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Abstract. Constructible sets are needed in many algorithms of Computer Algebra, particularly
in the Gröbner Cover and other algorithms for parametric polynomial systems. In this paper we
review the canonical form of constructible sets and give algorithms for computing it.

1. Introduction
In the basic paper defining the Gröbner Cover [Montes and Wibmer (2010)] for discussing parame-
tric polynomial systems of equations, we introduced algorithms that have been improved since then.
We used our own algorithm BUILDTREE for computing the initial Comprehensive Gröbner System
(CGS), needed for the Gröbner Cover, now substituted in the Singular [Decker et al. (2015)] library
”grobcov.lib” by the more efficient Kapur-Sun-Wang algorithm [Kapur et al. (2010)]. The algorithm
GROBCOV used specially simple locally closed sets, whose union is certified to be also locally closed
by Wibmer’s theorem [Wibmer (2007)] (algorithm LCUNION).

The Gröbner Cover is used in [Montes and Recio (2014)] for the automatic deduction of geo-
metric theorems. It is also essential for computing geometrical loci and defining a taxonomy of the
components of loci in [Abanades et al. (2014)], as well as for envelopes. In general in these tasks,
the representation of locally closed sets, i.e. difference of varieties, is sufficient. But for more gen-
eral applications, where Wibmer’s theorem [Wibmer (2007)] is not applicable, the union of locally
closed sets is not always locally closed. This is the reason for reviewing here the canonical repre-
sentation of constructible sets giving algorithms to compute it, as well as to use the new algorithms
inside the library for computing higher dimensional geometrical loci’s.

Canonical form of constructible sets were already introduced by [Allouche (1996)], in the
context of general topology. More recently, [O’Halloran and Schilmoeller (2002)] have given a de-
scription of invariant sequences for constructible sets in Zariski topology. The object of this paper is,
taken this last description as starting point, to give formulas and algorithms for computing effectively
the canonical form of constructible sets.

In Section 2, we give the canonical representation of locally closed sets and an algorithm CREP
for computing it, that is central for our purposes. In Section 3, we recall the canonical structure
of constructible sets introduced by [O’Halloran and Schilmoeller (2002)], complementing it with
dimension characteristics and an effective formula. This formula allows us to give an algorithm
in Section 4 to build the canonical representation of constructible sets, using the CREP for locally
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closed sets. In Section 4 we also propose an acceleration method. Finally in Section 5 clarifying
examples are given.

Some remarks about notation. All along the paper we shall use the notations ⊆ and ⊂ to
represent inclusion and strict inclusion, respectively. If r ≥ 1 is an integer the symbol [r] means
the set [r] = {i ∈ N : 1 ≤ i ≤ r}. For a set S ⊆ Cn, the complementary set Cn \ S of S is
denoted Sc. Finally A ] B means disjoint reunion, that is, A ∪ B with the additional information
that A ∩ B = ∅. Except in the examples, where the ring is given, all ideals considered are ideals in
the ring Q[x1, . . . , xn].

2. Canonical C-representation of locally closed sets
Consider the ring Q[x] = Q[x1, . . . , xn] of polynomials in n indeterminates x1, . . . , xn with rational
coefficients. If N ⊆ Q[x], the variety of N is the set

V(N) = {u ∈ Cn : g(u) = 0 for all g ∈ N}.
Let a = RAD(〈N〉). Then V(N) = V(〈N〉) = V(a). The ideal a is called the ideal of the variety
V(N), and is denoted a = I(V(N)). If S ⊆ Cn, the closure of S is the smallest variety containing
S, and is denoted S. The ideal of S, denoted I(S), is defined by I(S) = I(S). There is a one-to-one
correspondence between varieties V and radical ideals a. For a radical ideal a and a variety V , both
I(V(a)) = a and V(I(V )) = V hold.

By taking varieties as closed sets, we have a topology in Cn called the Q-Zariski topology of
Cn. For concepts about varieties and the Q-Zariski topology not defined here (such as irreducible
varieties, irreducible components, dimension of a variety, etc.), we refer to [Cox et al. (1998)].

A set S ⊆ Cn is locally closed if it is the intersection of an open set and a closed set.

Remark 2.1. The concept of locally closed set admits different but equivalent definitions. Indeed,
the following conditions are easily shown to be equivalent:

(a) The set S is locally closed;
(b) the set S is the difference of two closed sets;
(c) the set S is open in the closure S of S.
(d) the set S \ S is closed.

Let S be an open (resp. closed) set. As Cn is closed (resp. open), then S = S∩Cn is a locally closed
set. Thus, open sets and closed sets are locally closed.

Let S be a locally closed set. As S and S \ S are closed, there exist radical ideals a and b such
that S = V(a) and S \ S = V(b). These ideals satify

S = S \ (S \ S) = V(a) \V(b). (2.1)

Taking into account the one-to-one correspondence between radical ideals and varieties, the ideals
a = I(S) and b = I

(
S \ S

)
are uniquely determined by S. The pair CREP(S) = [a, b] is called the

canonical representation (CREP) of the locally closed set S. It is canonical in the sense that it does
not depend on how the locally closed set S is given: it depends only on S.

Remark 2.2. If [a, b] = CREP(S), then S is closed if and only if b = 〈1〉.

The following Proposition explains how to obtain CREP(S) = [a, b] for a locally closed set S
given in the form S = V(P ) \V(Q) for two ideals P and Q. It uses the decomposition of V(P )
into irreducible varieties, which can be done by [Gianni et al. (1988)] algorithm. Moreover, some
additional properties of [a, b] are given.

Proposition 2.3. Let P and Q be two ideals, and let S = V(P )\V(Q) be a non empty locally closed
set. Let {p1, . . . , ps} be the prime decomposition of P , and let J = {i ∈ [s] : V(pi)6⊆(V(Q))}.
Then
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(i) CREP(S) = [a, b], where a =
⋂

i∈J pi and b = RAD(a+Q);
(ii) S = V(a);

(iii) a ⊂ b;
(iv) dim V(b) < dim V(a).

Proof. (i) For i ∈ [s] let Vi = V(pi). Then V(P ) = V1 ∪ · · · ∪ Vs is the decomposition of V(P )
into irreducible varieties. We have

S = V(P ) \V(Q) =

(
s⋃

i=1

Vi

)
\V(Q) =

s⋃
i=1

(Vi \ (V(Q) ∩ Vi)) .

If i ∈ [s] \ J , then Vi \ (V(Q) ∩ Vi) = ∅, and the set Vi \ (V(Q) ∩ Vi) can be excluded from the
union, obtaining

S =
⋃
i∈J

(Vi \ (V(Q) ∩ Vi)) .

For i ∈ J , we have V(Q) ∩ Vi ⊂ Vi. As Vi is irreducible, the closure of Vi \ (V(Q) ∩ Vi) is Vi.
Therefore,

S =
⋃
i∈J

Vi, (2.2)

and
a = I(S) =

⋂
i∈J

I(Vi) =
⋂
i∈J

pi. (2.3)

To obtain b = I(S \ S) note that

S =
⋃
i∈J

(Vi \ (V(Q) ∩ Vi)) =
⋃
i∈J

(Vi \V(Q)) =

(⋃
i∈J

Vi

)
\V(Q) = S \ V (Q),

S \ S = S \ (S \V(Q)) = S ∩V(Q) = V(a) ∩V(Q) = V(RAD(a+Q)),

so that, b = I(S \ S) = RAD(a+Q).
(ii) Is a direct consequence of (2.2) and (2.3).
(iii) From b = RAD(a + Q), clearly b ⊇ a. Now b = a implies S = ∅, a contradiction.

Therefore, b ⊃ a.
(iv) Eliminating the pj for j 6∈ J and reindexing the ideals, the prime decomposition of a can

be written a = p1∩· · ·∩pr. For i ∈ [r], let bi = pi+b = pi1∩· · ·∩piri be the prime decomposition
of bi. By (i), V(pi) 6⊆ V(b) and so V(bi) = V(b + pi) ⊂ V(pi), being V(pij) ⊂ V(pi). As pi
and pij are irreducibles we have dim V(pij) < dim V (pi) for all j, and

S =V(a) \V(b) =

r⋃
i=1

(V(pi) \V(b+ pi))

=

r⋃
i=1

V(pi) \V

 ri⋂
j=1

pij

 =

r⋃
i=1

V(pi) \
ri⋃
j=1

V(pij)

 .

Thus

dimV (b) = max{dimV(pij) : i ∈ [r], j ∈ [ri]}
< max{dimV(pi) : i ∈ [r]} = dimV (a).

�

Proposition 2.3 (i) justifies Algorithm 1 CREP for obtaining [a, b] from [P,Q].
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Corollary 2.4. Let V and W be varieties and S = V \W . If W ⊂ V and V = S, then CREP(S) =
[I(V ), I(W )] and dimW < dimV .

Proof. If S = V then a = I(S) = I(V ). Moreover

S \ S = (S ∩ (S
c ∪W ) = S ∩W = W.

Thus b = I(W ). The dimension relation is a consequence of Proposition 2.3. �

T ← Crep(P,Q)
Input:

[P,Q]: a pair of ideals representing the set S = V(P ) \V(Q)
Output:

[a, b] the C-representation of S

begin
Q = Q+ P
a = 〈1〉
{p1, . . . , ps} = PRIMEDECOMP(P )
for i = 1 to s do

if Q 6⊆ pi then
a = a ∩ pi

end if
end for
b = RAD(Q+ a)
return([a, b])

end

ALGORITHM 1. CREP algorithm

3. Canonical representation of constructible sets
A set S ⊆ Cn is constructible if it is a finite union of locally closed sets. In particular, locally closed
sets are constructible. Constructible sets appear naturally in solving parametric polynomial sys-
tems of equations. Many authors give special representations for constructible sets [Leykin (2001),
O’Halloran and Schilmoeller (2002), Kemper (2007), Chen et al. (2008a), Chen et al. (2008b)],
[Chen et al. (2009)], adequate for its goals. Our goal is developing the invariant sequence of a con-
structible set described in [O’Halloran and Schilmoeller (2002)] setting the outlook on its effective
computation, to generalize the CREP of a locally closed set.

Next lemma recalls the behaviour of locally closed sets and constructible sets respect to union,
intersection and complementation. We omit the proofs which are straightforward.

Lemma 3.1. .
(i) If S is locally closed, then Sc is constructible;

(ii) If S1 and S2 are locally closed, then S1 ∪ S2 is constructible and S1 ∩ S2 is locally closed;
(iii) If S1 is locally closed and S2 is constructible, then S1 ∪ S2 and S1 ∩ S2 are constructible;
(iv) If S1 and S2 are constructible, then S1 ∪ S2 and S1 ∩ S2 are constructible.
(v) if S is constructible, then Sc is constructible.

(vi) if S1 and S2 are constructible, then S1 \ S2 is constructible.
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In the following L denotes be the family of locally closed sets and C the family of constructible
sets.

Remark 3.2. According to Lemma 3.1, if S1 and S2 are constructible, then S1 ∪S2, S1 ∩S2 and Sc
1

are constructible sets, too. Then C is a Boolean algebra of subsets of Cn containing L. On the other
hand, if a Boolean algebra A contains L then it must contain the finite union of locally closed sets,
that is, C ⊆ A. We conclude that C is the Boolean algebra generated by L. Let T the family union of
the family of open sets and the family of closed sets. The boolean algebra generated by T contains
L, so C is also the boolean algebra generated by T .

The first step of the construction of the canonical structure of the constructible set S given as
a union of locally closed sets is to separate S into two disjoint sets: S = L ] C where L is largest
locally closed set included in S and C its complement respect to S. Having this in mind we define:

C(S) = S \ S, L(S) = S \C(S),

(If the set S is clear from the context, we often write C and L instead of C(S) and L(S) respec-
tively).

If S ∈ C, then, S and Sc are constructible and C(S) = S \ S is a difference of constructibles,
so it is a constructible set. Thus, the map

C : C → C
S 7→ C(S) = S \ S

is well defined. Note:

(i) S = C(S) ] S;
(ii) S is closed if and only if C(S) = ∅;

(iii) S is locally closed if and only if C(S) is closed.

The set L(S) = S \C (where C = C(S)) is a difference of closed sets, so it is a locally closed
set. Then,

L : C → L
S 7→ L(S) = S \ C

is a well defined map. Clearly S = L(S) ] C. Moreover, L(S) ⊆ S. Indeed,

L(S) = S \ C = S \
(
S \ S

)
⊆ S \

(
S \ S

)
= S.

For a constructible set S, the set L(S) can be characterized as the largest locally closed set
included in S.

We give now a Proposition that determines an explicit expression of C as a union of locally
closed sets in terms of the input expression of S.

Proposition 3.3. Let S = S1 ∪ · · · ∪ Sr be a constructible set with each Si a locally closed set. For
i ∈ [r] let CREP(Si) = [ai, bi], Vi = V(ai) and Wi = V(bi). Then,

C = S \ S =
⋃

T⊂[r]

⋂
j∈T

V c
j

 ∩
⋂

j 6∈T

Wj


=
⋃

T⊂[r]

⋂
j 6∈T

Wj

 \
⋃

j∈T
Vj

 . (3.1)
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Proof. We have

S =(V1 \W1) ∪ · · · ∪ (Vr \Wr) = (V1 ∩W c
1 ) ∪ · · · ∪ (Vr ∩W c

r )

=
⋂

T⊆[r]

⋃
j∈T

Vj

 ∪
⋃

j 6∈T

W c
j

 ,

and thus

Sc =
⋃

T⊆[r]

⋂
j∈T

V c
j

 ∩
⋂

j 6∈T

Wj

 .

For a subset T ⊆ [r], let

ZT =

⋂
j∈T

V c
j

 ∩
⋂

j 6∈T

Wj

 ,

so that Sc =
⋃

T⊆[r] ZT . With this notation, the equality to prove is S \ S =
⋂

T⊂[r] ZT . For a set
T ⊆ [r] and an index ` ∈ T we have

V` ∩ ZT ⊆ V` ∩
⋂
j∈T

V c
j ⊆ V` ∩ V c

` = ∅,

(in particular, V` ∩ Z[r] = ∅) and, if 6̀∈T , then W` ⊂ V` and

V` ∩
⋂
j 6∈T

Wj =
⋂
j 6∈T

Wj ,

and we have V` ∩ ZT = ZT . Therefore, by using the distributive law,

S \ S =(V1 ∪ · · · ∪ Vr) ∩ Sc = (V1 ∪ · · · ∪ Vr) ∩
⋃

T⊆[r]

ZT

=

r⋃
`=1

⋃
T⊆[r]

(V` ∩ ZT ) =
⋃

T⊂[r]

ZT .

�

Proposition 3.3 provides an explicit formula of C = S \ S, as a union of locally closed sets.
We can compute the CREP of each one of these subsets of C and obtain an expression that allows
us to handle C ⊂ S in the same way as we have done with S. This provides an iterative method
to build the canonical representations of S. Next Proposition summarizes the basic properties of the
first step in the recursive construction.

Proposition 3.4. Let S 6= ∅ be a constructible set, C = C(S), L = L(S), a = I(S) and b = I(C).
Then,

(i) C ⊂ S;
(ii) C ⊂ S;

(iii) S = L;
(iv) [a, b] = [I(S), I(C)] = [I(S)], I(C)] is the C-representation of L.
(v) dimC < dimS.
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Proof. (i) Let S = S1 ∪ · · · ∪ Sr with Si locally closed. For i ∈ [r], let CREP(Si) = [ai, bi],
Vi = V(ai) and Wi = V(bi). Then, S =

⋃r
i=1(Vi \Wi) with Wi ⊂ Vi. By taking closures it results

S =
⋃r

i=1 Vi. Now, from formula (3.1) of Proposition 3.3 it results

C ⊆
r⋃

i=1

Wi ⊂
r⋃

i=1

Vi = S.

(ii) Taking closures in the preceding expression, it results

C ⊆
r⋃

i=1

Wi ⊂
r⋃

i=1

Vi = S.

(iii) From C ⊆
⋃r

j=1 Wj we have

L = S \ C ⊇ S \

 r⋃
j=1

Wj

 =

(
r⋃

i=1

Vi

)
\

 r⋃
j=1

Wj

 =

r⋃
i=1

ri⋃
k=1

Vik \
r⋃

j=1

Wj

 ,

where Vi =
⋃ri

k=1 Vik is the decomposition of Vi into irreducible varieties. If some irreducible
variety Vik of Vi of the segment i is cancelled by some Wj of a segment j, i.e. Wj ⊇ Vik, then
Vj ⊃ Wj ⊇ Vik, and in this case the variety Vik is included in Vj . So, Vik does not cancel in the
closure of L nor of S. Thus L ⊇

⋃r
i=1 Vi = S. As L ⊆ S we also have L ⊆ S, and the inclusion is

proved.
(iv), (v) From (ii) and (iii) the expression L = S \ C satisfies the conditions of Corollary 2.4,

and thus (iv) and (v) follow. �

We proceed now to describe the method for obtaining the canonical representation. Let S be a
constructible set. Define the sequence (Ai) by

A1 = S, Ai+1 = C(Ai).

By Proposition 3.4 (ii) and (v), if Ai 6= ∅, we have Ai ⊃ Ai+1 and dimAi > dimAi+1. Therefore,
there exists an integer r ≥ 1 such that Ar+1 = ∅ and Ar is closed. Consider the finite sequences

S = A1, A2, . . . , Ar, (3.2)

S = A1 ⊃ A2 ⊃ · · · ⊃ Ar,

dim(S) = dim(A1) > dim(A2) > . . . > dim(Ar).

By construction A2 = C(A1) = S \ S is disjoint with S = A1. But A3 = A2 \ A2 is disjoint with
A2 and a subset of S. Thus, have two decreasing and disjoint subsequences

S =A1 ⊃ A3 ⊃ · · · ⊃ A2s±1,

C =A2 ⊃ A4 ⊃ · · · ⊃ A2s.

Aplying L to sequence (3.2), i.e. Li = L(Ai), we get a new sequence of disjoint locally closed sets
that can be divided into two subsequences, considering the odd and even elements as follows:

S =L1 ] L3 ] · · · ] L2s±1, (3.3)
C =L2 ] L4 ] · · · ] L2s. (3.4)

The odd disjoint locally closed subsets L1, L3 . . . L2s−1 in which S is decomposed by the above
procedure form the canonical structure of the constructible set S and is independent of the initially
given locally closed sets defining S. We also obtain the canonical structure of the complement C =
S\S as the union of the even locally closed subsets L2∪L4]· · ·]L2s. From them it is obvious how
to obtain the canonical representation of S and C whose levels are already given by their CREP’s.
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L← FistLevel(A)
Input:
A = {[a1, b1], . . . , [ar, br]}

a set of CREP’s of the segments defining a constructible set S
Output:

C: a set of CREP’s the segments defining C(S) and
L = L(S): the CREP of the first level of S

begin
A =

⋂r
i=1 ai

P = 〈1〉, Q = 〈0〉, C = 〈1〉
for all T ⊂ [r] do

for j ∈ [r] do
if j ∈ T then Q = Q+ bj
else P = P ∩ aj
end if

end for
K = CREP(Q,P )
C = APPEND(K to C)
C = C ∩K1

end do
C = SIMPLIFYUNION(C) # for reducing terms
L = [A,C] # it is unnecessary to compute the CREP
return ([C,L])

end

ALGORITHM 2. FIRSTLEVEL algorithm

For i ∈ [r], define the ideals ai = I(Ai). By using Proposition 3.4 (iv) and (v) it results

Li = V(ai) \V(ai+1),

dimV(ai) > dimV(ai+1),

I(S) = a1 ⊂ a2 ⊂ · · · ⊂ ar ⊂ ar+1 = 〈1〉,
S = V(a1) ⊃ V(a2) ⊃ V(a3) ⊃ · · · ⊃ V(ar) ⊃ V(ar+1) = ∅.

Remark 3.5. In Q[x1, . . . , xn], Taking into account the decreasing dimensions of the levels of a
constructible set we have

(i) The maximum number of levels of S and C is n+ 1, that will occur when

dim(L1) = n, dim(L2) = n− 1, dim(L3) = n− 2, . . . , dim(Ln+1) = 0.

(ii) The maximum number of levels of S is dn+1
2 e.

(iii) dim(L2i−1) ≥ dim(L2i+1) + 2.

4. Algorithms for obtaining the canonical representation
of a constructible set
The algorithms work with ideals, whereas the definitions of C and L as well as the formulas given
in the previous sections are given in varieties. To set down the algorithms we must consider the
one-to-one correspondence between ideals of varieties and varieties.
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[L,C]← ConsLevels(A)
Input:
A = {[a1, b1], . . . , [ar, br]}

a set of CREP’s of the segments of a constructible set S
Output: [L,C]

L: the set of CREP’s of the canonical locally closed levels of S
C: the set of CREP’s of the canonical locally closed levels of C = S \ S

begin
` = 0 # ` = level
B = A, L = ∅, C = ∅
while B 6= ∅ do
` = `+ 1
K = FIRSTLEVEL(B) # K = [C`, [a`, a`+1]]
if ` mod 2 = 1 then
L = APPEND([`,K2] to L)

else
C = APPEND([`,K2] to C)

end if
end do
return([L,C])

end

ALGORITHM 3. CONSLEVELS algorithm

To flexibilize language, if S = S1 ∪ · · · ∪ Sr is a constructible set with each Si locally closed,
we call the sets Si the segments of S in the expression S = S1 ∪ · · · ∪ Sr.

Algorithm 2 FIRSTLEVEL corresponds to Proposition 3.3. Given a constructible set S, we ap-
ply the algorithm CREP to its segments; the resulting set of pairs of ideals is the input of FIRSTLEVEL.

FIRSTLEVEL applied to Ai returns in fact [Ai+1,L(Ai)], following Proposition 3.3, being
Ai+1 given by the set of CREP’s of its segments and L(Ai)] being already CREP(L(Ai)).

The procedure CONSLEVELS applies FIRSTLEVEL to S = A1 in its first step, obtaining
[A2,L(A1)]. Then it takes iteratively the first argument Ai as input for the next call to FIRSTLEVEL
and separates alternatively the second element (the level L(Ai)) into the odd and even levels to form
the unions (3.3) and (3.4) of S and C respectively.

Moreover, the algorithms can be accelerated. Formula (3.1) of Proposition 3.3 for computing
the complement C = C(S) = S \ S can contain many terms as CREP’s of locally closed sets, as
it considers all the subsets of [r]. Observe that if there are two different segments of C such that
CREP(Si) = [ai, bi] and CREP(Sj) = [aj , bj ] are such that bi = aj , then

Si ∪ Sj = (V(ai) \V(bi)) ∪ (V(bi) \V(bj)) = V(ai) \V(bj)

so that CREP(Si ∪ Sj) = [ai, bj ]. This can be tested for every (i, j). After this process it can
appear more than one segment that has become closed. All them can be summarized into a single
one taking the intersection of the corresponding ideals of varieties. Doing so we can reduce the
number of segments in C which will results in an acceleration of the algorithm CONSLEVELS. The
acceleration algorithm 4 SIMPLIFYUNION is to be used inside FIRSTLEVEL after obtaining C.
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A′ ← SimplifyUnion(A)
Input:
A = {[p1, q1], . . . , [pr, qr]}

a set of CREP’s of the locally closed sets defining C
Output: A′

A′: a simpler set of CREP’s of the C

begin
A′ = A
for i ∈ [r] do

for j ∈ [r], j 6= i do
if A′i,2 = A′j,1 do A′i = [A′i,1, A

′
j,2]; DELETE(A′j) end if

end for
end for
J = {j ∈ A′ : A′j2 = 1}
p =

⋂
j∈J A′j,2

DELETE(A′j for all j ∈ J)
A′ = APPEND([p, 〈1〉] to A′ )
return(A′)

end

ALGORITHM 4. SIMPLIFYUNION algorithm

5. Examples
We have implemented algorithms FIRSTLEVEL and CONSLEVELS (as well as the acceleration rou-
tine SIMPLIFYUNION) in Singular. They will be next included in the reformed GROBCOV library.
We show here some examples of adding locally closed sets to obtain the canonical representation of
the constructible.

Example 1. The first example is a simple geometric problem in 3-dimensional space with a nice
geometrical interpretation.

Consider the constructible set S = S1 ∪ S2 ∪ S3, where

S1 = V(x2 + y2 + z2 − 1) \V(z, x2 + y2 − 1),

S2 = V(y, x2 + z2 − 1) \V(z(z + 1), y, x+ z + 1),

S3 = V(x) \V(5z − 4, 5y − 3, x).

The set S1 is a sphere minus a maximum circle, S2 is a maximum circle minus two points and S3 is
a plane minus one point. Applying CONSLEVELS to them the result is:

L1 = V(x(x2 + y2 + z2 − 1)) \V(z, x2 + y2 − 1),

C2 = V(z, x2 + y2 − 1) \V(z, y(y2 − 1), x+ y2 − 1),

L3 = V(z, y, x− 1).

The canonical representations of S and C are

S = L1 ] L3, C = S \ S = C2.

As expected from the geometrical interpretation. S2 is completely included in S1 except for
point P = V(z, y, x − 1) = L3. Point P is not in S1 because it is in the circle retrieved from the
sphere, and cannot be included in L1 because it does not form a locally closed set with L1. This is
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the reason for its appearance in next level. Moreover, S3 is completely included in L1, and its hole
is included in S1 and in L1.

Example 2. We consider now the system of equations of the Romin robot [Gonzalez and Recio (1993)]
in the context of the computation of its Gröbner Cover [Montes and Wibmer (2010)].

Consider the ring R = Q(e, f, a, b, c, d)[c3, s3, c2, s2, c1, s1]. The parametric polynomial sys-
tem of equations from the Romin robot is determined by the ideal

S = 〈a+ ds1,

b− dc1,

ec2 + fc3 − d,

es2 + fs3 − c,

s21 + c21 − 1,

s22 + c22 − 1,

s23 + c23 − 1〉.

The first step is to compute a CGS (Comprehensive Gröbner System). Using Kapur-Sun-Wang al-
gorithm [Kapur et al. (2010)], the parameter space is divided into 22 disjoint segments, and for each
segment a basis specializing to the reduced Gröbner basis on the whole segment is given. Here we
are interested only in the segments. We give them in CREP and order them in decreasing dimension:

Num. a b dim.
1. 0 〈acd(a2 + b2)− d2〉 6
2. 〈a2 + b2 − d2〉 〈a2 + b2 − d2, efd(c2 + d2)〉 5
3. 〈d, a2 + b2〉 〈d, a2 + b2, efbc, efac〉 4
4. 〈a2 + b2 − d2, e〉 〈a2 + b2 − d2, fd(f2 − c2 − d2), e〉 4
5. 〈a2 + b2 − d2, f〉 〈a2 + b2 − d2, f, ed(e2 − c2 − d2)〉 4
6. 〈c2 + d2, a2 + b2 − d2〉 〈c2 + d2, b, a2 + b2 − d2,

efd(e2 − f2), efd(e2 − f2)〉 4
7. 〈d, b, a〉 〈d, b, a, efc〉 3
8. 〈d, a2 + b2, ec〉 〈d, a2 + b2, fb, fa, ec〉 3
9. 〈d, a2 + b2, f〉 〈d, a2 + b2, f, eb, ea〉 3

10. 〈a2 + b2 − d2, 〈d(c2 + d2), a2 + b2 − d2, 3
f2 − c2 − d2, e〉 fd, f2 − c2 − d2, e〉

11. 〈a2 + b2 − d2, f, e〉 〈d(c2 + d2), a2 + b2 − d2, f, e〉 3
12. 〈a2 + b2 − d2, f, 〈d(c2 + d2), a2 + b2 − d2, 3

e2 − c2 − d2〉 f, ed, e2 − c2 − d2〉
13. 〈c2 + d2, a2 + b2 − d2, 〈c2 + d2, a2 + b2 − d2, fd, 3

e2 − f2〉 fc, ed, ec, e2 − f2〉
14. 〈d, b, a, ec〉 〈d, b, a, fc(f2 + c2), ec,

f(e2 − f2 + c2)〉 2
15. 〈d, b, a, f〉 〈d, b, a, f, e(e2 − c2)〉 2
16. 〈d, a2 + b2, f, e〉 〈d, bc, ac, a2 + b2, f, e〉 2
17. 〈c2 + d2, a2 + b2 − d2, f, e〉 〈d, c, a2 + b2, f, e〉 2
18. 〈d, b, a, c(f2 − c2), ec, 〈d, c, b, a, f, e, e2 − f2 + c2〉 1
19. 〈d, b, a, f, e〉 〈d, c, b, a, f, e〉 1
20. 〈d, c, a, f, e2 − c2〉 〈d, c, b, a, f, e〉 1
21. 〈d, c, a2 + b2, f, e〉 〈d, c, b, a, f, e〉 1
22. 〈d, c, b, a, f, e〉 〈1〉 0
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Using CONSLEVELS to add the segments with equal dimension we also find locally closed sets. In
the computation, the following varieties appear:

V1 =V(0),

V2 =V(a2 + b2 − d2),

V3 =V(a2 + b2 − d2, efd(c2 + d2),

V4 =V(a2 + b2 − d2, fd(f2c2 + f2d2 − c4 − d4), efd(c2 + d2), efb(c2 + d2),

efa(c2 + d2), fd(e2 − f2 + c2 + d2), ed(e2 − f2 − c2 − d2),

efbc(e2 − f2), efac(e2 − f2)),

V5 =V(d(c2 + d2), a2 + b2 − d2, fd, fb, fa, ed, eb, ea, efc),

V6 =V(d, bc, ac, a2 + b2, fb, fa, fc(f2 − c2), eb, ea, efc, f(e2 − f2 + c2)),

V7 =V(d, c, b, a, f, e),

V8 =V(1).

We have: ⊎
{S : dimS = 6} = V1 \ V2,

⊎
{C : dimC = 6} = V2 \ V8,⊎

{S : dimS = 5} = V2 \ V3,
⊎
{C : dimC = 5} = V3 \ V8,⊎

{S : dimS = 4} = V3 \ V4,
⊎
{C : dimC = 4} = V4 \ V8,⊎

{S : dimS = 3} = V4 \ V5,
⊎
{C : dimC = 3} = V5 \ V8,⊎

{S : dimS = 2} = V5 \ V6,
⊎
{C : dimC = 2} = V6 \ V8,⊎

{S : dimS = 1} = V6 \ V7,
⊎
{C : dimC = 1} = V7 \ V8,⊎

{S : dimS = 0} = V7 \ V8,
⊎
{C : dimC = 0} = ∅.

But if we use CONSLEVELS to add separately the even-dimension and the odd-dimension ones then
the results are⊎

{S : dimS = 0 (mod 2)} = (V1 \ V2) ] (V3 \ V4) ] (V5 \ V6) ] (V7 \ V8) ,⊎
{C : dimC = 0 (mod 2)} = (V2 \ V3) ] (V4 \ V5) ] (V6 \ V7) ,⊎
{S : dimS = 1 (mod 2)} = (V2 \ V3) ] (V4 \ V5) ] (V6 \ V7) ,⊎
{C : dimC = 1 (mod 2)} = (V3 \ V4) ] (V5 \ V6) ] (V7 \ V8) ,

which are not locally closed and have respectively 4 and 3 proper levels.

References
[Abanades et al. (2014)] M. Abanades, F. Botana, A. Montes, T. Recio, An Algebraic Taxonomy for Locus

Computation in Dynamic Geometry, Computer-Aided Design submitted.
[Allouche (1996)] J.P.. Allouche, Note on the constructible sets of a topological space, in: Note on the con-

structible sets of a topological space. Papers on general topology and applications (Gorham, ME, 1995),
1–10, Ann. New York Acad. Sci., 806, New York Acad. Sci., New York, 1996.

[Chen et al. (2008a)] C. Chen, F. Lemaire, L. Li, M. M. Maza, W. Pan, Y. Xie, The ConstructibleSetTools and
ParametricSystemTools modules of the RegularChains library in Maple, in: Proceedings os ICCSA’2008,
IEEE computer society, 342–352, 2008a.



Computing the canonical representation of constructible sets 13

[Chen et al. (2008b)] C. Chen, L. Li, M. M. Maza, W. Pan, Y. Xie, On the Representation of Constructible Sets,
in: Proceedings of Milestones in Computer Algebra 2008, Trinidad and Tobago, 103–108, 2008b.

[Chen et al. (2009)] C. Chen, F. Lemaire, L. Li, M. M. Maza, W. Pan, Y. Xie, Computing with Constructible
Sets in Maple, Journal of Symbolic Computation (2009) X–X.

[Cox et al. (1998)] D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Springer, New-York, 1998.
[Decker et al. (2015)] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR 4-0-2 — A computer

algebra system for polynomial computations, http://www.singular.uni-kl.de, 2015.
[Gianni et al. (1988)] P. Gianni, B. Trager, G. Zacharias, Gröbner Bases and Primary Decomposition of Poly-
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Communications in Algebra 30:11 (2002) 5479–5483.
[Kapur et al. (2010)] D. Kapur, Y. Sun, D. Wang, A new algorithm for computing comprehensive Gröbner
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