
Generalizing the Steiner-Lehmus Theorem using
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Abstract

In this note we present an application of a new method (the Gröbner
Cover method, to algorithmically discuss parametric polynomial systems
of equations) in the realm of automatic discovery of theorems in elemen-
tary geometry. Namely, we describe how the Gröbner Cover is particularly
well suited to yield the missing hypothesis for a given geometric statement
to hold true. This is achieved by addressing the following problem: find
those triangles that have at least two bisectors of equal length. The case of
two inner bisectors is the well known, XIXth century old, Steiner-Lehmus
theorem, but the general case of inner and outer bisectors has been only
recently addressed. We will show how the Gröbner Cover method provides
automatically the conditions for a triangle to have two equal bisectors of
whatever kind, yielding more insight than through any other automatic
method.
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system, Gröbner Cover.
MSC: 13P10, 68T15, 51M04.

Introduction

In (MoRe07) we have introduced and developed the foundations on the use
of algorithmic methods for the discussion of parametric polynomial systems of
equations in the field of automatic discovery of elementary geometry theorems.
The merging of techniques from these two fields was exemplified through the
application of an algorithm for the automatic case-analysis of polynomial sys-
tems with parameters (the algorithm MCCGS, standing for Minimal Canonical
Comprehensive Gröbner System, cf. (MaMo09)) to a collection of geometric
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statements, of the kind: Iff p, then q, where p is missing. The automatic discov-
ery protocol allowing such application stems from the work of (RV99) and has
been further extended in (DaRe09) and, particularly, in (RV11). We refer the
interested reader to the above mentioned papers for details and for references
to previous and related work.

Now, since the Gröbner Cover algorithm, as described in (MoWi10), is a
substantial improvement of the MCCGS concept and algorithm, it deserved
being also tested in a challenging automatic theorem discovery situation, such
as the Steiner-Lehmus theorem. This is the original goal of this paper.

The theorem of Steiner-Lehmus states that if a triangle has two (internal)
angle-bisectors with the same length, then the triangle must be isosceles (the
converse is, obviously, also true). This is an issue which has attracted along the
years a considerable interest, and we refer to (StLe-web) for a large collection of
references and comments on this classical statement and its proof. More recently,
its generalization, regarding internal as well as external angle bisectors, has been
approached through automatic tools, cf. (WL85), (Wang04) or (B07). The goal
is to find a similar statement concerning triangles verifying the equality of two
bisectors (of whatever kind) for different vertices. This generalization has been
also achieved through the FSDIC automatic discovery protocol of (DaRe09),
including the (perhaps new) case describing the simultaneous equality of three
(either internal or external) bisectors, placed on each one of the vertices. We
refer to (LoReVa09) (in Spanish) and to (LoReVa10) for further details.

All these results have been obtained through the use of ideal-theoretical
elimination methods, which do not allow a fine grain analysis of the involved
situation, in particular, concerning the behavior of some objects, indistinguish-
able from a complex-geometry point of view, such as the internal/external bi-
sectors at a vertex. We think that the Gröbner Cover approach is particularly
well suited in this context, bringing out, in its output, the possibility of a de-
tailed case analysis that significantly extends our knowledge of the generalized
Steiner-Lehums theorem.

Yet, we have to warn the reader that, in the current state of its implemen-
tation, the application of the Grobner Cover algorithm to the Steiner-Lehmus
problem requires a non-trivial (and non automatic) analysis of the obtained
output (see Section 3 for details).

1 On Gröbner Covers

There exist different methods to discuss parametric polynomial system of equa-
tions that can be used to find new geometrical theorems (some recent ones
are (SuSa06; Na07; KaSuWa10; CDMXX11)). We have recently introduced
the Gröbner Cover (in short: GC) algorithm (MoWi10), that gives precise and
compact information about parametric polynomial systems of equations. What
follows is a short digest of this method.

Let a = a1, . . . , am be a set of parameters, x = x1, . . . , xn a set of variables
and I ⊂ K[a][x] an ideal (for example, generated by the set of equations de-
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scribing a geometric construction, the parameters representing the coordinates
of the free points), where K is a computable field (usually Q). Denote K an
algebraically closed extension of K (usually C). Then K

m
is the parameter

space.
Selecting a monomial order � for the variables, the Gröbner Cover of K

m

with respect to I is a set of pairs GC = {(Si, Bi) : 1 ≤ i ≤ s}, where the
Si, called segments, are locally closed subsets of the parameter space K

m
, and

the Bi are sets of I-regular functions (c.f. (MoWi10); the reader can think of
polynomials instead of regular functions in order to understand what follows)
gij : Si → OSi

[x], that for every point a ∈ Si specialize to the reduced Gröbner
basis of the specialized ideal Ia, i.e. the ideal obtained from Ia by evaluating
the parameters a at point a.

Moreover, the segments are disjoint and cover the whole parameter space,
the set of leading power products (lppi) of the bases Bi on each segment are
constant (and characteristic of the segment if the ideal is homogeneous) and the
whole description is arranged to be canonical in some sense. When the system
is not homogeneous it can happen that more than one segment corresponds
to the same lpp, but often in this case the corresponding solutions have to
behave differently at infinity. It is known (see (CLS92)) that the set of lpp
of the reduced Gröbner basis of a polynomial system characterizes the type of
solutions (no solution, finite number of solutions, dimension of the solution set,
etc.). Thus, it is natural to attach the information about the lppi as a third
component of the label associated to the Si-segments (even if it is apparent form
the Bi’s). The Gröbner Cover provides, as well, a very compact (i.e. minimal
in some sense) discussion of all the involved cases.

There are many different ways of expressing a locally closed set, but for
the GC-segments we have chosen a canonical description (the so called P-
representation, too involved and irrelevant for our current goal in this paper
to be described in detail here, but see (MoWi10) ) providing the irreducible
components of the Zariski closure of Si and the irreducible components of the
parts not included in Si (holes). The I-regular functions gij in the basis Bi

gij : Si → OSi [x]

are described in terms of one or more polynomials in K[a][x] verifying that, for
every point a ∈ Si, if one of them does not specialize to 0, then it specializes
(after normalizing) to the corresponding polynomial of the reduced Gröbner
basis, and such that, always, at least one of these polynomials specializes to
non-zero.

Finally, the application of the GC in Section 3 involves a technical issue
that deserves some comment in the following Remark, since it could be of more
general interest. In fact, the GC algorithm is usually set for the homogenization
of a given ideal I and then one has to consider its dehomogenization. Notice
that, in general, the homogenization of the whole ideal is larger than the ideal
generated by the homogenization of a basis, since the later can include some
extra solutions at infinity generated by the above equations. But homogenizing
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the ideal I generated by some equations arising on a geometry problem can
lead to a very large system of equations, and the current implementation of GC
could fail providing an answer.

Yet, it is not too difficult to show that if, instead, one just homogenizes
each polynomial in the basis of the given ideal, and then dehomogenizes, the
same ideal I is obtained. If the GC procedure is applied to this homogeneous
ideal generated by the homogenization of a basis of I and then the GC output
is dehomogenized, the result is still relevant to discuss the parametric system
given by I (see Proposition 10 in (MoWi10)).

In fact: let {f1, . . . , fr} be a collection of polynomials in K[x1, . . . , xn], and
let I be the generated ideal. Denote by f∗ the homogenization of f with respect
to a new variable t, and by I∗ the full homogenization of I, that is, the ideal
generated by all f∗, f ∈ I. Notice that, in general, I∗ contains, but could be
larger than J = (f∗1 , . . . , f

∗
r ). For instance, take I = (y − x2, y + x2), then

I∗ = (y, x2), but J = (yt, x2).
Now, given a homogeneous polynomial (or form) F, in the variables {x1, . . . ,

xn, t}, its dehomogenization is defined as F∗ = F (x1, . . . , xn, 1). Given a ho-
mogeneous ideal L, its dehomogenization is the ideal generated by the deho-
mogenization of all forms in L. Let us denote this dehomogenization ideal by
L∗.

We want to prove that (I∗)∗ = (f∗1 , . . . , f
∗
r )∗ = I, i.e. that to homogenize

and then to dehomogenize an ideal yields the same ideal as if we had homogenize
just its generators and then to dehomogenize it.

Proof. Recall J = (f∗1 , . . . , f
∗
r ). In order to prove that (I∗)∗ = (J∗)∗ = I, first

notice that I ⊆ J∗. In fact, every polynomial f ∈ K[x1, . . . , xn] trivially verifies
that (f∗)∗ = f . Thus fi ∈ J∗, since f∗i ∈ J , for all i = 1 . . . r. Therefore
I = (f1, . . . , fr) ⊆ J∗.

Now, as J ⊆ I∗, we have J∗ ⊆ (I∗)∗, and thus I ⊆ J∗ ⊆ (I∗)∗.
Finally, let us prove that (I∗)∗ ⊆ I. Let F be a form in I∗. By definition

there is a polynomial f ∈ I such that f∗ = F . But the polynomials F∗ generate
(I∗)∗. And, therefore, the polynomial (f∗)∗ generate (I∗)∗. But these polyno-
mials (f∗)∗ coincide with f , as observed above. And the polynomials f belong
to I. Thus, (I∗)∗ ⊆ I.

Concerning the GC algorithm, one needs, in general, to homogenize the given
ideal, then compute the Gröbner Cover and finally dehomogenize and reduce
the bases. But if the homogenization is applied just to a basis of the ideal and
the GC algorithm is then applied to J , the only difference is that the output can
contain different segments with the same lpp, due to the extra points at infinity
that J can include, if taken instead of I∗. In the above example the system
yt = 0, x2 = 0 has solutions (0, 1, 0), (0, 0, 1), considering the last coordinate in
the infinity hyperplane. If we consider the ideal (I∗), there is a single solution,
namely (0, 0, 1). But dehomogenizing, both solutions yield (0, 0).
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2 Automatic Discovery of Geometric Theorems

Our point of departure is a geometric statement of the kind {H ⇒ T} (such
as: Given a triangle, if we construct the bisectors with respect to the vertices
then. . . there are at least two bisector segments, from the vertex to the opposite
side, of equal length, where H stands for the equations describing the con-
struction (bisector segments) and T describes the desired property (equality
of lengths, etc.). By abuse of notation, we will denote also by H and T the
ideals generated by the polynomials involved in the equations describing the
construction associated to the given statement or the given thesis.

Now, since it is quite reasonable to assume that a given discovery statement
is generally false (for instance, not all triangles have two bisectors with equal
length), the automatic discovery goal is to search for complementary hypothe-
ses (say, the given triangle should be not degenerate to a line and should be
equilateral or isosceles, etc.) providing necessary and sufficient conditions for
the thesis to hold.

Although this formulation could seem straightforward, things are quite sub-
tle and involved (for instance, why not to consider the thesis itself as the only
needed complementary hypothesis?). Therefore, as stated in the Introduction,
there is a variety of protocols (precise formulation of goals and algorithmic pro-
cedures to achieve them) concerning the automatic discovery of geometric the-
orems. Among them, those of (Wang04), (RV99), (DaRe09), are -grosso modo–
founded in ideal theoretic elimination theory, searching for a single conjunction
of equations and negated equations as the complementary hypothesis.

On the other hand, the approaches of (MoRe07) and (RV11) rely –roughly
speaking– on finding a finite union of collections of equations R′i in the param-
eters, and inequalities R′′i (some of them in the parameters, to take care of the
possible degenerate cases of the free variables for the given construction, and
some in a subset of variables from these parameters, to consider the possible
degenerate cases after including the new hypotheses R′i), which would provide

• when added to H, sufficient conditions for T , so that

{(H ∧ (∨i(R′i ∧ ¬R′′i )))⇒ T},

• which are as well necessary, so that {(T ∧H)⇒ (H ∧ (∨i(R′i ∧ ¬R′′i )))}
Therefore, as argued in detail in (MoRe07) and (RV11), a reasonable way to

proceed in order to find a collection of polynomials R′i, R
′′
i verifying the above

conditions could consist in computing the projection over the parameter space
of the solution set of all hypotheses and theses equations, V (H) ∩ V (T ), and
express it as

⋃
i(V (R′i)\V (R′′i )). Yet, we should check if over each component

of the union, the corresponding set of equations and inequations yield sufficient
conditions for T .

In practice, this could be achieved as follows. First, consider a geometri-
cal construction depending on a set of points Ā = {A1, . . . , As}, whose free
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coordinates are taken as parameters a. The construction produces some new
dependent points P̄ = {P1, . . . , Pr}, whose coordinates are taken as variables x.

The problem is determining the configuration of the points Ā, the param-
eters a varying in the parameter space Cm, in order that the points P̄ verify
some property (for example, they are the end points of the bisectors with equal
length). For this purpose, we write the equations reflecting the geometric con-
struction and the theses, and we consider the corresponding parametric ideal
I ⊂ Q[a][x].

Let {(Si, Bi) : 1 ≤ i ≤ s} be the Gröbner Cover of the parameter space wrt
to I. Then we will have to carefully analyze its output, bearing in mind that

• As the locus of free points where the theorem holds should –when the given
statement is not generally true, which is the usual case for discovery– have
dimension less than the whole parameter space, the only open segment in
the GC (also called the generic segment) must correspond to lpp = {1}.
Thus, the generic segment will be of the form

S1 = K
m \

⋃
i

V(pi)

• The remaining segments will be all inside
⋃

i V (pi)

• If the points Pi are uniquely determined by the points Aj , we will find a
segment S2 corresponding to a single solution in x with reduced Gröbner
basis having the full set of coordinates as lpp.

• There can be segments lifting up to more than one solution, that we have
then to analyze in detail.

• There can also exist segments corresponding to degenerate or lifting up to
complex constructions in which we are in general less interested.

The important fact about the use of Gröbner Cover in this context is that it
provides –in a compact and concise way– all the essential pieces (a finite number
of them) on the parameter space, allowing to determine those that correspond
to the validity of the given statement.

3 Steiner-Lehmus Theorem

To show the power of the outlined procedure, we will apply it to find a gener-
alization of the Steiner-Lehmus Theorem. This theorem was proposed by the
well known, XIXth century geometer, Steiner to Sturm and it was proved by
Lehmus for the first time in 1848. It could be stated as follows:

Theorem 3.1 (Classical Steiner-Lehmus). The inner bisectors of angles A and
B of a triangle ABC (α = β and γ = δ) are of equal length (AA′ = BB′) if
and only if the triangle is isosceles with AC = BC (see Figure 1).
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Figure 1: Triangle and inner bisectors

This is a statement which has attracted along the years a considerable in-
terest for some intrinsic difficulties in its (traditional) proof, and we refer to
(StLe-web) for a large collection of references and comments on this classical
statement and its proof. More recently, its generalization, regarding internal
as well as external angle bisectors, has been approached through automatic
tools, cf. (WL85), (Wang04) or (B07). The goal is to find a similar statement
concerning triangles verifying the equality of two bisectors (of whatever kind)
for different vertices. This generalization has been also achieved through the
automatic discovery protocol of (DaRe09), including the (perhaps new) case
describing the simultaneous equality of three (either internal or external) bisec-
tors, placed on each one of the vertices. We refer to (LoReVa09) (in Spanish)
and to (LoReVa10) for further details.

Now, in order to automatically discover the Steiner-Lehmus theorem, we let
ABC be the given triangle and consider the bisectors at angle A. To construct
the bisectors (see Figure 2) we consider the circle with center A and radius AC.
There are two intersection points P and P ′ of the circle with side AB, and thus
two middle points Q and Q′ of CP and CP ′ determining the bisectors AM
and AM ′ whose length we are interested in. So, if we only use the equations
determining M and M ′ we will not distinguish between the inner and the outer
bisector. This difficulty will allow to generalize the theorem.

Without loss of generality, we set coordinates A(0, 0), B(1, 0), C(a, b). Then
let (p, 0) be the intersection of the circle centered at A passing through C, (i.e.
points P or P ′), and let (x1, y1) stand for the feet of the bisectors, (i.e. points
M or M ′). The equation of the circle is (a2 + b2) − p2. Point (x1, y1) is on
the line AQ. The middle point between (0, p) and C is Q =

(
a+p
2 , b

2

)
and so

bx1−(a+p)y1 expresses that (x1, y1) is on the bisector line. Finally the equation
staying that (x1, y1) lies on side BC, is b(1−x1)+(a−1)y1. Thus, the equations
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determining (x1, y1) in terms of (a, b) are:

(a2 + b2)− p2, bx1 − (a+ p)y1, b(1− x1) + (a− 1)y1. (1)

Notice the sign of p discriminates which bisector of A is being concerned with.
If a solution of our problem has p > 0 it will correspond to the inner bisector
of A, whereas a solution with p < 0 will correspond to the outer bisector of A.
But the sign is not algebraically (from the complex point of view) relevant, so
that both points M and M ′ are solutions of the same equations. The length of
the bisector is l2A = x2

1 + y2
1 .

A(0, 0) B(1, 0)

C(a, b)

R(r, 0) R′P (p, 0)P ′

S S′
T (x2, y2)

T ′

QQ′ M(x1, y1)

M ′

Figure 2: The bisectors of A and B are equal

Consider now the bisectors of B (see Figure 2). Denoting (r, 0) the inter-
section point of the circle centered in B with radius BC (points R or R′) and
(x2, y2) the coordinates of the foot of the bisector of B (points T or T ′) the
corresponding equations for them are:

(a− 1)2 + b2 − (r − 1)2, (1− x2)b+ (a+ r − 2)y2, ay2 − bx2. (2)

In that case, a discriminator between inner and outer bisectors of B is 1− r. A
solution with 1− r > 0 will correspond to the inner bisector whereas a solution
with 1− r < 0 will correspond to the outer bisector. The length of the bisector
of the angle B is l2B = (x2 − 1)2 + y2

2 .
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Now, using the set of all the above equations, we turn to searching the nec-
essary and also sufficient conditions for assuring that the length of one bisector
of the angle A is equal to that of one bisector of angle B, but we are not dis-
tinguishing between which inner or outer bisector is concerned. It can happen
that the two equal bisectors are the two inner bisectors (iA = iB), or the two
outer bisectors (eA = eB), or one inner and one outer bisector (cases iA = eB

and eA = iB). There are, thus, four possibilities.
In order to compute the Gröbner Cover, we include the set of equations (1),

the set of equations (2), plus the condition that the length of one bisector of A
is equal to that of one bisector of B, i.e. x2

1 + y2
1 = (x2 − 1)2 + y2

2 . Thus the
complete set of equations is:

a2 + b2 − p2,
bx1 − (a+ p)y1,
b(1− x1) + (a− 1)y1,
(a− 1)2 + b2 − (r − 1)2,
b(1− x2) + (a+ r − 2)y2,
ay2 − bx2,
x2

1 + y2
1 = (x2 − 1)2 + y2

2 .

(3)

Now, we take the point C(a, b) as the only parametric point, for which we
want to obtain the conditions for the system (3) with variables x1, y1, x2, y2, p, r
to have solutions. These solutions will correspond to one bisector of A being
equal to one bisector of B, but the conditions over a, b will not distinguish
between internal and external bisectors. When p is positive, the bisector of
A will be internal and it will be external if p is negative. The same happens
considering the sign of 1− r, for the bisector of B.

The GC algorithm is used here taking the grevlex(x1, y1, x2, y2, p, r) order
for the variables. The call in Singular (after charging the grobcov library) is:

> ring R=(0,a,b),(x1,y1,x2,y2,p,r),dp;
> ideal S93= a^2+b^2-p^2,

b*x1-(a+p)*y1,
b*(1-x1)+(a-1)*y1+,
(a-1)^2+b^2-(r-1)^2,
b*(1-x2)+(a+r-2)*y2,
a*y2-b*x2,
x1^2+y1^2-(x2-1)^2-y2^2;

> short=0;
> grobcov(S93);

Let us describe below and in the following tables the output of the Gröbner
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Cover algorithm. The following irreducible curves and varieties (over Q) appear:

C1 = V(8a10 − 40a9 + 41a8b2 + 76a8 − 164a7b2 − 64a7

+84a6b4 + 246a6b2 + 16a6 − 252a5b4 − 164a5b2

+8a5 + 86a4b6 + 278a4b4 + 31a4b2 − 4a4 − 172a3b6

−136a3b4 + 20a3b2 + 44a2b8 + 122a2b6 + 14a2b4

−10a2b2 − 44ab8 − 36ab6 + 12ab4 + 9b10 + 14b8

−b6 − 6b4 + b2,
C2 = V(2a− 1).
C3 = V(b),

We are interested only in the real points, so we separate the real from the
complex points appearing in the segments.

Varieties Real points
V1 = V(b, a) P1 = (0, 0)
V2 = V(b, a− 1) P2 = (1, 0)

V3 = V(b, 2a2 − 2a− 1) P31 =
(

1−√3
2 , 0

)
= (−.3660254038, 0.)

P32 =
(

1+
√

3
2 , 0

)
= (1.366025404, 0.)

V4 = V(b, 2a− 1) P4 = ( 1
2 , 0)

V5 = V(12b2 − 1, 2a− 1) P51 =
(

1
2 ,−

√
3

6

)
= (0.5,−0.2886751347)

P52 =
(

1
2 ,
√

3
6

)
= (0.5, 0.2886751347)

V6 = V(4b2 − 3, 2a− 1) P61 =
(

1
2 ,−

√
3

2

)
= (.5000000000,−.8660254040)

P62 =
(

1
2 ,
√

3
2

)
= (0.5, .8660254040)

V7 = V(b4 + 11b2 − 1, 5a− 2b2 − 6) P71 =
(
−1 +

√
5,−
√
−22+10

√
5

2

)
= (1.236067977,−.3002831039)

P72 =
(
−1 +

√
5,
√
−22+10

√
5

2

)
= (1.236067977, .3002831039)

V8 = V(b4 + 11b2 − 1, 5a+ 2b2 + 1) P81 =
(

2−√5,−
√
−22+10

√
5

2

)
(−.236067977,−.3002831039)

P82

(
2−√5,

√
−22+10

√
5

2

)
(−.236067977, .3002831039)

V9 = V(4b4 + 5b2 + 2, 2a− 1)
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Vars. Complex points

V7 P73 =
(
−1−√5,−I

√
22+10

√
5

2

)
= (−3.236067977,−3.330190676I)

P74 =
(
−1 +

√
5, I
√

22+10
√

5
2

)
= (−3.236067977, 3.330190676I)

V8 P83 =
(

2 +
√

5,−I
√

22+10
√

5
2

)
= (4.236067977,−3.330190676I)

P84 =
(

2 +
√

5, I
√

22+10
√

5
2

)
= (4.236067977, 3.330190676I)

V9 P91 =
(

1
2 ,−
√
−10+2I

√
7

4

)
= (0.5,−.2026163631− .8161209412I)

P92 =
(

1
2 ,

√
−10+2I

√
7

4

)
= (0.5, 0.2026163631 + .8161209412I)

P93 =
(

1
2 ,−
√
−10−2I

√
7

4

)
= (0.5,−0.2026163631 + .8161209412I)

P94 =
(

1
2 ,

√
−10−2I

√
7

4

)
=(0.5, 0.2026163631− .8161209412I)

These curves are represented in Figure 3. Special points are either singular
points of C1 or intersection points between the three curves:

a) V1, V2, V5, V7, V8 are singular points of C1. They contain the real points
P1, P2, P51, P52, P71, P72, P81, P82 and some other complex points.

b) V5, V6, V9 are intersection points between C1 and C2. They contain the real
points P51, P52, P61, P62 plus other complex points.

c) V1, V2 are intersection points between C1 and C3. They contain the real
points P1 = A and P2 = B.

d) V3 is the intersection between C2 and C3.

Variety V9 contains only complex points, whereas V7 and V8 contain real and
complex points. We distinguish both cases because of the particular behavior
of complex points concerning Euclidean distance issues and because we are not
interested in the complex points.

Let us give now the output of the Gröbner Cover. We obtain the following
description with 9 segments:

1. Segment with lpp = {1} Generic segment
Segment: C2 \ (C1 ∪ C2 ∪ C3)
Description: The whole parameter space except the curves (C1∪C2∪C3).
Basis: B1 = {1}
There are no solution over this segment.
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2. Segment with lpp = {p, y2, x2, y1, x1, r
2}

Segment: (C2 \ (V4 ∪ V5 ∪ V6)) ∪ V8

Description: (C2 minus intersecting points with C1 and C2) plus V8

Basis:
B2 = {(35a− 45)p+ (−4ab2 − 37a+ 2b2 − 9)r + (65a− 5)

(a− 2b2 + 1)y2 + (−4ab)r, (7a+ 2b2 − 5)x2 + (−2a+ 2)r,
(100ab3 − 75ab+ 60b3 − 45b)y1 + (−28ab2 + 16a+ 124b2 − 8)r
+(−940ab2 + 80a+ 470b2 − 40), (220b2 − 165)x1

+(−16ab2 − 148a+ 8b2 − 36)r + (160ab2 + 380a− 300b2 − 25),
(4a)r2 + (−8a)r + (a− 2b2 + 1)}

There are 2 solutions on each point of this segment.

3. Segment with lpp = {r, p, y2, x2, y1, x1}
Segment: C1 \ (V1 ∪ V2 ∪ V3 ∪ V5 ∪ V6 ∪ V7 ∪ V8 ∪ V9)
Description of the real points: The curve C1 except the points

P1, P2, P31, P32, P51, P52, P61, P62, P71, P72, P81, P82

Basis:
B3 = {(3a4 − 6a3 + 6a2b2 + 5a2 − 6ab2 + 3b4 + 5b2 − 1)r + (a5 − 10a4

+2a3b2 + 17a3 − 18a2b2 − 10a2 + ab4 + 17ab2 − a− 8b4 − 10b2 + 2),
(3a4 − 6a3 + 6a2b2 + 5a2 − 6ab2 − 4a + 3b4 + 5b2 + 1)p
+(a5 + 2a4 + 2a3b2 − 7a3 + 6a2b2 + 4a2 + ab4 − 7ab2 − a + 4b4 + 4b2),
(a5 − 4a4 + 2a3b2 + 5a3 − 6a2b2 + ab4 + 5ab2 − a− 2b4)y2

+(−3a4b + 6a3b− 6a2b3 − 5a2b + 6ab3 − 3b5 − 5b3 + b),
(a5 − 4a4 + 2a3b2 + 5a3 − 6a2b2 + ab4 + 5ab2 − a− 2b4)x2

+(−3a5 + 6a4 − 6a3b2 − 5a3 + 6a2b2 − 3ab4 − 5ab2 + a),
(a5 − a4 + 2a3b2 − a3 − a2 + ab4 − ab2 + 3a + b4 − b2 − 1)y1

+(3a4b− 6a3b + 6a2b3 + 5a2b− 6ab3 − 4ab + 3b5 + 5b3 + b),
(a5 − a4 + 2a3b2 − a3 − a2 + ab4 − ab2 + 3a + b4 − b2 − 1)x1

+(2a5 − 8a4 + 4a3b2 + 12a3 − 12a2b2 − 8a2 + 2ab4 + 12ab2 + 2a
−4b4 − 4b2)}

There is a single solution on each point of this segment.

4. Segment with lpp = {y2, y1, r2, p2, x2
1}

Segment: C3 \ (V1 ∪ V2)
Description: The line C3 except the points P1, P2

Basis:
B4 = {y2, y1, r2 − 2r + (−a2 + 2a), p2 + (−a2)

x2
1 − x2

2 + 2x2 − 1}
There are infinite solutions, but correspond to degenerate triangles.
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5. Segment with lpp = {y2, x2, y1, x1, r
2, p2}

Segment: V5

Description: Points P51, P52

Basis:
B5 = {2y2 − 3br, 4x2 − 3r, 2y1 + 3bp− 3b,

4x1 − 3p− 1, 3r2 − 6r + 2, 3p2 − 1}
There are 4 solutions on each point of this segment.

6. Segment with lpp = {r, p, y2, x2, y1, x1}
Segment: V6

Description: Points P61, P62

Basis:

B6 = {r, p− 1, 2y2 − b, 4x2 − 1, 2x1 − b, 4x1 − 3}
There is a single solution on the points of this segment.

7. Segment with lpp = {r, y2, x2, y1, x1, p
2}

Segment: V7

Description: Points P71, P72

Basis:
B7 = {5r + (b2 − 7), (5b)y2 + (3b2 − 1), x2 − 2,

(5b)y1 + (3b2 − 1)p+ (−3b2 + 1),
5x1 + (b2 − 2)p+ (−b2 − 3), 5p2 + (−b2 − 8)}.

There are 2 solutions on each point of this segment.

8. Segment with lpp = {y1, r2, y2r, p2, x2
1}

Segment: V1

Description: Point P1

Basis:

B8 = {y1, r2 − 2r, y2r − 2y2, p2, x2
1 − x2

2 − y2
2 + 2x2 − 1}

There are infinite solutions, but correspond to degenerate triangles.

9. Segment with lpp = {y2, r2, p2, y1p, x
2
1}

Segment: V2

Description: Point P2

Basis:

B9 = {y2, r2 − 2r + 1, p2 − 1, y1p+ y1, x
2
1 + y2

1 − x2
2 + 2x2 − 1}

There are infinite solutions, but correspond to degenerate triangles.
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3.1 Discussion and formulation of the generalized theorem

C1

A B

P1 P2P4P31 P32

P51

P52

P61

P62

P71

P72

P81

P82

iA = iB , eA = eB

eA = eB

iA = eB

eA = iB

C2

C3

Figure 3: Problem 1: Curves C1, C2, C3 and special points

– Segment 1: of the Gröbner Cover proves that the thesis does not hold
in general, except for triangles with vertex C placed on the three curves C1, C2
and C3 (see Figure 3). For the points inside these curves, system (3) has always
some solution. Let us discuss which kind of solutions exist on these curves.

– Segment 2: It has two components:

1) For a = 1/2, vertex C is on the bisector of side AB (so that the triangle
ABC is isosceles), leaving out the points P51, P52, P61, P62, P4. Specializ-
ing the basis on this branch (setting a = 1/2) yields to

B21 = {−p− r + 1, (4b2 − 3)y2 + 4(b)r, (4b2 − 3)x2 + 2r,
(4b2 − 3)y1 + (4b)r, (4b2 − 3)x1 − 2r + (−4b2 + 3),
4r2 − 8r + 3 + (−4b2)}

and considering the first and the last equations we have:

p = 1− r = (1/2)±
√

1 + 4b2.
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Thus there are two solutions: In one case p = 1 − r > 0, so that it holds
the equality of both internal bisectors (i.e. iA = iB), and in the other
solution it holds that p = 1 − r < 0, corresponding to the case eA = eB ,
which is also obvious from the first equality, by symmetry.

Thus, on this part of the segment the two inner bisectors are equal, as well
as the two outer ones. This corresponds to the classical Steiner-Lehmus
Theorem, enlarging it with the coincidence of the outer bisectors too.

2) V8 containing the pair of points P81 and P82. For them we have

Point (p, 1− r) Bisectors
P81, P82 (−0.3819659526,−1.272019650) eA = eB

(−0.3819659526, 1.272019650) eA = iB

– Segment 5: It contains the two real points P51, P52, and for each one
there are four solutions, as it is clear by observing the values of p and 1− r at
each of the solutions.

Point (p, 1− r) Bisectors
P51, P52 (0.5773502693, 0.5773502693) iA = iB

(0.5773502693,−0.577350269) iA = eB

(−0.5773502693, 0.5773502693) eA = iB ,
(−0.5773502693,−0.5773502693) eA = eB

– Segment 6: contains the two real points P61, P62, and for each one there
is a unique solution corresponding to iA = iB (as it can be checked by actually
solving the system associated to segment 6). We observe –see the Remark at the
end of section 1– that, although at these points there should be –by symmetry–
another solution, related to the equality eA = eB , it is actually missing, because
both external angle bisectors become infinite. This is the reason why, even if
the lpp on this segment 6 is equal to the lpp on segment 3, this common lpp
appears in different segments. We will see below that, in the curve described in
segment 3, in the neighborhood of P61 and P62, we have the equality eA = eB ,
instead of iA = iB .

Point (p, 1− r) Bisectors
P61, P62 (1,1) iA = iB

– Segment 7: V7 containing the pair of points P71 and P72. For them we
have

Point (p, 1− r) Bisectors
P71, P72 (−1.272019650,−0.381965976) eA = eB

(1.272019650,−0.381965976) iA = eB
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– Segment 3: This segment contains all the points of the curve C1 except
the special points. There is a unique solution on each point of the curve, and so
only one equality between one bisector of A and one bisector of B can happen.
The kind of solution cannot change, by continuity, on the curve except when
the curve reaches a special point. The reason is that in the changing points one
needs to have equality of more bisectors and this can only occur in some special
segment. So we only need to determine the color (i.e. the kind of solution) in a
single point of the curve between special points.

We can proceed, then, by choosing some simple vertical lines, determining
its intersection with the curve and computing in each case the correspondent
bisectors. For instance, for the lines x = 0 and x = 1 (which determined
quite a few of the pieces of the curve; a similar procedure should be performed
on the remaining parts) we obtain the following systems of equations for the
intersections:{

a = 0
b2(3b4 − 4b3 + 5b2 − 4b+ 1)(3b4 + 4b3 + 5b2 + 4b+ 1){
a = 1
b2(3b4 − 4b3 + 5b2 − 4b+ 1)(3b4 + 4b3 + 5b2 + 4b+ 1)

We do not consider the solutions (a, b) = (0, 0) and (a, b) = (1, 0) as they
correspond to degenerate triangles. Substituting the solutions of these systems
into the basis B3 one can determine the pair (p, 1 − r) for each of the points,
thus determining which bisectors are equal at the point. We set a red color if
eA = eB , blue color if iA = eB and green if eA = iB . The possibility iA = iB
never occurs on C∗1 . The following table gives the color of some points of the
curve

Point Branch (p, 1− r) Bisectors
(0, .7013671986) P62-P82 (−.7013671074,−1.221439949) eA = eB

(0, .4190287818) P52-P82 (−.4190287676, 1.08424403111) eA = iB
(0,−.4190287818) P51-P81 (−.4190287676, 1.08424403111) eA = iB
(0,−.7013671986) P61-P81 (−.7013671074,−1.221439949) eA = eB

(1, .7013671986) P62-P92 (−1.221530232,−0.701371729) eA = eB

(1, .4190287818) P52-P92 (1.084234608,−0.419025294) iA = eB

(1,−.4190287818) P51-P91 (1.084234608,−0.419025294) iA = eB

(1,−.7013671986) P61-P91 (−1.221530232,−0.701371729) eA = eB

– Segments 4, 8, 9: These three segments correspond to degenerate tri-
angles. Here there are infinite solutions, as the lengths of the bisectors are not
defined. We need not analyze what happens exactly over them.

Obviously all the properties of the form of the curve and special points and
colors obtained are easily transformed under scaling the distance AB.

In summary, now we have thus proved the following
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Theorem 3.2 (Generalized Steiner-Lehmus). Let ABC be a triangle and iA,
eA, iB, eB the lengths of the inner and outer bisectors of the angles A and B.
Then, considering the conditions for the equality of some bisector of A and some
bisector of B the following excluding situations occur:

1. The triangle ABC is degenerate (i.e. C is aligned with A and B);

2. ABC is equilateral and then iA = iB whereas eA and eB become infinite,
(P61, P62);

3. Point C is in the center of an equilateral triangle, and then iA = iB =
eA = eB, (P51, P52);

4. The triangle is isosceles but not of the special form of cases 2. or 3. and
then iA = iB 6= eA = eB, (ordinary Theorem);

5.
AC

AB
=

√
1 +
√

5
2

,
BC

AB
=

3−√5
2

, and then eA = eB = iA, (P71, P72);

6.
AC

AB
=

3−√5
2

,
BC

AB
=

√
1 +
√

5
2

, and then eA = eB = iB, (P81, P82);

7. C lies in the curve of degree 10 relative to points A and B (case of curve
C1) passing through all the special points above but is none of these points,
and then only one of the following possibilities happen: either eA = eB or
iA = eB or eA = iB, depending on the piece of the curve (see figure 3, the
color representing which of those situations occur);

8. None of the above cases occur, and then no bisector of A is equal to no
bisector of B.

A B

C

C ′

C”

B′

Figure 4: Transformation of coordinates
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3.2 Bisectors at vertex C

iA = iC , eA = eC

eA = eC

iA = eC

eA = iC

Q1 Q2 Q4

Q32

Q11

Q51

Q52

Q61

Q62

Q81

Q82

Q71

Q72

Figure 5: Problem 2: Curves CC1, CC2

It could be of some interest to analyze the conditions for one bisector of the
fixed point A to be equal to one bisector of the moving point C.

This problem can be solved by a transformation of the previous solution for
the case of equal length of the bisectors at the fixed points A,B. Each point
C of the solution to the precedent problem corresponds to a triangle ABC (see
Figure 4), where one bisector of A is equal to one bisector of B, with AB = 1.
Considering a parallel to the line BC one can form a similar triangle AB′C ′

with AC ′ = 1. Making a symmetry over the inner bisector of A will led to
a new triangle ABC ′′ with one bisector of A equal to one bisector of C ′′ and
AB = 1 that corresponds to the requirements of the new problem. This yields
a transformation of C into C ′′ that will conserve the direction: −→AC parallel to−−→
AC ′′ but having inverse lengths. Thus, setting C = (a, b) and C ′′ = (a′, b′) the
transformations is 

a′ =
a

a2 + b2

b′ =
b

a2 + b2


a =

a′

a′2 + b′2

b =
b′

a′2 + b′2

Substituting the transformation into the curves obtained in the precedent sec-
tion and eliminating the denominator (a2 +b2)s (where s depends on the curve),
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leads to the transformed curves

CC1 = V(a8b2 + 4a6b4 + 6a4b6 + 4a2b8 + b10− 4a8 − 18a6b2 − 30a4b4 − 22a2b6 − 6b8

+8a7 + 28a5b2 + 32a3b4 + 12ab6 + 16a6 + 31a4b2 + 14a2b4 − b6 − 64a5 − 100a3b2

−36ab4 + 76a4 + 94a2b2 + 14b4 − 40a3 − 44ab2 + 8a2 + 9b2)
CC2 = V(a2 − 2a+ b2), CC3 = V(b)

where the curves CCi correspond to Ci and the points Qij to Pij . All of them
are represented in Figure 5.

We can also consider the problem as a new one and compute the solutions
of the new system using the Gröbner Cover. The computations are completely
similar to those of the precedent section and we do not give the details.
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