END

Table 4

We must note that the set W is not uniquely determined, as there exist in-
finitely many polynomials which cannot be null for a given specification. For
example, suppose that the current reduced specification is W = {a}, N =
[a2 − 1]. The condition a 6= 0 is compatible with N but is redundant in this
case. We can also add to W other polynomials like a − 2. Thus there is no
unique reduced specification, but our choice is convenient enough. The task of
obtaining reduced specifications and testing compatibility of the current null
and non-null conditions is done by the reformed CANSPEC. See table 5.

Proposition 8 Given any specification of specializations Σ = (N,W), if

CANSPEC (Σ) returns (t, Σ̃) with t = true, then Σ̃ is a reduced specification of

Σ computed in finitely many steps. Otherwise it returns t = false and (N,W)
are not compatible conditions.

PROOF. At the end of each step Na is a radical ideal, Wa is a set of irre-

ducible polynomials with multiplicity one reduced wrt Na, so Wa
Na

= Wa.
So, Nb is still radical when the algorithm stops, as Nb is built by dropping
from Na all those factors laying in Wa. If the algorithm returns true, as at
each completed step (Nb,Wb) satisfies the conditions of definition 7, then the
conditions are compatible and Σ̃ is a reduced specification of specializations.

12

(t, Σ̃)← CANSPEC(Σ)
Input: Σ = (N,W) a not necessarily reduced specification.
Output:
t: a boolean valued variable.
Σ̃: a reduced specification if t = true, and φ otherwise (in this case
incompatible conditions have been found).

BEGIN
Na := N, Nb :=

√
N

Wa := W, Wb := the irreducible factors of W without multiplicity and
reduced wrt Na;
IF

∏
q∈Wb

q = 0 THEN RETURN(false,φ) ENDIF
WHILE (Na 6= Nb AND Wa 6= Wb) DO
Na := φ

FOR p ∈ Nb DO
p := drop from p all irreducible factors laying in Wb

IF p = 1 THEN RETURN(false,φ) ENDIF
Add p into Na

END FOR
Wa := Wb

Nb :=
√
Na

Wb := {irreducible factors of Wa without multiplicity and reduced wrt Nb}
IF

∏
q∈Wb

q = 0 THEN RETURN(false,φ) ENDIF
END WHILE
Σ̃ := (Na,Wa)
RETURN(true, Σ̃)

END

Table 5

Otherwise the conditions are not compatible.

Let us now see that this is done in finitely many steps. The algorithm starts
with N0 = N . At the next step it computes N1, and then N2, etc... These
satisfy N0 ⊆ N1 ⊆ N2 ⊆ · · ·. By the ACC, the process stabilizes. So, only a
finite number of factors can exist, thus dropping factors is also a finite process.

The second necessary task is to reduce a given polynomial in S wrt Σ. This
is done in a standard form by PNORMALFORM. To eliminate the coefficients
reducing to zero for the given specification it suffices to compute the remainder
of the division by N , because N is radical. And then, in order to further
simplify the polynomials, all those factors lying in W are also dropped from
N . See table 6.

Nevertheless, the reduction using PNORMALFORM does not guarantee that all the

13

f̃ ← PNORMALFORM(f,Σ)
Input: f ∈ R[x̄] a polynomial, Σ = (N,W) a reduced specification,
Output: f reduced wrt Σ
BEGIN
f̃ := the product of the factors of f

N
not laying inW , conveniently normalized

END

Table 6

coefficients of the reduced polynomial do not cancel out for any specialization
σ ∈ Σ. To test whether adding a new coefficient to the null conditions is
compatible with Σ we need to apply CONDTOBRANCH.

Given f, g ∈ S and Σ we say that their reduced forms fΣ and gΣ computed
by PNORMALFORM are equivalent wrt Σ when σa(f) and σa(g) are proportional
polynomials for every particular specialization σa ∈ Σ such that σa(lc(fΣ)) 6= 0
and σa(lc(gΣ)) 6= 0.

Consider for example, Σ = (N = [ab− c, ac− b, b2− c2],W = φ), fΣ = ax+ c2,
gΣ = cx + c2b and Âa= lex(a, b, c). fΣ and gΣ are not identical, but note
that they are equivalent. As can be seen in this example PNORMALFORM is not
always able to reduce them to the same polynomial. Nevertheless, we have the
following

Proposition 9 Given two polynomials f, g ∈ S then fΣ ∼ gΣ wrt Σ iff

(i) lpp(fΣ,Âx) = lpp(gΣ,Âx) and
(ii) PNORMALFORM applied to lc(gΣ)fΣ − lc(fΣ)gΣ returns 0.

PROOF. Obviously if one of both hypothesis fail, the reduced expressions
are not equivalent wrt Σ.

On the other side, suppose that (i) and (ii) hold. Then, using order Âxa we

have lc(gΣ)fΣ
N

= lc(fΣ)gΣ
N

by hypothesis (ii). Thus, lc(gΣ)(a) fΣ(x, a) =
lc(fΣ)(a) gΣ(x, a), for all specializations in Σ. In particular it also holds for
those specializations which do not cancel the leading coefficients of fΣ and gΣ.
And so, it follows that fΣ and gΣ are equivalent wrt Σ.

Thus, PNORMALFORM does not obtain a canonical reduction of f wrt Σ, but it
can canonically recognize two equivalent reduced expressions.

14

3.2 Reduction of Brother Final Cases with the Same lpp

In many practical computations and after applying these algorithms to a num-
ber of cases, we have observed that some discussion trees have pairs of terminal
vertices hung from the same father vertex with the same lpp set of their bases.
As we are only interested in those bases having different lpp sets, then each
of these brother pairs, {v0, v1}, can be merged in one single terminal vertex
compacting them into their father v and eliminating the distinction of the
latter condition taken in v.

Regarding this construction, we can define a partial order relation between
two trees if, in this way, one can be transformed into the other.

Definition 10 Let S and T be two binary trees. We will say that S > T if

(i) T is a subtree of S with same root and same intermediate vertices, and

(ii) for each terminal vertex v ∈ T there is in S either the same vertex

v ∈ S such that (GvT
,ΣvT

) = (GvS
,ΣvS

), or a subtree S ⊂ S pending

from vertex v ∈ S with all its terminal vertices u ∈ S with lpp(Gu
S
) =

lpp(GvT
).

So now, given a discussion binary tree T , we may find the minimal tree T̃
within the set of all trees which can be compared with T regarding this rela-
tion. This is done by a recursive algorithm called COMPACTVERT.

Let us just note that the minimal tree will not have any brother terminal
vertices with the same lpp sets of their bases.

3.3 Rewriting the Tree with the Discriminant Ideal

The tree T built by BUILDTREE can be rebuilt using the discriminant ideal N
(see section 2). By theorem W2, if we are given σa such that there exists some
δ ∈ N for which σa(δ) 6= 0, then σa(I) corresponds to the generic case. Thus,
placing N into the top vertex labelled as [] in the new tree T ′, for its non-null
son vertex we will have T ′

[1] = (G[1],Σ[1]), where G[1] is the generic basis and
Σ[1] is a union of specifications from T corresponding to

Σ[1] = {σ : ∃ δ ∈ N such that σ(δ) 6= 0}.

No other intermediate vertices hang from this side of the top vertex. If the
strong formulation of conjecture 4 holds, then no generic cases will hang from
the first null vertex.

15

The subtree under the top vertex hanging from the first null son, for which
the choice is σ(N) = 0, will be slightly modified from the original T . The
terminal vertices corresponding to singular cases hanging from it will not be
modified as, by construction, for all of them the condition is verified by the
corresponding specifications. Thus we can rebuild the tree using the recursive
algorithm REBUILDTREE which goes through the old tree T and rewrites the
new one T ′. At each vertex v it tests whether the condition N is already
included in Nv. If it is the case, then it copies the whole subtree under it.
Otherwise it adds N to the null ideal Nv and calls CANSPEC to check whether
the new condition is compatible or not. If the condition is compatible then
the basis will be reduced using PNORMALFORM and the algorithm continues. If
it is not, then the recursion stops. This algorithm produces a better new tree
with possibly less terminal cases (only generic type cases can be dropped).
This reconstruction of the tree is very little time-consuming.

3.4 New Generalized Gaussian Elimination GGE

We add here a short description of the improvements on the generalized Gaus-
sian elimination algorithm GGE.

We realized, by analyzing the procedure of the old GGE (Mo02), that there
were some special cases for which we could guess the result of the divisions at
each step and thus could be skipped. These improvements halve the computing
time.

Even though it is more efficient and faster, GGE has become not so useful now
because the new improvements in DISPGB, detailed above, make, in general,
DISPGB work faster without using GGE. So now, the use of GGE within the
execution of DISPGB is just optional (not used by default). However, it can
be very useful for other applications, like in the tensegrity problem shown in
section 5, to eliminate some variables and simplify a given basis.

4 Comprehensive Gröbner Basis

In (We02; We03) the main goal is to obtain a Comprehensive Gröbner Basis.
With this aim, we have built an algorithm, called ISCGB, to test whether a
given basisG is a comprehensive Gröbner basis for I or not. It uses PNORMALFORM
algorithm to specialize G for every terminal case in the discussion tree. Then
it checks if lpp(σ(G)) includes the set of lpp of the reduced Gröbner basis wrt
Σ for every terminal case. If this is true for every final case then ISCGB returns
true otherwise returning false.

16

B̃ ← CGB(B,F)
Input:

B = gb(I,Âxa)
F = {(Gi,Σi) : 1 ≤ i ≤ k} obtained from DISPGB

Output: B̃ a CGB of I
BEGIN
B̃ = B

F̃ = SELECT cases from F for which ISCGB(B,Âx) is not a CGB.
WHILE F̃ is non empty DO
TAKE the first case (G1,Σ1) ∈ F̃
B̃ = B̃

⋃ {PREIMAGE(g,Σ1, B) : g ∈ G1}
F̃ = SELECT cases from F̃ for which ISCGB(B̃,Âx) is not a CGB.

END DO
END

Table 7

The algorithm also informs for which cases a given basis is not a CGB. Thus we
can compute pre-images of the polynomials for which B does not specialize
to a Gröbner basis and add them to the given basis in order to obtain a
Comprehensive Gröbner Basis.

Consider a terminal case (Gv,Σv) and g ∈ Gv. To simplify notations we do
not consider the subindex v. Let Hg = {f1, . . . , fr} be a basis of the ideal
Ig = I

⋂〈g,N〉 whose polynomials are of the form qg + n, with q ∈ S and
n ∈ 〈N〉. Ig contains all the polynomials in I which can specialize to g (for

those with σ(q) a non-null element of R wrt Σ). Set f ′
i = fi

N
. Obviously,

H ′
g = {f ′

1, . . . , f
′
r} is a basis of σ(Ig). Using Gröbner bases techniques we can

express g ∈ σ(Ig) in the form g =
∑

i αif
′
i where the αi’s are reduced wrt N ,

as we are in Ig/N . Then h =
∑

i αifi specializes to g and is a pre-image of g
in I. This is used to build algorithm PREIMAGE which computes a pre-image
of g.

Combining ISCGB and PREIMAGE we compute a CGB using the algorithm
sketched in table 7. Let B = gb(I,Âxa), which is a tentative CGB (FoGiTr01;
Ka97), and F = {(Gi,Σi) : 1 ≤ i ≤ k} the set of final cases of the discussion
tree built up by DISPGB. ISCGB informs about the polynomials in F which
do not have a pre-image in the current tentative CGB. CGB algorithm adds
pre-images of them until a CGB is obtained. Nevertheless, this construction
is not canonical and is much more time-consuming than building up the tree,
because it uses the product order Âxa instead of working separately wrt Âx

and Âa.

17

5 Examples

We have selected two significative detailed examples. The first one is the clas-
sical robot arm, which has a very nice geometrical interpretation, and the
second one is the study of a tensegrity problem described by a linear system
with the trivial null solution in the generic case which has a non principal
discriminant ideal. After that, we outline a table containing some relevant
information for several other examples.

5.1 Simple Robot

The following system represents a simple robot arm (compare with (Mo02)):

B = [s21 + c21 − 1, s22 + c22 − 1, l (s1 s2 − c1 c2)− c1 + r,

l (s1 c2 + c1 s2) + s1 − z]

Using the orders lex(s1, c1, s2, c2) and lex(r, z, l), respectively for variables and
parameters, DISPGB produces the following outputs: The discriminant ideal is
principal: N = J = [l (z2 + r2)]. The set of final cases expressed in the form
Ti = (Gi, (Ni,Wi)) is:

T[1] = ([2 l c2 + l2 + 1− z2 − r2, 4 l2 s22 + (l2 − 1)2

−2 (l2 + 1) (r2 + z2) + (z2 + r2)2,

2 (r2 + z2) c1 − 2 z l s2 − r (r2 + z2 − l2 + 1),

2 (r2 + z2) s1 + 2 l r s2 + z (l2 − r2 − z2)], ([], {l (r2 + z2)})).
T[0,1,1,1] = ([2 l c2 + l2 + 1, 4 (l2 − 1) r c1 + 2 z l s2 − (l2 − 1) r,

(l2 − 1)2 − 4 z2, 4 (l2 − 1) z s1 + (l2 − 1)2 + 4 z2],

([z2 + r2], {z, l + 1, r, l, l − 1})),
T[0,1,1,0] = ([1], ([z, r], {l + 1, l, l − 1})),
T[0,1,0,1] = ([1], ([l2 − 1, r2 + z2], {z, l})),
T[0,1,0,0] = ([l c2 + 1, s2, s

2
1 + c21 − 1], ([l2 − 1, z, r], {l})),

T[0,0,1] = ([1], ([l], {r2 + z2 − 1})),
T[0,0,0] = ([s22 + c22 − 1, c1 − r, s1 − z], ([l, r2 + z2 − 1], { })),

18

nullnot null

zz

–1+z^2+r^2(l–1)*(l+1)

l

[l*z^2+l*r^2]

[c2, s2, s1^2][1][1][c2, s2, c1, s1]

[s2^2, c1, s1][1]

[c2, s2^2, c1, s1]

Fig. 1. DISPGB’s graphic output for the robot arm.

The generic case T[1] gives the usual formula for the robot. It is character-
ized by the discriminant ideal N . The singular cases have simple geometrical
interpretation and give information about the degenerated cases.

A graphic plot of the tree is also provided in the library. There, the deciding
conditions can be visualized at the intermediate vertices and the lpp sets of
the reduced Gröbner bases are shown at the terminal vertices (see figure 1).

Now we apply ISCGB to GB = gb(B, lex(s1, c1, s2, c2, r, z, l) wrt the output
tree. The result is false, and the list of specializations for all the final cases
is provided:

[[1], {s1, s2c1, s2s1, c1, c2s1, c2, s21, s22}, {s1, c1, c2, s22}, true]]
[[0, 1, 1, 1], {s1, s2, s2c1, s2s1, c2s1, c2, s21, s22}, {s1, s2, c1, c2}, false],
[[0, 1, 1, 0], {1, s1, s2, s2s1, c2s1, c2, s21, s22}, {1}, true],
[[0, 1, 0, 1], {s1, s2, s2c1, s2s1, c2s1, c2, s21, s22}, {1}, false],
[[0, 1, 0, 0], {s2, s2c1, s2s1, c2s1, c2, s21, s22}, {s2, c2, s21}, true],
[[0, 0, 1], {1, s1, s2c1, s2s1, c1, c2s1, s21, s22}, {1}, true],
[[0, 0, 0], {s1, s2c1, s2s1, c1, c2s1, s21, s22}, {s1, c1, s22}, true],

19

There are only two cases for which GB is not a CGB. Even so, the algorithm
CGB only needs to add one single polynomial to obtain a CGB.

CGB = [2lc2 + l2 + 1− z2 − r2, c22 + s22 − 1, 2(z2 + r2)c1 − 2zls2

+r(l2 − 1− z2 − r2), 4zs2c1 − 4zrs2 + 4rc2c1 + 4lrc1

+2(z2 − r2 − 1)c2 − l(z2 + r2 − l2 + 3), 2rc1s2 − 2zc1c2 − 2zlc1

+(−r2 + z2 − 1 + l2)s2 + 2zrc2, 2(l2 − 1)s1 − 4lc1s2 + 2ls2r

−z(r2 + z2 − l2 − 3), 2s1z + 2c1r − r2 − z2 + l2 − 1,

rs1 − zc1 + ls2, s1c2 + ls1 − c1s2 + rs2 − zc2, s1s2 + c1c2

+lc1 − zs2 − rc2, c
2
1 + s21 − 1, 4(r2 + z2)c21 − 4r(1 + z2 + r2 − l2)c1

+(r2 + z2 − l2 + 1)2 − 4z2].

5.2 Tensegrity Problem

We study here a problem formulated by M. de Guzmán and D. Orden in
(GuOr04).

Given the five points P1(0, 0, 0), P2(1, 1, 1), P3(0, 1, 0), P4(1, 0, 0), P5(0, 0, 1) we
want to determine a sixth one P6(x, y, z) for which the framework with vertices

{P1, . . . , P6} and edges
(
{P1,...,P6}

2

)
\{P1P6, P2P4, P3P5} stays in general position

and admits a non-null self-stress.

The system describing this problem is the following:

B = [w12 + w14, w12 + w13, w12 + w15, w12 + w23 + w25 − w26x+ w26,

w12 + w25 − w26y + w26, w12 + w23 − w26z + w26, w23 + w34 + xw36,

w13 + w34 − w36y + w36, w23 + zw36, w14 + w34 + w45 − w46x+ w46,

w34 + yw46, w45 + zw56, w15 + w45 − zw56 + w56,

−w26 + w26x+ xw36 − w46 + w46x+ w56x,

−w26 + w26y − w36 + w36y + yw46 + w56y,

−w26 + w26z + zw36 + w46z − w56 + zw56]

Set Âxa= lex(w12, w13, w14, w15, w23, w25, w34, w45, w26, w36, w46, w56, x, y, z). In
order to simplify the system we compute GGE(B,Âxa) (Generalized Gaussian
Elimination). The GGE basis can be expressed as B ′ = B′

1 ∪ B′
2, with B′

2

being the elimination ideal wrt the variables w26 = w2, w36 = w3, w46 = w4,

20

nullnot null

2*y–1y–1z–1

zz

-z+x-y

[-z*y+y^2*z, x*z-z^2, x^2-y^2-z^2-x+y+z]

[w5, w3, w2][w4, w3, w2][w5, w4, w2][w5, w3, w2][w5, w4, w3][w5, w4, w2]

[w4, w3, w2]

[w5, w4, w3, w2]

Fig. 2. DISPGB graphic output for the tensegrity problem.

w56 = w5, and B′
1 expressing the remaining variables linearly in terms of

w2, w3, w4, w5:

B′
1 = [w45 + zw5, w34 + yw4, w25 + w5y, w23 + zw3, w15 − 2zw5 + w5,

w14 − 2zw5 + w5, w13 − 2zw5 + w5, w12 + 2zw5 − w5]

B′
2 = [−zw5 + w5x− w5y,−zw5 + w4z, w4x+ yw4 − w4 − zw5 + w5,

w3y − w3 + yw4 − 2zw5 + w5, xw3 − yw4 − zw3,

w2z − w2 + zw3 + 2zw5 − w5, w2y − w2 + w5y + 2zw5 − w5,

w2x− w2 + zw3 + w5y + 2zw5 − w5],

Then, using the orders Âx= lex(w2, w3, w4, w5) and Âa= lex(x, y, z), for vari-
ables and parameters respectively, DISPGB produces the following output:

T[1] = ([w5, w4, w3, w2], ([],

{[y2z − yz, zx− z2, x2 − y2 − z2 − x+ y + z]}))
T[0,1,1,1] = ([w5, w4, w2z − w2 + zw3], ([y − 1, x− z], {z, z − 1}),
T[0,1,1,0] = ([w5, w4, w3], ([z − 1, y − 1, x− 1], { })),
T[0,1,0,1] = ([w5, yw4 + w3y − w3, w2], ([z, y − 1 + x], {2y − 1, y − 1}),
T[0,1,0,0] = ([w5, w4, w2], ([z, y − 1, x], { })),
T[0,0,1] = ([−w5 + w4, w3 + 2zw5 − w5, w2 − 2zw5 + w5],

([y, x− z], {z})),

21

Fig. 3. Location of the sixth point for non null self-stress.

T[0,0,0,1] = ([w5 + 2yw4 − w4, 2w3y − w3 + w5, w2 + w5],

([z, x− y], {2y − 1})),
T[0,0,0,0] = ([w5, w3 − w4, w2], ([z, 2y − 1, 2x− 1], { })),

and the discriminant ideal is not principal:

N = J = [y2z − yz, zx− z2, x2 − y2 − z2 − x+ y + z].

The generic solution is trivial (w5 = w4 = w3 = w2 = 0). In this problem, the
interesting non trivial solutions are given by the conditions over the parameters
described by the variety of the discriminant ideal, which decomposes into 4
straight lines included in the hyperboloid x2−y2−z2−x+y+z = 0 (illustrated
in figure 3):

V(N) = V(z, x− y)
⋃

V(y, x− z)
⋃

V(z, x+ y − 1)
⋃

V(y − 1, x− z).

For this problem the Gröbner basis wrt variables and parameters is already a
comprehensive Gröbner basis.

5.3 Benchmarks

For a set of examples taken from the literature we have applied the current
implementation, release 2.3 in Maple 8 , of algorithm DISPGB using a 2 GHz
Pentium 4 at 512 MB. Table 8 summarizes the computing time of DISPGB, the
total number of terminal vertices of the output tree, whether the discriminant
ideal is principal or not, and whether the D-Gröbner basis wrt Âxa is a CGB
or not, joint by the number of failure cases for which it is not (0 if it is). The

22

Identification CPU time # Final Discriminant Is CGB?

(seconds) vertices is principal? (# failures)

S1 (We03) 0.8 2 N Y (0)

S2. (Gi87) 1.2 2 Y N (1)

S3. (Gom02; Du95) 1.5 2 Y Y (0)

S4. 1.6 2 N Y (0)

S5. (Kap95) 1.6 3 Y N (1)

S6. (Kap95) 2.0 4 Y Y (0)

S7. (Kap95) 3.0 2 Y Y (0)

S8. (SaSuNa03) 4.4 3 Y Y (0)

S9. Similar to (Si92) 6.7 10 Y Y (0)

S10. Subsection 5.1 7.9 7 Y N (2)

Simple robot

S11. (Co04) 8.0 6 Y Y (0)

Singular points

S12. (Ry00) 8.2 11 Y N (1)

Rychlik robot

S13. (SaSu03) 8.2 10 Y Y (0)

S14. (GoTrZa00; De99) 9.6 2 Y N (1)

ROMIN robot

S15. (GoRe93) 18.2 17 Y N (2)

S16. (GuOr04) 21.3 8 N Y (0)

Subsection 5.2

Table 8

bases of the different examples are detailed below:

• S1. [a(x+ y), b(x+ y), x2 + ax];
• S2. [x21, x1x2, x1x

2
3, x1a+ x2, x2x3 − x23, x2a, x

3
3, x

2
3a, a

2];
• S3. [x3 − axy, x2y − 2y2 + x];
• S4. [ax+ y − 1, bx+ y − 2, 2x+ ay, bx+ ay + 1];
• S5. [x4 − (a4 − a2), x1 + x2 + x3 + x4 − (a1 + a3 + a4), x1x3x4 − a1a3a4,

x1x3 + x1x4 + x2x3 + x3x4 − (a1a4 + a1a3 + a3a4)];
• S6. [vxy + ux2 + x, uy2 + x2];

23

• S7. [y2 − zxy + x2 + z − 1, xy + z2 − 1, y2 + x2 + z2 − r2];
• S8. [a− b+ (xya− x2yb− 3a)3 + (xyb− 3xb− 5b)4, xya− x2yb− 3a,

xyb− 3xb− 5b];
• S9. [x+ cy + bz + a, cx+ y + az + b, bx+ ay + z + c];
• S10. See subsection 5.1;
• S11. [(d4d3R + r22 − d4d3r

2
2 + d24d

2
3 − d4d

3
3 − d34d3 + d4d3 + Z −R)t4

+ (−2r2d4R + 2r2d
3
4 + 2r2d4d

2
3 − 4r2d3d

2
4 + 2r32d4 + 2r2d4)t

3

− (2r22 − 2R + 4d24r
2
2 + 4d24 + 2Z − 2d24d

2
3)t

2

+ (−2r2d4R + 2r2d4d
2
3 + 2r2d4 + 2r2d

3
4 + 4r2d3d

2
4 + 2r32d4)t

+ r22 + d34d3 − d4d3R + d4d3r
2
2 + Z −R− d4d3 + d24d

2
3 + d4d

3
3];

• S12. [a− l3c3 − l2c1, b− l3s3 − l2s1, c
2
1 + s21 − 1, c23 + s23 − 1];

• S13. [ax2y + a+ 3b2, a(b− c)xy + abx+ 5c];
• S14. [t3 − cut2 − uv2 − uw2, t3 − cvt2 − vu2 − vw2, t3 − cwt2 − wu2 − wv2];
• S15. [a+ ds1, b− dc1, l2c2 + l3c3 − d, l2s2 + l3s3 − c,s

2
1 + c21 − 1, s22 + c22 − 1,

s23 + c23 − 1];
• S16. See subsection 5.2.

We have tested several other problems and in some of them only partial results
have been reached. We detail two significative examples:

• S17. [axt2 + bytz − x(x2 + cy2 + dz2), ayt2 + bzxt− x(y2 + cz2 + dx2),
azt2 + bxyt− x(z2 + cx2 + dy2)]

• S18. [(3x2 + 9v2 − 3v − 3x)t21t
2
2 + (3v2 − 3v + 6vx− 3x+ 3x2)t22

+ (3v + 3v2 + 3x2 − 3x− 6vx)t21 − 24v2t1t2 + 9v2 − 3x+ 3x2 + 3v,
(3x2 + 9v2 − 3v − 3x)t22t

2
3 + (3v + 3v2 + 3x2 − 3x− 6vx)t22

+ (3v2 − 3v + 6vx− 3x+ 3x2)t23 − 24v2t2t3 + 9v2 − 3x+ 3x2 + 3v,
(3x2 + 9v2 − 3v − 3x)t23t

2
1 + (3v2 − 3v + 6vx− 3x+ 3x2)t21

+ (3v + 3v2 + 3x2 − 3x− 6vx)t23 − 24v2t3t1 + 9v2 − 3x+ 3x2 + 3v]

For S17 (GoTrZa00), DISPGB gets bogged down after computing 35 termi-
nal vertices in 1375 sec. It has been unable to finish the tree, and so neither
rebuilding with the discriminantideal nor reducing the tree can have been
achieved. The label of the 35th vertex is [1, 1, 0, 1, 0, 0], thus all vertices be-
ginning with [0, 0, . . . have been already determined (the tree is built up in
pre-order beginning with the 0 vertices).

S18 corresponds to the benzene molecule studied in (Em99). The situation
is similar to S17, getting bogged down after 45 seconds when the 9th vertex
labelled [1, 1, 0, 0]] has been computed.

24

6 Acknowledgements

We want to thank Professor Volker Weispfenning for his useful suggestions and
ideas and for encouraging us in undertaking the research on Comprehensive
Gröbner Bases, as well as for his hospitality and kindness on the occasions in
which we met.

We would like to thank Professor Pelegŕı Viader for his many helpful comments
and his insightful perusal of our first draft.

We will also thank the referees for their valuable suggestions.

References

[BeWe93] T. Becker, V. Weispfenning. Gröbner Bases: A Computational Ap-
proach to Commutative Algebra. Springer, New-York, 1993.

[Co04] M. Coste. Classifying serial manipulators: Computer Algebra and ge-
ometric insight. Plenary talk. (Personal communication). Proceedings of
EACA-2004, 323–323, 2004.

[De99] S. Dellière. Triangularisation de systèmes constructibles. Application
à l’évaluation dynamique. Thèse Doctorale, Université de Limoges. Limo-
ges, 1995.

[Du95] D. Duval. Évaluation dynamique et clôture algébrique en Axiom. Jour-
nal of Pure and Applied Algebra, 99:267–295, 1995.

[Em99] I. Z. Emiris. Computer Algebra Methods for Studying and Computing
Molecular Conformations. Algorithmica 25: 372-402, 1999.

[FoGiTr01] E. Fortuna, P. Gianni and B. Trager. Degree reduction under
specialization. Jour. Pure and Applied Algebra, 164(1-2):153–164, 2001.
Proceedings of MEGA 2000.

[Gi87] P. Gianni. Properties of Gröbner bases under specializations. In:
EUROCAL’87. Ed. J.H. Davenport, Springer LCNS, 378:293–297, Mars
1987.

[Gom02] T. Gómez-Dı́az. Dynamic Constructible Closure. Proceedings of
Posso Workshop on Software, Paris, 73–93, 2000.

[GoRe93] M.J. González-López, T. Recio. The ROMIN inverse geometric
model and the dynamic evaluation method. In: Computer Algebra in
Industry. Ed. A.M. Cohen, Wiley & Sons, 117–141, 1993.

[GoTrZa00] M.J. González-López, L. González-Vega, C. Traverso, A. Zanoni.
Gröbner Bases Specialization through Hilbert Functions: The Homoge-
neoas Case. SIGSAM BULL, Issue 131, 34:1, 1-8, 2000.

[GuOr04] M. de Guzmán, D. Orden. Finding tensegrity structures: geometric
and symbolic aproaches. Proceedings of EACA-2004, 167–172, 2004.

[HeMcKa97] P. Van Hentenryck, D. McAllester and D. Kapur. Solving poly-

25

nomial systems using a branch and prune approach. SIAM J. Numer.

Anal., 34 2:797–827,1997.
[Ka97] M. Kalkbrenner. On the stability of Gröbner bases under specializa-

tions. Jour. Symb. Comp., 24(1):51–58, 1997.
[Kap95] D. Kapur. An Approach for Solving Systems of Parametric Polyno-

mial Equations. In: Principles and Practices of Constraints Programming.
Ed. Saraswat and Van Hentenryck, MIT Press, 217–244. 1995.

[MaMo04] M. Manubens, A. Montes. Improving DPGB algorithm for para-
metric Gröbner basis. Proceedings of EACA-2004, 207–211, 2004.

[Mo95] A. Montes. Solving the load flow problem using Gröbner bases.
SIGSAM Bull., 29:1–13, 1995.

[Mo98] A. Montes. Algebraic solution of the load-flow problem for a 4-nodes
electrical network. Math. and Comp. in Simul. 45:163–174, 1998.

[Mo02] A. Montes. New algorithm for discussing Gröbner bases with param-
eters. Jour. Symb. Comp., 33(1-2):183–208, 2002.

[Mor97] M. Moreno-Maza. Calculs de Pgcd au-dessus des Tours d’Éxtensions
Simples et Résolution des Systèmes d’Équatoins ALgebriques. Doctoral
Thesis, Université Paris 6, 1997.

[Pe94] M. Pesh. Computing Comprehesive Gröbner Bases using MAS. User
Manual, Sept. 1994.

[Ry00] M. Rychlik. Complexity and Applications of Parametric Algorithms
of Computational Algebraic Geometry. In: Dynamics of Algorithms. Ed.
R. del la Llave, L. Petzold, and J. Lorenz. IMA Volumes in Mathematics
and its Applications, Springer-Verlag 118:1–29, 2000.

[SaSu03] Y. Sato and A. Suzuki. An alternative approach to Comprehensive
Gröbner Bases. Jour. Symb. Comp., 36:649–667, 2003.

[SaSuNa03] Y. Sato, A. Suzuki, K Nabeshima. ACGB on Varieties. Proceed-
ings of CASC 2003. Passau University, 313–318, 2003.

[Sc91] E. Schönfeld. Parametrische Gröbnerbasen im Computeralgebrasystem
ALDES/SAC-2. Dipl. thesis, Universität Passau, Germany, May 1991.

[Si92] W. Sit. An Algorithm for Solving Parametric Linear Systems. Jour.

Symb. Comp. 13:353–394, 1992.
[We92] V. Weispfenning. Comprehensive Gröbner Bases. Jour. Symb. Comp.

14:1–29, 1992.
[We02] V. Weispfenning. Canonical Comprehensive Gröbner bases. Proceed-

ings of ISSAC 2002. ACM-Press, 270–276, 2002.
[We03] V. Weispfenning. Canonical Comprehensive Gröbner bases. Jour.

Symb. Comp. 36:669–683, 2003.

26

