Presentation of the book "The Gröbner Cover" Springer ACM Series (2018)

Antonio Montes

Universitat Politècnica de Catalunya
ACA-2018 Santiago de Compostela

Index

(9) Introduction
(2) Automatic Deduction of Geometric Theorems
(3) Geometric Loci

4 Geometric Envelopes

Index of the Book

Preface

1. Preliminaries

Part 1. Theory

2. Constructible sets
3. Comprehensive Gröbner Systems
4. I-regular functions on a locally closed set
5. The Canonical Gröbner Cover

Part 2. Applications

6. Automatic Deduction of Geometric Theorems
7. Geometric Loci
8. Geometric Envelopes

Appendix

Bibliography

Software

All the algorithms described in the book are implemented in the "grobcov.lib" library of SINGULAR.

The book can also be used as software Manual for the library.

The Gröbner Cover

The existence of the Gröbner Cover of a parametric polynomial $I \subset K[\mathbf{a}][\mathbf{x}]$ ideal is a consequence of Wibmer's Theorem. It was described in (2010) by A. Montes and M. Wibmer.

Wibmer's theorem establishes that for an homogeneous parametric polynomial ideal $I \subset K[\mathbf{a}][\mathbf{x}]$ ideal, it exists

- a canonical partition of the parameter space into locally closed segments $S_{i}=\mathbb{V}\left(\mathfrak{p}_{i}\right) \backslash \mathbb{V}\left(\mathfrak{q}_{i}\right) ;$
- each segment accepts a set of I-regular functions that specializes to the reduced Gröbner basis for every point a $\in S_{i}$,
- preserving the set of lpp_{i} (leading power products),
- and each segment S_{i} has different lpp_{i}.

The set of triplets $\left(\operatorname{lpp}_{i}, B_{i}, S_{i}\right)$ constitutes its Gröbner Cover.

The Gröbner Cover

For a non-homogeneous parametric ideal

- homogenize the ideal,
- determine its Gröbner Cover,
- and dehomogenize.

The result is its canonical Gröbner Cover.
It can contain segments with the same set of lpp_{i} but coming from different sets of lpph_{i} of the homogenized ideal.

It is still canonic.

Example: Singular points of a conic

Equation of the conic:

$$
x^{2}+b y^{2}+2 c x y+2 d x+2 e y+f=0
$$

Input:
> LIB "grobcov.lib";
$>$ ring $\mathrm{R}=(0, \mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}),(\mathrm{x}, \mathrm{y}), \mathrm{dp}$;
$>$ ideal $S=x^{2}+b y^{2}+2 c x y+2 d x+2 e y+f$, $2 x+2 c y+2 d$, $2 b y+2 c x+2 e$;
> grobcov(S,"showhom",1);

Output: Singular points of a conic

1.	lpp $=$	$\{1\}$
	Basis $=$	$\{1\}$
	Segment $=$	$\mathbb{C}^{5} \backslash \mathbb{V}\left(b d^{2}-b f+c^{2} f-2 c d e+e^{2}\right)$
	Description:	Conic without singular points.
2.	lpp $=$	$\{y, x\} \quad \mid \operatorname{lpph}=\{y, x\}$
	Basis $=$	$\left\{(c d-e) y+d^{2}-f,(c d-e) x+c f-d e\right\}$
	Segment $=$	$\mathbb{V}\left(b d^{2}-b f+c^{2} f-2 c d e+e^{2}\right) \backslash \mathbb{V}\left(c d-e, b-c^{2}\right)$
	Description:	Two intersecting lines.
3.	lpp $=$	$\{1\} \quad$ Ipph $=\{@ t, x\}$
	Basis $=$	$\{1\}$
	Segment $=$	$\mathbb{V}\left(c d-e, b-c^{2}\right) \backslash \mathbb{V}\left(d^{2}-f, c f-d e, c d-e, b-c^{2}\right)$
	Description:	Two parallel lines.
4.	lpp $=$	$\{x\} \quad$ Ipph $=\{x\}$
	Basis $=$	$\{x+c y+d\}$
	Segment $=$	$\mathbb{V}\left(d^{2}-f, c f-d e, c d-e, b-c^{2}\right)$
	Description:	Double line.

Index

(9) Introduction

(2) Automatic Deduction of Geometric Theorems
(3) Geometric Loci
4) Geometric Envelopes

Automatic Deduction of Geometric Theorems

Consider a geometric proposition of the form

$$
\left(H \wedge \neg H_{1}\right) \Rightarrow\left(T \wedge \neg T_{1}\right) .
$$

We provide an automatic algorithm (ADGT) for obtaining supplementary conditions for transforming the Proposition into a Theorem.

An example using the command ADGT

Let $A(-1,0), B(1,0), C(x, y)$ be the vertices of a triangle.
Consider the foots of the heights $A^{\prime}\left(x_{1}, y_{1}\right), B^{\prime}\left(x_{2}, y_{2}\right), C^{\prime}(x, 0)$.
The ortic triangle of $A B C$ is $A^{\prime} B^{\prime} C^{\prime}$.

Ortic triangle

Consider the following ideals of hypothesis and thesis: Hypothesis H : The triangle $A^{\prime} B^{\prime} C^{\prime}$ is the ortic triangle of $A B C$

$$
\begin{aligned}
H & =-y x_{1}+(x-1) y_{1}+y,(x-1)\left(x_{1}+1\right)+y y_{1} \\
& -y x_{2}+(x+1) y_{2}-y,(x+1)\left(x_{2}-1\right)+y y_{2}
\end{aligned}
$$

Hypothesis H_{1} : The triangle $A B C$ is degenerate (we shall deny it):

$$
H_{1}=y
$$

Thesis T : The ortic triangle $A^{\prime} B^{\prime} C^{\prime}$ is isosceles $\left(\overline{A^{\prime} C^{\prime}}=\overline{B^{\prime} C^{\prime}}\right)$:

$$
T=\left(x_{1}-x\right)^{2}+y_{1}^{2}-\left(x_{2}-x\right)^{2}-y_{2}^{2}
$$

Thesis T_{1} : The ortic triangle $A^{\prime} B^{\prime} C^{\prime}$ is degenerate (points aligned, we shall deny it):

$$
T_{1}=x\left(y_{1}-y_{2}\right)-y\left(x_{1}-x_{2}\right)+x_{1} y_{2}-x_{2} y_{1}
$$

Ortic triangle

Proposition 1: $H \Rightarrow T$.
Calling sequence: $\operatorname{ADGT}(H, T, 1,1)$;
Result:

$$
\begin{aligned}
(x, y) & \in S_{1} \cup S_{2} \cup S_{3} \\
S_{1} & =\mathbb{V}\left(x^{2}-y^{2}-1\right) \backslash \mathbb{V}\left(y^{2}+1, x\right) \\
S_{2} & =\mathbb{V}\left(x^{2}+y^{2}-1\right) \\
S_{3} & =\mathbb{V}(x) \backslash \mathbb{V}\left(y^{2}+1, x\right)
\end{aligned}
$$

Proposition 2: $H \wedge \neg H_{1} \Rightarrow T \wedge \neg T_{1}$.

Calling sequence: $\operatorname{ADGT}\left(H, T, H_{1}, T_{1}\right)$;

Result:

$$
(x, y) \in\left(S_{1} \backslash(A \cup B)\right) \cup\left(S_{3} \backslash O\right)
$$

Ortic triangle

Proposition 1: $H \Rightarrow T$.
Calling sequence: $\operatorname{ADGT}(H, T, 1,1)$;
Result:

$$
\begin{aligned}
(x, y) & \in S_{1} \cup S_{2} \cup S_{3} \\
S_{1} & =\mathbb{V}\left(x^{2}-y^{2}-1\right) \backslash \mathbb{V}\left(y^{2}+1, x\right) \\
S_{2} & =\mathbb{V}\left(x^{2}+y^{2}-1\right) \\
S_{3} & =\mathbb{V}(x) \backslash \mathbb{V}\left(y^{2}+1, x\right)
\end{aligned}
$$

Proposition 2: $H \wedge \neg H_{1} \Rightarrow T \wedge \neg T_{1}$.

Calling sequence: $\operatorname{ADGT}\left(H, T, H_{1}, T_{1}\right)$;
Result:

$$
(x, y) \in\left(S_{1} \backslash(A \cup B)\right) \cup\left(S_{3} \backslash O\right)
$$

Ortic triangle

Index

(9) Introduction

(2) Automatic Deduction of Geometric Theorems

(3) Geometric Loci

4 Geometric Envelopes

Geometric Loci: generalized to n-dimensional space

Loci problems are usually considered in 2d or at most 3d, and are obtained by elimination techniques with unprecise definition.

Using the Gröbner Cover we are able to

- generalize them for n-dimensional space,
- precise exactly their irreducible components,
- and assign them a taxonomy.

A locus problem has

- a tracer point $T(\mathbf{x})=T\left(x_{1}, \ldots, x_{n}\right)$,
- a set of auxiliary variables $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)$ usually containing a mover point $M\left(w_{1}, \ldots, w_{n}\right)$,
- an ideal $F[\mathbf{x}, \mathbf{u}]$ expected to have $n-1$ degrees of freedom.

Geometric Loci: Taxonomy

locus allows to define and determine the taxonomy of its components.

Consider the solution of the system:

$$
\mathbb{V}(F)=\left\{(\mathbf{x}, \mathbf{u}) \in \mathbb{C}^{n+m}: \forall f \in F, f(\mathbf{x}, \mathbf{u})=0\right\}
$$

Denote π_{1}, π_{2} the projections onto the \mathbf{x} and the \mathbf{u} spaces respectively:

$$
\begin{array}{rllllll}
\pi_{1}: & \mathbb{C}^{n+m} & \rightarrow & \mathbb{C}^{n} & \pi_{2}: & \mathbb{C}^{n+m} & \rightarrow \mathbb{C}^{m} \\
(\mathbf{x}, \mathbf{u}) & \mapsto & \mathbf{x} & & (\mathbf{x}, \mathbf{u}) & \mapsto & \mathbf{u}
\end{array}
$$

and the anti-image $\mathcal{A}(\mathbf{x})$ of a locus point \mathbf{x} on the \mathbf{u} space:

$$
\begin{array}{cccc}
\mathcal{A}: & \mathbb{C}^{n} & \rightarrow & \mathbb{C}^{m} \\
& \mathbf{x} & \mapsto & \pi_{2}\left(\mathbb{V}(F) \cap \pi_{1}^{-1}(\mathbf{x})\right)
\end{array}
$$

Definitions

We can give a formal generic definition of locus in algebraic terms.

Definition (Algebraic locus)

The locus L associated to the parametric polynomial system $F(\mathbf{x}, \mathbf{u})$, is the set

$$
L=\pi_{1}(\mathbb{V}(F)) \subset \mathbb{C}^{n}
$$

Definition (Normal and non-normal locus)

A point $\mathbf{x} \in \mathbb{C}^{n}$ of the locus is normal if $\operatorname{dim}(\mathcal{A}(\mathbf{x}))=0$. The points $\mathbf{x} \in \mathbb{C}^{n}$ of the locus for which $\operatorname{dim}(\mathcal{A}(\mathbf{x}))>0$ are called non-normal. The set of all normal points is called the normal locus and the set of all non-normal points is called the non-normal locus.

Proposition

Proposition

The normal locus $L_{\text {nor }}$ and the non-normal locus $L_{\text {nonor }}$ are disjoint constructible sets. We have $L=L_{\text {nor }} \oplus L_{\text {nonor }}$, and each of both subsets can be decomposed into irreducible components

$$
\begin{equation*}
C_{i}=\mathbb{V}\left(\mathfrak{p}_{i}\right) \backslash\left(\bigcup_{j} \mathbb{V}\left(\mathfrak{p}_{i j}\right)\right) \tag{1}
\end{equation*}
$$

where all the \mathfrak{p}_{i} and all the $\mathfrak{p}_{i j}$ are prime ideals, being

$$
L_{\mathrm{nor}}=\bigcup_{j} C_{\mathrm{nor}, j}, \quad L \text { nonor }=\bigcup_{j} C_{\text {nonor }, j}
$$

Taxonomy

Definition ("Normal" and "Special" components)

Let C be a component of the normal locus and let \mathbf{w} be the subset of the auxiliary variables u representing the mover coordinates (if they exist), or the last n^{\prime} auxiliary variables u conveniently chosen. A component C of the normal locus is "Normal" if $\operatorname{dim}(C)=\operatorname{dim}\left(\mathcal{A}_{m}(C)\right)$. But it can happen that $\operatorname{dim}(C)>\operatorname{dim}\left(\mathcal{A}_{m}(C)\right)$, and then the component is "Special".

Definition ("Degenerate" and "Accumulation" components)

A component of the non-normal locus is "Degenerate" if its dimension is $n-1$. If its dimension is smaller than $n-1$, then it is an "Accumulation" component.

Geometric Loci: Richard Serra surfaces

Surfaces generated by two parallel curves in 3-dimensional space.

Consider a parabola $y_{1}=x_{1}^{2}$ on the plane $z_{1}=-1$ (floor) and a parabola $x_{2}=y_{2}^{2}$ on the plane $z_{2}=1$ (ceiling).

Determine the locus formed by the lines relying the points of both parabolas with parallel tangents. The tangent vectors are ($-2 x_{1}, 1,0$) and $\left(1,-2 y_{2}, 0\right)$. The condition of being parallels is $4 x_{1} y_{2}-1=0$. The system is:

$$
\begin{aligned}
F= & x_{1}^{2}-y_{1}, z_{1}+1 \\
& y_{2}^{2}-x_{2}, z_{2}-1 \\
& 4 x_{1} y_{2}-1, \\
& x-x_{1}-\lambda\left(x_{2}-x_{1}\right), y-y_{1}-\lambda\left(y_{2}-y_{1}\right), z-z_{1}-\lambda\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Applying locus algorithm

Calling sequence:

> LIB "grobcov.lib";
$>\operatorname{ring} \mathrm{R}=(0, x, y, z),\left(\lambda, x_{2}, y_{2}, z_{2}, x_{1}, y_{1}, z_{1}\right), \mathrm{lp} ;$
$>$ ideal $\mathrm{F}=x_{1}^{2}-y_{1}, y_{2}^{2}-x_{2}, 4 x_{1} y_{2}-1, z_{1}+1, z_{2}-1$, $x-x_{1}-\lambda\left(x_{2}-x_{1}\right), y-y_{1}-\lambda\left(y_{2}-y_{1}\right)$, $z-z_{1}-\lambda\left(z_{2}-z_{1}\right) ;$
$>\operatorname{locus}(\mathrm{F})$;

Result of locus command

We obtain the result:

$$
\begin{aligned}
& S=\mathbb{V}\left(2048 x^{3} z+2048 x^{3}-4096 x^{2} y^{2}+1152 x y z^{2}-1152 x y\right. \\
&\left.-2048 y^{3} z+2048 y^{3}+27 z^{4}-54 z^{2}+27\right) \\
& \backslash(\mathbb{V}(z+1, y) \cup \mathbb{V}(z-1, x))
\end{aligned}
$$

$T=$ Normal

$$
A=\mathbb{V}\left(z_{1}+1, x_{1}^{2}-y_{1}, z_{2}-1, x_{2}-y_{2}^{2}, 4 y_{2} y_{1}-x_{1}, 4 y_{2} x_{1}-1\right)
$$

Richard Serra surface

Artistic perspective of the Richard Serra surface using SURFER-imaginary software

Index

(9) Introduction

(2) Automatic Deduction of Geometric Theorems

(3) Geometric Loci

4 Geometric Envelopes

Geometric Envelopes

Usually the definition of Envelope concerns a family of curves or a family of surfaces with $n-1$ degrees of freedom.

We generalize the problem to n dimensional space and higher degrees of freedom.

Geometric Envelopes: Definition

Definition (Family of hyper-surfaces)

We say that

$$
F(\mathbf{x}, \mathbf{u})=F\left(x_{1}, \ldots, x_{n} ; u_{1}, \ldots, u_{m}\right)=0
$$

and the independent restrictions $C=\left\{g_{1}, \ldots, g_{s}\right\}$ (with $s<m$)

$$
\left\{\begin{array}{c}
g_{1}\left(u_{1}, \ldots, u_{m}\right)=0 \\
\ldots \\
g_{s}\left(u_{1}, \ldots, u_{m}\right)=0
\end{array}\right.
$$

represent a family of hyper-surfaces of \mathbb{C}^{n} if F depends at least on 1 parameter u. Thus, if the G_{i} are independent

$$
d=\operatorname{dim}(C)=m-s \geq 1
$$

Algebraic Definition

Definition (Algebraic Envelope)

Given a family of hyper-surfaces $F\left(x_{1}, \ldots, x_{n} ; u_{1}, \ldots, u_{m}\right)=0$ with m parameters \mathbf{u}, constrained by the $s<m$ independent equations $C=\left\langle g_{1}(\mathbf{u}), \ldots, g_{s}(\mathbf{u})\right\rangle$, let

$$
J=\frac{\partial\left(F, g_{1}, \ldots, g_{s}\right)}{\partial\left(u_{1}, \ldots, u_{m}\right)} ; \quad J_{c}=\{\operatorname{minors}(J) \text { of order }(s+1) \times(s+1)\} .
$$

The set of $\binom{m}{s+1}$ equations J_{c}, imply that the rank of the Jacobian is less than or equal than s. Consider the ideal S

$$
S=\left\langle F, C, J_{c}\right\rangle
$$

The algebraic envelope of F, C, if it exists, is

$$
L=\operatorname{locus}(S)
$$

Theorem

Theorem (Associated Tangent element)

Let $F\left(x_{1}, \ldots, x_{n} ; u_{1}, \ldots, u_{m}\right)=0$ be a family of hyper-surfaces with m parameters \mathbf{u}, constrained by the $s<m$ equations
$C=\left\langle g_{1}(\mathbf{u}), \ldots, g_{s}(\mathbf{u})\right\rangle$.
Let E be the envelope, and $E_{i}=\mathbb{V}\left(p_{i}(\mathbf{x})\right) \backslash \mathbb{V}\left(\mathfrak{q}_{i}(\mathbf{x})\right)$ the
C-representation of a "Normal" standard ($n-1$)-dimensional component of E corresponding to a hyper-surface, and $\mathbf{x}^{(0)} \in E_{i}$ be a regular point of $p_{i}(\mathbf{x})=0$.

Then there exists one Associated Tangent hyper-surface $F\left(\mathbf{x}, \mathbf{u}^{(0)}\right)$ of the family F (or at most a finite set) that passes at point $\mathbf{x}^{(0)}$ (i.e. $F\left(\mathbf{x}^{(0)}, \mathbf{u}^{0)}\right)=0$) and is tangent to $\mathbb{V}\left(p_{i}(\mathbf{x})\right)$ at point $\mathbf{x}^{(0)}$.

Algorithms

The SINGULAR grobcov. lib library has incorporated algorithms related to envelopes:
(1) envelop: Determines the envelope components and their taxonomies.
(2) AssocTanToEnv: Determines the associated tangent element of the family passing at a regular point of a "Normal" component.
(3) FamElemsAtEnvComPoints Determines all the elements of the family passing at a point of the envelope.
(4) discrim Determines the discriminant wrt to a variable, when an equation is of degree 2.

Example 2: more degrees of freedom

Example 2: In this example we can see the difficulties for determining the real points of the envelope, and how can we solve them in certain cases.

Consider the family of spheres of radius 1 , centered at point $\left(x_{1}, y_{1}, z_{1}\right)$ of a sphere of center $(0,0, t)$ and radius \sqrt{t}. We have the following family and restrictions:

$$
\begin{aligned}
& F=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}-1, \\
& C=\left\langle x_{1}^{2}+y_{1}^{2}+\left(z_{1}-t\right)^{2}-t\right\rangle
\end{aligned}
$$

Result of applying envelop command

Applying envelop (F, C) we obtain 2 components:

$$
\begin{aligned}
E_{1}= & \mathbb{V}\left(\left(16 x^{6}+48 x^{4} y^{2}+16 x^{4} z^{2}-32 x^{4} z-56 x^{4}+48 x^{2} y^{4}+32 x^{2} y^{2} z^{2}\right.\right. \\
& -64 x^{2} y^{2} z-112 x^{2} y^{2}-32 x^{2} z^{3}-24 x^{2} z^{2}+29 x^{2}+16 y^{6} \\
& +16 y^{4} z^{2}-32 y^{4} z-56 y^{4}-32 y^{2} z^{3}-24 y^{2} z^{2}+29 y^{2} \\
& \left.\left.+16 z^{4}-24 z^{3}-15 z^{2}+38 z-15\right)\right) \backslash \mathbb{V}\left(z-1, x^{2}+y^{2}\right)
\end{aligned}
$$

Normal

$$
E_{2}=\mathbb{V}(z-1, y, x)
$$

Accumulation

Image of the envelope

Figure: 3d

Section in 2d

We observe two disjoint real parts of the envelop component, and the "Accumulation" point.

Result of applying discrim command

In order to determine which spheres of the family are real we compute the discriminant of C with respect to t (which is of degree 2 in t).

$$
\operatorname{discrim}(C, t)=4 z_{1}-1-x_{1}^{2}-y_{1}^{2}
$$

The paraboloid $4 z-1-x^{2}-y^{2}=0$ separates two regions. In the interior region there are centers of spheres of the family, whereas there are not in the external part.
We can also consider the subfamily of spheres with centers for which the discriminant is 0 .

Section for $y=0$. Family elements, envelope and separating discriminant

Figure: Section for $y=0$

Result of applying AssocTanToEnv command

Considering a point $P=(x, y, z)$ of the envelop component E_{1}, AssocTanToEnv(F, C, E_{1}) gives:

$$
\begin{aligned}
t= & -\frac{12 x^{4}+24 x^{2} y^{2}-4 x^{2} z^{2}-28 x^{2} z-31 x^{2}+12 y^{4}-4 y^{2} z^{2}-28 y^{2} z-31 y^{2}-16 z^{4}-28 z^{3}-3 z^{2}+10 z+10}{16 z^{3}+24 z^{2}+12 z-25} \\
z_{1}= & -\frac{24 x^{4}+48 x^{2} y^{2}-8 x^{2} z^{2}-56 x^{2} z-62 x^{2}+24 y^{4}-8 y^{2} z^{2}-56 y^{2} z-62 y^{2}-32 z^{4}-40 z^{3}+18 z^{2}+32 z-5}{32 z^{3}+48 z^{2}+24 z-50} \\
y_{1}= & -\frac{6 x^{4} y z+32 x^{4} y+32 x^{2} y^{3} z+64 x^{2} y^{3}+16 x^{2} y z^{3}-16 x^{2} y z^{2}-100 x^{2} y z-116 x^{2} y+16 y^{5} z+32 y^{5}}{32 z^{4}+16 z^{3}-24 z^{2}-74 z+50} \\
& -\frac{16 y^{3} z^{3}-16 y^{3} z^{2}-100 y^{3} z-116 y^{3}-48 y z^{4}-68 y z^{3}}{32 z^{4}+16 z^{3}-24 z^{2}-74 z+50} \\
x_{1}= & -\frac{16 x^{5} z+32 x^{5}+32 x^{3} y^{2} z+64 x^{3} y^{2}+16 x^{3} z^{3}-16 x^{3} z^{2}-100 x^{3} z-116 x^{3}+16 x y^{4} z+32 x y^{4}}{32 z^{4}+16 z^{3}-24 z^{2}-74 z+50} \\
& -\frac{16 x y^{2} z^{3}-16 x y^{2} z^{2}-100 x y^{2} z-116 x y^{2}-48 x z^{4}-68 x z^{3}-36 x z^{2}+36 x z+35 x}{32 z^{4}+16 z^{3}-24 z^{2}-74 z+50}
\end{aligned}
$$

Tangent sphere at a particular point

determining the values of $\left(t, x_{1}, y_{1}, z_{1}\right)$ of the parameters of the associated tangent sphere to the component at $P(x, y, z)$.

For example, at point ($-3.519505319,0,6$), the sphere has center $(-2.538358523,0 ., 6.193264030)$. It is represented in red in the picture.

This sphere is also the Associated Tangent Sphere of the family at point ($-1.557188274,0,6.386408905$).

The book will be published in January 2019 in ACM Springer Series

Thank you for attending the talk!!

