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Abstract

Given a parametric polynomial ideal I, the algorithm DISPGB, introduced by the
author in 2002, builds up a binary tree describing a dichotomic discussion of the different
reduced Gröbner bases depending on the values of the parameters. An improvement
using a discriminant ideal to rewrite the tree was described by Manubens and the author
in 2005. In this paper we describe how to iterate the use of discriminants to rebuild the
tree and show that this leads to an ascending discriminant chain of ideals, and to the
corresponding descending chain of varieties in the parameter space that characterizes
the different kinds of solutions. This provides a discussion of the ideal I into canonical
cases even if the tree is not completely canonical. It can also be used to obtain a
canonical comprehensive Gröbner basis. With the new algorithm, we realize in some
sense the objective proposed by Weispfenning in 1992. We also prove the conjectures
formulated in the previous paper.

Keywords: minimal singular variety, canonical discussion, perfect specification,
ascending discriminant chain, discriminant ideal, comprehensive Gröbner basis,
parametric polynomial system.
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1 Introduction

There are many authors [Be94, BeWe93, De99, Du95, FoGiTr01, Gi87, Gom02, GoRe93,
GoTrZa00, GoTrZa05, HeMcKa97, Ka97, Kap95, MaMo05, Mo02, Mor97, Pe94, SaSu03,
SaSuNa03, Sc91, Si92, We92, We03] that have studied the problem of specializing parametric
ideals into a field and determining the specialized Gröbner bases. Many other authors [Co04,
Em99, GoRe93, GuOr04, Mo95, Mo98, Ry00] have applied some of these methods to solve
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concrete problems. In the previous paper [Mo02] we give more details of their contributions
to the field. In the following we only refer to the papers directly related to the present work.

Let I ⊂ K[a][x] be a parametric ideal in the variables x = x1, . . . , xn and the parameters
a = a1, . . . , am, and Âx and Âa monomial orders in variables and parameters respectively.
Weispfenning [We92] proved the existence of a Comprehensive Gröbner Basis (CGB) of I
and gave an algorithm for computing it. Let K be a computable field (for example Q) and
K ′ an algebraically closed extension (for example C). A CGB is a basis of I that specializes
to a Gröbner basis of σa(I) for any specialization σa : K[a][x]→ K ′[x], that substitutes the
parameters by concrete values a ∈ K ′. Nevertheless Weispfenning’s algorithm was neither
very efficient nor canonical. Using his suggestions, the author [Mo02] obtained a more
efficient algorithm (DISPGB) for Discussing Parametric Gröbner Bases. DISPGB builds
up a dichotomic binary tree, whose branches at each vertex correspond to the annihilation
or not of a polynomial in K[a]. It places at each vertex v a specification Σv = (Nv,Wv) of
the included specializations, that summarizes the null and non-null decisions taken before
reaching v, and a specialized basis Bv of σa(I) for the specializations σa ∈ Σv. At the
terminal vertices the basis specializes to the Gröbner basis of the specialized ideal σa(I)
that has a set of leading power products (lpp set) which is commom to all specializations
in Σv.

Inspired by DISPGB, Weispfenning [We03] was able to give a constructive method for
obtaining a Canonical Comprehensive Gröbner Basis (CCGB) for parametric polynomial
ideals. The algorithm is based on the direct computation of a discriminant ideal. Neverthe-
less his method is of high computational complexity and does not provide a true partition of
the different cases of the parametric Gröbner system. Using Weispfenning’s idea of discrim-
inant ideal, Manubens and Montes drastically improved DISPGB. In [MaMo05] we showed
that the tree T−1, built up by DISPGB algorithm, can be rewritten into a new form T
providing a more compact and effective discussion by computing a discriminant ideal that
is easy to compute from T−1. We proved that our discriminant contains Weispfenning dis-
criminant ideal and we conjectured the equality. A redefinition of the discriminant allows
now to prove the conjecture.

The old DISPGB is renamed BUILDTREE as it builds up the first discussion tree T−1,
and a new algorithm REBUILDTREE is added to rewrite the tree, and both are included
in the new DISPGB algorithm outlined in Table 1.

The main contribution of this paper is the iteration of the rewrite process to deeper
levels. Some theoretical problems remained open for this. In this paper all these problems
are solved, proving that the iteration of REBUILDTREE to each level produces an ascending
chain of discriminant ideals

J−1 = {0} Ã J0 Ã J1 Ã · · · Ã Jk Ã K[a] = Jk+1

and the corresponding descending chain of minimal varieties

K ′m ! V(J0) ! V(J1) ! · · · ! V(Jk) ! ∅

in the parameter space K ′m. A descending chain determines a partition

Υ = {Y0, Y1, . . . , Yk}
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T ← DISPGB(B,Âx,Âa)
Input:

B ⊆ R[a][x] : basis of I,
Âx, Âa : term orders wrt the variables x and the parameters a respectively.

Output:
T : table with binary tree structure, containing (Gv,Σv) at vertex v

BEGIN
T−1:=BUILDTREE(B,≺x,≺a)
T :=REBUILDTREE(T−1, φ, 0)

END

Table 1: DISPGB algorithm.

of K ′m into the sets Yi = V(Ji−1) \V(Ji) ⊂ K ′m for which the basis Gi ⊂ K[a][x] provided
by the algorithm has a characteristic lpp set `i and specializes to the reduced Gröbner basis
of σa(I) for a ∈ Yi. The algorithm is able to represent the perfect specifications Yi of the
different cases in a canonical form, leading to a complete canonical discussion and a true
partition.

We show that for a given ideal and monomial order there exists only a few set of possible
descending chains of varieties even if there does not always exist a unique one. Even so,
the representation of the cases can be described by a canonical representation independent
from its situation in the tree (or chain).

The partition of K ′m is almost independent of the particular descending chain. It is
unique and canonical whenever the elements of the partition correspond to different cases
that cannot be summarized into a single one (for example whenever they have all different
lpp sets). In some discussions it happens that some cases could be summarized into a
single one. Even if the actual implemented algorithm does not make this automatically, it
is always possible to do it externally from the output of the tree. Frequently then this can
also be realized using a different strategy with DISPGB.

A first implementation of the algorithm based on the definition of special cases given
in [MaMo05] was distributed on the web. Using it, a counter-example has been provided to
me by Wibmer [Wi06] that showed that the definition of special cases given in [MaMo05]
was insufficient and give rise to erroneous discriminant ideal in some problems. In this
paper we have corrected this point and now the singular cases include all the cases to which
the generic Gröbner basis does not specialize to a Gröbner basis of the case, even if both
basis have the same lpp sets. With this modification the discussion becomes correct and we
can also prove the equality of Weispfenning and our top discriminant ideals. The algorithm
works with ideals, as these are the algebraic objects that allow a Gröbner representation.
Nevertheless, as it does not always use radical ideals, ideals do not represent varieties in
a unique form. So, to prove our results we adopt frequently a geometrical view about
the specifications of specializations considering the corresponding varieties. This leads to
slightly different definitions and properties than those given in [MaMo05].

The canonical Gröbner system so obtained allows to compute also a canonical compre-

3



hensive Gröbner basis completing the objective of Weispfenning in [We92].
Manubens and Montes have implemented the new algorithm in Maple in release 4.1 of

DPGB1.

2 Reviewing BUILDTREE

BUILDTREE is described in [MaMo05] and improves the original DISPGB described in [Mo02].
So, it will not be described hereafter.

Nevertheless, we need to replace the concept of reduced specification of specializations2

Σ = (N,W ) used inside BUILDTREE. Remember that N represents the null conditions,
and W the non-null conditions. To attain now the geometrical perspective, the definition
given in [MaMo05] must be substituted by the following:

Definition 1. Σ = (N,W ) is a reduced specification of specializations if

(i) N = gb(〈N〉,Âa),

(ii) W is a set of distinct irreducible polynomials over K,

(iii) No irreducible component of V(N) ⊂ K ′m is contained in
⋃

w∈W
V(w).

We call XΣ the semi-algebraic set specified by Σ:

XΣ = V(N) \
( ⋃

w∈W
V(w)

)
∈ K ′m.

Lemma 2. Let K be an infinite field and V,W be varieties of Kn. Then, if V is irreducible
and W $ V then V \W = V .

Proof.

⊆: V \W is the minimal variety containing V \W and V is a variety containing V \W .
Thus V \W ⊆ V .

⊇: We have V = W ∪ (V \W ) ⊆W ∪ V \W . As V is irreducible then either V ⊆W or
V ⊆ V \W . But V ⊆W contradicts the hypothesis, thus V ⊆ V \W .

Using the definition of reduced specification we can now prove the following

Theorem 3. Let Σ = (N,W ) be a reduced specification of specializations, Z =
⋃
w∈W V(w)

and XΣ = V(N) \ Z. Then the Zariski closure of X is X = V(N).

1Available on the web
2Definition 7 in [MaMo05]
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Proof. Decompose V(N) into irreducibles V(N) =
⋃k
i=1 Vi. We have

V(N) \ Z = ∪ki=1Vi \ Z =
k⋃

i=1

Vi \ Z =
k⋃

i=1

Vi \ (Z ∩ Vi)

If no Vi ⊆ Z then Z ∩ Vi $ Vi and thus, by Lemma 2, Vi \ (Z ∩ Vi) = Vi and finally

V(N) \ Z =
⋃k
i=1 Vi = V .

Note that in contrast to the definition in [MaMo05], we do not require N to be radical.
When we need to test whether a polynomial in K[a] vanishes as a consequence of a ∈ X, it
will not be sufficient to divide it by N , but we will need to test if it belongs to

√
〈N〉. But

this is simpler than computing the radical. Note also that properties (ii), (iii) and (iv) of
the definition in [MaMo05] are simple consequences of Definition 1. Nevertheless property
(iii) of Definition 1 is stronger, and REDSPEC (denoted CANSPEC in previous papers)
must be designed to realize this new definition of reduced specification. If property (iii) is
not held by the concrete used REDSPEC algorithm, then Theorem 3 will not be true, and
the algorithm DISPGB will not always built up the best tree. We shall discuss this later.

We assume now that the algorithm BUILDTREE uses the adequate REDSPEC algo-
rithm and, when applied to the ideal I, builds up a rooted binary tree with the following
properties:

1. At each vertex v a dichotomic decision is taken about the vanishing or not of some
polynomial p(a) ∈ K[a].

2. A vertex is labelled by a list of zeroes and ones, whose root label is empty. At the
null son vertex p(a) is assumed null and a zero is appended to the father’s label,
whereas p(a) is assumed non-null at the non-null son vertex, in which a 1 is appended
to father’s label.

3. At each vertex v, the tree stores Σv and Bv, where

- Σv = (Nv,Wv) is a reduced specification of specializations summarizing all the
decisions taken in the preceding vertices starting from the root. By Definition 1
it represents all the specializations with a ∈ Xv = V(Nv) \

⋃
w∈Wv

V(w).

- Bv is reduced wrt Σv (not faithful in the sense of Weispfenning) and specializes
to a basis of σa(I) for every a ∈ Xv.

4. At the terminal vertices v,

- Bv specializes to the reduced Gröbner basis of σa(I) for every a ∈ Xv and has
the same lpp set. We will denote such a basis GRGB(Σv) (Generic Reduced
Gröbner Basis relative to Σv).

- The specifications of the set of terminal vertices ti represent subsets Xti ⊂ K ′m

forming a partition of the whole parameter space K ′m:

X = {Xt0 , Xt1 , . . . , Xtp},

and the sets Xti have characteristic lpp sets that do not depend on the algorithm.
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s(v,2)g(v,1)s(v,1)g(v)

v

nullnot null

[x][z, x][y, x][1]

[y, x][z, y, x][y, x][1][z, x][z, y, x][1][z, y, x][z, y, x][z, y, x]

[z, y, x][z, y, x]

Figure 1: Vertices associated to a vertex v in BUILDTREE. Illustration of Definitions 4 in
an example: I = 〈x+ cy + bz + a, cx+ y + az + b, bx+ ay + z + c〉.

Definition 4. Let T−1(I,Âx,Âa) be the tree built up by BUILDTREE and v be any vertex.
Associated to v define

(i) The generic vertex relative to v as the terminal vertex g(v) descendent from v for
which only non-null decisions have been taken, and correspondingly the generic basis,
specification and set of lpp’s relative to v.

(ii) The singular vertices relatives to v as the terminal vertices si(v) descendent from
v whose lpp sets are different from that of vertex g(v), as well as those terminal
vertices having the same lpp set as Bg(v) = GRGB(Σv) but for which the polynomi-
als of Bg(v), normalized to be polynomials of the specialized ideal, do not specialize
to the polynomials of its own basis Bsi(v). These last vertices were not considered
singular in [MaMo05] producing some erroneous discussions as has been noticed by
Wibmer [Wi06], but must necessarily be considered so. The rest of terminal vertices
gi(v) descendent from v whose lpp sets are equal to that of vertex g(v) are non-singular
vertices.

(iii) The minimal singular variety Vv relative to v as the minimal variety containing all
the singular specifications Xsi(v):

Vv =
⋃

i

Xsi(v) =
⋃

i


V(Nsi(v)) \

⋃

w∈Wsi(v)

V(w)


.

(iv) The absolute generic vertex and basis as the generic vertex and GRGB(Σ[ ]) relative
to the root vertex.

(v) The discriminant ideal Jv relative to vertex v by

Jv =
⋂

i

Nsi(v),
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where Nsi(v) are the null condition ideals of the specifications corresponding to the
singular vertices relative to vertex v.

Note that the absolute generic basis is equal to the reduced Gröbner basis of I computed
in K(a)[x] by the ordinary Buchberger algorithm, conveniently normalized to eliminate
denominators.

In Fig. 1 a simple example of the tree built by BUILDTREE is shown. In the figure
the lpp sets of the terminal vertices, a vertex v with label [1, 0] and its associated generic
g(v), singular s1(v), s2(v) and non-singular g1(v) vertices are illustrated.

Lemma 5. Nv ⊂ Jv.
Proof. By construction, the null condition ideal at any descendant vertex of v contains
Nv, as some null condition has been added to reach it. The unique descendant terminal
vertex having a null condition ideal equal to Nv is the generic vertex g(v). All the singular
terminal vertices have null-condition ideals that strictly contain Nv. Thus their intersection
also contains Nv.

Theorem 6. Let T−1(I,Âx,Âa) be the tree built up by BUILDTREE and v be any vertex.
Then

(i) the minimal singular variety Vv is Vv = V(Jv).

(ii)
√
Jv =

⋂ {
ker(σa) : σa is singular relative to vertex v

}

Proof. (i) Set Zi =
⋃
w∈Wsi(v)

V(w). By Theorem 3,

Vv =
⋃

i

Xsi(v) =
⋃

i

(
V(Nsi(v)) \ Zi

)
=
⋃

i

(
V(Nsi(v)) \ Zi

)

=
⋃

i

V(Nsi(v)) = V(
⋂

i

Nsi(v)) = V(Jv).

(ii) As K ′ is algebraically closed, I(V(Jv)) =
√
Jv by the Nullstellensatz. Now f ∈ √Jv =⋂

i

√
Nsi(v) if and only if for all a ∈

⋃

i

XΣsi(v)
is σa(f) = 0, which is equivalent to

f ∈
⋂
{ker(σa) : σa is singular relative to vertex v}.

Note that if REDSPEC does not produce exactly a reduced specification, then Theo-
rem 6 does not apply, and V(Jv) will include the minimal singular variety Vv but can be
strictly greater. In this case unnecessary non-singular cases can remain inside the variety
V(Jv).

In [MaMo05] we enunciate two forms of a conjecture that, with the new definition of
special cases, becomes now a theorem. We proof it now.

Remember the definitions leading to the top Weispfenning’s discriminant. Let G be the
generic Gröbner basis of the ideal I computed in K(a)[x]. Associated to each g ∈ G, let dg
be the lcm of the denominators of g, and define the ideal

Jg = {a ∈ K[a] : ag ∈ I} = dg(I : dgg)
⋂
K[x].
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Then Weispfenning’s discriminant [We03] is the radical of the intersection JW =
√
∩g∈GJg.

A specialization is said to be essential (for I,Âx) if Jg ⊆ ker(σ) for some g ∈ G.

Theorem 7. Consider the root vertex and its associated absolute generic case. Then

(i) A specialization is essential if and only if it is singular.

(ii) The radical of our top discriminant ideal is equal to Weispfenning’s top discriminant.

Proof.

(i) If σ is essential, then it exists g ∈ G such that Jg ⊆ ker(σ). Thus σ(f) = 0 for all
f ∈ Jg. Let hgg be the polynomial in I that corresponds to g. Thus hg = lc(hgg).
Then hg ∈ Jg ⊆ ker(σ) and σ(hg) = 0. Thus g does not specialize to a polynomial
with the same lpp wrt Âx. Thus G does not specialize to a basis with the same lpp
set. Thus σ is special as either σ(G) is a Gröbner basis of σ(I) and then it does
not have the same lpp set as G, either it does not specialize to the reduced Gröbner
basis of σ(I). In both cases σ is singular. The argument can be reversed to prove
that singular specializations are essential. This proves the strong formulation of the
conjecture in [MaMo05].

(ii) This constitutes the weak formulation of the conjecture and is a consequence of the
strong formulation as proved in [MaMo05].

3 Iterative Rewriting of the Tree Using Discriminant Ideals

The design of the algorithms described in [MaMo05] uses radical null ideals as well as
a radical discriminant ideal for the first rewrite of the initial tree T−1(I,Âx,Âa). The
actual design does not use necessary radicals, but instead the reduced specifications verify
Theorem 3.

In order to rewrite the tree, we need a new kind of specification of specializations:

Definition 8. Σ′ = (N,M) is a perfect specification of specializations if

(i) N = gb(〈N〉,Âa),

(ii) M = gb(〈M〉,Âa),

(iii) 〈N〉 Ã 〈M〉.

We call YΣ′ the algebraic set V(N) \ V(M) ⊂ K ′m specified by Σ′. The set YΣ′ corres-
ponding to a perfect specification can be described in a canonical form using the algorithm
CANPERFSPEC of Table 2 as states the following

Theorem 9. Given two ideals N Ã M , the algorithm CANPERFSPEC given in Table 2
generates a unique canonical description of

YΣ′ = V(N) \ V(M) ⊂ K ′m
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S ← PRIMEDECOMP(N)
Input:

N : ideal (representing a variety)
Output:

S: The set of prime ideals of the decomposition of
√
N

(S, T )← CANPERFSPEC(N,M)
Input:

N , the null-condition ideal of the perfect specification
M , the non-null condition ideal of the perfect specification M ⊃ N

Output:
S, T , The sets of prime ideals corresponding to the minimal null and

non-null conditions of the canonical description.
BEGIN
M := M +N
S := PRIMEDECOMP(N)
T := PRIMEDECOMP(M)
Eliminate from S the ideals that are also in T .
Replace each ideal Tj in the decomposition of T by

⋂
k(Sk + Tj)

T :=
⋂
j PRIMEDECOMP(Tj)

Eliminate from S the ideals that are also in T .
END

Table 2: CANPERFSPEC algorithm.

in the form
YΣ′ = V(∩kNk) \ V(∩j(Mj),

where the ideals Nk,Mj are prime (relative to K, but can be reducible wrt K ′) and each Mj

strictly contains some Nk:
Mj % Nk(j).

Proof. By construction CANPERFSPEC produces the minimal decomposition with the
required conditions.

In the iterative rewriting process two kinds of vertices of the rewritten trees become
important: from here on, let us denote the vertices labelled by the all zero vector [0,

n

˘. . . , 0]

by the number n of zeroes, and the vertices of the form [0,
n−1

˘. . . , 0, 1] by n′. With this notation,
the root vertex [ ] becomes vertex 0. The top discriminant ideal is now J0 =

⋂
iNsi(0), and

by Theorem 6, V(J0) is the minimal singular variety of the root vertex.
The first step of REBUILDTREE, already described in [MaMo05], consists of the fol-

lowing:

1. put at the top vertex the decision about the discriminant J0,

2. hang at the non null branch the generic basis Bg(0),
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T ′ ← REBUILDTREE(T, n)
Input:

T , the tree built by BUILDTREE or by REBUILDTREE(T, n− 1)
n, integer denoting the recursion level (initially 0).

Output:
T ′, the new rebuilt tree T .

BEGIN
REPEAT
T ′ := copy T from the root cutting after vertex [0,

n

˘. . . , 0]

Ja = null condition ideal of vertex [0,
n

˘. . . , 0] of T , (initially empty)

vg := generic terminal vertex [0,
n

˘. . . , 0, 1, . . . , 1] relative to [0,
n

˘. . . , 0] of T
spc := SPECCASES(n),

J :=
⋂

si∈spc
Nsi . Add J to vertex n of T ′.

Place at vertex [0,
n

˘. . . , 0, 1] of T ′:
- Σvg = CANPERFSPEC(Ja, J) (the canonical representation)
- the basis Bvg of T

Hang from the null branch of vertex [0,
n

˘. . . , 0] of T ′ the subtree of T

starting with vertex [0,
n

˘. . . , 0] in T , rewrite it by adding the
null condition J using REDSPEC, (some of the vertices v in T with
lppv = lppvg will disappear in T ′ because they become incompatible)

UNTIL the whole rebuilding is done
END

Table 3: REBUILDTREE algorithm.

3. hang at the non null branch the perfect specification Σ′ = ({0}, J0) representing the
set Y0 = K ′m \V(J0), (or better its canonical representation provided by CANPERF-
SPEC)

4. hang from the null branch of the new rebuilt tree, the old tree T−1. To do this

- add the null condition J0 to the reduced specifications in all the descending
vertices,

- use REDSPEC to recompute the specifications,

- reduce the bases using the new specifications.

Given I and the order Âx, the specification of the absolute generic vertex g(0) satisfies
Xg(0) = K ′m by Theorem 3, and its lpp set is intrinsic by Gianni’s Theorem [Gi87]. Thus
V0 is also intrinsic, because

⋃
iXsi(0) is the region of K ′m containing not generic special

cases, and this does not depend on the algorithm. So the radical of the top discriminant
ideal is also intrinsic. We have already proved that it is equal to Weispfenning[We03] top
discriminant ideal.
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Spc← SPECCASES(n)
Input: n, integer denoting the recursion level (initially 0).
Output: Spc, the special cases descending from vertex n of T .
BEGIN
c := Set of terminal vertices descending from vertex n
c1 := Select from c the cases with lpp(Bi) 6= lpp(Bvg)
c2 := φ
IF c 6= c1 THEN

FOR g ∈ Bvg DO hg := lc(ag) with ag ∈ σvg(I)
FOR ALL ti ∈ c \ c1 DO

test := true
FOR ALL g ∈ Bvg WHILE test DO

IF σti(hg) = 0 THEN test := false
IF test THEN c2 := c2 ∪ {ti}

Spc := c1 ∩ c2

END

Table 4: SPECCASES routine called inside REBUILDTREE.

After the first rebuild the specification at the new vertex 1 is Σ′1 = (J0, 〈1〉) and cor-
responds to the root vertex of the old tree T−1. That specification represents the subset
of values of the specializations included Y0 = V(J0) for which B0 is the GRGB. The non
null branch will summarize the largest set of generic specifications of T−1 given by a perfect
specialization that were before under the null branch. Most of the non-special cases of the
old tree will be included now in the new enlarged generic specification and correspondingly
will become incompatible and disappear under the null branch in the new tree when adding
the discriminant condition. The new specifications under the null branch will continue to
verify Theorems 3, 6. The old singular cases at the terminal vertices will neither disappear
nor change, because these null conditions already contain the new discriminant condition.

The rewrite process can be iterated now starting from vertex 1, and in general from ver-
tex n until the complete rewriting process has been finished. The iterated REBUILDTREE
algorithm is shown in Table 3 and the routine SPECCASES used by it to determine the
special cases hanging from vertex n of the n− 1 rebuilt tree is shown in Table 4. As it can
be seen in SPECCASES routine, we need to use a quotient of ideals similar to that used to
determine Weispfenning’s discriminant.

The whole rewrite process should now be clear. At the second rebuild the discriminant
J1 will be computed and set as decision in vertex 1 = [0]. Thus the specification at the new
vertex 2′ = [0, 1] will be Σ′2′ = (J0, J1) which is clearly a perfect specification, and at vertex
2 = [0, 0], it will be Σ′2 = (J1, 〈1〉), which is also a perfect specification.

The complete rebuilt tree T will thus have the vertices and specifications given in Fi-
gure 2.
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J0, Σ′0 = ({0}, 〈1〉)

Σ′1′ = ({0}, J0) J1, Σ′1 = (J0, 〈1〉)

Σ′2′ = (J0, J1) J2, Σ′2 = (J1, 〈1〉)

Σ′3′ = (J1, J2) J3, Σ′3 = (J2, 〈1〉)

Jq, Σ′q = (Jq−1, 〈1〉)

Σ′(q+1)′ = (Jq−1, Jq) Σ′q+1 = (Jq, 〈1〉)

Figure 2: Discriminants and Specifications in the rebuilt tree.

The discriminant ideals Ji and the associated varieties verify the inclusions

{0} Ã 〈J0〉 Ã 〈J1〉 Ã 〈J2〉 Ã · · · Ã 〈Jq〉 Ã 〈1〉
K ′m ! V(J0) ! V(J1) ! V(J2) ! · · · ! V(Jq) ! φ,

(1)

and the set of values of the parameters corresponding to the specification of the terminal

vertices (i + 1)′ = [0,
i

˘. . . , 0, 1] are Yi = V(Ji−1) \ V(Ji). For the last terminal vertex

q + 1 = [0,
q+1

˘. . . , 0] it is Yq+1 = V(Jq) \ V(〈1〉) = V(Jq). Formula (1) gives a discriminant
chain of descending varieties associated to the polynomial ideal I, as it defines the regions
of K ′m space having different reduced Gröbner bases. The strict inclusions in the chains
arises as a consequence of Yi = V(Ji−1) \ V(Ji) being non-empty, as it contains the generic
case g(i).

4 Canonical Character of the Discussion

Note that even the first tree T1(I,Âx,Âa) built by BUILDTREE provides a finite partition
X = {X1, . . . , Xp} of K ′m and the corresponding Gi = GRGB(Σi) ∈ R[x]. BUILDTREE is
algorithm depending, and so a different partition X ′ = {X ′t0 , X ′t1 , . . . , X ′t′p} using a different

strategy in DISPGB. But the union of the sets specified in the cases corresponding to a
unique GRGB specializing to the reduced Gröbner basis of the specialized ideal (with the
same lpp set), must be the same in X and in X ′, as these sets are not algorithm depending.

The rebuild process groups sets of Xi’s, having a unique GRGB that specializes to
the reduced Gröbner basis of the specialized ideal (with the same lpp’s), into a single Yj .
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Moreover, CANPERFSPEC provides a canonical description of the Yi.
Thus, when REBUILDTREE finishes with a partition where none of the generic reduced

Gröbner bases are equivalent by specialization, (either they have different lpp sets or they
do not specialize in the same way), than the discussion is described in a complete canonical
form.

Even when REBUILDTREE is not able to summarize every generic reduced Gröbner
basis into a single case, we can use CANPERFSPEC in an external routine applied to the
final tree to achieve the unification of cases. So it is always possible to obtain a canonical
representation of the different specialization cases.

Nevertheless the order in which the different cases appear in the tree is still algorithm
depending to some extent. Let us comment this point.

The absolute generic basis Bg(0) does not depend on the algorithm, and so the same is
true for the set ∪iXsi(0) = ∪iX ′si(0). Thus V(J0) is canonical.

The first step of REBUILDTREE algorithm then rewrites the tree setting as new generic
case the perfect specification given by K ′m \ V(J0) that is thus not algorithm depending.
All the special cases remain under the null branch of the new top decision.

At the new step of REBUILDTREE the new generic basisBg(1) relative to the new vertex
1, for which only non-null conditions have been added is chosen, and the new discriminant
J1 ⊃ J0 is determined. So the new perfect specification Σ′1′ = (J0, J1) is obtained for the
new generic vertex relative to the new vertex 1, that we denote 1’. It corresponds to the
set of parameter values V(J0) \V(J1). Only the possibility of a different choice of the basis
for the new generic case relative to vertex 1 that can appear in a different tree obtained
by the non canonical BUILDTREE, can destroy (misstand) the canonical character of the
rebuilding process.

To reach the generic case of a vertex in BUILDTREE, only compatible non-null decisions
have been taken in the sense of reduced specifications. Thus the dimension of the Zariski
closure of the generic case must be equal to that of V(J0).

If dim(V(J1)) < dim(V(J0)) then the generic basis of case 1′ is also canonical as it corre-
sponds to the unique specification under vertex 1 whose Zariski closure has dimension equal
to dim(V(J0)), and thus does not depend on the particular tree built up by BUILDTREE.

The algorithm continues working so and whenever dim(V(Ji)) < dim(V(Ji−1)) the choice
of the generic basis associated to vertex i does not depend on the algorithm. If dim(V(Ji)) <
dim(V(Ji−1)) happens for all i then the discussion tree will be absolutely canonical too.

Nevertheless it can happen that, for some i, dimV(Ji−1) = dimV(Ji). In this case
V(Ji) is formed by a subset of the irreducible components of V(Ji−1), some of them having
the same dimension as the correspondent in V(Ji−1). In this case a different possible
choice of the generic case is possible and this would produce a new choice J ′i with V(J ′i)
in V(Ji−1) \ V(Ji). This will produce an inversion in the order of the cases inside V(Ji−1).
Thus the discussion tree is not absolutely canonical and can produce minor predictable
changes in the order of the discussion. This will become clear in the examples.

Let G = gb(I,Âx,a) be the reduced Gröbner bais of I computed wrt the product order
Âx,a. This is a tentative Comprehensive Gröbner Basis of I. The canonical Gröbner system
obtained by DISPGB can be used to complete it to a true CGB, that will then also be
Canonical. For this, it suffices to verify for which cases and polynomials no polynomial
in G does specialize to it. For each of them we can compute pre-images in I using an
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appropriate algorithm. This will be discussed in detail in another paper.

5 Examples

5.1 Example 1

Consider the following linear system with ideal

I = 〈x+ cy + bz + a, cx+ y + az + b, bx+ ay + z + c〉]

having three parameters. Take monomial orders lex(x, y, z) and lex(a, b, c).
DISPGB obtains the following discriminant ideal chain:

J0 = [a2 + b2 + c2 − 2abc− 1]
J1 = [b4c2 − b4 − b2c4 + b2 + c4 − c2, ac3 − ac+ b3c2 − b3 − bc4 + b,

abc2 − ab− c3 + c, ab2 − ac2 − b3c+ bc3, a2 + b2 + c2 − 2abc− 1]
J2 = [c2 − 1, a− bc]
J3 = [c2 − 1, b2 − 1, a− bc]

with J0 Ã J1 Ã J2 Ã J3. Decomposing the associated minimal varieties using CANPERF-
SPEC we have:

V(J0) = V(c2 + b2 − 1− 2acb+ a2)
V(J1) = V(a+ c, b+ 1) ∪ V(c− b, a− 1) ∪ V(c− a, b− 1) ∪ V(b+ c, a+ 1)∪

∪V(a+ b, c+ 1) ∪ V(a− b, c− 1) = r1 ∪ r2 ∪ r3 ∪ r4 ∪ r5 ∪ r6

V(J2) = V(a+ b, c+ 1) ∪ V(a− b, c− 1) = r5 ∪ r6

V(J3) = V(a− 1, b− 1, c− 1) ∪ V(a− 1, b+ 1, c+ 1) ∪ V(a+ 1, b− 1, c+ 1)∪
∪V(a+ 1, b+ 1, c− 1) = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}

= {P1, P2, P3, P4}.

The varieties verify V(J0) ! V(J1) ! V(J2) ! V(J3) cf. Figure 3. The corresponding lpp
sets of the reduced Gröbner bases of the Y ’s are all different and are summarized in the
following table

Specification C3 \ V0 V0 \ V1 V1 \ V2 V2 \ V3 V3

lpp sets [x, y, z] [1] [x, y] [z, y] [y]

V0 is a surface (dimension 2). It contains V1 consisting of the six straight lines r1, . . . , r6.
V2 consists of two of these lines r5∪r6. Finally V3 consists of the four points P1, . . . , P4 that
are the intersection of V2 = r5 ∪ r6 and V1 = r1 ∪ r2 ∪ r3 ∪ r4. In this case, an alternative
discriminant chain is possible with V ′0 = V0, V ′1 = V1, V ′2 = V1 \ V2, V ′3 = V3, for which the
positions 2’ and 3’ will be permuted, being the unique change in the tree.

This situation can occur in a generalized situation. Suppose that in a problem we have
a variety V =

⋃s
i=1, where the Vi’s have the same dimension and Vi ∩ Vj = W for every

i 6= j and dimW < dimV . Suppose that the problem admits the chain

V !
s⋃

i=2

Vi !
s⋃

i=3

Vi ! · · · ! Vs !W.
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Figure 3: Varieties of the discriminant chain.

The specializations of the different cases that will determine CANPERFSPEC will be Vi\W ,
and they are independent of the order in which the embedded varieties are chosen by a
strategy in DISPGB. Each order of the Vi’s is then possible for the tree, but the description
of the cases is canonical and independent of the order in the tree.

5.2 Example 2

In order to illustrate distinct possible alternatives for the discussion tree consider the fol-
lowing ideal with three parameters

I = [a b c (x5 y + z), b c (x2 y2 + y z), a c (x y2 + y), a b (x y + z), a x z3 + y]

Take monomial orders lex(x, y, z) and lex(a, b, c). Depending on the strategy in DISPGB
we obtain three different trees that can be seen in Figure 4 and the correponding ascending
discriminant chains:

Tree 1 〈(a− 1)abc〉 Ã 〈abc〉 Ã 〈bc〉 Ã 〈ac, bc〉 Ã 〈ab, ac, bc〉 Ã 〈a, bc〉
Tree 2 〈(a− 1)abc〉 Ã 〈abc〉 Ã 〈ab〉 Ã 〈ab, ac〉 Ã 〈bc〉 Ã 〈a, b, c〉
Tree 3 〈(a− 1)abc〉 Ã 〈abc〉 Ã 〈ac〉 Ã 〈ab, ac〉 Ã 〈a〉

Nevertheless, as we have discussed in previous section, using CANPERFSPEC all the chains
lead to the same canonical specification and generic reduced Gröbner bases of the cases
shown in the next table.
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nullnot null

[b*c, a]

[b*c, a*c, a*b]

[b*c, a*c]

[b*c]

[a*b*c]

[-a*b*c+a^2*b*c]

[y][z^3*x]

[y^2, z^3*x, x*y]

[y^3, z^3*x, x*y^2]

[y]

[z^2, y, x*z]

[z, y]

nullnot null

[c, b, a]

[c, b]

[a*c, a*b]

[a*b]

[a*b*c]

[-a*b*c+a^2*b*c]

[y][z^3*x]

[y]

[y^3, z^3*x, x*y^2]

[y^2, z^3*x, x*y]

[z^2, y, x*z]

[z, y]

nullnot null

[a]

[a*c, a*b]

[a*c]

[a*b*c]

[-a*b*c+a^2*b*c]

[y][z^3*x]

[y^2, z^3*x, x*y]

[y^3, z^3*x, x*y^2]

[z^2, y, x*z]

[z, y]

Figure 4: Discussion trees 1,2,3 in example 2.

Specification Reduced Gröbner Basis

C3 \ (V(a) ∪ V(a− 1) ∪ V(b) ∪ V(c)) [z, y]
V(a− 1) \ (V(a− 1, b) ∪ V(a− 1, c)) [z2 − z, y + z, x z − z]
V(b) \ (V(b, c) ∪ V(a, b)) [y3 − y a z3, a x z3 + y, x y2 + y]
V(c) \ (V(b, c) ∪ V(a, c)) [y2 − z4 a, a x z3 + y, x y + z]
V(b, c) \ V(a, b, c) [a x z3 + y]
V(a) [y]

Even the case with GRGB = [y] that appears divided in two subcases in trees 1 and 2,
but is summarized in one single case in the third tree, have the same representation after
using CANPERFSPEC to add them. This illustrates well the canonical character of the
discussion built up by DISPGB.
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