Improving DisPGB algorithm for parametric Grobner bases

Montserrat Manubens, Antonio Montes*

Abstract

We present important improvements and a thorough redesign of the algorithm
DisPGB in the new release 2.0 of the DPGB Maple library for discussing Grébner bases
with parameters. DisPGB20 provides a more compact tree discussion, avoiding incom-
patible branches, and producing simpler output bases. The new software is more efficient
and robust and can increase the speed up to 20 times with respect to the old release.
Keywords: Parametric Grébner basis, specializations, specification of specializations.

Introduction

Since Grobner bases were introduced, various Computer Algebra methods for discussing
polynomial systems with parameters have been developed. The most relevant ones are:

Comprehensive Grobner bases (CGB) [9].

The Dynamic Evaluation Method [3].

The Newton algorithm with branch and prune approach [6].
The DisPGB algorithm [7].

Alternative Comprehensive Grobner bases (ACGB) [8].
Canonical Comprehensive Grobner bases (CCGB) [10].

Among these methods, DisPGB stands out for being a quite efficient algorithm. Theo-
retically, the best results should be obtained with CCGB, which seems promising enough.
Nevertheless, CCGB is very complex and has not yet been implemented.

The library DPGB for discussing Grobner bases with parameters, implementing the
DisPGB algorithm, was described in [7]. Since then, it has been applied successfully to
many problems [2]. Applications suggested that it could be —and needed to be— improved.
This has been done in the new release DPGB 2.0 presented here. The new algorithm —from
now on denoted DisPGB20- provides the following improvements:

e a much simpler flow control of the recursive algorithm;

e a better CANSPEC algorithm to determine the semi-canonical specification of the spe-
cializations, that uses zero-dimensional radical computation;

e saves incompatible branches and unnecessary stops and restarts of the algorithm;

e saves computations already done in previous calls that are useful in the actual branch;

*Partially supported by the Ministerio de Ciencia y Tecnologia under project BFM2003-00368 and by
the Generalitat de Catalunya under project 2001 SGR 00224

e carries out canonical simplification of the polynomials at each step and at the final
presentation of the basis, providing much better results and more efficient computa-
tions.

e new improvement of the GGE routine that increases its speed by a factor 2;

e improvements in the output routines tplot and finalcases.

The result is a more robust and efficient library that is freely available at the web . It
increases the speed up to 20 times in most examples and allows computations that were not
possible with the old DPGB.

1 The new DisPGB20 algorithm

Suppose we are given a basis, I, of an ideal and a specification of specializations, sum-
marized in the null and not-null conditions, ¥ = (N, W). The main idea of the DisPGB
algorithm lays on discussing the nullity or not wrt ¥ of the leading coefficients, say lc(f),
of polynomials appearing at each step. We do this in a recursive routine, say CONDPGB, in
which the discussion for the polynomials given in the initial basis and for the polynomials
appearing in the Buchberger algorithm takes place. Let’s see:

For each f € F, we test whether lc(f) lays in y/(N), in W, or none of them. Whenever
le(f) € v/(NN), as this implies that lc(f) specializes to zero, we can "radicalize” N adding
le(f) to it, and then make the proper reductions in W and N with the improved CANSPEC,
so that ¥ gets semi-canonical. At the same time, we substitute f by f’ = f — lm(f) and
then start again. If f/ = 0 then we remove f’ from the basis and go on with the next
polynomial.

If we reach some f’ such that le(f’) ¢ /(N) and le(f') ¢ W, what we have to do is
making a new assumption about le(f’) and splitting the discussion into two supplementary
cases: assuming le(f’) # 0 and assuming le(f’) = 0, so we will have two new specifications of
specializations. But before making these assumptions, we must ensure they are compatible
with current null and not null conditions (N, W). If no incompatibility is found, we obtain
Y1 =CANSPEC(N, W U{lc(f")}) and Xy =CANSPEC(N U{lc(b;)}, W). This is done until every
polynomial in the current basis F’ has its leading coefficient specializing to not null.

From this point we proceed with Buchberger’s algorithm: first we construct a list of pairs
{(fi, ;) : fi, fj € F'}, such that S-pol(f;, f;) do not reduce to zero by Buchberger’s criteria,
sorted by the Normal Strategy [1]. Then we take the first pair from the list and compute its
S-polynomial, S;;, testing its leading coefficient as we have done for the polynomials in F”,
and then add the resulting SZ(J- to the current basis F’. If a new branch condition is found,
it stops.

When a Buchberger branch has finished, it marks the current vertex of the tree as final
and the main recursive algorithm CONDPGB goes back to the next branch to be done.

"http:/ /www-ma2.upc.es/~montes,

DisPGB20 algorithm

DISPGB(B, >z, >a)
Input: B C Rla][z],
>z, —a termorders wrt the variables Z and the parameters a respectively.
Output: T a table with binary tree structure.
BEGIN
global variable T' := ¢;
CONDPGB(B, ¢):
END

CONDPGB(B,Y)
Input: B C Ra][z], ¥ = (N, W) a semi-canonical specification.
BEGIN
cf = false;
(cb,cd, B', 0, %1):=CONDTOBRANCH(B, 20);
IF ¢d THEN
(cb, cf, B', %0, ¥1):=CONDBUCHBERGER(B’, 31);
END IF
Store data in T}
IF ¢f THEN
Mark current vertex in 7" as terminal.
RETURN();
ELSE
IF ¢b THEN
CONDPGB(B’, ¥0);
CONDPGB(B’, %1);
ELSE
CONDPGB(B’, ¥1);
END IF
END IF
END

(cb,cd, B',30,%1) «— CONDTOBRANCH(B,X)

Input: B C R[a][z], ¥ = (N, W) a semi-canonical specification.

Output: Reduce polynomials in B wrt N. If there is some polynomial b; € B with its leading coefficient
still not decided to not null wrt 3, then build up two new semi-canonical specifications (2o, ¥1) extending
the given 3.

31 is obtained supposing the new condition is not null and ¥y is obtained supposing the new condition is
null, if this assumption is compatible with the latest specification ¥. In this case return cb = true.

If all polynomials in B’ have leading coefficient decided to not null, then return cd = true.

(cb,cf, B',30,%1) «— CONDBUCHBERGER(B,X)

Input: B C R[a][z], ¥ = (N, W) a semi-canonical specification.

Output: Perform Buchberger algorithm with B. Each non-vanishing S-polynomial is reduced wrt ¥ using
CONDTOBRANCH.

If this CONDTOBRANCH returns c¢b = false then the current CONDBUCHBERGER stops and returns cb = false
together with the curret values.

Whenever Buchberger algorithm finishes, then it returns cf = true.

2 Some test of DisPGB20

We made some other practical improvements on this algorithm, to make it run faster and
not wasting much time in useless already done computations. In this respect, we improved
the GGE routine to avoid divisions for which we already know the result before performing
them. For the main algorithm presented above, whenever possible, we do not carry out
tests already done to the basis and to the S-polynomials.

l

not null null

r '7'271+::2
[02,5%&1,81] (-1 +1)

N\

>N

—12 47241 —12 4241 (-1 +1) 1] [e2,s2,53]
le2,s3,c1,51] 22 —1+1% [ea,s3,e1,s1] (I—D(+1) ez, s2,¢1,81] [1]
-1 +1) [e2, 53, 1, 51)

/N

lea, 53, c1,81]

Figure 1: Output discussion for the simple robot problem, using release 1.4

l

not null null

(=1l+1) 1422 42
z z [1] [ng C1, Sl]
r2 4 22 - r2 4 22 ,
[(:2,53,(:1751] [02782,01781] [(:2,53,01,51] [1} [(:2,53,(:1751] [1} [cz,sg,cl,sl] [62,5278%]

Figure 2: Output discussion for the simple robot problem, using release 2.0

For the choice of pairs in CONDBUCHBERGER we tried different strategies, namely Normal
strategy [1], Sugar strategy and Double Sugar strategy [5]. The last two ones didn’t work
as well as we expected, so we decided for the Normal strategy. We did not try Faugere
strategy [4], but we think it could be promising.

The following table compares times using releases 1.4 and 2.0. We can see the important
increase of speed:

release 1.4 time | release 2.0 time
Load flow problem 12.41 s 8.4 s
Simple robot example 31.93 s 4.1 s

Comparing outputs for the problem of the simple robot, release 2.0 provides a much
simpler set of output bases and, as one can observe in figures 1 and 2, the output tree
discussion is much better than with release 1.4.

References

[1] T. Becker and V. Weispfenning. Grobner Bases: A Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics, 141, Springer Verlag, 1993.

[2] J. M. Brunat and A. Montes. The characteristic ideal of a finite, connected, regular
graph. To be presented at ISSAC, 2004.

[3] D. Duval. Evaluation dynamique et cléture algébrique. J. Pure and Applied Algebra,
99:267-295, 1995.

[4] J.-C. Faugere. A new efficient algorithm for computing Grobner bases without reduc-
tion to zero (F5). Proc. ISSAC 2002. ACM-Press, 75-83, 2002.

[5] A. Giovini, T. Mora, G. Niesi, L. Robbiano and C. Traverso. ”One sugar cube, please”
or Selection strategies in the Buchberger algorithm. Proc. ISSAC 1991. ACM-Press,
49-54, 1991.

[6] P. Van Hentenryck, D. McAllester and D. Kapur. Solving polynomial systems using a
branch and prune approach. SIAM J. Numer. Anal., 34 2:797-827,1997.

[7] A. Montes. New algorithm for discussing Grébner bases with parameters. J. Symbolic
Comput., 33(1-2):183-208, 2002.

[8] Y. Sato and A. Suzuki. An alternative approach to comprehensive Grébner bases. J.
Symbolic Comput., 36:649-667, 2003.

[9] V. Weispfenning. Comprehensive Grobner Bases. J. Symbolic Comput., 14(1):1-30,
1992.

[10] V. Weispfenning. Canonical Comprehensive Grobner bases. Proc. ISSAC 2002. ACM-
Press, 270-276, 2002.

Montserrat Manubens & Antonio Montes,
Universitat Politecnica de Catalunya,
{Montserrat.Manubens, Antonio.Montes}Qupc.es

