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Introduction and Motivation

Data assimilation is the process by which observations are
incorporated into a computer model of a real system.

Applications of data assimilation arise in many fields of
geosciences, perhaps most importantly in weather forecasting
and hydrology.

The classical method of continuous data assimilation is to
insert observational measurements directly into a computer
model as the latter is being integrated in time.

We propose a new approach based on ideas from control
theory. Rather than inserting the measurements directly into
the model, we introduce a feedback control term that
forces/nudges the model toward the reference solution that is
corresponding to the observations.
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Description of the method - Exact Observations

Let U be a solution lying on the attractor of the following
dissipative dynamical system in the space H (finite or infinite
dimensional)

dU

dt
= F (U), (1)

where the initial data, U0, is missing.
Let Oh(U(t)) ∈ RD , t > 0 be the exact observational
measurements (without errors) of the true, unknown, solution U at
time t.
Denote by Rh(U(t)) the interpolation of the observational data,
namely,

Rh(U(t)) = Lh ◦ Oh(U(t)),

where Lh : RD → H is linear operator.
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Explicit examples of interpolant operators

[Foias & Titi 1991], [Jones & Titi 1992, 1993]

The volume elements interpolant:

Rh

(
ϕ(x)

)
=

N∑
j=1

ϕ̄jχQj
(x) where ϕ̄j =

N

L2

∫
Qj

ϕ(x) dx ,

and the domain D = [0, L]2 has been divided into N equal
squares Qj , with sides h = L/

√
N. This operator satisfies the

approximate identity property (2).

Nodal values:
Let D = ∪Nj=1Qj , where Qj are disjoint subsets such that
diamQj ≤ h for j = 1, 2, . . . ,N, and let xj ∈ Qj be arbitrary
points. Then set

Rh

(
ϕ(x)

)
=

N∑
k=1

ϕ(xk)χQj
(x).

This operator satisfies the approximate identity property (3).
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The interpolant observables Rh

We will be using two different interpolant operators (observables)
that approximate identity

1 Rh : H1 −→ L2 that are linear and satisfy

‖ϕ− Rh(ϕ)‖2
L2 ≤ c1h2‖ϕ‖2

H1 (2)

for every ϕ ∈ H1(Ω).

2 Rh : H2 −→ L2 such that

‖ϕ− Rh(ϕ)‖2
L2 ≤ c1h2‖ϕ‖2

H1 + c2h4‖ϕ‖2
H2 , (3)

for every ϕ ∈ H2(Ω).
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Our Data Assimilation Algorithm

Our algorithm for constructing and approximate solutions v(t)
from the observational measurements Rh(U(t)) for t > 0 is given
by

dv

dt
= F (v)−µ(Rh(v))− Rh (U)),

v(0) = v0,

where µ > 0 is a positive relaxation parameter, which
relaxes/nudgees the coarse spatial scales of v toward those of the
observed data, and v0 is taken to be arbitrary.

Our goal is to find a condition on the spatial resolution of the
measurements, h, that guarantees that the approximating solution
v converge to the unknown reference solution U as t −→∞.
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2D Navier-Stokes equations

Let D = T2 (a two-dimensional torus identifiable with [0, L]2 with
periodic boundary conditions). We consider the 2D Navier-Stokes
equations in [0,T ]×D

∂U
∂t − ν∆U + (U · ∇)U +∇p = f

∇ · U = 0

U(0) = U0.

(4)

Here, the unknowns are U, the velocity, and p the pressure. f is an
external given force, and U0 is the initial velocity that is missing.
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Preliminaries and Notations

Let us introduce the following Hilbert spaces:

H =

{
u ∈ [L̇2

per(D)]2, ∇ · u = 0 &

∫
D

u(x)dx = 0

}

V =

{
u ∈ [Ḣ1

per(D)]2, ∇ · u = 0 &

∫
D

u(x)dx = 0

}
Let Π be the orthogonal projector in [L̇2

per(D)]2 onto H; then the
Stokes operator is

Au = −Π∆u, ∀u ∈ D(A) = [Ḣ2
per(D)]2 ∩ V .
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Preliminaries and Notations – continue

By the classical spectral theorems there exists a sequence {λj}∞j=1

of eigenvalues of the Stokes operator with 0 < λ1 ≤ λ2 ≤ . . . ,
corresponding to the eigenvectors ej ∈ D(A); {ej}j form an
orthonormal basis in H.
We have the following Poincaré inequalities:

‖u‖2
L2 ≤ λ−1

1 ‖u‖
2
H1 ∀u ∈ V (5)

‖u‖2
H1 ≤ λ−1

1 ‖Au‖2
L2 ∀u ∈ D(A) (6)
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Let b(·, ·, ·) : V × V × V −→ R be the continuous trilinear form
defined as

b(u, v ,w) =

∫
D

([u(x) · ∇]v(x)) · w(x) dx .

B(·, ·) : V × V −→ V ′ such that

〈B(u, v),w〉 = b(u, v ,w), forall w ∈ V .

Projecting the NSE onto H, we obtain the abstract formulation{
dU
dt + νAU + B(U,U) = f ,

U(0) = U0.
(7)
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Properties of the nonlinear term

Lemma

for all u, v ,w with appropriate regularity

〈B(u, v),w〉 = −〈B(u,w), v〉, (8)

〈B(u, v), v〉 = 0, (9)

〈B(v , v),Av〉 = 0. (10)

〈B(u, v),Av〉+ 〈B(v , u),Av〉 = −〈B(v , v),Au〉. (11)
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Lemma

〈B(u, v),w〉 ≤ C?‖u‖L4‖v‖H1‖w‖L4 . (12)

Moreover, using the Ladyzhenskaya interpolation inequality

‖u‖2
L4 ≤ |u|L2‖u‖H1 (13)
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Known results on the deterministic NSE

The 2D NSE are well-posed and possess a compact
finite-dimensional global attractor:

Theorem

Let U0 ∈ H and f ∈ H−1. Then the 2D system of Navier-Stokes
equations has a unique weak solution that satisfies

U ∈ C ([0,T ]; L2) ∩ L2([0,T ]; H1), for any T > 0.

〈U(t), φ〉+ν
∫ t

0
〈U(s),Aφ〉−

∫ t

0
〈B(U(s), φ),U(s)〉ds =

∫ t

0
〈f , φ〉ds

for all φ ∈ D(A) and t ∈ [0,T ]. Moreover, the solution U
depends continuously on the initial data U0 in the H norm.
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Strong solutions to the NSE

Theorem

Let U0 ∈ V and f ∈ H. Then (7) has a unique strong solution
that satisfies

U ∈ C ([0,T ]; H1) ∩ L2([0,T ]; H2), forany T > 0.

Moreover, the solution U depends continuously on the initial data
U0 in the H1 norm.

Let us denote by G the Grashof number

G =
1

ν2λ1
lim sup
t→∞

|f (t)|H . (14)
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Global Bounds on the deterministic NSE

Theorem

Let T > 0 and G the Grashof number given by (14). There exists
a time t0 such that for t ≥ t0 we have

|U(t)|2H ≤ 2ν2G 2 and

∫ t+T

t
‖U(s)‖2

V ds ≤ 2(1 + Tνλ1)νG 2.

(15)
In the case of periodic boundary conditions we also have

‖U(t)‖2
V ≤ 2ν2λ1G 2 and

∫ t+T

t
|AU(s)|2Hds ≤ 2(1+Tνλ1)νλ1G 2.

(16)
If f ∈ H is time independent then

|AU(t)|2H ≤ cν2λ1(1 + G )8. (17)
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The approximating scheme the deterministic case

Theorem

Let v be a solution to equations{
dv
dt + νAv + B(v , v) = f − µRh(v − U),
v(0) = v0

(18)

Assume h is small enough such that

1/h2 ≥ c1λ1G 2,

. Then there exists µ > 0, given explicitly, such that
‖v − u‖L2(Ω) → 0 exponentially, as t →∞.
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The approximating scheme Stochastic case

Let u be the approximation of U solution the stochastic NSE{
du + [νAu + B(u, u)]dt = [f + µRh(U − u)] dt + µdRh(W ),
u(0) = u0

(19)
It is not difficult to prove that system (19) is well-posed.
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Theorem

Let us assume that U is the strong solution of the deterministic
Navier-Stokes equations and u0 ∈ H and that trace(Q) <∞.
Moreover, assume that Rh satisfies (2) and that µc1h2 ≤ ν. Then,
for any T > 0 there exists a continuous stochastic process solution
of (19) such that P-a.s.

u ∈ C ([0,T ]; H)
⋂

L2([0,T ]); V ).

And

E

(
sup

0≤t≤T
|u(t)|2 +

∫ T

0
‖u(t)‖2dt

)
<∞.

Moreover if u0 ∈ V then, P-a.s. the process u is such that

u ∈ C ([0,T ]; V )
⋂

L2([0,T ]); D(A)).
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Main result

Our goal is to prove that the approximating solution u converges
to the true solution U when t −→∞, in some sense.

Theorem

Assume that U is a solution of (7) with period boundary
conditions. If Rh satisfies assumption (2) and

1

h2
> 4c1C?λ1G 2

then there exists µ > 0 such that

lim
t→∞

E |u(t)− U(t)|2H ≤ Tr [Q]
µ

µ− 2C?νλ1G 2
.
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Let us also assume that

‖Rh(ϕ)‖H1 ≤
c

h
‖ϕ‖L2 . (20)

Theorem

Assume that U is a solution of (7) with period boundary
conditions. If Rh satisfies assumption (3) and (20) and

1

h2
> 2µc1λ1G

(
c2 log c1/2 + 4c2 log(1 + G )

)
then there exists µ > 0 such that

lim
t→∞

E‖u(t)− U(t)‖2
V ≤

1

h

(
µTr [Q]

µ− 2J2

µ ν
2λ2

1G 2

)

where J = c2 log c1/2 + 4c2 log(1 + G ).
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Proofs

Setting
v := U − u

The process v is solution of the following equation

{
dv + [νAv + B(U,U)− B(u, u)] dt = −µRh(v)dt + µRhdW
v(0) = v0

Using the bilinearity of the operator B, we get v satisfies the
following problem

dv+[νAv + B(U, v) + B(v ,U)− B(v , v)] dt = −µRh(v)dt+µdRh(W )
(21)
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Using the Itô formula on |v(t)|2H

d |v(t)|2H = 2〈v(t), dv(t)〉+ µTr [Rh(Q)]dt

= −2ν〈v(t),Av(t)〉 − 2〈v(t),B(U(t), v(t))〉
− 2〈v(t),B(v(t),U(t))〉+ 2〈v(t),B(v(t), v(t))〉
− 2µ〈v(t),Rhv(t)〉+ 2µ〈v(t), dRhW 〉
+ µTr [Rh(Q)]dt

Hence,

d |v(t)|2H + 2ν‖v(t)‖2
V = −2〈v(t),B(v(t),U(t))〉
− 2µ〈v(t),Rhv(t)〉+ 2µ〈v(t), dRh(W )〉
+ µTr [Rh(Q)]dt
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Using the properties of B Young inequality

|〈v(t),B(v(t),U(t))〉| ≤ ν‖v(t)‖2
V +

C?
ν
|v(t)|2H‖U(t)‖2

V .

On the other side, using the Young inequality and the
approximation (2) we obtain

−2µ〈Rhv(t), v(t)〉 = −2µ〈Rhv(t)− v(t), v(t)〉 − 2µ|v(t)|2H
≤ 2µ|Rhv(t)− v(t)|H |v(t)|H − 2µ|v(t)|2H
≤ µ|v(t)|2H + µ|Rhv(t)− v(t)|2H − 2µ|v(t)|2H
≤ c1µh2‖v(t)‖2

V − µ|v(t)|2H .

Choose (c1µh2) ≤ ν/2, then taking the expected value we get
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d

dt
E |v(t)|2 ≤

(
C?
ν
‖U(t)‖2 − µ

)
E |v(t)|2 + µTr [Rh(Q)]

Using Gronwall lemma, we obtain

E |v(t)|2H ≤ |v0|2He−t[µ−
C?
ν

1
t

∫ t
0 ‖U(s)‖2ds]

+ µTr [Q]

∫ t

0
e−(t−s)[µ−C?

ν
1

t−s

∫ t
s ‖U(r)‖2dr]ds

≤ |v0|2He−t[µ−2C?νλ1G2] + µTr [Q]

∫ t

0
e−(t−s)[µ−2C?νλ1G2]ds.

≤ |v0|2e−t[µ−2C?νλ1G2]

+ Tr [Q]
µ

µ− 2C?νλ1G 2

(
1− e−t[µ−2C?νλ1G2]

)
.
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Now, choose
µ > 2C?νλ1G 2.

Then, taking the limit t →∞ in the previous estimate completes
the proof of the first main result.
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Proof of the 2nd Theorem

Using the Itô formula on ‖v(t)‖2
V = |A1/2v(t)|2H

d |A1/2v(t)|2 = 2〈A1/2v(t), dA1/2v(t)〉+ µTr [A1/2Rh(Q)]dt

= −2ν〈Av(t),Av(t)〉 − 2〈Av(t),B(U(t), v(t))〉
− 2〈Av(t),B(v(t),U(t))〉+ 2〈Av(t),B(v(t), v(t))〉
− 2µ〈Av(t),Rhv(t)〉+ 2µ〈Av(t), dRhW 〉+ µTr [A1/2Rh(Q)]dt

Using again the properties of B, we obtain that

d‖v(t)‖2 + 2ν|Av(t)|2 = 2〈B(v(t), v(t)),AU(t)〉 − 2µ〈Av(t),Rhv(t)〉
+ 2µ〈Av(t), dRhW 〉+ µTr [A1/2Rh(Q)]dt
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Now, using the Brézis–Gallouet inequality due to Brezis(80) which
may be written as

‖u‖L∞(Ω) ≤ c2‖u‖
{

1 + log
|Au|2H
λ1‖u‖2

V

}
, (22)

we get that

|〈B(v , v),AU〉| ≤ ‖v‖∞‖v‖V |AU|H

≤ c2‖v‖2
V

{
1 + log

|Av |2H
λ1‖v‖2

V

}
|AU|H .
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On the other side, using Young inequality and the approximation
(3)

−2µ〈Rhv ,Av〉 = 2µ〈v − Rhv ,Av〉 − 2µ‖v‖2
V

≤ 2µ|v − Rhv |H |Av |H − 2µ‖v‖2
V

≤ µ2

ν
|v − Rhv |2H +

ν

2
|Av |2H − 2µ‖v‖2

V

≤ µ2c2
1 h4

ν
|Av |2H +

ν

2
|Av |2H − 2µ‖v‖2

V
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If we choose
µ2c2

1 h4

ν
≤ ν

2

then

d‖v(t)‖2+ν|Av(t)|2dt +

(
2µ− c2

{
1 + log

|Av |2

λ1‖v‖2

}
|AU|

)
‖v‖2dt

≤ 2µ〈Av(t), dRhW 〉+ µTr [A1/2Rh(Q)]dt
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Now, if we assume that r = |Av |2
λ1‖v‖2 and β = c2|AU|

νλ1
. Here, r ≥ 1.

Using the following Lemma due to Olson & Titi (2013)

Lemma

Let φ(r) = r − β(1 + log r) where β > 0. Then

min{φ(r) : r ≥ 1} ≥ −β log β.

We obtain that

d‖v(t)‖2 +

(
2µ− c2|AU| log

c2|AU|
νλ1

)
‖v‖2dt ≤ 2µ〈Av(t), dRhW 〉

+ µTr [A1/2Rh(Q)]dt.
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Using the estimate (16) yields that

c2 log
c2|AU|
νλ1

≤ J

where J = c3 + c4 log(1 + G ), c3 = c2 log c1/2, c4 = 4c2,
then

d‖v(t)‖2+(2µ− J|AU|) ‖v‖2dt ≤ 2µ〈Av(t), dRhW 〉+µTr [A1/2Rh(Q)]dt.
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Furthermore, the inequality

J|AU| ≤ J2

µ
|AU|2 + µ

implies

d‖v(t)‖2+

(
µ− J2

µ
|AU|2

)
‖v‖2dt ≤ 2µ〈Av(t), dRhW 〉+µTr [A1/2Rh(Q)]dt.

Now integrate over (0, t) and take the expectation value yields that

E‖v(t)‖2 ≤ E‖v(0)‖2e−α(t) + µTr [A1/2Rh(Q)]

∫ t

0
e−α(t−s)ds

where α(t) = µt − J2

µ

∫ t
0 |AU(s)|2ds.
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Now choose

µ− 2J2

µ
ν2λ2

1G 2 > 0

implies that

lim
t→∞

E‖v(t)‖2 ≤ µTr [A1/2Rh(Q)]

µ− 2J2

µ ν
2λ2

1G 2

≤ 1

h

µTr [Q]

µ− 2J2

µ ν
2λ2

1G 2
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