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a b s t r a c t

This is the continuation of Montes’ paper ‘‘On the canonical
discussion of polynomial systems with parameters’’. In this paper,
we define the Minimal Canonical Comprehensive Gröbner System
of a parametric ideal and fix under which hypothesis it exists
and is computable. An algorithm to obtain a canonical description
of the segments of the Minimal Canonical CGS is given, thus
completing the whole MCCGS algorithm (implemented in Maple
and Singular). We show its high utility for applications, such as
automatic theorem proving and discovering, and compare it with
other existing methods. A way to detect a counterexample to deny
its existence is outlined, although the high number of tests done
give evidence of the existence of the Minimal Canonical CGS.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we continue the task introduced in Montes (2007). Let us briefly remember the basic
features.
Given a parametric polynomial ideal I ⊂ K [a][x] in the variables x = (x1, . . . , xn) and the

parameters a = (a1, . . . , am), and monomial order �x, our interest is to find the different types of
solutions for the different values of the parameters. Let K be a computable field and K an algebraically
closed extension. A specialization is the homomorphism σα : K [a][x] → K [x], that corresponds to the
substitution of the parameters by concrete values α ∈ K

m
. A comprehensive Gröbner system (CGS) is
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a finite set of pairs:

CGS(I,�x) =

{
(Si, Bi) : Si ⊆ K

m
constructible sets, Bi ⊂ K [a][x],

σα(Bi) = gb(σα(I),�x) ∀α ∈ Si , and
⋃
i

Si = K
m

}
,

where the Si are called ‘‘segments’’ and the Bi ‘‘bases’’. Frequently the word ‘‘segment’’ is also used for
the pair (Bi, Si)whenever the sense is clear from the context.
There are different known algorithms that provide Comprehensive Gröbner Bases and Systems for

a given ideal:

- CGB (Weispfenning, 1992),
- CCGB (Weispfenning, 2003),
- ACGB (Sato and Suzuki, 2003; Sato, 2005),
- SACGB (Suzuki and Sato, 2006),
- HSGB (González-Vega et al., 2005),
- BUILDTREE (Montes, 2002; Manubens and Montes, 2006; Montes, 2007).

There are available implementations of:

- Weispfenning’s CGB algorithm in Reduce (Dolzmann et al., 2006),
- Suzuki-Sato’s SACGB in Risa/Asir and in Maple (Suzuki and Sato, 2006),
- Montes’s BUILDTREE in Maple and Singular.1

All these algorithms allow one to build both Comprehensive Gröbner Bases and Systems, but they are
oriented differently. A comparison of the most interesting among them is given in Section 6.
In fact, comprehensive Gröbner systems are, in general, more effective to handle for their use in

applications than comprehensive Gröbner bases. But in this case, it is also convenient to require some
additional features of these Gröbner systems.
The first requirement is to have disjoint and reduced CGS. By disjoint we mean that the Si form

a partition of K
m
, and by reduced that the bases Bi specialize to the reduced Gröbner basis of

σα(I) preserving the leading power products (lpp), for every value α of the parameters inside Si.
The algorithm BUILDTREE (introduced in Montes (2002) as DISPGB and improved in Manubens and
Montes (2006)) already builds a disjoint, reduced CGS.
In Montes (2007) the interest is focused on the improvement of BUILDTREE to obtain a simpler

and canonical CGS. The method consisted of grouping together all the segments with the same lpp
that allow a same basis specializing well on all the grouped segments. A conjecture establishes the
existence of an equivalence relation between the segments having the same lpp, and an algorithm is
given to compute the basis corresponding to the grouped segments.
In order to obtain a truly canonical CGSwe need to describe the segments in a canonicalway. This is

the objective of the present paper. In Montes (2007) a canonical description of a segment determined
by a diff-specification was already given, but it remained to obtain a canonical representation of the
addition of such segments. The objective is thus to obtain the minimal canonical CGS.

Definition 1. We call Minimal Canonical CGS a CGS with the following properties:

(i) disjoint CGS, i.e. Si ∩ Sj = ∅ for i 6= j;
(ii) reducedCGS, i.e. the polynomials inBi have content 1w.r.t. x,Bi specializes to the reducedGröbner
basis of σα(I) for every α ∈ Si, their leading coefficients are non-null on Si and their lpp remain
stable;

1 The library DPGB 7.04 written in Maple 8 is available at the web http://www-ma2.upc.edu/~montes, and is updated (2007)
with the MCCGS algorithm.
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(iii) intrinsic segments, i.e. the sets S1, . . . , Ss are uniquely determined by the given I and�x and are
described in a canonical form.

(iv) the number of segments of the CGS with the above properties is minimal.

The currently existing algorithms that can build comprehensive Gröbner systems, say BUILDTREE,
CGB, CCGB, ACGB and SACGB, do not have all these properties. BUILDTREE builds a comprehensive
Gröbner system satisfying properties i) and ii). But CGB, ACGB and SACGB do not have property i).
Finally, although the Gröbner system obtained within CCGB is canonically determined, it does not
have properties i) nor ii) as for the obtention of a comprehensive Gröbner basis the algorithm needs
the Gröbner systems to be faithful.
It must be emphasized that the existence of the minimal canonical CGS depends on the Conjecture

formulated in Montes (2007) about the existence of an equivalence relation between segments
allowing a common basis.
If the Conjecture is true, then the computation usingMCCGS algorithm proposed inMontes (2007)

and in this paper, already depends on the semi-algorithm GENIMAGE given there for computing pre-
images, that uses arbitrary bounds.
With these restrictions,MCCGS algorithmbuilds a comprehensiveGröbner systemsatisfying all the

properties in Definition 1. These properties will make the algorithmmore suitable for applications. In
particular, they are very appropriate for automatic theorem proving and discovery (see Montes and
Recio (2007)) as well as to compute geometric loci as shown in Example 9.
Furthermore, MCCGS also allows one to restrict the parameter space to a constructible set and

impose a-priori null and non-null conditions. This is also an interesting tool for applications to avoid
some degenerate cases (see Section 5) or make restrictions on the parameters. For example, when
the parameters involve angles, and the equations are given using the sine and cosine of the angles as
parameters, it is important to restrict the solutions to cos2 ϕ + sin2 ϕ − 1 = 0.
The whole algorithm MCCGS is achieved by three steps:

(i) BUILDTREE (described in Manubens and Montes (2006)),
(ii) grouping segments with common basis (described in Montes (2007)),
(iii) representing the subsets in canonical form. This part will be described in Sections 3 and 4.

Although the algorithm requires two term orders (one for the variables �x and another for the
parameters�a), the result will not depend on�a, as the segments Si are intrinsic for the given ideal I
and the term order �x. Even though, �a will be used to determine the reduced Gröbner bases of the
prime ideals involved in the description of Si.
The paper is structured as follows: Section 2 is devoted to recalling some properties and results

from Montes (2007) which are used in the subsequent sections. A generalization of the canonical
specification and its properties are given in Section 3. In Section 4we give the algorithmwhich collects
the corresponding segments into a generalized canonical specification and builds up the Minimal
Canonical Comprehensive Gröbner System. In Section 5 a practical application to automatic theorem
proving is given. Finally, in Section 6 we compare the main available CGS algorithms.

2. Preliminaries

We now describe briefly steps (i) and (ii) of the MCCGS before tackling the last step (iii) that is the
main object of this paper. The algorithm starts with a parametric ideal I and a term-order �x on the
variables. An auxiliary term-order �a over the parameters is needed to describe the subsets in K

m

using Gröbner bases. It does not affect the segments themselves but only their description.
Step (i) is performed by the BUILDTREE algorithm, and was described for the first time in Montes

(2002) and improved in Manubens and Montes (2006). The output is a disjoint reduced CGS, where
the subsets Si are determined by red-specifications. A red-specification of a segment S is described by
the pair (N,W ), where N is the radical null-conditions ideal, and W is a set of irreducible (prime)
polynomials on K [a] representing non-null conditions such that no prime component Ni of the prime
decomposition of N does contain any of the polynomials in W . We have S = V(N) \ V(h) with
h =

∏
w∈W w. A red-specification determined by (N,W ) is easily transformed into a diff-specification
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(N,M)with N ⊂ M where S = V(N)\V(M), by considering the polynomial h =
∏
w∈W w and taking

M = 〈h〉 + N .
Let us denote CGS1 the output of BUILDTREE that consists of a list of segments each represented

by the three objects (Bi,Ni,Wi). Remember that each of these segments has a characteristic set of lpp
of their bases Bi that are preserved by specialization on Si. We say that a basis G specializes well to
(B,N,W ), with lpp(G) = lpp(B), if the polynomials of G

N
are proportional to the polynomials of B,

i.e. for each g ∈ G there exist f ∈ B and α, β ∈ W ∗ such that α gN = β f , whereW ∗ = {k
∏s
i=1w

λi
i :

k ∈ K , λi ∈ Z≥0, wi ∈ W }.
Step (ii), described in Montes (2007), selects the segments of CGS1 with the same lpp that admit a

common reduced basis specializing well to the reduced Gröbner basis for every specialization in the
grouped segments. If Conjecture 7 in Montes (2007) is true, the grouped segments form an intrinsic
partition of the parameter space. To perform that task, the algorithms DECIDE and GENIMAGE are
used. The first one tests whether one from two segments with the same lpp has already a generic
basis specializing to the other (this is the most frequent case) or a necessary sheaf exists or whether
possibly a more generic basis must be found (by GENIMAGE). Whenever no pre-image nor sheaf is
found then both segments are not coherent and cannot be summarized. It can happen that instead of
simple polynomials the basis Bi contains also sheaves of polynomials. A sheaf {g1, . . . , gk} is accepted
in a basis of a segment instead of a simple polynomial, whenever all the polynomials in the sheaf
specialize to the corresponding polynomial of the reduced Gröbner basis of the specialized ideal or
to 0, and some of the polynomials in the sheaf specialize to non-zero for every α ∈ Si. As was shown
in Wibmer (2007), it is necessary to use sheaves for some over-determined systems if we want to
group all the segments admitting a common basis with the same lpp. Thus, the canonicity of the
results of the computation of a minimal canonical CGS relies on GENIMAGE and the truthfulness of
the mentioned conjecture.
Let us denote the output of the second step CGS2. It will be described by segments with a common

basis Bi and a set of red-specifications:

(Bi, {(Ni1,Wi1), . . . , (Niji ,Wiji)}). (1)

Si will now be the union of the segments determined by the red-specifications (Nik,Wik) for k from 1
to ji .
Step (iii) will be described in the next sections. Its objective is to give a canonical description of the

union of the grouped segments of step (ii). The need of having a canonical description of the intrinsic
segments comes from the need of comparing different outputs for the same problem, and also from
the objective of having a final simple description of the segments. InMontes (2007) it was shown how
a diff-specification can be transformed into a can-specification. Here, we will prove that the union of
red-specifications can be transformed into a generalized can-specification usingwhatwe call a P-tree.
The idea is based on Theorem 12 in Montes (2007). Let us give here a slightly different formulation of
it, more appropriate for the current purposes.

Theorem 2.
(i) Every diff-specification S = V(N) \ V(M) admits a unique can-specification

S = V(N) \ V(M) =
⋃
i

(
V(Ni) \

(
∪jV(Mij

))
, (2)

whereN = ∩iNi andMi = ∩jMij are the irredundant prime decompositions over K [a] of the radical
idealsN andMi respectively, where Ni ( Mij.

(ii) The Zariski closure over K
m
verifies

S =
⋃
i

(
V(Ni) \

(
∪jV(Mij

))
=

⋃
i

V(Ni) = V(N ).

(iii) The can-specification verifies V(Ni) \
(
∪jV(Mij)

)
= S ∩ V(Ni).

(iv) Given a diff-specification of S the algorithm DIFFTOCANSPEC (Montes, 2007) builds its can-
specification.
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3. Adding segments

We tackle now the third step of the algorithm MCCGS, i.e. the description of the union of the
segments in a canonical form. We start with segments of the form (1). The red-specifications (N,W )
can be transformed into diff-specifications (N,M), as explained in Section 2, so we are attained with
the obtention of a canonical representation for the addition of diff-specifications. We cannot assume
that the simple form given by formula (2) will be sufficient. A more complex constructible set will be
formed grouping all the segments Sik for 1 ≤ k ≤ ji.
Thus, we generalize the concept of canonical specification given in Montes (2007):

Definition 3 (P-tree). A P-tree is a rooted directed tree such that
(i) the nodes are prime ideals over K [a] except the root, denoted r ,
(ii) when P → Q is an arc then P ( Q ,
(iii) the children of a node are a set of irredundant prime ideals over K [a], (whose intersection form
a radical ideal).

By definition, the root level is 0.

Definition 4 (C-tree). To any P-tree, we associate an isomorphic C-tree by changing every node P to
a subset of K

m
denoted C(P) by the following recursive procedure:

(i) if P is a leaf (terminal vertex) then C(P) = V(P),
(ii) if P is an inner node different from the root and P1, . . . , Pd are its children, then

C(P) = V(P) \ (C(P1) ∪ · · · ∪ C(Pd)) (3)

(iii) if P1, . . . , Pd are the children of the root vertex r then

C(r) = C(P1) ∪ · · · ∪ C(Pd).

Note that for C(r) the parity of the vertex-level acts additively for odd level vertices and as a
subtraction for even level vertices. (See Example 6 below).

Definition 5 (Generalized Canonical Specification). A generalized canonical specification (GCS) of a set
S is a P-tree such that S = C(r) satisfying, for every node P at level j, the following condition:

C(P) = V(P) ∩ B (4)

where B = S for j odd and B = K
m
\ S for j even.

Example 6. To clarify the definition, suppose that wewant to describe the set S1 of theR3-space with
coordinates a, b, c consisting of the plane a = 0 except the lines a = b = 0 and a = c = 0 plus the
point O(0, 0, 0) plus the plane b = −1. We can express S1 as

S1 = ((V(a) ∪ V(b+ 1)) \ (V(a, b) ∪ V(a, c))) ∪ V(a, b, c).

There are many possible determinations of S1. Its corresponding GCS is

S1 = (V(a) \ ((V(a, b) \ V(a, b, c)) ∪ (V(a, c) \ (V(a, b, c) ∪ V(a, b+ 1, c))))) ∪ V(b+ 1).

The tree associated to S1 is shown in Fig. 1. The interest of that representation lies in the fact that it is
unique as we prove in Theorem 7 below.
Consider now the set S2 = S1\V(a, b+1, c). In order to preserve property (4) of the GCS definition,

the P-tree associated to S2 will be modified from the P-tree associated to S1 by eliminating the point
under the varietyV(a, c) and setting it under the variety V (b+1). The new tree is also shown in Fig. 1.

Theorem 7. A subset S ⊂ Km defined by a GCS has the following properties:

(i) For every vertex P, except for the root, C(P) = V(P), where, as usual, the Zariski closure is taken over
K
m
.

(ii) For the root vertex r, S = C(r) =
⋃d
i=1 V(Pi), where the Pi’s are the children vertices of r.

(iii) S has a unique GCS decomposition.
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Fig. 1. Trees representing the sets S1 and S2 in generalized can-specification.

Proof. (i) The inclusion⊆ is obvious as C(P) ⊆ V(P). To prove the equality we have

C(P) = V(P) \
d⋃
i=1

C(Pi) ⊇ V(P) \
d⋃
i=1

V(Pi).

Consider the closure of the above formula and apply Theorem 2 (ii). The result follows.
(ii) Is an immediate consequence of (i).
(iii) To prove the uniqueness, we proceed by induction on d. For d = 1, the tree is formed by the root
r and a set of children nodes forming an irredundant prime decomposition of the radical ideal
defining S, by Definition 3 (iii). Thus, in this segment the P-tree is unique.
Assume now by induction hypothesis the uniqueness of the GCS for every P-tree of maximum

depth less than d and let us prove, as a consequence, the uniqueness also for depth d. Let S be
defined by a P-tree of maximal depth d representing a GCS. By part (ii) of the Theorem we have
S =

⋃
i V(Pi) = V(∩iPi), where the Pi’s form the unique irredundant prime decomposition over

K [a] of the radical ideal ∩iPi defining S by Definition 3(iii). Thus they are uniquely determined.
Denoting Pij the children of Pi, by (4) we have

C(Pi) = V(Pi) \
di⋃
j=1

C(Pij) = V(Pi) ∩ S (5)

showing that C(Pi) is also uniquely determined. Set Si for the subtracting set

Si =
di⋃
j=1

C(Pij). (6)

As Si ⊆ V(Pi), Si is also uniquely defined by (5). By formula (4), we have C(Pij) = V(Pij) ∩(
K
m
\ S
)
. Thus

Si =
di⋃
j=1

C(Pij) =

(
di⋃
j=1

V(Pij)

)
∩

(
K
m
\ S
)

and so

C(Pij) = V(Pij) ∩ Si (7)

By the ascending chain condition for the ideals in the branches, equation (7) ensures that
condition (4) is also respected for the subtree of Si. Thus the subtree of Si also forms a GCS of
Si with depth less than d. By the induction hypothesis it is uniquely determined and so does the
complete P-tree of S. �

4. The MCCGS algorithm

Given an ideal I and the monomial orders �x for the variables and �a for the parameters, the
following sequence of algorithms build up the P-tree T corresponding to the Minimal Canonical
Comprehensive Gröbner System associated with I and�x.
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tree T ←MCCGS(B,�x,�a)
Input: B a basis of the parametric polynomial ideal I and monomial orders�x,�a.
Output: T a tree containing the minimal canonical comprehensive Gröbner system associated with I .

T0 :=BUILDTREE(B,�x,�a)
S :=SELECTCASES(T0)
T :=GENCANTREE(S)

set of pairs S← SELECTCASES(T0)
Input: T0 a BUILDTREE discussion tree whose terminal vertices shape a CGS with red-specifications.
Output: S a finite set of pairs of the form (Bi, {(Ni1,Wi1), . . . , (Niji ,Wiji)}) taken from the CGS associ-
ated with T0.

G := {(B1,N1,W1), . . . , (Br ,Nr ,Wr)} {the CGS associated to T0}
S := ∅
while G 6= ∅ do
Let (B,N,W ) be the first element of G
B0 := B; N0 := N; W0 := W ;
l := {(N0,W0)}
G := G \ {(B0,N0,W0)}
for all (B′,N ′,W ′) ∈ G such that lpp(B) = lpp(B′) do
p := 0
for all f ∈ Bwhile p 6= false do
Let f ′ ∈ B′ be such that lpp(f ) = lpp(f ′)
p := DECIDE(f ,N,W , f ′,N ′,W ′) {described in Montes (2007)}
if p 6= false then
Substitute f by p in B0

end if
end for
if p 6= false then
l := l ∪ {(N ′,W ′)}
B := B0; N := N ∩ N ′; W := W ∩W ′;

end if
end for
S := S ∪ {(B, l)}
G := G \ {(B′,N ′,W ′) ∈ G such that (N ′,W ′) ∈ l}

end while

The MCCGS uses BUILDTREE (see Montes (2002) and Manubens and Montes (2006)) to build up
the discussion tree T0 containing a CGS whose segments are expressed as red-specifications. Then
SELECTCASES takes T0 as input and classifies the segments from the CGS associated to T0 into pairs of
the form (Bi, li), where li is a set of red-specifications {(Ni1,Wi1), . . . (Niji ,Wiji)}whose corresponding
bases have been generalized by the same basis Bi. Afterwards, MCCGS calls the new algorithm
GENCANTREE to finally obtain theminimal canonical CGS associated to the initial ideal and termorder.
GENCANTREE uses GCS algorithm to build the P-tree corresponding to the generalized canonical

specification of the addition of segments. GCS algorithm begins by setting the ideal {0} at the root
of new tree T and calls iteratively the recursive algorithm ADDCASE. It must be noted that there are
two kinds of nodes, namely odd level vertices and even level vertices, that are treated differently by
ADDCASE. Root vertex is considered level 0. ADDCASE uses two auxiliary algorithms: DIFFTOCANTREE
(a minor transformation of DIFFTOCANSPEC) converts a diff-specification into a P-tree containing the
associated can-specification, and SIMPLIFYSONS just makes the suitable simplifications.
At the first iteration, ADDCASE stores under the root the P-tree of the unique canonical specification

associated with (Ni1,Wi1). Then, to add each further red-specification (Nik,Wik), ADDCASE executes
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tree T ← GENCANTREE(S)
Input: S a finite set of pairs of the form (Bi, {(Ni1,Wi1), . . . , (Niji ,Wiji)}).
Output: the canonical tree T associated to S.

initialize T
for 1 ≤ i ≤ ]S do
Create ui a new vertex in T hanging from the root
store Bi in ui
l := {(Ni1,Wi1), . . . , (Niji ,Wiji)} {red-specifications associated to Bi}
T := GCS(l)
hang T from ui

end for

tree T ← GCS(l)
Input: l a finite set of red-specifications
Output: a tree containing the Generalized Can-Specification associated to the addition of segments in l.

initialize tree T with the root r
set Pr := φ
for all pairs (N,W ) ∈ l do
T := ADDCASE((N,W ), r, T )

end for

Fig. 2. The action of ADDCASE.

itself recurrently in post-order at the even level vertices u ∈ T and adds the can-specification
associated with (Nik,Wik) contained in V(Pu). For example, in Fig. 2 it would act successively on the
vertices c, f , i, j, `, m, g, o, p, d, t, u, r, v, a.
Thus, before acting on an even vertex u ∈ T , the algorithm must have acted on all its even

descendants. Therefore, if an even level descendant w verifies that Nik ⊇ Pparent(w), then the can-
specification associatedwith (Nik,Wik)must have been completely hung under parent(w). In this case
the test variable will contain false and thus DIFFTOCANTREE for current (Nik,Wik) will not act on Pu
nor on any of its ascendant vertices. We must also remember that the ideals associated to the paths
in T starting from the root form ascending chains of prime ideals. Thus, whenever test is false, the
condition cited above will also hold for all vertices placed between u and w, even the odd level ones,
i.e. for all v ∈ T descendent of u and ascendant ofw, Nik ⊇ Pv .
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(bool test , tree T )← ADDCASE((N,W ), u, T )
Input: (N,W ) a red-specification , u even level vertex in P-tree T .
Output: false if (N,W ) is not to be added to parent vertices, true otherwise. It also returns current tree
T .

test := true
if u is not terminal then

for all v ∈ children(u) do
for allw ∈ children(v) do

if ADDCASE((N,W ), w, T ) = false then
test := false

end if
end for
T := SIMPLIFYSONS(v, T )

end for
end if
if test = true then
h :=

∏
w∈W w

(R, S) := (N + Pu,N + 〈h〉 + Pu) {diff-specification associated to (N,W ) in V(Pu) }
t := DIFFTOCANTREE(R, S)
hang t from u
if parent(u) exists and Pparent(u) ⊆ N then
test := false

end if
end if

tree T ← SIMPLIFYSONS(u, T )
Input: u a vertex at odd level of tree T where to start the simplifications.
Output: The tree after simplifications

Description:
SIMPLIFYSONS just simplifies the subtree under v on the global T in order to not having cancelations
nor inclusions between the children of v. Let P be the prime stored in vertex v. The simplification is
performed as follows:
Check that there is no Pi child of P such that Pi = Pij. And if any, hang to P all subtrees descendant
from Pij and drop both Pi and Pij from T .
Then check whether there is any pair of children of P , P → Pi, P → Pj, such that Pi ⊆ Pj. If so, drop
subtree hanging from Pj and also vertex Pj.

for all v ∈ children(u) do
if Pv = Pchild(v) then
hang from u all subtrees under child(v)
drop v and child(v) from T

end if
end for
if there ∃ v,w ∈children(u) such that Pv ⊆ Pw then
drop subtree with rootw from T

end if

This way, ADDCASE completes current P-tree T to a new tree such that for every odd level vertex
uwith prime ideal Pu, all points in V(Pu) ∩ (V(Nik) \ V(hik)) (where hik =

∏
w∈Wik

w) are in C(Pu), as
required.
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tree t← DIFFTOCANTREE((I, J))
Input: (I, J) a diff-specification.
Output: a tree structure containing the Can-Specification of V(I) \ V(J).

initialize local tree t
{Pi} :=PRIMEDECOMP(I)
for all Pi do

if Pi 6=
√
J + Pi then

store the Pi as the children of the root in t
{Pij} :=PRIMEDECOMP(J + Pi)
store the Pij as the children of Pi in t

end if
end for

Nevertheless, in the new tree completed by ADDCASE it could happen that Pu + Nik = Pu
for some even level vertex u, which would cause that Pu and its unique child Pchild(u) coincide.
If so, SIMPLIFYSONS takes the subtree under child(u), slips it upwards hanging it from parent(u)
and eliminates both vertices u and child(u) from the tree. When this action is performed, it could
also happen that some set of current even level siblings do not preserve the prime decomposition
irredundancy property, i.e. ∃v1, v2 ∈ children(u) such that Pv1 ⊆ Pv2 for u an even level vertex in T .
SIMPLIFYSONS algorithm also detects these cases and eliminates the subtrees hanging from v2 as well
as v2. Thus, the action of SIMPLIFYSONS will restore the GCS-condition property of the tree.
Note: For algorithmic reasons, all paths starting from the root vertex in a P-tree will be of even

length. Thus for odd length branches, the algorithm will add a new vertex [1] at the end.
The above described algorithms build the complete minimal canonical CGS of the initial ideal. The

following theorem states that GCS algorithmbuilds the generalized can-specification (GCS) associated
to the set of the corresponding diff-specifications:

Theorem 8. Given a finite list of pairs l = {(Nik,Wik) : k = 1, . . . ,M} of red-specifications, GCS(l)
computes the P-tree associated to the generalized can-specification determining the constructible set

M⋃
k=1

V(Nik) \ V

( ∏
w∈Wik

w

)
.

Proof. Let S =
⋃M
k=1 V(Nik) \ V(

∏
w∈Wik

w). The proof is done by induction on M , the number of
red-specifications to be added.
For M = 1, GCS uses DIFFTOCANTREE just once and, by Theorem 1 (iv), it builds up the unique

can-specification in tree T . Thus T is a P-tree such that C(T ) = V(Ni1) \ V(
∏
w∈Wi1

w).
By induction hypothesis, assume now that after the M − 1 iteration of ADDCASE the GCS tree

of the M − 1 red-specifications has been built and let T̃ be this tree, which is a P-tree such that
C(T̃ ) =

⋃M−1
k=1 V(Nik)\V(

∏
w∈Wik

w) and such that every vertexu ∈ T̃ holds thatC(Pu) = V(Pu)∩C(T̃ ).
We shall prove that theM-th iteration will build the GCS tree of S.
Let us describe how the recursive ADDCASE algorithm acts on T̃ adding V(NiM) \ V(

∏
w∈WiM

w).
Denote by Λ(u) the operation on an even level vertex u that hangs to it the tree associated with the
can-specification of (NiM ,WiM) contained in V(Pu) (i.e. V(NiM + Pu) \ V(NiM + Pu + 〈

∏
w∈WiM

w〉)

whenever it can be hung and returns false or true depending on whether P parent(u) ⊆ NiM or not,
respectively. So it hangs the points V(Pu) ∩ (V(NiM) \ V(NiM + 〈

∏
w∈WiM

w〉)), and thus C(Pu) =
V(Pu) ∩ S.
Λ(u) is applied recursively in post-order. If Λ(u) returns false at some even level vertex u, the

whole setV(NiM)\V(NiM+〈
∏
w∈WiM

w〉) has been hung under u and thus, as u is even, C(parent(u)) ⊃
V(NiM) \ V(NiM + 〈

∏
w∈WiM

w〉). Then Λ will not be applied to any of its ascendant vertices because

C(T ) = C(T̃ ) ∪
(

V(NiM) \ V(NiM + 〈
∏
w∈WiM

w〉)
)
.
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Fig. 3. Minimal canonical CGS for the singular points of a conic system.

If Λ(u) returns true for all u ∈ T̃ , which means that V(NiM) \ V(NiM + 〈
∏
w∈WiM

w〉) has not
completely been hung under root, then the P-tree corresponding to the red-specification (NiM ,WiM)
computed by DIFFTOCANTREE will be hung from root. Thus, we finally have that C(T ) = C(T̃ ) ∪(

V(NiM) \ V(NiM + 〈
∏
w∈WiM

w〉)
)
.

This way, GCS algorithm obtains, as SIMPLIFYSONS ensures, a P-tree T such that for every node
v ∈ T holds that C(Pv) = V(Pv) ∩ C(T ) and C(T ) = S. �

Furthermore, GENCANTREE algorithmperforms aGCS computation for each list of segmentswhose
associated reduced Gröbner bases specialize properly, obtaining a tree for which the subtrees hanging
from the root correspond to the generalized can-specifications of the lists configuring a partition of the
parameter space. Thus, MCCGS algorithm performs the discussion and obtains the Minimal Canonical
Comprehensive Gröbner System stored in the output tree T .

Example 9. [Singular points of a conic] The general equation of a conic can be reduced by a suitable
change of variables to the form f ≡ x2+by2+2cxy+dx = 0. To study its singular points consider the
system of equations S :=

[
f , ∂ f

∂x ,
∂ f
∂y

]
, and apply MCCGS algorithm to S using lex(x, y) and lex(b, c, d)

for variables andparameters respectively. The result is shown in Fig. 3. The interpretation of the output
tree is the following.
There are three different segments: the generic casewith lpp set [1]where the conic has no singular

points, the segment with lpp set [y, x] corresponding to a single singular point in the conic, and the
segment with lpp set [x] corresponding to a solution with one degree of freedom, where the conic
is a double line. The conditions over the parameters given by the trees are to be interpreted in the
following way:

lpp Basis Description
[1] [1] C3 \ ((V(b) \ (V(c, b) \ V(d, c, b))) ∪ V(d))
[y, x] [2cy+ d, x] (V(b) \ V(c, b)) ∪

(
V(d) \ V(d, b− c2)

)
[x] [x+ cy] V(d, b− c2)

Fig. 3 shows the geometrical description of the partition of the parameter space provided by the
three segments. The generic segment occurs in the whole 3-dimensional space except the two planes
V(b) and V(d) plus the line V(c, b) except the point (0, 0, 0). The one-singular point segment occurs
in the two planesV(b) andV(d) except both the lineV(c, b) and the parabolaV(d, b− c2). Finally the
double line occurs on the parabola V(d, b− c2).

5. Applications

We use now the algorithm to prove part of the 9 points circle Theorem on a triangle. It states: For
every triangle, the circle through the three middle points of the sides is also incident with the height feet.



Author's personal copy

474 M. Manubens, A. Montes / Journal of Symbolic Computation 44 (2009) 463–478

Fig. 4. Nine points circle Theorem.

To prove it, and also to obtain supplementary hypotheses if needed, consider a triangle with vertices
at the points A(0, 0), B(2a, 2b) and C(2c, 2d) and denote P(x, y) the height foot from A (see Fig. 4).
The first set of hypotheses are the equations of the side BC and the height from A defining the point
P(x, y):

h1 : (b− d)x+ (c − a)y+ 2ad− 2bc = 0
h2 : (c − a)x+ (b− d)y = 0.

Denote r and (x0, y0) the radius and the center of the circle through the three middle points (a, b),
(c, d) and (a + c, b + d). Its equation will be (x − x0)2 + (y − y0)2 − r2 = 0. So we have the three
new hypotheses:

h3 : (a− x0)2 + (b− y0)2 − r2 = 0
h4 : (c − x0)2 + (d− y0)2 − r2 = 0
h5 : (a+ c − x0)2 + (b+ d− y0)2 − r2 = 0.

The thesis of the theorem is that the circle is incident with the point P(x, y), thus that the polynomial

f = (x− x0)2 + (y− y0)2 − r2

is zero as a consequence of the hypotheses. The first to do is searching for the solutions of the system
HT = 〈h1, h2, h3, h4, h5, f 〉. Thus we call

mccgs(HT , grevlex(x, y, x0, y0, r2), lex(a, b, c, d)),

where we set r2 = r2. We obtain a canonical tree with nine cases. But only two cases are really
interesting. The first one is the generic case (see Fig. 5) for which the lpp are [r2, y0, x0, y, x] showing
that for parameter values not in V(ad− bc) ∪ V((a− c)2 + (b− d)2) there exists a unique solution.
For the real case it is sufficient to consider ad − bc 6= 0, as the real part of the second variety is
inside the first one. The second interesting case is the case with basis [1]where no solution exists. The
corresponding tree shows that it covers both varieties V(ad − bc) ∪ V((a − c)2 + (b − d)2) except
for very special cases corresponding to degenerate triangles. Thus, we have proved that the theorem
is true whenever ad− cb 6= 0. We can also go further and ask if the thesis is a real consequence of the
hypotheses, i.e. if f belongs to the radical of the hypotheses ideal H = 〈h1, h2, h3, h4, h5〉 whenever
ad− bc 6= 0. To test this we must have

HT 1 = 〈h1, h2, h3, h4, h5, 1− wf 〉 = 〈1〉
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Fig. 5. Generic case for HT in the nine points circle Theorem.

i.e. the Gröbner basis of HT 1 is [1]. We call now

mccgs ([h1, h2, h3, h4, h5, 1− wf ], grevlex(w, x, y, x0, y0, r),
lex(a, b, c, d), notnull = {ad− bc}),

and the result is a unique case with basis [1]. Thus effectively f belongs always to the ideal of the
hypothesis whenever ad− bc 6= 0.

6. Comparison of algorithms

The CGS of a parametric ideal I can have very different properties as commented in Section 1. For
example

(i) the subsets Si of the parameter space K
m
in which the CGS are divided can be very different, they

can contain different number of segments, they can overlap, and so on;
(ii) a CGS can contain incompatible segments;
(iii) the basis Bi can be reduced or not;
(iv) even when a given algorithm does not theoretically ensure some property it can however hold it
experimentally in most examples.

So it is quite difficult to make automatic comparisons of the outputs.
There are three available known implemented methods for obtaining a GCS:

(i) Weispfenning CGB implemented by Dolzmann et al. (2006) in Reduce.
(ii) Suzuki-Sato SACGB implemented in Risa/Asir.2
(iii) MontesMCCGS implemented inMaple 8 byM.Manubens in the DPGB library 7.04 and in Singular
(redCGS.lib).

Even though we use some criteria to evaluate them: correctness of the results, existence of
incompatibilities, existence of overlaps, number of segments, whether the Si form a partition, whether
or not specializations preserve the lpp’s of the bases, reduction of the bases, theoretical canonicity
ensured, theoretical minimality ensured, execution time.
Although it is not possible to evaluate Weispfenning’s CCGB algorithm in practice because it has

not been implemented, we can analyze its theoretical features. The canonicity of CCGB comes from
the use of primary decompositions over the conditions, but the method is not dichotomic and so the
segments are not disjoint. As its objective is to obtain a canonical CGB, the bases of the corresponding
CGS are faithful and therefore not reduced, so specializations do not preserve their lpp. Furthermore,
as the segments are not disjoint, minimality does not hold.
To compare the implemented methods, we have used a Pentium(R) D CPU 3.00 GHz, 1.00 GB RAM

for the computations and tested different examples using the above implementations.
We have not been able to obtain CGB Reduce in time for these comparisons, so we could only test

some very simple executions with a demo version. To what we have experimentally observed, it gives
a partition of the parameter space containing quite more segments than the output of MCCGS. The
bases are faithful, which is interesting for computing a CGB, but they do not give direct information

2 There exist also a preliminary Maple version but it is not yet fully developed.
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on the type of solutions, as these bases are not reduced. It seems to be very efficient but the provided
results are difficult to interpret. In future we will make a more precise analysis.
SACGB is a very simple and interesting algorithm based on Kalkbrenner’s theorem for

stabilization of polynomial ideals over rings (Kalkbrenner, 1997) under specialization. The published
algorithm provides a highly complex CGS, containing even incompatible segments, but the Risa/Asir
implementation makes an initial reduction and gives a better output. We implemented an
extra routine to further reduce the output by transforming specifications into red-specifications
characterized by a pair (N,W ), where N is the null-condition ideal and W is a set of irreducible
polynomials.
Among the tests we have done we explain four interesting ones.

Example 10. First, we consider a very simple but illustrative example: the discussion of the singular
points of a conic already studied in Example 9.
Using the Risa/Asir implementation of SACGB together with the additional simplifications we

obtain the following description of the CGS:

lpp’s Basis Description
[1] [1] C3 \ V(bcd)
[1] [1] V(c) \ V(d)
[x] [x+ cy] V(d, b− c2)
[y, x] [y, x] V(d) \ V((b− c2)c)
[y, x] [y, 2x+ d] V(d, c) \ V(b)
[y, x] [2cy+ d, x] V(b) \ V(cd)

There are two segments with basis [1], i.e. when the conic has no singular points. The first one
corresponds to the whole C3 space except the three planes V(b), V(c) and V(d). The second one
corresponds to the plane V(c) except the line V(c, d). They have empty intersection and its union
describes the unique generic segment in MCCGS’ output, namely the whole C3 space except the two
planes V(b) and V(d) plus the line V(b, c) except the origin (0, 0, 0).
The segment with lpp set [x] (i.e. the conic is a double line of singular points) coincides with the

one in the MCCGS’ output.
Finally, there are three segments with lpp set [x, y], i.e. the conic has one single singular point.

The first one corresponds to the plane V(d)minus the line V(c, d) and the parabola V(d, b− c2). The
second one corresponds to the line V(c, d) minus the origin (0, 0, 0). The third one corresponds to
the planeV(b)minus the linesV(b, c) andV(b, d). These three sets have no common intersection and
their union describes the plane V(b) minus the line V(b, c) plus the plane V(d) minus the parabola
V(d, b − c2), which is the unique segment in MCCGS’ output. Also the basis given by the MCCGS for
this segment specializes to the bases of the three segments provided by SACGB.
Using Reduce implementation of Weispfenning’s CGB, we obtained the following CGS:

Segment Basis Description
1 [bd2] b2cd− bc3d 6= 0
2 [x2 + 2cxy+ dx+ by2, 2x+ 2cy+ d,

cx+ by, (2b− 2c2)y− cd] b− c2 6= 0, c 6= 0, bd = 0
3 [2cdy+ d2] b 6= 0, d 6= 0, c = 0
4 [x2 + 2cxy+ dx+ by2, 2x+ 2cy+ d, cx+ by] b 6= 0, c = 0, d = 0
5 [(2b− 2c2)y− cd] c 6= 0, d 6= 0, b− c2 = 0
6 [x2 + 2cxy+ dx+ by2, 2x+ 2cy+ d, cx+ by] c 6= 0, d 6= 0, b− c2 = 0
7 [4cxy+ 4by2 − 2cdy− d2] d 6= 0, b = 0, c = 0
8 [x2 + 2cxy+ dx+ by2, 2x+ 2cy+ d] b = 0, c = 0, d = 0



Author's personal copy

M. Manubens, A. Montes / Journal of Symbolic Computation 44 (2009) 463–478 477

Seg. b c d b− c2 MCCGS lpp Seg. b c d b− c2 MCCGS lpp
1 1 1 1 1 [1] 4 1 0 0 1 [x, y]
2 0 1 0 1 [x, y] 5 1 1 1 0 [1]

0 1 1 1 6 1 1 0 0 [x]
1 1 0 1 7 0 0 1 0 [1]

3 1 0 1 1 [1] 8 0 0 0 0 [x]

As can be seen, the description of the segments is not very friendly. In order to interpret these CGS
as a partition we have manually built the following binary table in which 0 represents ‘‘being equal to
0’’, and 1 ‘‘being different from 0’’. The last column matches each CGS segment with one of the three
MCCGS segments identified by its lpp.
The CPU times are 1.46 s for MCCGS, 0.18 s for SACGS and 0.05 s for CGB.
We see that theMCCGS outputs a simpler discussion, not only theoretically but also experimentally

as all the segments corresponding to the same set of solutions are summarized in a single segment,
while SACGS and CGB do not. Nevertheless, SACGS and CGB are both correct and faster than the
MCCGS, and although they do not ensure that the Si form a partition of the parameter space, in this
example they do.

Example 11. We also have tried to test SACGB with the systems of the nine points circle theorem
explained in Section 5 above. SACGB after 3 h of computation went out of memory and had not yet
reached an end, while the MCCGS takes only 11.45 s. for testing the compatibility of the hypotheses
and 2.21 s. for discussing the theorem thesis.

Example 12. The last test is the system of the Romin robot (González-López and Recio, 1993):

R = [a+ ds1, b− dc1, l2c2 + l3c3 − d, l2s2 + l3s3 − c, s21 + c
2
1 − 1, s

2
2 + c

2
2 − 1, s

2
3 + c

2
3 − 1]

wrt lex(c3, s3, c2, s2, c1, s1) and lex(l2, l3, a, b, c, d). The MCCGS takes 43.23 sec in discussing the
system and provides 9 segments. SACGB also went out of memory.

7. Conclusions

Interest in the MCCGS algorithm relies, essentially, in the simplicity of the output for applications,
and in its canonical character, providing an easier interpretation of the results. We have also observed
that the obtention of the minimal canonical CGS from the BUILDTREE CGS only increases the
computation time by about 20%–30%. This clearly makes it worth taking into account the simplicity
of the output and its utility for applications.
The existence of the minimal canonical CGS depends on the Conjecture formulated in Montes

(2007). The use of the algorithmwill provide either evidence of its soundness or a counterexample. In
almost all the tests that we have performed (quite a high number) the algorithm has always obtained
a unique segment for each different lpp set, confirming the conjecture. The only ideal for which the
algorithm obtains two different segments with the same lpp is = 〈u(ux + 1), (ux + 1)x〉 proposed
by Wibmer (2007), and there both segments are clearly intrinsically different and cannot be merged
nor summarized into a single one. Thus this example also provides evidence of the Conjecture. To
give a counterexample proving the falsehood of the Conjecture, we must find an ideal for which
the algorithm MCCGS obtains two or more segments with the same lpp which could be merged or
summarized in a different way.
Although we have only made a few simple tests with CGB, we have observed that it seems faster

than SACGB and theMCCGS in those specific problems. It stands out for computing a CGSwith faithful
bases which are not always useful for applications. Experimentally, it seems to obtain a partition of
the parameter space, even if there is no theoretic evidence. Nevertheless, the number of segments is
much higher than the MCCGS and are difficult to understand.
SACGB stands out for being in general very reliable for computing a CGS. Its efficiency depends on

the type of system to be dealt with. It seems to behave faster than the MCCGS in problems for which
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a low number of cases is expected. Furthermore, we must remind that the output of SACGB is very
complex and also needs extra simplification to be interpreted.
One can also adapt the MCCGS algorithm to the CGS obtained by other algorithms instead of

BUILDTREE. To do this, one needs to transform the output of the involved algorithm into a disjoint
reduced CGS, and then apply step (ii) and (iii), i.e. SELECTCASES and MCCGS.
The MCCGS takes, generally, more CPU time for simple problems. Nevertheless the simplifications

inside the MCCGS often allow one to discuss systems of higher complexity, as seen in Examples 11
and 12 above.
Finally, we have seen that the MCCGS algorithm stands out for having the best features to be used

for automatic theorem proving and discovering as well as for other applications.
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