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Introduction Data Assimilation

Data Assimilation

The goal of data assimilation and signal synchronization is to use low
spatial solution resolution observational measurements to find a
corresponding reference solution from which future predictions can be
made.
One motivating application is weather forecasting.
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Introduction Data Assimilation

In late 1960’s satellite observation systems began producing data on
the climate.
Charney, Halem and Jastraw (1969) proposed that the equations of
the atmosphere equations be used to process this data and obtain
improved estimates of the current atmospheric state.
Their method, called continuous data assimilation, is to insert the
observational measurements, at coarse scales, directly into a model as
the later being integrated in time.
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Introduction Data Assimilation

In general, it is neccessary to seperate slow and fast parts of the
solution before inserting the observations into the model.
One way to exploit this is to insert low mode observables from a time
series into the equation for the high modes.
This was the approach taken for the 2D Navier-Stokes in Browning,
Henshaw and Kreiss (1998) and Henshaw, Kreiss and Yström (2003).
The question becomes, how do we find u(t) from a measurement
Pλu(t).
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Introduction Data Assimilation

Let u(t) be the exact solution of the 2D NSE

∂u
∂t + (u · ∇)u − ν∆u +∇Π = f ,

∇ · u = 0,

with initial data u(0, x) = u0(x), on L- periodic torus Ω = [0,L]2.
Find v(t), a good asymptotic approximation of u(t).
Set v(t) = p(t) + q(t), where p(t) = Pλv(t) and q(t) = Qλv(t).

∂p
∂t + Pλ((p + q) · ∇(p + q))− ν∇p +∇PλΠ = Pλf , ∇ · p = 0,

∂q
∂t + Qλ((p + q) · ∇(p + q))− ν∇q +∇QλΠ = Qλf , ∇ · q = 0.
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Introduction Data Assimilation

p(t) is given directly by the measurement. We need to integrate the
second equation to find v(t).
Compute an approximate solution q2(t) by integrating the second
equation with the initial condition q2(0) = η = Qλη, some initial
guess.
Set u1 = p + q to be the exact solution to the 2D NSE and set
u2 = p + q2 to be the approximate solution.

Theorem (Olson and Titi, 2003)
Given λ > c1Gr(f ) and provided that u2 exists globally, in time, it follows
that ‖u1(t)− u2(t)‖ → 0 as t →∞, at an exponential rate.
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Introduction Data Assimilation

Connection to Determining Modes

It was shown first by Foias and Prodi (1967) (and independently later
proved by Ladyzhenskaya (1975)) that the 2D NSE posses a finite
number of determining modes.
The best estimate on the number of determining modes of the 2D
NSE in periodic case is given by Jones and Titi (1992, 1993).

Theorem
Let u1 and u2 be two solutions of the 2D NSE on the L-periodic torus with
possibly different initial conditions. Then there exists a constant c1
independent of ν,L, f or of any initial conditions such that for every
λ(L/2π)2 > c1Gr(f ) the limit

|Pλu1(t)− Pλu2(t)| → 0, as t →∞,

implies that

‖u1(t)− u2(t)‖ → 0, as t →∞.
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Introduction Data Assimilation

A New Algorithm

The classical method of continuous data assimilation is, in concept,
simple but special care has to be taken inserting the observations into
the model.
In applications, the measured data is usually obtained as the values of
the exact solutions at a discrete set of spatial nodal points.
It is impossible to obtain exact values of spacial derivatives.
A new Algorithm was introduced recently by Azouani and Titi 2013
and Azouani, Olson and Titi 2014.
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Introduction Data Assimilation

Suppose that u(t) represents a solution of some dynamical system

du
dt = F(u),

with missing initial condition u(0) = u0.
Ih(u(t)) represent the observations of the reference solution u at a
coarse spatial resolution of size h.
Use Ih(u) is a feedback control term

dv
dt = F(v)−µ(Ih(v)− Ih(u)),

v(0) = v0,

where µ > 0 is a relaxation (nudging) parameter.
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Introduction Data Assimilation

This approach works for a general class of interpolant observations
without modification.

1 One physical example are the volume elements in Ω. Let h > 0 be
given and let Ω = ∪N

j=1Qj , where Qj are disjoint sets with
diam(Qj) ≤ h, then, in this case

Ih(φ) =
n∑

j=1
φ̄jχQj (x), where φ̄j =

∫
Qj

φ(x) dx.

2 Another example is measurements at discrete nodal points in Ω. In this
case

Ih(φ) =
n∑

j=1
φ(xj)χQj (x), where xj ∈ Qj .
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Introduction Data Assimilation

The new approach was demonstrated in the case of 2D Navier-Stokes
equations by Azouani, Olson and Titi (2014).
It was shown that the approximate solution of the continuous data
assimilation algorithm converges to the reference solution of the 2D
Navier-Stokes equations.
Analytic estimates were obtained on the relaxation parameter µ and
on the spatial resolution h > 0.
These estimates depend on physical parameters of the system a.k.a.
the Grashof (Reynolds) number Gr.
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Introduction Data Assimilation

For volume elements measurements, with Dirichlet boundary
conditions:

Theorem (Azouani, Olson and Titi 2014)
Let u be the solution of the 2D NSE and v be the approximate solution,
with no-slip boundary conditions. Then ‖u(t)− v(t)‖L2(Ω) → 0, at an
exponential rate as t →∞, provided that µ > c2Gr2νλ1 and µc0h2 ≤ ν.

For discrete nodal set measurements, with periodic boundary
conditions:

Theorem (Azouani, Olson and Titi 2014)
Let u be the solution of the 2D NSE and v be the approximate solution,
on the L-periodic torus. Then ‖u(t)− v(t)‖H1(Ω) → 0, at an exponential
rate as t →∞, provided that µ > c2Gr(1 + log(Gr))νλ1 and µc0h2 ≤ ν.
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Introduction Data Assimilation

Remarks

Numerical weather forecasting equations are three-dimensional
equations involving variable density or temperature that is coupled to
the some set of equations.
It is important to analyze the validity and success of a data
assimilation algorithm when some state variable observations are not
available as an input on the numerical forecast model.
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Introduction The Bénard Convection Problem

The Bénard Convection Problem

The Bénard convection problem is a model of the convection of a
fluid in a box (0,L)× (0, 1) which is heated from below.
In this case, the non-dimensional Boussinesq system can be written as

∂u
∂t − ν∆u + (u · ∇)u +∇p = (T − T1)e2,

∂T
∂t − κ∆T + (u · ∇)T = 0,

∇ · u = 0,

with boundary conditions

u = 0 at y = 0 and y = 1,
T = T0 at y = 0 and T = T1 at y = 1,
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Introduction The Bénard Convection Problem

The global regularity of he 2D Boussinesq system, with ν > 0 and
κ > 0, was established in Cannon and DiBenedetto(1980) following
the classical methods for the Navier-Stokes equations.
Recent results concerning the 2D Boussinesq equations, with ν = 0 or
κ = 0: Chae (2006), Hou and Li (2005), Hmidi and Keraani (2007),
Danchin and Paicu (2008), Larios, Lunasin and Titi (2010), Hu,
Kukavicka and Ziane (2013) and many others.
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Introduction The Bénard Convection Problem

After some change of variables, the Bénard convection problem in the
box Ω = (0,L)× (0, 1):

∂u
∂t − ν∆u + (u · ∇)u +∇p = θe2,

∂θ

∂t − κ∆θ + (u · ∇)θ − u · e2 = 0,

∇ · u = 0,
u(0; x) = u0(x), θ(0; x) = θ0(x),

with the boundary conditions

u = 0 at y = 0 and y = 1,
θ = 0 at y = 0 and y = 1,

and

u, θ, p are periodic, of period L, in the x-direction.
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Introduction The Bénard Convection Problem

The 2D Bénard convection system has a finite dimensional global
attractor A (Foias, Manley and Temam 1987).
We observed that the values of the temperature (or the density)
θ(t; x) in A are completely determined by the velocity vector field
u(t, x, y) for all time in A.
We propose a continuous data assimilation algorithm for the 2D
Bénard convection using velocity measurements alone.
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A new Data Assimilation Algorithm for the 2D Bénard Problem

Our algorithm for the construction of approximate solutions, v(t) and η(t),
from the observational measurements Ih(u(t)) for the reference solution
u(t), for t ∈ [0,T ] is given by

∂v
∂t − ν∆v + (v · ∇)v +∇p̃ = ηe2−µ(Ih(v)− Ih(u)),

∂η

∂t − κ∆η − (v · ∇)η − v · e2 = 0,

∇ · v = 0,
U (0, x, y) = v0(x, y), η(0, x, y) = η0(x, y),

where v0 and η0 is arbitrary, and can be simply taken to be v0 = 0 and
η0 = 0.
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A new Data Assimilation Algorithm for the 2D Bénard Problem

Theorem (Convergence to Reference Solution (Farhat, Jolly and Titi
2014))
Let (u(t, x, y), θ(t, x, y)) be a reference solution of the Bénard convection
system and (v(t, x, y), η(t, x, y)) be a solution of the data assimilation
algorithm. Let µ > 0 large enough and h > 0 small enough such that

µ ≥ C (ν, κ, λ1,L).

and µc2
0h2 ≤ ν. Then, ‖u(t)− v(t)‖L2(Ω) → 0 and ‖θ(t)− η(t)‖2L2(Ω)

→ 0 at an exponential rate as t →∞.
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A New Abridged Continuous Data Assimilation Algorithm

A New Abridged Continuous Data Assimilation Algorithm
for 2D NSE

Inspired by the continuous data assimilation algorithm for the Bénard
problem, we introduce an abridged and nominal approach to a
dynamic continuous data assimilation for the 2D Navier-Stokes.

The 2D Navier-Stokes equations which can be written as

∂u1
∂t − ν∆u1 + u1∂xu1 + u2∂yu1 + ∂xp = f1,

∂u2
∂t − ν∆u2 + u1∂xu2 + u2∂yu2 + ∂yp = f2,

∂xu1 + ∂yu2 = 0,
u1(0, x, y) = u0

1(x, y), u2(0, x, y) = u0
2(x, y).
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A New Abridged Continuous Data Assimilation Algorithm

We propose algorithm for the construction of approximate solution,
U (t, x, y) from the observational measurements of only one
component of velocity (horizontal or vertical).
The algorithm is given by

∂U1
∂t − ν∆U1 + U1∂xU1 + U2∂yU1 + ∂xP = f1,

∂U2
∂t − ν∆U2 + U1∂xU2 + U2∂yU2 + ∂yP = f2+µ(Ih(u2)− Ih(U2)),

∂xU1 + ∂yU2 = 0,
U1(0, x, y) = U 0

1 (x, y), U2(0, x, y) = U 0
2 (x, y).
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A New Abridged Continuous Data Assimilation Algorithm

Taking advantage of the divergence free condition, ∇ · v = ∇ ·U = 0,
and integration by parts we prove: In the case of volume elements
measurements with Dirichlet boundary conditions:

Theorem (Convergence to Reference Solution (Farhat, Lunasin and Titi
2014))
Let u(t, x, y) = (u1(t, x, y), u2(t, x, y)) be a refernce solution of the 2D
NSE and U (t, x, y) = (U1(t, x, y),U2(t, x, y)) be a solution of the
abridged continuous data assimilation system. Let µ > 0 be chosen large
enough such that

µ ≥ 2c(1 + log(Gr) + Gr4)Gr2.

If h > 0 is chosen small enough such that µc2
0h2 ≤ ν then,

‖u(t)−U (t)‖2L2(Ω) → 0 at an exponential rate as t →∞.
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A New Abridged Continuous Data Assimilation Algorithm

In the case of volume elements measurements with periodic boundary
conditions, enough to take

µ ≥ 2cνλ1(1 + log(Gr))Gr2.

In the case of discrete nodal measurements with periodic boundary
conditions, enough to take

µ > 2cνλ1(Gr2 + Gr3).
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A New Abridged Continuous Data Assimilation Algorithm

A New Abridged Continuous Data Assimilation Algorithm
for α-Models of Turbulenece

Our analytical approach assumes the global existence of the
underlying model and uses previously known estimates.
It is for this reason that we are not able to prove similar results for
the 3D NSE case.
The α-models are are simplified models through an averaging process
that is designed to capture the large scale dynamics of the flow and at
the same time provide reliable closure model to the averaged
equations.
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A New Abridged Continuous Data Assimilation Algorithm

The first α-model that was proposed is the Navier-Stokes-α model
(LANS-α or Camassa-Holm eqs.):

∂v
∂t + (u · ∇)v +∇u · v +∇p = ν∆v + f ,

∇ · u = 0, and v = u − α2∆u ,

Many other α-models, such as the Leray-α, the Clark-α, the
Navier-Stokes-Voigt (NSV) equation, the modified Leray-α (ML-α),
and the simplified Bardina model (SBM) were inspired by this
regularization technique.
All of the models just mentioned have global regular solutions and
posses fewer degrees of freedom than the NSE.
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A New Abridged Continuous Data Assimilation Algorithm

In Albanez, Nussenzveig-Lopes and Titi (2014), it was shown that
approximate solutions constructed using observations on all three
components of the unfiltered velocity field converge in time to the
reference solution of the 3D NS-α model.
We apply our data assimilation algorithm for the case of Leray-α
model:

∂tv − ν∆v + (u · ∇)v = −∇p + f ,
∇ · u = ∇ · v = 0,

v = u − α2∆u,
v(0, x, y, z) = v0(x, y, z).
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A New Abridged Continuous Data Assimilation Algorithm

The proposed algorithm for reconstructing u(t) and v(t) from only
the horizontal observational measurements Ih(v1(t)) and Ih(v2(t)) is
given by the system

∂tV1 − ν∆V1 + (U · ∇)V1 = −∂xP+µ (Ih(v1)− Ih(V1)) + f1,
∂tV2 − ν∆V2 + (U · ∇)V2 = −∂yP+µ (Ih(v2)− Ih(V2)) + f2,
∂tV3 − ν∆V3 + (U · ∇)V3 = −∂xP + f3,

∇ ·U = ∇ ·V = 0,
V = U − α2∆U ,

V (0, x, y, z) = V 0(x, y, z).
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A New Abridged Continuous Data Assimilation Algorithm

Theorem (Convergence to Reference Solution (Farhat, Lunasin and Titi
2014))
Let v(t, x, y, z) be a strong solution of the Leray-α model and V (t, x, y, z)
be a strong solution of the continuous data assimilation system subject to
periodic boundary conditions in Ω = [0,L]3. If µ > 0 is large enough such
that

µ ≥ 2cGr2,

and h > 0 is small enough such that µc2
0h2 ≤ ν. Then,

‖v(t)−V (t)‖L̇2(Ω) → 0 at exponential rate as t →∞.
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A New Abridged Continuous Data Assimilation Algorithm

Proof for the 2D NSE

Our data assimilation algorithm is given by
∂U1
∂t − ν∆U1 + U1∂xU1 + U2∂yU1 + ∂xP = f1,

∂U2
∂t − ν∆U2 + U1∂xU2 + U2∂yU2 + ∂yP = f2+µ(Ih(u2)− Ih(U2)),

∂xU1 + ∂yU2 = 0,
U1(0, x, y) = U 0

1 (x, y), U2(0, x, y) = U 0
2 (x, y).

We will use the following logarithmic estimate proved in Titi (1986):
For every u, v,w ∈ H 1(Ω), with w 6= 0, we have

|((u · ∇)v,w)| ≤

cT ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) ‖w‖L2(Ω)

1 + log

 ‖∇w‖L2(Ω)

λ
1/2
1 ‖w‖L2(Ω)

1/2

.
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A New Abridged Continuous Data Assimilation Algorithm

Define ũ = u −U and p̃ = p − P. Then ũ1 and ũ2 satisfy the
equations

∂ũ1
∂t − ν∆ũ1 + U1∂x ũ1 + U2∂y ũ1 + ũ1∂xu1 + ũ2∂yu1 + ∂x p̃ = 0,

∂ũ2
∂t − ν∆ũ2 + U1∂x ũ2 + U2∂y ũ2 + ũ1∂xu2 + ũ2∂yu2 + ∂y p̃ = −µIh(ũ2),

∂x ũ1 + ∂y ũ2 = 0.

We obtain using the divergence free condition and integration by
parts that

1
2

d
dt ‖ũ1‖2L2(Ω) + ν ‖∇ũ1‖2L2(Ω) ≤ |I1a|+ |I1b| − (∂x p̃, ũ1),

1
2

d
dt ‖ũ2‖2L2(Ω) + ν ‖∇ũ2‖2L2(Ω) ≤ |I2a|+ |I2b| − (∂y p̃, ũ2)

− µ(Ih(ũ2), ũ2),
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A New Abridged Continuous Data Assimilation Algorithm

where

I1a := (ũ1∂xu1, ũ1), I1b := (ũ2∂yu1, ũ1),
I2a := (ũ1∂xu2, ũ2), I2b := (ũ2∂yu2, ũ2).

Using integration by parts twice, we have

I1a = −
(
∂xu1, (ũ1)2

)
= −2 (u1ũ,∂x ũ1)

= 2 (u1ũ1, ∂y ũ2)
= −2 (ũ1∂yu1, ũ2)− 2 (u1∂y ũ1, ũ2)
=: −2(I1a1)− 2(I1a2),
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A New Abridged Continuous Data Assimilation Algorithm

By the logarithmic estimate and Young’s inequality, we show that

|I1a1| := | (ũ1∂yu1, ũ2) |
≤ cT ‖∇ũ1‖L2(Ω) ‖∇u1‖L2(Ω) ‖ũ2‖L2(Ω)1 + log

 ‖∇ũ2‖L2(Ω)

λ
1/2
1 ‖ũ2‖L2(Ω)

1/2

≤ ν

32 ‖∇ũ1‖L2(Ω) + c
ν
‖∇u1‖2L2(Ω)1 + log

 ‖∇ũ2‖L2(Ω)

λ
1/2
1 ‖ũ2‖L2(Ω)

 ‖ũ2‖2L2(Ω) ,
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A New Abridged Continuous Data Assimilation Algorithm

Thanks to the assumption µc2
0h2 ≤ ν and Young’s inequality,

−µ(Ih(ũ2), ũ2) = −µ(Ih(ũ2)− ũ2, ũ2)− µ ‖ũ2‖2L2(Ω)

≤ µ ‖Ih(ũ2)− ũ2‖L2(Ω) ‖ũ2‖L2(Ω) − µ ‖ũ2‖2L2(Ω)

≤ µc0h ‖ũ2‖L2(Ω) ‖∇ũ2‖L2(Ω) − µ ‖ũ2‖2L2(Ω)

≤ µc2
0h2

2 ‖∇ũ2‖2L2(Ω) −
µ

2 ‖ũ2‖2L2(Ω)

≤ ν

2 ‖∇ũ2‖2L2(Ω) −
µ

2 ‖ũ2‖2L2(Ω) .

Edriss S. Titi Data Assimilation Algorithm for 2D Bénard and 3D α ModelsJune 1–5, 2015 32 / 36



A New Abridged Continuous Data Assimilation Algorithm

It follows that

d
dt ‖ũ‖

2
L2

0(Ω) + νλ1
2 ‖ũ‖

2
L2

0(Ω) + νλ1
2
‖∇ũ2‖2L2(Ω)

λ1 ‖ũ2‖2L2(Ω)
‖ũ2‖2L2(Ω) ≤ c

ν
‖∇u‖2L2

0(Ω)

1 + log

 ‖∇ũ2‖2L2(Ω)

λ1 ‖ũ2‖2L2(Ω)

− µ
 ‖ũ2‖2L2(Ω) .

Using the following elementary inequality:
Let φ(r) = r − γ(1 + log r) where γ > 0. Then

min{φ(r) : r ≥ 1} ≥ −γ log(γ),
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we have

d
dt ‖ũ‖

2
L2

0(Ω) + νλ1
2 ‖ũ‖

2
L2

0(Ω) + β(t) ‖ũ2‖2L2(Ω) ≤ 0,

with
β(t) := µ− c

ν
‖∇u‖2L2

0(Ω) log
( c
ν2λ1

‖∇u‖2L2
0(Ω)

)
.

Using the estimates on the solution of the 2D NSE, there exists
t0 > 0 and τ > 0 such that

lim inf
t→∞

∫ t+τ

t
β(s) ds ≥ µ

2 > 0, and lim sup
t→∞

∫ t+τ

t
β(s) ds ≤ 3µ

2 <∞.
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Using the general lemma:

Lemma
Let τ > 0 be arbitrary but fixed. Suppose that Y (t) is an absolutely
continuous function which is locally integrable and that it satisfies the
following:

dY
dt + β(t)Y ≤ 0, a.e. on (0,∞),

and

lim inf
t→∞

∫ t+τ

t
β(s) ds ≥ γ, lim sup

t→∞

∫ t+τ

t
β−(s) ds <∞,

for some γ > 0, where β− = max{β, 0}. Then, Y (t)→ 0 at an
exponential rate, as t →∞.

we can conclude that ‖ũ‖L2
0(Ω) → 0, at an exponential rate as t →∞.
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Thank You!
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