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Abstract. The aim of this paper is to present the research book “The Gröbner Cover” [1] that will
be published very soon. This book is divided into two parts, one theoretical and one focusing on
applications, and offers a complete description of the Canonical Gröbner Cover, the most accurate
algebraic method for discussing parametric polynomial systems. It also includes applications to the
Automatic Deduction of Geometric Theorems, Loci Computation and Envelopes.

The theoretical part is a self-contained exposition on the theory of Parametric Gröbner Sys-
tems and Bases. It begins with Weispfennings introduction of Comprehensive Gröbner Systems
(CGS) in 1992, and provides a complete description of the Canonical Gröbner Cover (GC), which
includes a canonical discussion of a set of parametric polynomial equations developed by Michael
Wibmer and the author [2].

In turn, the application part selects three problems for which the Gröbner Cover offers valu-
able new perspectives. The automatic deduction of geometric theorems (ADGT) becomes fully
automatic and straightforward using GC, representing a major improvement on all previous meth-
ods. In terms of loci and envelope computation, GC makes it possible to introduce a taxonomy
of the components and automatically compute it. The book also generalizes the definition of the
envelope of a family of hypersurfaces, and provides algorithms for its computation, as well as for
discussing how to determine the real envelope.

All the algorithms described in the book have also been included in the software library
grobcov.lib implemented in Singular by the author, and serve as a User Manual for it.
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All the algorithms described in the book are implemented in the “grobcov.lib” library of
SINGULAR. The book can also be used as software Manual for the library.

2. The Gröbner Cover
The existence of the Gröbner Cover of a parametric polynomial I ⊂ K[a][x] ideal is a consequence
of Wibmer’s Theorem. It was described in (2010) by A. Montes and M. Wibmer [2].

Wibmer’s theorem establishes that for an homogeneous parametric polynomial ideal I ⊂
K[a][x] ideal, it exists

• a canonical partition of the parameter space into locally closed segments Si = V(pi) \V(qi);
• each segment accepts a set of I-regular functions Bi that specializes to the reduced Gröbner

basis for every point a ∈ Si,
• preserving the set of leading power products (lppi) of the basis,
• and each segment Si having a different set of lppi.

The set of triplets (lppi, Bi, Si) constitutes the Gröbner Cover of the ideal I .

For a non-homogeneous parametric ideal we proceed as follows:

• homogenize the ideal,
• determine its Gröbner Cover,
• and dehomogenize.

The result is the canonical Gröbner Cover of the non-homogeneous ideal. It can contain seg-
ments with the same set of lppi, but deriving from different sets of lpphi of the homogenized ideal,
it is still canonic.

2.1. Example: The singular points of a conic
We give an example to show the reduced number of segments that GC generates, and the canonical
character of the output. We consider a conic

x2 + 2cxy + by2 + 2dx+ 2ey + f = 0

and determine which are their singular points, depending on the parameter values. We can see that
the result represents the canonical classification of a conic by its singular points. We consider the
ideal  x2 + 2cxy + by2 + 2dx+ 2ey + f = 0

2x+ 2cy + 2d = 0
2cx+ 2by + 2e = 0.

Applying the grobcov command of the SINGULAR “grobcov.lib” library and using the option
"showhom",1 in order to obtain information about the behaviour of the conic at infinity, which as
we shall see, is significant for this problem. The Gröbner Cover determines four distinct segments,
depending on the parameter values. We also obtain information about the lpp of the homogenized
system (due to the option ”showhom”,1). The result can be summarized in the following table:

1. Generic case: lpp = {1}
Basis: {1}
Segment: C5 \V(bd2 − bf + c2f − 2cde+ e2)
Description: Non-degenerate conic without singular points.
lpph=1
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2. lpp = {y, x}

Basis:
{
y − d2 − f

cd− e
, x− cf − de

cd− e

}
Segment: V(bd2 − bf + c2f − 2cde+ e2) \V(cd− e, b− c2)
Description: A unique singular point: two intersecting lines.
lpph=y,x

3. lpp = {x}
Basis: {x+ cy + d}
Segment: (V(d2 − f, cf − de, cd− e, b− c2)
Description: Singular double line.
lpph=x

4. lpp = {1}
Basis: {1}.
Segment: = V(cd− e, b− c2) \V(d2 − f, cf − de, cd− e, b− c2)
Description: Special case without singular points: two parallel lines.
lpph=@t,x

The above table gives a precise and complete discussion, classifying the conics by their singular
points into 4 segments given as the difference between two varieties. The default option determines
the P-representation (PREP) of the segment, which in this example is almost the same as the C-
representation (CREP), because the segments have only one single component with one single hole.
(Using option "rep",1 we would obtain the CREP). The lpph represents the set of lpp of the
homogenized ideal that uses the homogenizing variable @t.

Even if segments 1 and 4 have the same basis {1}, showing that the system has no singular
points, they correspond to two different types of conics. In segment 1 there is no singular point even
considering the points at infinity, as shown by lpph=1, so that the homogenized ideal does not have
any solution either. Thus the conic has no singular point at infinity.

For segment 4 the basis is also 1, showing that the conic has no singular points. But lpph=@t,x
shows that at infinity it has a solution. Substituting the values of b = c2 and e = cd, determined by
the segment, the variety becomes

V = V(x2 + 2cxy + c2y2 + 2dx+ 2cdy + f)

= V
(

(x+ cy + d+
√
d2 − f)(x+ cy + d−

√
d2 − f)

)
= V

(
x+ cy + d+

√
d2 − f

)
∪V

(
x+ cy + d−

√
d2 − f

)
,

showing that, for d2 − f ≥ 0, it consists of two real parallel lines. The two lines intersect at infinity
in the projective space, thus the conic has a singular point at infinity. This is the reason why segments
1 and 4 are separated in the Gröbner Cover, for which the different segments correspond to different
lpph. (The segments are lpph-segments).

In the Application part, the book selects three problems for which the Gröbner Cover offers
valuable new perspectives: Automatic Deduction of Geometric Theorems, Geometric Loci and Geo-
metric Envelopes.

3. Automatic Deduction of Geometric Theorems
Consider a geometric proposition of the form

(H ∧ ¬H1)⇒ (T ∧ ¬T1).
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The book provides an automatic algorithm (ADGT) for obtaining supplementary conditions for
transforming the proposition into a theorem. Consider as example the orthic triangle.

Let A(−1, 0), B(1, 0), C(x, y) be the vertices of a triangle, and let A′(x1, y1), B′(x2, y2),
C ′(x, 0) be the foots of the heights. The orthic triangle of ABC is A′B′C ′. See Figure 1.

C(x, y)

A(−1, 0) B(1, 0)

A′(x1, y1)
B′(x2, y2)

C ′(x, 0)

FIGURE 1. Orthic triangle

Associated to the orthic triangle, consider the following ideals of hypothesis and thesis.

Hypothesis H: The triangle A′B′C ′ is the orthic triangle of ABC

H = −yx1 + (x− 1)y1 + y, (x− 1)(x1 + 1) + yy1,

− yx2 + (x+ 1)y2 − y, (x+ 1)(x2 − 1) + yy2

Hypothesis H1: The triangle ABC is degenerate (we shall deny it):

H1 = y

Thesis T : The orthic triangle A′B′C ′ is isosceles (A′C ′ = B′C ′):

T = (x1 − x)2 + y21 − (x2 − x)2 − y22
Thesis T1: The orthic triangle A′B′C ′ is degenerate (points aligned, we shall deny it):

T1 = x(y1 − y2)− y(x1 − x2) + x1y2 − x2y1
We consider now two propositions.

Proposition 1: H ⇒ T. The orthic triangle is isosceles.

Calling sequence: ADGT(H,T, 1, 1); Result:

(x, y) ∈S1 ∪ S2 ∪ S3

S1 = V(x2 − y2 − 1) \V(y2 + 1, x)

S2 = V(x2 + y2 − 1)

S3 = V(x) \V(y2 + 1, x)

We obtain three components, except complex points that are irrelevant, for the supplementary
conditions for Proposition 1 to become a theorem (See Figure 2, left). But part of the supplementary
conditions correspond to degenerate triangles ABC or degenerate orthic triangles A′B′C ′. Thus we
consider a new proposition, in which we eliminate degenerate triangles.

Proposition 2:H ∧¬H1 ⇒ T ∧¬T1. The orthic triangleA′B′C ′ of a non-degenerate triangle
ABC is isosceles but non-degenerate.
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Calling sequence: ADGT(H,T,H1, T1); Result:

(x, y) ∈ (S1 \ (A ∪B)) ∪ (S3 \O)

The result is that the points of the x-axis, which correspond to degenerateABC are eliminated
from the supplementary conditions, as well as the component S2 which corresponds to degenerate
A′B′C ′. (See Figure 2, right).

A BO A BO

FIGURE 2. Proposition 1, Proposition 2

4. Geometric Loci
Loci problems are usually considered in 2d or at most 3d, and are obtained by elimination techniques
with unprecise definition.

Using the Gröbner Cover we are able to
• generalize them for n-dimensional space,
• precise their irreducible components,
• and assign a taxonomy to every component.

A locus problem has
• A tracer point T (x) = T (x1, . . . , xn), corresponding to the coordinates x of the locus points.
• A set of auxiliary variables u = (u1, . . . , um) usually containing a mover pointM(w1, . . . , wn),
• An ideal F [x,u] expected to have n− 1 degrees of freedom.
locus allows to define and determine the taxonomy of its components.

Consider the solution of the system:

V(F ) = {(x,u) ∈ Cn+m : ∀f ∈ F, f(x,u) = 0}.

Denote π1, π2 the projections onto the x and the u spaces respectively:

π1: Cn+m → Cn π2: Cn+m → Cm

(x,u) 7→ x (x,u) 7→ u

and the anti-image A(x) of a locus point x on the u space:
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A: Cn → Cm

x 7→ π2
(
V(F ) ∩ π−11 (x)

)
We can give a formal generic definition of locus in algebraic terms.

Definition 4.1 (Algebraic locus). The locus L associated to the parametric polynomial system
F (x,u), is the set

L = π1(V(F )) ⊂ Cn.

Definition 4.2 (Normal and non-normal locus). We define two class of locus points x ∈ Cn:

Normal point x if dim(A(x)) = 0.

Non-normal point x if dim(A(x)) > 0

The set of all normal points is called the normal locus and the set of all non-normal points is
called the non-normal locus.

Proposition 4.3. The normal locusLnor and the non-normal locusLnonor are disjoint constructible
sets. We have L = Lnor ⊕ Lnonor, and each of both subsets can be decomposed into irreducible
components

Ci = V(pi) \

⋃
j

V(pij)

 (4.1)

where all the pi and all the pij are prime ideals, being

Lnor =
⋃
j

Cnor,j , Lnonor =
⋃
j

Cnonor,j

We can assign a taxonomy to each component of a locus

Definition 4.4 (“Normal” and “Special” components). Let C be a component of the normal locus
and let w be the subset of the auxiliary variables u representing the mover coordinates (if they
exist), or the last n′ auxiliary variables u conveniently chosen. A component C of the normal locus
is “Normal” if dim(C) = dim(Am(C)). But it can happen that dim(C) > dim(Am(C)), and then
the component is “Special”.

Definition 4.5 (“Degenerate” and “Accumulation” components). A component of the emf non-
normal locus is “Degenerate” if its dimension is n− 1. If its dimension is smaller than n− 1, then
it is an “Accumulation” component.

Example 4.6. Richard Serra surfaces.
Richard Serra is an artist that has constructed very nice mathematical sculptures, and particu-

larly in he Guggenheim museum of Bilbao. They are generated by two curves located in two parallel
planes in the 3-dimensional space, generating a surface. The surface is obtained in the following way

Consider a parabola y1 = x21 on the plane z1 = −1 (floor) and a parabola x2 = y22 on the
plane z2 = 1 (ceiling).

Determine the locus formed by the lines relying the points of both parabolas having parallel
tangents. The tangent vectors are respectively (−2x1, 1, 0) and (1,−2y2, 0). The condition of being
parallel is 4x1y2 − 1 = 0. The system is:

F =x21 − y1, z1 + 1,

y22 − x2, z2 − 1,

4x1y2 − 1,

x− x1 − λ(x2 − x1), y − y1 − λ(y2 − y1), z − z1 − λ(z2 − z1)
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Applying locus we have the following calling sequence:

> LIB ”grobcov.lib”;

> ring R = (0, x, y, z), (λ, x2, y2, z2, x1, y1, z1), lp;

> ideal F = x21 − y1, y22 − x2, 4x1y2 − 1, z1 + 1, z2 − 1,

x− x1 − λ(x2 − x1), y − y1 − λ(y2 − y1),

z − z1 − λ(z2 − z1);

> locus(F);

and obtain the result

S = V(2048x3z + 2048x3 − 4096x2y2 + 1152xyz2 − 1152xy

− 2048y3z + 2048y3 + 27z4 − 54z2 + 27)

\ (V(z + 1, y) ∪V(z − 1, x))

T = Special

A = V(z1 + 1, x21 − y1)
> > > > 

FIGURE 3. Richard Serra surface

We highlight two questions.
(1) locus obtains the equation of the surface and characterizes that it is a “Special” compo-

nent. This is obvious because it is generated by a mover point on a parabola which has diimension
1, whereas the surface has dimension 2.

(2) locus also determines that the lines V(z + 1, x) and V(z − 1, x) do not form part of the
locus. The reason is that each of these lines, included in the top of the envelope, would be generated
by the tangent to one of the parabolas at the vertex, whose corresponding point in the second parabola
is at infinity but not at any real point of them.

5. Envelopes
Usually the definition of Envelope concerns a family of curves or a family of surfaces with n − 1
degrees of freedom. We generalize the problem to an n dimensional space with higher degrees of
freedom. We have the following definitions and theorems.
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Definition 5.1 (Family of hyper-surfaces). We say that

F (x,u) = F (x1, . . . , xn;u1, . . . , um) = 0

and the independent restrictions C = {g1, . . . , gs} (with s < m) g1(u1, . . . , um) = 0
. . .

gs(u1, . . . , um) = 0

represent a family of hyper-surfaces of Cn, if F depends at least on 1 parameter u. Thus, if the gi
are independent

d = dim(C) = m− s ≥ 1.

Definition 5.2 (Envelope). Given a family of hyper-surfaces F (x1, . . . , xn;u1, . . . , um) = 0 with
m parameters u, constrained by the s < m independent equations C = 〈g1(u), . . . , gs(u)〉, let

J =
∂(F, g1, . . . , gs)

∂(u1, . . . , um)
; Jc = {minors(J) of order (s+ 1)× (s+ 1)} .

The set of
(

m
s+1

)
equations Jc, imply that the rank of the Jacobian is less than or equal than s.

Consider the ideal S

S = 〈F, C, Jc〉,

The algebraic envelope of F,C, if it exists, is

L = locus(S).

Theorem 5.3 (Associated Tangent element). Let F (x1, . . . , xn;u1, . . . , um) = 0 be a family of
hyper-surfaces with m parameters u, constrained by the s < m equations C = 〈g1(u), . . . , gs(u)〉.

Let E be the envelope, and Ei = V(pi(x)) \ V(qi(x)) the C-representation of a “Normal”
standard (n− 1)-dimensional component of E corresponding to a hyper-surface,
and x(0) ∈ Ei be a regular point of pi(x) = 0.

Then there exists one Associated Tangent hyper-surface F (x,u(0)) of the family F (or at most
a finite set) that passes at point x(0) (i.e. F (x(0),u0)) = 0) and is tangent to V(pi(x)) at point x(0).

The SINGULAR grobcov.lib library has incorporated the following algorithms and com-
mands related to envelopes:

1. envelop: Determines the envelope components and their taxonomies.
2. AssocTanToEnv: Determines the associated tangent element of the family passing at a reg-

ular point of a “Normal” component.
3. FamElemsAtEnvComPoints Determines all the elements of the family passing at a point

of the envelope.
4. discrim Determines the discriminant with respect to to a variable, when an equation is of

degree 2.

Example 5.4. Consider the family of spheres of radius 1, centered at point (x1, y1, z1) of a sphere
of center (0, 0, t) and radius

√
t. We have the following family and restrictions:

F =(x− x1)2 + (y − y1)2 + (z − z1)2 − 1,

C =〈x21 + y21 + (z1 − t)2 − t〉.
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Applying envelop(F,C) we obtain 2 components:

E1 =V((16x6 + 48x4y2 + 16x4z2 − 32x4z − 56x4 + 48x2y4 + 32x2y2z2

− 64x2y2z − 112x2y2 − 32x2z3 − 24x2z2 + 29x2 + 16y6

+ 16y4z2 − 32y4z − 56y4 − 32y2z3 − 24y2z2 + 29y2

+ 16z4 − 24z3 − 15z2 + 38z − 15)) \V(z − 1, x2 + y2)

Normal

E2 =V(z − 1, y, x)

Accumulation

The envelope has a “Normal” component E1, and an ”Accumulation” point.

FIGURE 4. Envelope and surface ∆t = 0 2d-Section

As the restriction C has degree 2 in t, we can compute its discriminant with respect to t

∆t = 4z1 − 1− 4x21 − 4y21 ,

which divides the space into two regions. On the region ∆t(x, y, z) ≥ 0 there can exist centers of
family spheres, but they cannot exist on the region ∆t(x, y, z) < 0. These regions also separate both
parts of the envelope, Eext, for ∆t(x, y, z) < 0 and Eint for ∆t(x, y, z) > 0.

In Figure 5 right is represented a section at y = 0 of the envelope, a set of family spheres,
the separating paraboloid ∆t(x, y, z) = 0 (right), and a set of family spheres with centers in the
paraboloid (left). We observe that the last spheres are tangent to both parts Eext and Eint of the
envelope.

Considering a point P = (x, y, z) of the envelop component E1,
AssocTanToEnv(F,C,E1) gives:
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FIGURE 5. Section for y = 0

t = −
12x4 + 24x2y2 − 4x2z2 − 28x2z − 31x2 + 12y4 − 4y2z2 − 28y2z − 31y2 − 16z4 − 28z3 − 3z2 + 10z + 10

16z3 + 24z2 + 12z − 25

z1 = −
24x4 + 48x2y2 − 8x2z2 − 56x2z − 62x2 + 24y4 − 8y2z2 − 56y2z − 62y2 − 32z4 − 40z3 + 18z2 + 32z − 5

32z3 + 48z2 + 24z − 50

y1 = −
6x4yz + 32x4y + 32x2y3z + 64x2y3 + 16x2yz3 − 16x2yz2 − 100x2yz − 116x2y + 16y5z + 32y5

32z4 + 16z3 − 24z2 − 74z + 50

−
16y3z3 − 16y3z2 − 100y3z − 116y3 − 48yz4 − 68yz3

32z4 + 16z3 − 24z2 − 74z + 50

x1 = −
16x5z + 32x5 + 32x3y2z + 64x3y2 + 16x3z3 − 16x3z2 − 100x3z − 116x3 + 16xy4z + 32xy4

32z4 + 16z3 − 24z2 − 74z + 50

−
16xy2z3 − 16xy2z2 − 100xy2z − 116xy2 − 48xz4 − 68xz3 − 36xz2 + 36xz + 35x

32z4 + 16z3 − 24z2 − 74z + 50

determining the values of (t, x1, y1, z1) of the parameters of the associated tangent sphere to E1 at
P (x, y, z).

For example, at point P1 = (−3.519505319, 0, 6), the associated tangent sphere has center
(−2.538358523, 0., 6.193264030). It is represented in red in Figure 6. This sphere is also the asso-
ciated tangent sphere of the family at point P2 = (−1.557188274, 0, 6.386408905).

FIGURE 6. Envelope E1 and the associated tangent sphere at point P1
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We conclude that through the points of Eext there exist a unique sphere of the family passing
through them, namely the associated tangent one, whereas they exist an infinity set of family spheres
passing thought Eint. Thus, the real envelope is

Real envelope = Eext = {(x, y, z) ∈ E1 : ∆t(x, y, z) < 0}
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