
ar
X

iv
:m

at
h.

A
C

/0
60

17
63

 v
1

 3
1

Ja
n

20
06

Improving DISPGB Algorithm Using the Discriminant Ideal ∗

Montserrat Manubens, Antonio Montes
Departament de Matemàtica Aplicada 2,

Universitat Politècnica de Catalunya, Spain.
e-mail: antonio.montes@upc.edu

http://www-ma2.upc.edu/∼montes

November, 2004

Abstract

In 1992, V. Weispfenning proved the existence of Comprehensive Gröbner Bases (CGB)
and gave an algorithm to compute one. That algorithm was not very efficient and not
canonical. Using his suggestions, A. Montes obtained in 2002 a more efficient algo-
rithm (DISPGB) for Discussing Parametric Gröbner Bases. Inspired in its philosophy,
V. Weispfenning defined, in 2002, how to obtain a Canonical Comprehensive Gröbner
Basis (CCGB) for parametric polynomial ideals, and provided a constructive method.

In this paper we use Weispfenning’s CCGB ideas to make substantial improvements
on Montes DISPGB algorithm. It now includes rewriting of the discussion tree using the
Discriminant Ideal and provides a compact and effective discussion. We also describe the
new algorithms in the DPGB library containing the improved DISPGB as well as new
routines to check whether a given basis is a CGB or not, and to obtain a CGB. Examples
and tests are also provided.

Key words: discriminant ideal, comprehensive Gröbner bases, parametric polynomial system.
MSC: 68W30, 13P10, 13F10.

1 Introduction

Let R = k[a] be the polynomial ring in the parameters a = a1, . . . , am over the field k, and
S = R[x] the polynomial ring over R in the set of variables x = x1, . . . , xn. Let ≻x denote
a monomial order wrt the variables x, ≻a a monomial order wrt the parameters a and ≻xa

the product order. The problem we deal with consist of solving and discussing parametric
polynomial systems in S.

Since Gröbner bases were introduced various approaches have been developed for this
problem. The most relevant ones are:

• Comprehensive Gröbner Bases (CGB) [We92].

• Specific Linear Algebra Tools for Parametric Linear systems [Si92].

• Dynamic Evaluation [Du95].

∗Work partially supported by the Ministerio de Ciencia y Tecnoloǵıa under project BFM2003-00368, and
by the Generalitat de Catalunya under project 2005 SGR 00692

1

• Newton Algorithm with Branch and Prune Approach [HeMcKa97].

• Triangular Sets [Mor97].

• Specialization through Hilbert Functions [GoTrZa00].

• DISPGB Algorithm [Mo02].

• Alternative Comprehensive Gröbner Bases (ACGB) [SaSu03].

• Canonical Comprehensive Gröbner Bases (CCGB) [We03].

This paper describes some improvements made on DISPGB. Trying to solve some of the
examples given in the references cited above using the improved DISPGB has been an interesting
challenge (see section 5).

In [We92], Professor Volker Weispfenning proved the existence of a Comprehensive Gröbner
Basis CGB wrt ≻x for any ideal I ⊂ S such that for every specialization of the parameters
σa : R → K ′ extended to R[x] → K ′[x], σa(CGB) is a Gröbner basis of the specialized ideal
σa(I). He also provided an algorithm to compute it. There are two known implementations
of this algorithm [Pe94, Sc91].

In [Mo95] and [Mo98], A. Montes used classical Gröbner bases theory to study the load-flow
problem in electrical networks. V. Weispfenning recommended him to use the Comprehensive
Gröbner Basis algorithm [We92, Pe94] for this problem. The use of CGB in the load-flow
problem provided interesting information over the parameters, but was rather complicated
and not very efficient. Moreover, it was not canonical, i.e. it was algorithm depending.

In Montes [Mo02] provided a more efficient algorithm (DISPGB) to Discuss Parametric
Gröbner Bases, but it was still non-canonical. DISPGB produces a set of non-faithful, canoni-
cally reduced Gröbner bases (Gröbner system) in a dichotomic discussion tree whose branches
depend on the cancellation of some polynomials in R. The ideas in DISPGB however, inspired V.
Weispfenning in [We02, We03] to prove the existence of a Canonical Comprehensive Gröbner
Basis (CCGB) as well as to give a method to obtain one.

The main idea for building up the canonical tree is the obtention of an ideal J ⊂ R,
structurally associated to the ideal I ⊂ S and the order ≻x, which clearly separates the
essential specializations not included in the generic case. Let us denote J as the Weispfenning’s

discriminant ideal of (I,≻x). In the new Weispfenning’s algorithm, J must be computed at
the beginning of the discussion using a relatively time-consuming method. The discriminant
ideal was one of the lacks of the old DISPGB and an insufficient alternative algorithm GENCASE

was provided.
In this paper we obtain, following Weispfenning, a discriminant ideal denoted as N , which

can be determined from the data obtained after building the DISPGB tree using a less time
consuming algorithm and, moreover, we prove that J ⊂ N . We conjecture that J = N . We
have verified it in more than twenty different examples, and no counter-example has been
found. The ideal N allows to rewrite the tree getting a strictly better discussion.

We also prove that for a large set of parametric polynomial ideals (at least for all prime
ideals I) the discriminant ideal is principal and in this case we have a unique discriminant

polynomial to distinguish the generic case from the essential specializations. All the theoretical
results commented above are detailed in section 2.

In section 3, we describe the improvements introduced in the algorithms. We have made
a complete revision to the old release simplifying the algorithm and highly increasing its
speed. New routines CANSPEC and PNORMALFORM which perform semi-canonical specifications

2

of specializations and reductions of polynomials are given. The algorithm has been completely
rewritten and the flow control has been simplified. Further reductions of the tree, eliminating
similar brother terminal vertices, have been performed using algorithm COMPACTVERT.

Following P. Gianni [Gi87], we are interested in guessing whether some basis of I is a
comprehensive Gröbner basis or not, in particular for the reduced Gröbner basis of I wrt the
product order ≻xa. We give, in section 4, a simple algorithm ISCGB which uses the DISPGB

output tree to answer that question. We also give an algorithm PREIMAGE to compute a
faithful pre-image of the non-faithful specialized polynomials from the reduced bases. This
allows to construct a CGB. It will be interesting to compare our CGB with Weispfenning’s
CCGB when implemented.

Finally, in section 5, we give two illustrative examples and a table of benchmarks for DISPGB
applied to several parametric systems from which the power of the algorithm is clearly shown.

It is stated in the same section that the new DISPGB1 algorithm is efficient and provides a
compact discussion of parametric systems of polynomial equations. An incipient version of it
was presented in [MaMo04].

2 Generic Case, Discriminant Ideal and Special Cases

Let K = k(a) be the quotient field of R and IK the ideal I extended to the coefficient field K.
Consider G = gb(IK,≻x), the reduced Gröbner basis of IK wrt ≻x. As K is a field, G can
be computed through the ordinary Buchberger algorithm. The polynomials in G have leading
coefficient 1. With this normalization g can have denominators in R. Let dg ∈ R be the least
common multiple of the denominators of g. To obtain a polynomial in S corresponding to g
it suffices to multiply g by dg. Following Weispfenning [We02, We03], for each g ∈ G we can
obtain a minimal lifting of g, agg, such that agg ∈ I and ag ∈ R is minimal wrt ≻a. Doing this
for all g ∈ G we obtain G′, a minimal lifting of G which Weispfenning calls the generic Gröbner

basis of (I,≻x). Of course, dg | ag. We will use a sub-lifting of G, G′′ = {dgg : g ∈ G} ⊂ S,
and this will be our generic case basis because it is simpler to compute and corresponds to
our standard form of reducing polynomials, as it will be seen in section 3.

We call singular specialization a specialization σ for which the set of lpp (leading power
products) of the reduced Gröbner basis of σ(I) is not equal to the set of lpp(G,≻ x).

DISPGB builds up a binary dichotomic tree T (I,≻x,≻a) branching at the vertices whenever
a decision about the cancellation of some p ∈ R has been taken. Each vertex v ∈ T contains
the pair (Gv ,Σv). Σv = (Nv,Wv) is the semi-canonical specification of the specializations
in v, where Nv is the radical ideal of the current assumed null conditions (from which all
factors of polynomials in Wv have been dropped), and Wv is the set of irreducible polynomials
(conveniently normalized and reduced by Nv) of the current assumed non-null conditions.
Considering W ∗

v the multiplicatively closed set generated by Wv, then Gv ⊂ (W ∗
v)−1 (K[x]/Nv)

is the reduced form of the basis of σ(I) for the specification of the specializations σ ∈ Σv. At
a terminal vertex, the basis Gv is the reduced Gröbner basis of σ(I), up to normalization, for
all specializations σ ∈ Σv.

Weispfenning [We02] introduces the following ideal associated to each g ∈ G:

Jg = {a ∈ R : ag ∈ I} = dg (I : dgg)
⋂

R

1Release 2.3 of the library DPGB, actually implemented in Maple and available at the site http://www-
ma2.upc.edu/∼montes/

3

the second formula being computable via ordinary Gröbner bases techniques. Then the radical

of their intersection J =
√⋂

g∈G Jg is used to distinguish the generic case in the algorithm.

We call J the Weispfenning’s discriminant ideal. A specialization σ is said to be essential

(for I,≻x) if Jg ⊆ ker(σ) for some g ∈ G.
V. Weispfenning proves the following two theorems:

W1: J =
⋂ {ker(σ) : σ is essential }.

W2: Let σ be an inessential specialization. Then

(i) σ(G) is defined for every g ∈ G and lpp(σ(g),≻x) = lpp(g,≻x).

(ii) σ(G) is the reduced Gröbner basis of the ideal σ(I).
In the DISPGB tree T (I,≻x,≻a) specializations are grouped into disjoint final cases i by

the specification Σi, and for all specializations in Σi the reduced Gröbner bases have the same
set of lpp wrt ≻x.

Let 1 ≤ i ≤ k number the terminal vertices. We call singular cases the final cases for
which lpp(Gi,≻x) 6= lpp(G,≻x). Let A be the set of indexes of the singular cases:

A = {1 ≤ i ≤ k : lpp(Gi,≻x) 6= lpp(G,≻x)}.

We denote V(I) the variety of I and I(V) the ideal of the variety V . The tree, being dichotomic,
provides a partition of (K ′)m into disjoint sets of specifications, and thus

(K ′)m =

k⋃

i=1


V(Ni) \

⋃

w∈Wi

V(w)


 = Us

⋃
Ug,

where Us is the set of points a ∈ (K ′)m corresponding to singular specifications, i.e.

Us(I,≻x) = {a ∈ (K ′)m : σa is singular } =
⋃

i∈A


V(Ni) \

⋃

w∈Wi

V(w)


 .

Theorem 1. Let us call N(I,≻x) = I(Us) the discriminant ideal. Then

N(I,≻x) =
⋂

i∈A

Ni.

This theorem allows to compute N from the output of BUILDTREE, i.e. the first tree
construction in DISPGB. (See section 3).

Proof. We prove both inclusions:

⊆: f(a) = 0 for all f ∈ N = I(Us) and a ∈ Us. Thus σa(f) = 0 for all a ∈ Us. Taking
now a such that σa ∈ Σi this implies that f ∈ Ni. As this can be done for all i ∈ A, it
follows that N ⊆ ⋂

i∈A Ni.

⊇: For all f ∈ ⋂
i∈A Ni and all a ∈ Us there exists i ∈ A such that σa ∈ Σi and, of course,

f ∈ Ni. Thus σa(f) = 0, i.e. f(a) = 0 for all a ∈ Us. Thus f ∈ I(Us) = N .

Before proving the next theorem we need the following

4

Lemma 2. Any singular specialization is essential.

Proof. Let σa be a singular specialization. If it were not essential, by Weispfenning theo-
rem (W2), then the reduced Gröbner basis of σ(I) would be the generic basis G, and this
contradicts the definition of singular specialization. Thus σa must be essential.

Theorem 3. J ⊆ N .

Proof. By Weispfenning’s theorem (W1), if f ∈ J then f ∈ ker(σa) for all essential σa, and
thus f(a) = 0. So, by lemma 2, f(a) = 0 for all singular σa. This implies that f(a) = 0 for
all i ∈ A and σa ∈ Σi and thus f ∈

√
Ni = Ni. Finally, by proposition 1, f ∈ N .

Conjecture 4. We formulate two forms

(i) (Strong conjecture). All essential specializations are singular.

(ii) (Weak conjecture). J ⊇ N .

Proposition 5. The strong formulation of conjecture 4 implies the weak formulation.

Proof. If f ∈ N then, for all i ∈ A, f ∈ Ni. Thus, f(a) = 0 for all singular specialization σa

and, if the strong form of the conjecture is true, then f(a) = 0 also for all σa essential and
thus f ∈ ker(σa). So, by Weispfenning’s theorem (W1), f ∈ J .

In any case, by definition N is discriminant, i.e. for any a 6∈ V(N) the Gröbner basis of
σa(I) is generic, and every singular specification is in V(N). Thus, what we called minimal
singular variety in [Mo02] is described by V(N). If the strong formulation of the conjecture is
true then every specialization σ, for which N ⊂ ker(σ), is not only essential but also singular
and thus the corresponding set of lpp of its reduced Gröbner basis cannot be generic.

We have tested our conjecture in more than twenty examples and we have not found any
counter-example of any of the two formulations. Nevertheless the weak formulation is the
most interesting one and a failure of the strong formulation would not necessarily invalidate
the weak formulation.

In most cases Weispfenning’s discriminant ideal J is principal, as states the following

Theorem 6. If I ⊂ S is a prime ideal and the generic Gröbner basis G wrt ≻x is not [1],
then the discriminant ideal J(I,≻x) is principal and is generated by the radical of the lcm of

all the denominators of the polynomials in G.

Proof. Take g ∈ G. We have Jg = dg (I : dgg)
⋂

R. If h ∈ Jg then dg | h, as dgg has no
common factor with dg. Thus dgg (h/dg) ∈ I. By hypothesis, dgg 6= 1 and I is prime. So, as
h/dg ∈ R, we have h/dg 6∈ I. Thus, necessarily dgg ∈ I and dg ∈ Jg. As dg | h for all h ∈ Jg,

it follows that Jg = 〈dg〉 is principal. As J =
√⋂

g∈G Jg is the intersection of principal ideals,

the proposition follows.

Not only prime ideals have principal discriminant ideals as the next example shows: Take

I = 〈ax + y + z + b, x− 1 + ay + z + b, x + y + az + b〉.

Computing the Gröbner basis of I wrt lex(x, y, z, a, b) one can see that

I = 〈(a + 2)z + b, y − z, x + y + az + b〉 ∩ 〈a− 1, x + y + az + b〉

5

Routines of the
old algorithm

Routines of the new
algorithm

Improvements Obsolete
routines

DISPGB

BRANCH

DISPGB

BUILDTREE

DISCRIMINANTIDEAL

REBUILDTREE

COMPACTVERT

BUILDTREE replaces old
BRANCH.
Current DISPGB includes
also rebuilding of the
tree (REBUILDTREE) and
COMPACTVERT.

GENCASE

BRANCH

NEWVERTEX

BUILDTREE Better flow control, no
incompatible branching.

BRANCH

NEWCOND CONDTOBRANCH More robust, ensures no
incompatible branches.

NEWCOND

CANSPEC CANSPEC Uses radical ideal. More
robust.

- PNORMALFORM Standard polynomial re-
duction wrt Σ.

CONDPGB CONDPGB Uses CONDTOBRANCH and
Weispfenning’s standard
pair selection.

- DISCRIMINANTIDEAL Determines the discrim-
inant ideal N .

- REBUILDTREE Rebuilds the tree start-
ing the discussion with
N .

GENCASE

(external)

- COMPACTVERT Drops brother terminal
vertices with same lpp
sets.

Table 1:

and I is not prime. The generic Gröbner basis wrt lex(x, y, z) is, in this case, G = [z + b/(a+
2), y + b/(a + 2), x + b/(a + 2)]. Thus dg = a + 2 for each g ∈ G. For this example it is easy
to compute J = 〈(a + 2)(a− 1)〉 which is still principal even if I is not prime and has a prime
component with generic Gröbner basis [1].

It would be interesting to characterize which ideals I ⊂ S have principal discriminant
and which do not. But it is now clear that in the most interesting cases we have princi-
pal discriminants. This gives a new insight into our concept of singular variety used in the
algorithm [Mo02] in order to understand the parallelism and differences between the new
Weispfenning’s algorithm [We02, We03] and DISPGB, and allows us to improve the old algo-
rithm.

Under that perspective, we have completely revised [Mo02] and obtained a much more
efficient and compact discussion. An intermediate version was presented in [MaMo04]. We
shall describe now the improvements introduced in the new DPGB library and refer to [Mo02],
where the old DPGB is described, for all unexplained details.

6

T ← DISPGB(B,≻x,≻a)
Input:

B ⊆ R[a][x] : basis of I,
≻x, ≻a : termorders wrt the variables x and the parameters a respectively.

Output:
T : table with binary tree structure, containing (Gv ,Σv) at vertex v

BEGIN
T := φ, # global variable
v := [] # (label of the current vertex)
Σ := ([], φ) # (current specification)
BUILDTREE(v,B,Σ) # (recursive, stores the computations in T)
N := DISCRIMINANTIDEAL(T)
COMPACTVERT(T) # (compacts T)
REBUILDTREE(T,N) # (rebuilds T)
COMPACTVERT(T) # (compacts T)

END

Table 2:

3 Improved DISPGB Algorithm

In this section we describe the improvements introduced in DISPGB algorithm. Table 1 sum-
marizes the basic differences between old [Mo02] and the new algorithms used in it.

First, we have improved the construction of the discussion tree T (I,≻x,≻a) in order to
have a simpler flow control and to make it faster by avoiding unnecessary and useless time-
consuming computations. In the old algorithm this was done by the recursive routine BRANCH

which was the unique action of DISPGB, but now it is done by BUILDTREE. As we explain later,
it has been strongly reformed.

Then, DISCRIMINANTIDEAL computes the discriminant ideal N =
⋂

i∈A Ni which, as shown
in section 2, can be determined from BUILDTREE output.

After that, DISPGB calls REBUILDTREE. This algorithm builds a new tree setting the dis-
criminant ideal N at the top vertex and the generic case at the first non-null vertex labelled as
[1] (see figure 1 in section 5.1). The old tree is rebuilt under the first null vertex recomputing
the specifications and eliminating incompatible branches. The result is a drastic reduction of
branches in the new tree. In the old DPGB library, this work was partially done by the external
algorithm GENCASE which has become useless.

To further compact the tree, a new algorithm COMPACTVERT is used. It summarizes brother
terminal vertices with the same set of lpp into their father vertex. COMPACTVERT is called before
and after REBUILDTREE. DISPGB algorithm is sketched in Table 2.

3.1 Building up the Discussion Tree: BUILDTREE.

We have simplified the flow control from the ancient DISPGB and dropped useless operations.
Now all the hard work of the discussion is done by the recursive algorithm BUILDTREE which
replaces the old BRANCH routine and makes NEWVERTEX useless. The obtained discussion is
equivalent to the one given by the old DISPGB, but now is more compact.

It computes the discussion tree faster than the old one because now it assembles the dis-
cussion over the coefficients of the current basis in one single algorithm, avoiding unnecessary

7

BUILDTREE(v,B,Σ)
Input:

v, the label of the current vertex,
B ⊆ R[ā][x̄], the current basis,
Σ = (N,W) the current reduced specification.

Output: No output, but the data are stored in the global tree variable T .
BEGIN

cf := false
(cb, cd, G,Σ0,Σ1):=CONDTOBRANCH(B,Σ)
IF cd THEN # (cd is true if all lc(g), g ∈ G are decided non-null, false

otherwise)
(cb, cf , G,Σ0,Σ1):=CONDPGB(G,Σ)

END IF
Tv := (G,Σ) # (Store data in the global tree variable T)
IF cf THEN # (cf is true if the new vertex is terminal, false otherwise)

RETURN()
ELSE

IF cb THEN # (cb is true if null and non-null conditions are both
compatibles)

BUILDTREE((v, 0), G,Σ0)
BUILDTREE((v, 1), G,Σ1)

ELSE
BUILDTREE(v,G,Σ1) # (and BUILDTREE continues in the same vertex) a

END IF
END IF

END

aIn this case, if CONDPGB has already started then the list of known S-polynomials reducing
to 0 can be kept.

Table 3:

branching and useless computations.
Given B, a set of polynomials generating the current ideal, BUILDTREE takes the current

basis Bv at vertex v, specialized wrt the current reduced specification Σv = (Nv ,Wv), builds a
binary tree T containing the discussion under vertex v, and stores all the data at the vertices
of T . It is a recursive algorithm and substitutes the old BRANCH and NEWVERTEX. See table 3.

Theorem 16 in [Mo02] still applies to the reformed BUILDTREE, thus we can assert the
correctness and finiteness of the algorithm.

The most important algorithms used by BUILDTREE are commented below.
The algorithm CONDTOBRANCH substitutes the old NEWCOND. It is used each time that

BUILDTREE is recursively called and also inside CONDPGB, applying it to each new not-reducing-
to-zero S-polynomial. This prevents Buchberger algorithm from stopping and saves incom-
patible branches.

Each time we need to know whether a given polynomial f ∈ R – for example the lc (leading
coefficient) of a new S-polynomial – is zero or not for a given specification, we will reduce it
by Σ = (N,W) using PNORMALFORM and then test whether the remainder is compatible or not

8

(cb, cd, G,Σ0,Σ1)← CONDTOBRANCH(B,Σ)
Input:

B ⊆ R[ā][x̄], the current basis
Σ = (N,W) a reduced specification.

Output:
G is B reduced wrt Σ,
Σ1 is the reduced specification for the not null branch
Σ0 is the reduced specification for the null branch
cb is true whenever Σ0 exists, and false otherwise.
cd is true if all g ∈ G have lc(g) decided to not null, and false otherwise.

BEGIN
G := PNORMALFORM(B,Σ)
IF there is g ∈ G with lg = lc(g) not yet decided to not null wrt Σ THEN

cd := false
(t,Σ1) := CANSPEC(NΣ,WΣ

⋃
{lg})

(t,Σ0) := CANSPEC(〈NΣ, lg〉,WΣ)
IF t THEN cb := true ELSE cb := false ENDIF

ELSE
cd := true

ENDIF
END

Table 4:

with taking it null and non-null for each of the specifications using CANSPEC. The whole task
is done by CONDTOBRANCH. See table 4.

BUILDTREE uses a Buchberger-like algorithm – CONDPGB (Conditional Parametric Gröbner
Basis) – taking the specification into account and intending to determine a specializing Gröbner
basis. The basic improvements on CONDPGB in the new version are: the call to CONDTOBRANCH

instead of old NEWCOND and improving Buchberger algorithm by considering Weispfenning’s
normal strategy of pair selection [BeWe93]. We do not detail these improvements.

CANSPEC has also been modified.
At each vertex v of the tree a pair (Gv ,Σv) is stored, where Σv = (Nv,Wv) is a specification

of specializations. This means that for all σ ∈ Σv one has σ(Nv) = 0 and σ(w) 6= 0 ∀w ∈
Wv. From the geometric point of view, a given Σ = (N,W) describes the set of points
V(N) \ (

⋃
w∈W V(w)) ⊆ (K ′)m.

By proposition 5 in [Mo02], one can see that Σ = (N,W) and Σ′ = (
√

N,W) describe

equivalent specialization sets. And, by proposition 7, the same happens with Σ̃ = (Ñ , W̃),

where Ñ has no factor laying in W and is radical, and W̃ is the set of the irreducible factors
of W with multiplicity one reduced modulus Ñ . So we choose the following representative for
the specifications describing equivalent specialization sets:

Definition 7. We call Σ = (N,W) a reduced specification of specializations if it is a specifi-
cation such that

9

(t, Σ̃)← CANSPEC(Σ)
Input: Σ = (N,W) a not necessarily reduced specification.
Output:

t: a boolean valued variable.
Σ̃: a reduced specification if t = true, and φ otherwise (in this case

incompatible conditions have been found).
BEGIN

Na := N, Nb :=
√

N
Wa := W, Wb := the irreducible factors of W without multiplicity and

reduced wrt Na;
IF

∏
q∈Wb

q = 0 THEN RETURN(false,φ) ENDIF
WHILE (Na 6= Nb AND Wa 6= Wb) DO

Na := φ
FOR p ∈ Nb DO

p := drop from p all irreducible factors laying in Wb

IF p = 1 THEN RETURN(false,φ) ENDIF
Add p into Na

END FOR
Wa := Wb

Nb :=
√

Na

Wb := {irreducible factors of Wa without multiplicity and reduced wrt Nb}
IF

∏
q∈Wb

q = 0 THEN RETURN(false,φ) ENDIF
END WHILE
Σ̃ := (Na,Wa)
RETURN(true, Σ̃)

END

Table 5:

(i) 〈N〉 is a radical ideal, and N = gb(〈N〉,≻a),

(ii) there is no factor of any polynomials in 〈N〉 laying within W ,

(iii) W is a set of distinct irreducible polynomials not laying within 〈N〉,

(iv) W
N

= W .

We must note that the set W is not uniquely determined, as there exist infinitely many
polynomials which cannot be null for a given specification. For example, suppose that the
current reduced specification is W = {a}, N = [a2 − 1]. The condition a 6= 0 is compatible
with N but is redundant in this case. We can also add to W other polynomials like a − 2.
Thus there is no unique reduced specification, but our choice is convenient enough. The task
of obtaining reduced specifications and testing compatibility of the current null and non-null
conditions is done by the reformed CANSPEC. See table 5.

Proposition 8. Given any specification of specializations Σ = (N,W), if CANSPEC (Σ) returns

(t, Σ̃) with t = true, then Σ̃ is a reduced specification of Σ computed in finitely many steps.

Otherwise it returns t = false and (N,W) are not compatible conditions.

10

f̃ ← PNORMALFORM(f,Σ)
Input: f ∈ R[x̄] a polynomial, Σ = (N,W) a reduced specification,
Output: f reduced wrt Σ
BEGIN

f̃ := the product of the factors of f
N

not laying in W , conveniently normalized
END

Table 6:

Proof. At the end of each step Na is a radical ideal, Wa is a set of irreducible polynomials with

multiplicity one reduced wrt Na, so Wa
Na

= Wa. So, Nb is still radical when the algorithm
stops, as Nb is built by dropping from Na all those factors laying in Wa. If the algorithm
returns true, as at each completed step (Nb,Wb) satisfies the conditions of definition 7, then
the conditions are compatible and Σ̃ is a reduced specification of specializations. Otherwise
the conditions are not compatible.

Let us now see that this is done in finitely many steps. The algorithm starts with N0 = N .
At the next step it computes N1, and then N2, etc... These satisfy N0 ⊆ N1 ⊆ N2 ⊆ · · · . By
the ACC, the process stabilizes. So, only a finite number of factors can exist, thus dropping
factors is also a finite process.

The second necessary task is to reduce a given polynomial in S wrt Σ. This is done in a
standard form by PNORMALFORM. To eliminate the coefficients reducing to zero for the given
specification it suffices to compute the remainder of the division by N , because N is radical.
And then, in order to further simplify the polynomials, all those factors lying in W are also
dropped from N . See table 6.

Nevertheless, the reduction using PNORMALFORM does not guarantee that all the coeffi-
cients of the reduced polynomial do not cancel out for any specialization σ ∈ Σ. To test
whether adding a new coefficient to the null conditions is compatible with Σ we need to apply
CONDTOBRANCH.

Given f, g ∈ S and Σ we say that their reduced forms fΣ and gΣ computed by PNORMALFORM

are equivalent wrt Σ when σa(f) and σa(g) are proportional polynomials for every particular
specialization σa ∈ Σ such that σa(lc(fΣ)) 6= 0 and σa(lc(gΣ)) 6= 0.

Consider for example, Σ = (N = [ab−c, ac−b, b2−c2],W = φ), fΣ = ax+c2, gΣ = cx+c2b
and ≻a= lex(a, b, c). fΣ and gΣ are not identical, but note that they are equivalent. As can be
seen in this example PNORMALFORM is not always able to reduce them to the same polynomial.
Nevertheless, we have the following

Proposition 9. Given two polynomials f, g ∈ S then fΣ ∼ gΣ wrt Σ iff

(i) lpp(fΣ,≻x) = lpp(gΣ,≻x) and

(ii) PNORMALFORM applied to lc(gΣ)fΣ − lc(fΣ)gΣ returns 0.

Proof. Obviously if one of both hypothesis fail, the reduced expressions are not equivalent
wrt Σ.

On the other side, suppose that (i) and (ii) hold. Then, using order ≻xa we have

lc(gΣ)fΣ
N

= lc(fΣ)gΣ
N

by hypothesis (ii). Thus, lc(gΣ)(a) fΣ(x, a) = lc(fΣ)(a) gΣ(x, a),
for all specializations in Σ. In particular it also holds for those specializations which do not
cancel the leading coefficients of fΣ and gΣ. And so, it follows that fΣ and gΣ are equivalent
wrt Σ.

11

Thus, PNORMALFORM does not obtain a canonical reduction of f wrt Σ, but it can canonically
recognize two equivalent reduced expressions.

3.2 Reduction of Brother Final Cases with the Same lpp

In many practical computations and after applying these algorithms to a number of cases, we
have observed that some discussion trees have pairs of terminal vertices hung from the same
father vertex with the same lpp set of their bases. As we are only interested in those bases
having different lpp sets, then each of these brother pairs, {v0, v1}, can be merged in one
single terminal vertex compacting them into their father v and eliminating the distinction of
the latter condition taken in v.

Regarding this construction, we can define a partial order relation between two trees if, in
this way, one can be transformed into the other.

Definition 10. Let S and T be two binary trees. We will say that S > T if
(i) T is a subtree of S with same root and same intermediate vertices, and

(ii) for each terminal vertex v ∈ T there is in S either the same vertex v ∈ S
such that (GvT

,ΣvT
) = (GvS

,ΣvS
), or a subtree S ⊂ S pending from ver-

tex v ∈ S with all its terminal vertices u ∈ S with lpp(Gu
S
) = lpp(GvT

).

So now, given a discussion binary tree T , we may find the minimal tree T̃ within the set
of all trees which can be compared with T regarding this relation. This is done by a recursive
algorithm called COMPACTVERT.

Let us just note that the minimal tree will not have any brother terminal vertices with
the same lpp sets of their bases.

3.3 Rewriting the Tree with the Discriminant Ideal

The tree T built by BUILDTREE can be rebuilt using the discriminant ideal N (see section 2).
By theorem W2, if we are given σa such that there exists some δ ∈ N for which σa(δ) 6= 0,
then σa(I) corresponds to the generic case. Thus, placing N into the top vertex labelled as
[] in the new tree T ′, for its non-null son vertex we will have T ′

[1] = (G[1],Σ[1]), where G[1] is
the generic basis and Σ[1] is a union of specifications from T corresponding to

Σ[1] = {σ : ∃ δ ∈ N such that σ(δ) 6= 0}.
No other intermediate vertices hang from this side of the top vertex. If the strong formulation
of conjecture 4 holds, then no generic cases will hang from the first null vertex.

The subtree under the top vertex hanging from the first null son, for which the choice is
σ(N) = 0, will be slightly modified from the original T . The terminal vertices corresponding
to singular cases hanging from it will not be modified as, by construction, for all of them the
condition is verified by the corresponding specifications. Thus we can rebuild the tree using
the recursive algorithm REBUILDTREE which goes through the old tree T and rewrites the new
one T ′. At each vertex v it tests whether the condition N is already included in Nv. If it is
the case, then it copies the whole subtree under it. Otherwise it adds N to the null ideal Nv

and calls CANSPEC to check whether the new condition is compatible or not. If the condition
is compatible then the basis will be reduced using PNORMALFORM and the algorithm continues.
If it is not, then the recursion stops. This algorithm produces a better new tree with possibly
less terminal cases (only generic type cases can be dropped). This reconstruction of the tree
is very little time-consuming.

12

3.4 New Generalized Gaussian Elimination GGE

We add here a short description of the improvements on the generalized Gaussian elimination
algorithm GGE.

We realized, by analyzing the procedure of the old GGE [Mo02], that there were some
special cases for which we could guess the result of the divisions at each step and thus could
be skipped. These improvements halve the computing time.

Even though it is more efficient and faster, GGE has become not so useful now because the
new improvements in DISPGB, detailed above, make, in general, DISPGB work faster without
using GGE. So now, the use of GGE within the execution of DISPGB is just optional (not used by
default). However, it can be very useful for other applications, like in the tensegrity problem
shown in section 5, to eliminate some variables and simplify a given basis.

4 Comprehensive Gröbner Basis

In [We02, We03] the main goal is to obtain a Comprehensive Gröbner Basis. With this aim,
we have built an algorithm, called ISCGB, to test whether a given basis G is a comprehensive
Gröbner basis for I or not. It uses PNORMALFORM algorithm to specialize G for every terminal
case in the discussion tree. Then it checks if lpp(σ(G)) includes the set of lpp of the reduced
Gröbner basis wrt Σ for every terminal case. If this is true for every final case then ISCGB

returns true otherwise returning false.
The algorithm also informs for which cases a given basis is not a CGB. Thus we can

compute pre-images of the polynomials for which B does not specialize to a Gröbner basis
and add them to the given basis in order to obtain a Comprehensive Gröbner Basis.

Consider a terminal case (Gv,Σv) and g ∈ Gv . To simplify notations we do not consider the
subindex v. Let Hg = {f1, . . . , fr} be a basis of the ideal Ig = I

⋂〈g,N〉 whose polynomials
are of the form qg + n, with q ∈ S and n ∈ 〈N〉. Ig contains all the polynomials in I

which can specialize to g (for those with σ(q) a non-null element of R wrt Σ). Set f ′
i = fi

N
.

Obviously, H ′
g = {f ′

1, . . . , f
′
r} is a basis of σ(Ig). Using Gröbner bases techniques we can

express g ∈ σ(Ig) in the form g =
∑

i αif
′
i where the αi’s are reduced wrt N , as we are in

Ig/N . Then h =
∑

i αifi specializes to g and is a pre-image of g in I. This is used to build
algorithm PREIMAGE which computes a pre-image of g.

Combining ISCGB and PREIMAGE we compute a CGB using the algorithm sketched in table
7. Let B = gb(I,≻xa), which is a tentative CGB [FoGiTr01, Ka97], and F = {(Gi,Σi) :
1 ≤ i ≤ k} the set of final cases of the discussion tree built up by DISPGB. ISCGB informs
about the polynomials in F which do not have a pre-image in the current tentative CGB. CGB
algorithm adds pre-images of them until a CGB is obtained. Nevertheless, this construction
is not canonical and is much more time-consuming than building up the tree, because it uses
the product order ≻xa instead of working separately wrt ≻x and ≻a.

5 Examples

We have selected two significative detailed examples. The first one is the classical robot
arm, which has a very nice geometrical interpretation, and the second one is the study of a
tensegrity problem described by a linear system with the trivial null solution in the generic
case which has a non principal discriminant ideal. After that, we outline a table containing
some relevant information for several other examples.

13

B̃ ← CGB(B,F)
Input:

B = gb(I,≻xa)
F = {(Gi,Σi) : 1 ≤ i ≤ k} obtained from DISPGB

Output: B̃ a CGB of I
BEGIN

B̃ = B
F̃ = SELECT cases from F for which ISCGB(B,≻x) is not a CGB.
WHILE F̃ is non empty DO

TAKE the first case (G1,Σ1) ∈ F̃
B̃ = B̃

⋃ {PREIMAGE(g,Σ1, B) : g ∈ G1}
F̃ = SELECT cases from F̃ for which ISCGB(B̃,≻x) is not a CGB.

END DO
END

Table 7:

5.1 Simple Robot

The following system represents a simple robot arm (compare with [Mo02]):

B = [s2
1 + c2

1 − 1, s2
2 + c2

2 − 1, l (s1 s2 − c1 c2)− c1 + r,
l (s1 c2 + c1 s2) + s1 − z]

Using the orders lex(s1, c1, s2, c2) and lex(r, z, l), respectively for variables and parameters,
DISPGB produces the following outputs: The discriminant ideal is principal: N = J = [l (z2 +
r2)]. The set of final cases expressed in the form Ti = (Gi, (Ni,Wi)) is:

T[1] = ([2 l c2 + l2 + 1− z2 − r2, 4 l2 s2
2 + (l2 − 1)2

−2 (l2 + 1) (r2 + z2) + (z2 + r2)2,
2 (r2 + z2) c1 − 2 z l s2 − r (r2 + z2 − l2 + 1),
2 (r2 + z2) s1 + 2 l r s2 + z (l2 − r2 − z2)], ([], {l (r2 + z2)})).

T[0,1,1,1] = ([2 l c2 + l2 + 1, 4 (l2 − 1) r c1 + 2 z l s2 − (l2 − 1) r,

(l2 − 1)2 − 4 z2, 4 (l2 − 1) z s1 + (l2 − 1)2 + 4 z2],
([z2 + r2], {z, l + 1, r, l, l − 1})),

T[0,1,1,0] = ([1], ([z, r], {l + 1, l, l − 1})),
T[0,1,0,1] = ([1], ([l2 − 1, r2 + z2], {z, l})),
T[0,1,0,0] = ([l c2 + 1, s2, s

2
1 + c2

1 − 1], ([l2 − 1, z, r], {l})),
T[0,0,1] = ([1], ([l], {r2 + z2 − 1})),
T[0,0,0] = ([s2

2 + c2
2 − 1, c1 − r, s1 − z], ([l, r2 + z2 − 1], { })),

The generic case T[1] gives the usual formula for the robot. It is characterized by the
discriminant ideal N . The singular cases have simple geometrical interpretation and give
information about the degenerated cases.

A graphic plot of the tree is also provided in the library. There, the deciding conditions
can be visualized at the intermediate vertices and the lpp sets of the reduced Gröbner bases
are shown at the terminal vertices (see figure 1).

Now we apply ISCGB to GB = gb(B, lex(s1, c1, s2, c2, r, z, l) wrt the output tree. The
result is false, and the list of specializations for all the final cases is provided:

14

nullnot null

zz

–1+z^2+r^2(l–1)*(l+1)

l

[l*z^2+l*r^2]

[c2, s2, s1^2][1][1][c2, s2, c1, s1]

[s2^2, c1, s1][1]

[c2, s2^2, c1, s1]

Figure 1: DISPGB’s graphic output for the robot arm.

[[1], {s1, s2c1, s2s1, c1, c2s1, c2, s
2
1, s

2
2}, {s1, c1, c2, s

2
2}, true]]

[[0, 1, 1, 1], {s1 , s2, s2c1, s2s1, c2s1, c2, s
2
1, s

2
2}, {s1, s2, c1, c2}, false],

[[0, 1, 1, 0], {1, s1 , s2, s2s1, c2s1, c2, s
2
1, s

2
2}, {1}, true],

[[0, 1, 0, 1], {s1 , s2, s2c1, s2s1, c2s1, c2, s
2
1, s

2
2}, {1}, false],

[[0, 1, 0, 0], {s2 , s2c1, s2s1, c2s1, c2, s
2
1, s

2
2}, {s2, c2, s

2
1}, true],

[[0, 0, 1], {1, s1 , s2c1, s2s1, c1, c2s1, s
2
1, s

2
2}, {1}, true],

[[0, 0, 0], {s1 , s2c1, s2s1, c1, c2s1, s
2
1, s

2
2}, {s1, c1, s

2
2}, true],

There are only two cases for which GB is not a CGB. Even so, the algorithm CGB only
needs to add one single polynomial to obtain a CGB.

CGB = [2lc2 + l2 + 1− z2 − r2, c2
2 + s2

2 − 1, 2(z2 + r2)c1 − 2zls2

+r(l2 − 1− z2 − r2), 4zs2c1 − 4zrs2 + 4rc2c1 + 4lrc1

+2(z2 − r2 − 1)c2 − l(z2 + r2 − l2 + 3), 2rc1s2 − 2zc1c2 − 2zlc1

+(−r2 + z2 − 1 + l2)s2 + 2zrc2, 2(l2 − 1)s1 − 4lc1s2 + 2ls2r
−z(r2 + z2 − l2 − 3), 2s1z + 2c1r − r2 − z2 + l2 − 1,
rs1 − zc1 + ls2, s1c2 + ls1 − c1s2 + rs2 − zc2, s1s2 + c1c2

+lc1 − zs2 − rc2, c2
1 + s2

1 − 1, 4(r2 + z2)c2
1 − 4r(1 + z2 + r2 − l2)c1

+(r2 + z2 − l2 + 1)2 − 4z2].

5.2 Tensegrity Problem

We study here a problem formulated by M. de Guzmán and D. Orden in [GuOr04].
Given the five points P1(0, 0, 0), P2(1, 1, 1), P3(0, 1, 0), P4(1, 0, 0), P5(0, 0, 1) we want to

determine a sixth one P6(x, y, z) for which the framework with vertices {P1, . . . , P6} and edges({P1,...,P6}
2

)
\ {P1P6, P2P4, P3P5} stays in general position and admits a non-null self-stress.

15

nullnot null

2*y–1y–1z–1

zz

-z+x-y

[-z*y+y^2*z, x*z-z^2, x^2-y^2-z^2-x+y+z]

[w5, w3, w2][w4, w3, w2][w5, w4, w2][w5, w3, w2][w5, w4, w3][w5, w4, w2]

[w4, w3, w2]

[w5, w4, w3, w2]

Figure 2: DISPGB graphic output for the tensegrity problem.

The system describing this problem is the following:

B = [w12 + w14, w12 + w13, w12 + w15, w12 + w23 + w25 − w26x + w26,
w12 + w25 − w26y + w26, w12 + w23 − w26z + w26, w23 + w34 + xw36,
w13 + w34 − w36y + w36, w23 + zw36, w14 + w34 + w45 − w46x + w46,
w34 + yw46, w45 + zw56, w15 + w45 − zw56 + w56,
−w26 + w26x + xw36 − w46 + w46x + w56x,
−w26 + w26y − w36 + w36y + yw46 + w56y,
−w26 + w26z + zw36 + w46z −w56 + zw56]

Set ≻xa= lex(w12, w13, w14, w15, w23, w25, w34, w45, w26, w36, w46, w56, x, y, z). In order to sim-
plify the system we compute GGE(B,≻xa) (Generalized Gaussian Elimination). The GGE basis
can be expressed as B′ = B′

1 ∪ B′
2, with B′

2 being the elimination ideal wrt the variables
w26 = w2, w36 = w3, w46 = w4, w56 = w5, and B′

1 expressing the remaining variables linearly
in terms of w2, w3, w4, w5:

B′
1 = [w45 + zw5, w34 + yw4, w25 + w5y,w23 + zw3, w15 − 2zw5 + w5,
w14 − 2zw5 + w5, w13 − 2zw5 + w5, w12 + 2zw5 − w5]

B′
2 = [−zw5 + w5x− w5y,−zw5 + w4z,w4x + yw4 − w4 − zw5 + w5,
w3y − w3 + yw4 − 2zw5 + w5, xw3 − yw4 − zw3,
w2z − w2 + zw3 + 2zw5 − w5, w2y − w2 + w5y + 2zw5 − w5,
w2x− w2 + zw3 + w5y + 2zw5 − w5],

Then, using the orders ≻x= lex(w2, w3, w4, w5) and ≻a= lex(x, y, z), for variables and param-
eters respectively, DISPGB produces the following output:

T[1] = ([w5, w4, w3, w2], ([],

{[y2z − yz, zx− z2, x2 − y2 − z2 − x + y + z]}))
T[0,1,1,1] = ([w5, w4, w2z − w2 + zw3], ([y − 1, x− z], {z, z − 1}),
T[0,1,1,0] = ([w5, w4, w3], ([z − 1, y − 1, x− 1], { })),
T[0,1,0,1] = ([w5, yw4 + w3y − w3, w2], ([z, y − 1 + x], {2y − 1, y − 1}),
T[0,1,0,0] = ([w5, w4, w2], ([z, y − 1, x], { })),
T[0,0,1] = ([−w5 + w4, w3 + 2zw5 − w5, w2 − 2zw5 + w5],

([y, x− z], {z})),

16

Figure 3: Location of the sixth point for non null self-stress.

T[0,0,0,1] = ([w5 + 2yw4 − w4, 2w3y − w3 + w5, w2 + w5],

([z, x− y], {2y − 1})),
T[0,0,0,0] = ([w5, w3 − w4, w2], ([z, 2y − 1, 2x− 1], { })),

and the discriminant ideal is not principal:

N = J = [y2z − yz, zx− z2, x2 − y2 − z2 − x + y + z].

The generic solution is trivial (w5 = w4 = w3 = w2 = 0). In this problem, the interesting
non trivial solutions are given by the conditions over the parameters described by the variety
of the discriminant ideal, which decomposes into 4 straight lines included in the hyperboloid
x2 − y2 − z2 − x + y + z = 0 (illustrated in figure 3):

V(N) = V(z, x− y)
⋃

V(y, x− z)
⋃

V(z, x + y − 1)
⋃

V(y − 1, x− z).

For this problem the Gröbner basis wrt variables and parameters is already a comprehen-
sive Gröbner basis.

6 Benchmarks

For a set of examples taken from the literature we have applied the current implementation,
release 2.3 in Maple 8 , of algorithm DISPGB using a 2 GHz Pentium 4 at 512 MB. Table 8
summarizes the computing time of DISPGB, the total number of terminal vertices of the output
tree, whether the discriminant ideal is principal or not, and whether the D-Gröbner basis wrt
≻xa is a CGB or not, joint by the number of failure cases for which it is not (0 if it is). The
bases of the different examples are detailed below:

• S1. [a(x + y), b(x + y), x2 + ax];

• S2. [x2
1, x1x2, x1x

2
3, x1a + x2, x2x3 − x2

3, x2a, x3
3, x

2
3a, a2];

• S3. [x3 − axy, x2y − 2y2 + x];

• S4. [ax + y − 1, bx + y − 2, 2x + ay, bx + ay + 1];

• S5. [x4 − (a4 − a2), x1 + x2 + x3 + x4 − (a1 + a3 + a4), x1x3x4 − a1a3a4,
x1x3 + x1x4 + x2x3 + x3x4 − (a1a4 + a1a3 + a3a4)];

17

• S6. [vxy + ux2 + x, uy2 + x2];

• S7. [y2 − zxy + x2 + z − 1, xy + z2 − 1, y2 + x2 + z2 − r2];

• S8. [a− b + (xya− x2yb− 3a)3 + (xyb− 3xb− 5b)4, xya− x2yb− 3a,
xyb− 3xb− 5b];

• S9. [x + cy + bz + a, cx + y + az + b, bx + ay + z + c];

• S10. See subsection 5.1;

• S11. [(d4d3R + r2
2 − d4d3r

2
2 + d2

4d
2
3 − d4d

3
3 − d3

4d3 + d4d3 + Z −R)t4

+ (−2r2d4R + 2r2d
3
4 + 2r2d4d

2
3 − 4r2d3d

2
4 + 2r3

2d4 + 2r2d4)t
3

− (2r2
2 − 2R + 4d2

4r
2
2 + 4d2

4 + 2Z − 2d2
4d

2
3)t

2

+ (−2r2d4R + 2r2d4d
2
3 + 2r2d4 + 2r2d

3
4 + 4r2d3d

2
4 + 2r3

2d4)t
+ r2

2 + d3
4d3 − d4d3R + d4d3r

2
2 + Z −R− d4d3 + d2

4d
2
3 + d4d

3
3];

• S12. [a− l3c3 − l2c1, b− l3s3 − l2s1, c
2
1 + s2

1 − 1, c2
3 + s2

3 − 1];

• S13. [ax2y + a + 3b2, a(b− c)xy + abx + 5c];

• S14. [t3 − cut2 − uv2 − uw2, t3 − cvt2 − vu2 − vw2, t3 − cwt2 − wu2 − wv2];

• S15. [a + ds1, b− dc1, l2c2 + l3c3 − d, l2s2 + l3s3 − c,s
2
1 + c2

1 − 1, s2
2 + c2

2 − 1,
s2
3 + c2

3 − 1];

• S16. See subsection 5.2.

We have tested several other problems and in some of them only partial results have been
reached. We detail two significative examples:

• S17. [axt2 + bytz − x(x2 + cy2 + dz2), ayt2 + bzxt− x(y2 + cz2 + dx2),
azt2 + bxyt− x(z2 + cx2 + dy2)]

• S18. [(3x2 + 9v2 − 3v − 3x)t21t
2
2 + (3v2 − 3v + 6vx− 3x + 3x2)t22

+ (3v + 3v2 + 3x2 − 3x− 6vx)t21 − 24v2t1t2 + 9v2 − 3x + 3x2 + 3v,
(3x2 + 9v2 − 3v − 3x)t22t

2
3 + (3v + 3v2 + 3x2 − 3x− 6vx)t22

+ (3v2 − 3v + 6vx− 3x + 3x2)t23 − 24v2t2t3 + 9v2 − 3x + 3x2 + 3v,
(3x2 + 9v2 − 3v − 3x)t23t

2
1 + (3v2 − 3v + 6vx− 3x + 3x2)t21

+ (3v + 3v2 + 3x2 − 3x− 6vx)t23 − 24v2t3t1 + 9v2 − 3x + 3x2 + 3v]

For S17 [GoTrZa00], DISPGB gets bogged down after computing 35 terminal vertices in 1375
sec. It has been unable to finish the tree, and so neither rebuilding with the discriminantideal
nor reducing the tree can have been achieved. The label of the 35th vertex is [1, 1, 0, 1, 0, 0],
thus all vertices beginning with [0, 0, . . . have been already determined (the tree is built up
in pre-order beginning with the 0 vertices).

S18 corresponds to the benzene molecule studied in [Em99]. The situation is similar to
S17, getting bogged down after 45 seconds when the 9th vertex labelled [1, 1, 0, 0]] has been
computed.

18

Identification CPU time # Final Discriminant Is CGB?
(seconds) vertices is principal? (# failures)

S1 [We03] 0.8 2 N Y (0)

S2. [Gi87] 1.2 2 Y N (1)

S3. [Gom02, Du95] 1.5 2 Y Y (0)

S4. 1.6 2 N Y (0)

S5. [Kap95] 1.6 3 Y N (1)

S6. [Kap95] 2.0 4 Y Y (0)

S7. [Kap95] 3.0 2 Y Y (0)

S8. [SaSuNa03] 4.4 3 Y Y (0)

S9. Similar to [Si92] 6.7 10 Y Y (0)

S10. Subsection 5.1 7.9 7 Y N (2)
Simple robot

S11. [Co04] 8.0 6 Y Y (0)
Singular points

S12. [Ry00] 8.2 11 Y N (1)
Rychlik robot

S13. [SaSu03] 8.2 10 Y Y (0)

S14. [GoTrZa00, De99] 9.6 2 Y N (1)
ROMIN robot

S15. [GoRe93] 18.2 17 Y N (2)

S16. [GuOr04] 21.3 8 N Y (0)
Subsection 5.2

Table 8:

7 Acknowledgements

We want to thank Professor Volker Weispfenning for his useful suggestions and ideas and for
encouraging us in undertaking the research on Comprehensive Gröbner Bases, as well as for
his hospitality and kindness on the occasions in which we met.

We would like to thank Professor Pelegŕı Viader for his many helpful comments and his
insightful perusal of our first draft.

We will also thank the referees for their valuable suggestions.

References

[BeWe93] T. Becker, V. Weispfenning. Gröbner Bases: A Computational Approach to Com-
mutative Algebra. Springer, New-York, 1993.

[Co04] M. Coste. Classifying serial manipulators: Computer Algebra and geometric insight.
Plenary talk. (Personal communication). Proceedings of EACA-2004 (2004) 323–323.

[De99] S. Dellière. Triangularisation de systèmes constructibles. Application à l’évaluation
dynamique. Thèse Doctorale, Université de Limoges. Limoges, 1995.

19

[Du95] D. Duval. Évaluation dynamique et clôture algébrique en Axiom. Journal of Pure

and Applied Algebra 99 (1995) 267–295.

[Em99] I. Z. Emiris. Computer Algebra Methods for Studying and Computing Molecular
Conformations. Algorithmica 25 (1999) 372-402.

[FoGiTr01] E. Fortuna, P. Gianni and B. Trager. Degree reduction under specialization. Jour.

Pure and Applied Algebra, 164(1-2) (2001) 153–164. Proceedings of MEGA 2000.

[Gi87] P. Gianni. Properties of Gröbner bases under specializations. In: EUROCAL’87. Ed.
J.H. Davenport, Springer LCNS 378 (1987) 293–297.

[Gom02] T. Gómez-D́ıaz. Dynamic Constructible Closure. Proceedings of Posso Workshop on
Software, Paris, (2000) 73–93.

[GoRe93] M.J. González-López, T. Recio. The ROMIN inverse geometric model and the
dynamic evaluation method. In: Computer Algebra in Industry. Ed. A.M. Cohen, Wiley
& Sons, (1993) 117–141.

[GoTrZa00] M.J. González-López, L. González-Vega, C. Traverso, A. Zanoni. Gröbner Bases
Specialization through Hilbert Functions: The Homogeneoas Case. SIGSAM BULL (Is-
sue 131) 34:1 (2000) 1-8.

[GuOr04] M. de Guzmán, D. Orden. Finding tensegrity structures: geometric and symbolic
aproaches. Proceedings of EACA-2004 (2004) 167–172.

[HeMcKa97] P. Van Hentenryck, D. McAllester and D. Kapur. Solving polynomial systems
using a branch and prune approach. SIAM J. Numer. Anal. 34:2 (1997) 797–827.

[Ka97] M. Kalkbrenner. On the stability of Gröbner bases under specializations. Jour. Symb.

Comp. 24:1 (1997) 51–58.

[Kap95] D. Kapur. An Approach for Solving Systems of Parametric Polynomial Equations. In:
Principles and Practices of Constraints Programming. Ed. Saraswat and Van Hentenryck,
MIT Press, (1995) 217–244.

[MaMo04] M. Manubens, A. Montes. Improving DPGB algorithm for parametric Gröbner
basis. Proceedings of EACA-2004 (2004) 207–211.

[Mo95] A. Montes. Solving the load flow problem using Gröbner bases. SIGSAM Bull. 29

(1995) 1–13.

[Mo98] A. Montes. Algebraic solution of the load-flow problem for a 4-nodes electrical net-
work. Math. and Comp. in Simul. 45 (1998) 163–174.

[Mo02] A. Montes. New algorithm for discussing Gröbner bases with parameters. Jour. Symb.

Comp. 33:1-2 (2002) 183–208.

[Mor97] M. Moreno-Maza. Calculs de Pgcd au-dessus des Tours d’Éxtensions Simples et
Résolution des Systèmes d’Équatoins ALgebriques. Doctoral Thesis, Université Paris 6,
1997.

[Pe94] M. Pesh. Computing Comprehesive Gröbner Bases using MAS. User Manual, Sept.
1994.

20

[Ry00] M. Rychlik. Complexity and Applications of Parametric Algorithms of Computational
Algebraic Geometry. In: Dynamics of Algorithms. Ed. R. del la Llave, L. Petzold, and J.
Lorenz. IMA Volumes in Mathematics and its Applications, Springer-Verlag, 118 (2000)
1–29.

[SaSu03] Y. Sato and A. Suzuki. An alternative approach to Comprehensive Gröbner Bases.
Jour. Symb. Comp. 36 (2003) 649–667.

[SaSuNa03] Y. Sato, A. Suzuki, K Nabeshima. ACGB on Varieties. Proceedings of CASC
2003. Passau University, (2003) 313–318.

[Sc91] E. Schönfeld. Parametrische Gröbnerbasen im Computeralgebrasystem ALDES/SAC-
2. Dipl. thesis, Universität Passau, Germany, May 1991.

[Si92] W. Sit. An Algorithm for Solving Parametric Linear Systems. Jour. Symb. Comp. 13

(1992) 353–394.

[We92] V. Weispfenning. Comprehensive Gröbner Bases. Jour. Symb. Comp. 14 (1992) 1–29.

[We02] V. Weispfenning. Canonical Comprehensive Gröbner bases. Proceedings of ISSAC
2002, ACM-Press, (2002) 270–276.

[We03] V. Weispfenning. Canonical Comprehensive Gröbner bases. Jour. Symb. Comp. 36

(2003) 669–683.

21

