Regularity of the free boundary in problems with distributed sources.

S. Salsa
Barcellona, July 2013.

Lesson 1

Outline

- Introduction and examples
- One phase problems. Viscosity solutions
- Statement of the theorems: "flat implies smooth", "Lipschitz implies flat". Proof of Lipschitz implies flat.

1.1. Introduction and examples

In these series of lectures we shall consider two typical model free boundary problems. The first one is a so called one phase problem, whose formulation is as follows.

Given a bounded domain $\Omega \subset \mathbb{R}^{n}$, we look for a nonnegative function u satisfying the system

$$
\begin{cases}\Delta u=f & \text { in } \Omega^{+}(u)=\{x \in \Omega: u(x)>0\} \tag{1}\\ |\nabla u|=g & \text { on } F(u)=\partial \Omega^{+}(u) \cap \Omega .\end{cases}
$$

As one can see, other than u also the set $F(u)$, called the free boundary, is an unknown, actually, quite often, the unknown and indeed we shall focus on its regularity properties.

A typical example comes from classical hydrodynamics. A travelling two-dimensional gravity wave moves with constant speed on the surface of an incompressible, inviscid, heavy fluid. The bottom is horizontal. With respect to a reference domain moving with the wave speed, the motion is steady and occupies a fixed region Ω, delimited from above by an unknown free line S, representing the wave profile.

Since the flow is incompressible, the velocity can be expressed by the gradient of a stream function ψ. Under suitable assumpions on the flow speed, ψ and the vorticity, $\omega=\Delta \psi$ are functionally dependent. Assuming furthermore that the bottom and S are streamlines, from Bernoully law on S, we derive the following model:

$$
\begin{array}{ll}
0 \leq \psi \leq B & \text { in } \bar{\Omega} \\
\Delta \psi=-\gamma(\psi) & \text { in } \Omega= \\
\psi=B & \text { on } y= \\
|\nabla \psi|^{2}+2 g y=Q, \quad \psi=0 & \text { on } S .
\end{array}
$$

Here Q is constant, B, g are positive constants and $\gamma:[0, B] \rightarrow \mathbb{R}$, called vorticity function.
The problem is to find S such that there exists a function ψ satisfying the above system.
Several papers have been recently devoted to solve this problem. Of particular interest is the proof of the so called Stokes conjecture, according to which at points where the gradient vanishes (stagnation points) the wave profile presents a 120° corner. Away from stagnation
points the free boundary is Lipschitz and moreover $Q-2 g y>0$. We refer to [V] and the reference therein, for more details and known results. Among the various problems left open there was the regularity of S away from stagnation points. The answer is given in [D], where the author shows that in this regions S is a smooth curve.

The second model is a two phase problem:

$$
\begin{cases}\Delta u=f, & \text { in } \Omega^{+}(u) \cup \Omega^{-}(u) \tag{2}\\ \left(u_{\nu}^{+}\right)^{2}-\left(u_{\nu}^{-}\right)^{2}=1 & \text { on } F(u)\end{cases}
$$

Here

$$
\Omega^{+}(u)=\{x \in \Omega: u(x)>0\}, \quad \Omega^{-}(u)=\{x \in \Omega: u(x) \leq 0\}^{\circ},
$$

and u_{ν}^{+}and u_{ν}^{-}denote the normal derivatives in the inward direction to $\Omega^{+}(u)$ and $\Omega^{-}(u)$ respectively.

A significant eample in 2-d is the so called Prantl-Batchelor flow. A bounded domain is delimited by two simple cloded curves γ, Γ. Let Ω_{1}, Ω_{2} be as in figure below.

FIGURE 1.
For given constant $\mu<0, \omega>0$, consider functions ψ_{1}, ψ_{1} satisfying

$$
\begin{gathered}
\Delta \psi_{1}=0 \text { in } \Omega_{1}, \quad \psi_{1}=0 \text { on } \gamma, \psi_{1}=\mu \text { on } \Gamma, \\
\Delta \psi_{2}=\omega \text { in } \Omega_{2}, \quad \psi_{2}=0 \text { on } \gamma .
\end{gathered}
$$

The two functions ψ_{1}, ψ_{1} are interpreted as stream functions of an irrotational flow in Ω_{1} and of a constant vorticity flow in Ω_{2}. In the model proposed by Batchelor, coming by limit of large Reynold number in the steady Navier-Stokes equation, is hypothesized a flow of this type in which there is a jump in the tangential velocity along γ, namely

$$
\left|\nabla \psi_{1}\right|^{2}-\left|\nabla \psi_{1}\right|^{2}=\sigma
$$

for some positive constant. In this problem γ is to be determined and plays the role of a free boundary.

There is no satisfactory theory for this problem. Viscosity solutions (see Lesson 4) are Lipschitz across γ as shown in [CJK], but neither existence nor regularity is known (uniqueness fails already in the radial case, where two explicit solution can be found).

Here we shall prove that flat or Lipschitz free boundaries are smooth (see [DFS1]).
Similar problems comes from singular perturbation problems with forcing terms in flame propagation theory (see [LW]) or from magnetohydrodysamics as in [FL].

The homogeneous case $f \equiv 0$ was settled in the classical works of Caffarelli [C1,C2]. A key step in these papers is the construction of a family of continuous supconvolution deformations that act as comparison subsolutions.

The results in [C1,C2] have been widely generalized to different classes of homogeneous elliptic problems.

In [D], De Silva introduced a new strategy to investigate inhomogeneous free boundary problems, motivated by a classical one phase problem in hydrodynamic. The first three lessons are devoted to the description of this technique.

In the last three lessons we extend this technique to two phase problems, describing the results in [DFS1]. Actually, in this paper, general second order uniformly elliptic linear operators with Hoelder coefficients operators are considered, with more general free boundary conditions. For the extension to fully nonlinear operators, see [DFS2].

1.2. One phase problems. Viscosity solutions

Given a bounded domain $\Omega \subset \mathbb{R}^{n}$, we examine the following one phase problem:

$$
\begin{cases}\Delta u=f & \text { in } \Omega^{+}(u)=\{x \in \Omega: u(x)>0\} \tag{3}\\ |\nabla u|=g & \text { on } F(u)=\partial \Omega^{+}(u) \cap \Omega\end{cases}
$$

where $f \in C(\Omega) \cap L^{\infty}(\Omega)$ and $g \in C^{0, \beta}(\Omega), g \geq 0$.
By a classical subsolution (resp. super solution) of (3) we mean a function v such that $v \in C^{2}(\Omega), \Delta v \geq f\left(\right.$ resp. \leq) in $\Omega^{+}(v)$ and $|\nabla v| \geq g($ resp. $|\nabla v| \leq g)$ on $F(v)$, with $|\nabla v|>0$.

Strict inequalities correspond to strict sub and supersolutions. Note that $v \in C^{2}(\Omega)$ but only its positive part plays a role on $F(v)$.

Viscosity sub/super solutions are defined in the usual way. Given $u, \varphi \in C(\Omega)$, we say that φ touches u by below (resp. above) at $x_{0} \in \Omega$ if $u\left(x_{0}\right)=\varphi\left(x_{0}\right)$, and

$$
u(x) \geq \varphi(x) \quad(\text { resp. } u(x) \leq \varphi(x)) \quad \text { in a neighborhood } O \text { of } x_{0}
$$

If this inequality is strict in $O \backslash\left\{x_{0}\right\}$, we say that φ touches u strictly by below (resp. above).
Definition $1.1 u \in C(\Omega), u \geq 0$ in Ω, is a viscosity subsolution (supersolution) if the following conditions are satisfied:
i) if $\varphi \in C^{2}(\Omega)$ and φ touches u by above (below) at $x_{0} \in \Omega^{+}(u)$ then $\Delta \varphi\left(x_{0}\right) \geq f\left(x_{0}\right)$ (\leq).
ii) if $\varphi \in C^{2}(\Omega)$ and φ^{+}touches u by above/below at $x_{0} \in F(u)$ with $\left|\nabla \varphi\left(x_{0}\right)\right|>0$, then

$$
\left|\nabla \varphi\left(x_{0}\right)\right| \geq g\left(x_{0}\right) \quad((\leq))
$$

We say that u is a viscosity solution if it is both a sub and a supersolution.
Notice that if v is a strict (classical) subsolution and $v^{+} \leq u$ in Ω, then they cannot touch neither in $\Omega^{+}(v)$ nor on $F(v)$, therefore:

Lemma 1.1. Let u, φ be a solution and a strict classical subsolution, respectively. If $u \geq \varphi^{+}$ in Ω then $u>\varphi^{+}$in $\Omega^{+}(\varphi) \cup F(\varphi)$.

1.3 Statement of the main theorems. Proof of Lipschitz implies $C^{1, \alpha}$

The flatness condition we impose is that the graph of u in B_{1} is trapped between two hyperplane at distance ε : for some unit vector ν,

$$
\begin{equation*}
(x \cdot \nu-\varepsilon)^{+} \leq u(x) \leq(x \cdot \nu+\varepsilon)^{+} \quad \text { in } B_{1} . \tag{4}
\end{equation*}
$$

If (4) holds, we say that the graph of u is ε-flat in B_{1} in the direction ν. The main theorems are the following two (see [D]). A constant depending only on $n,\|f\|_{L^{\infty}\left(B_{1}\right)}$ and on the Hölder norm of g is called universal.

Theorem 1.2 (Flatness implies $C^{1, \alpha}$). Let u be a viscosity solution of our f.b.p in B_{1}. Assume that $0 \in F(u), g(0)=1$. Then, there is a universal constant $\bar{\varepsilon}>0$ such that if the graph of u is $\bar{\varepsilon}$-flat in B_{1} in the direction e_{n} and

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \bar{\varepsilon},[g]_{C^{0, \beta}\left(B_{1}\right)} \leq \bar{\varepsilon}
$$

then $F(u)$ is $C^{1, \alpha}$ in $B_{1 / 2}$.
As a consequence of Theorem 1.2 we prove that Lipschitz free boundaries are $C^{1, \alpha}$. Namely:
Theorem 1.3 (Lipschitz implies $C^{1, \alpha}$). Let u be a viscosity solution of our f.b.p in B_{1}. Assume that $0 \in F(u), g(0)=1$. If $F(u)$ is a Lipschitz graph in B_{1} then $F(u)$ is $C^{1, \alpha}$ in $B_{1 / 2}$.

Proof of Theorem 1.3.

For the proof of Theorem 1.3 we need the following consequence of [C1]. Let $u_{0} \geq 0$ be a global Lipschitz solution of

$$
\left\{\begin{array}{cc}
\Delta u_{0}=0 & \text { in }\left\{x \in \mathbb{R}^{n}: u_{0}(x)>0\right\} \tag{5}\\
\left|\nabla u_{0}\right|=1 & \text { on } F\left(u_{0}\right)
\end{array}\right.
$$

If $F\left(u_{0}\right)$ is a (global) Lipschitz graph, then up to a rotation, $u_{0}(x)=x_{n}^{+}$.
Lemma 1.4 (Lipschitz continuity and nondegeneracy). Let u be as in Theorem 1.3. Assume that

$$
\begin{equation*}
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \bar{\varepsilon},\|g-1\|_{L^{\infty}\left(B_{1}\right)} \leq \bar{\varepsilon} \tag{6}
\end{equation*}
$$

for $\bar{\varepsilon}$ small, universal. Then

$$
c_{0} d(x) \leq u(x) \leq C_{0} d(x) \quad \forall x \in B_{1 / 2}^{+}(u)
$$

with $d(x)=\operatorname{dist}(x, F(u)), c_{0}, C_{0}$ positive, universal.

Proof. Let $x_{0} \in B_{1 / 2}^{+}(u), d_{0}=d\left(x_{0}\right)$ and $y_{0} \in F(u)$ such that $d\left(x_{0}\right)=\left|x_{0}=y_{0}\right|$. Set

$$
w(z)=\frac{u\left(d_{0}\left(z+x_{0}\right)\right)}{d_{0}} \quad z \in B_{1 / d_{0}}(0)
$$

Then w satisfies (3) with right hand side $\tilde{f}(z)=d_{0} f\left(d_{0}\left(z+x_{0}\right)\right)$ and free boundary condition $|\nabla w(z)|=\tilde{g}(z)=g\left(d_{0}\left(z+x_{0}\right)\right)$.

We show that

$$
c_{0} \leq w(0) \leq C_{0}
$$

Suppose $w(0)>C_{0}$, with C_{0} to be chosen.
By Harnack inequality, in $B_{1 / 2}$ we get

$$
w(z) \geq c\left\{w(0)-c_{1}\|f\|_{L^{\infty}\left(B_{1}\right)}\right\} \geq c\left\{w(0)-c_{1} \bar{\varepsilon}\right\} \geq C_{1} w(0)
$$

Define

$$
G(z)=C\left(|z|^{-\gamma}-1\right)
$$

We have $G=0$ on ∂B_{1} and we choose C such that $G=1$ on $\partial B_{1 / 2}$.
In the anulus $A=B_{1} \backslash \bar{B}_{1 / 2}$ we have

$$
\Delta G(z)=C|z|^{-\gamma-2}\{-\gamma n+\gamma(\gamma+2)\} \geq \bar{\varepsilon}
$$

if γ is large enough.
Let $v(z) \equiv C_{1} w(0) G(z)$. We have $\left(w(0)>C_{0}\right)$

$$
\Delta v(z) \geq C_{1} w(0) \bar{\varepsilon}>\tilde{f}(z)
$$

Then the maximum principle gives

$$
w(z) \geq v(z) \equiv C_{1} w(0) G(z) \quad \text { in } A
$$

At the point $z_{0}=\partial B_{1} \cap F(w)$ corresponding to y_{0}, both w and v vanish. Since $\Delta v(z) \geq$ $C_{1} w(0) \bar{\varepsilon}>\tilde{f}(z)$ we must have at z a supersolution condition, or

$$
\gamma C C_{1} w(0)=\left|\nabla v\left(z_{0}\right)\right| \leq \tilde{g}\left(z_{0}\right) \leq 1+\bar{\varepsilon}<2
$$

which contradicts $w(0)>C_{0}$ if C_{0} is large enough. This proves the upper bound.
To prove the lower bound, let

$$
G_{0}(z)=\eta(1-G(z))
$$

and choose η to make G_{0} a strict supersolution on $\partial B_{1 / 2}$, precisely

$$
\left|\nabla G_{0}\right|<1-\bar{\varepsilon}
$$

We may assume that $F(u)=\left\{x_{n}=\psi\left(x^{\prime}\right)\right\}$ and that $\operatorname{Lip}(\psi) \leq 1$. Then, in the rescaled situation, we have: $w \equiv 0$ in $B_{1}\left(-e_{n}\right)$. Thus $G_{0}\left(z+e_{n}\right) \geq w(z)$ there.

Slide the graph of $G_{0}\left(z+e_{n}\right)$ along e_{n} until it touches the graph of w (from above). Since G_{0} is a strict supersolution to our f.b.p., the touching point \bar{z} can only occur at the level η in the positive phase of u and $|\bar{z}| \leq C(L)$.

Note that $\bar{d}=\operatorname{dist}(\bar{z}, F(w)) \leq 1$. On the other hand, since w is Lipschitz continuous, we have

$$
w(\bar{z})=\eta \leq C \bar{d}
$$

so that

$$
\bar{d} \sim 1
$$

Since $F(w)$ is Lipschitz, we can costruct a Harnack chain with balls of radius comparable to 1 , connecting 0 and \bar{z}.

Harnack inequality gives, for $\bar{\varepsilon}$ small, $w(0) \geq c \eta \equiv c_{0}$.
We are now ready to prove Theorem 1.3. Consider the blow-up sequence

$$
u_{k}(x)=\frac{u\left(\rho_{k} x\right)}{\rho_{k}}
$$

with $\rho_{k} \rightarrow 0$ as $k \rightarrow \infty$. Each u_{k} is a solution of our f.b.p. with $f_{k}(x)=\rho_{k} f\left(\rho_{k} x\right)$ and $g_{k}=g_{k}\left(\rho_{k} x\right)$. For k large, in B_{1} we have

$$
\left\|f_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \rho_{k}\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \bar{\varepsilon}
$$

and

$$
\left|g_{k}(x)-1\right|=\left|g\left(\rho_{k} x\right)-g(0)\right| \leq \rho_{k}^{\beta}[g]_{0, \beta} \leq \bar{\varepsilon}
$$

so that (6) are satisfied.
From Lemma 1.4 (up to passing to a subsequence) we deduce that.

1. $u_{k} \rightarrow u_{0}$ in $C_{l o c}^{0, \alpha}\left(\mathbb{R}^{n}\right)$ for all $0<\alpha<1$ (by uniform Lipschitz continuity);
2. $\partial\left\{u_{k}>0\right\} \rightarrow \partial\left\{u_{0}>0\right\}$ locally in Haussdorf distance ${ }^{1}$ (by nondegeneracy). ${ }^{2}$

Now, u_{0} is a global Lipschitz solution of (5) and $F\left(u_{0}\right)$ is a global Lipschitz graph.
We infer that, up to a rotation, $u_{0}(x)=x_{n}^{+}$. This implies that, say, in $B_{1 / 2}$, for k large enough, u_{k} is $\bar{\varepsilon}$ flat in the e_{n} direction.

The conclusion follows from Theorem 1.2

[^0]where

Equivalently,

$$
N_{\alpha}(K)=\left\{x \in \mathbb{R}^{n} ; d(x, K) \leq \alpha\right\} .
$$

$$
d^{H}\left(K_{1}, K_{2}\right)=\left\|d\left(x, K_{1}\right)-d\left(x, K_{2}\right)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}
$$

[^1]
Lesson 2

Outline

- Flat implies smooth. De Silva strategy
- The basic Harnack inequality

2.1 Flat implies smooth. De Silva strategy

The proof of Theorem 1.2 goes along 3 main steps.

1. Consider the normalized function

$$
\tilde{u}_{\varepsilon}(x)=\frac{u(x)-x_{n}}{\varepsilon} \quad \varepsilon \leq \bar{\varepsilon}
$$

and prove a Harnack inequality implying that \tilde{u}_{ε} has a uniform Holder modulus of continuity at each point $x_{0} \in \Omega^{+}(u) \cup F(u)$ outside a ball $B_{\varepsilon / \bar{\varepsilon}}\left(x_{0}\right)$.
2. A basic geometric improvement of flatness, from

$$
\left(x_{n}-\varepsilon\right)^{+} \leq u(x) \leq\left(x_{n}+\varepsilon\right)^{+} \quad \text { in } B_{1}
$$

to

$$
\begin{equation*}
(x \cdot \nu-r \varepsilon / 2)^{+} \leq u(x) \leq(x \cdot \nu+r \varepsilon / 2)^{+} \quad \text { in } B_{r} \tag{7}
\end{equation*}
$$

for $r \leq r_{0}$, universal, $\varepsilon \leq \varepsilon_{0}(r)$ and moreover

$$
\left|\nu-e_{n}\right| \leq C \varepsilon .
$$

In this step, a contradiction argument leads to a sequence of normalized $\tilde{u}_{\varepsilon_{k}}$ converging, locally uniformly thanks to step 1 , to a solution \tilde{u} of a Neumann problem in a half ball, which is, in practice, a linearization of the original f.b.p.. The regularity properties of \tilde{u} are transfered to $\tilde{u}_{\varepsilon_{k}}$ for k large, giving a contradiction.
3. Iteration of step 2 gives, for $r=\bar{r}$, suitably chosen and $\varepsilon_{k}=2^{-k} \varepsilon_{0}(\bar{r})$,

$$
\left(x \cdot \nu_{k}-\bar{r}^{k} \varepsilon_{k}\right)^{+} \leq u(x) \leq\left(x \cdot \nu_{k}+\bar{r}^{k} \varepsilon_{k}\right)^{+} \quad \text { in } B_{\bar{r}^{k}}
$$

with $\left|\nu_{k+1}-\nu_{k}\right| \leq C \varepsilon_{k}$. This implies that $F(u)$ is $C^{1, \alpha}$ at the origin. Repeating the procedure for points in a neighborhood of $x=0$, since all estimates are universal, we conclude that there exists a unit vector ν_{∞} and $C>0, \alpha \in(0,1)$ both universal, such that, in the coordinate system $e_{1}, \ldots, e_{n-1}, \nu_{\infty}, \nu_{\infty} \perp e_{j}, e_{j} \cdot e_{k}=\delta_{j k}, F(u)$ is a graph, $C^{1, \alpha}$ graph, say $x_{n}=f\left(x^{\prime}\right)$, with $f\left(0^{\prime}\right)=0$ and

$$
\left|f\left(x^{\prime}\right)-\nu_{\infty} \cdot x^{\prime}\right| \leq C\left|x^{\prime}\right|^{1+\alpha}
$$

in a neighborhood of $x=0$.

FIGURE 2. Improvement of flatness

2.2 The basic Harnack inequality

Theorem 2.1 (Harnack inequality). Let u be a viscosity solution of our f.b.p in Ω. There exists a universal $\bar{\varepsilon}$ such that if $\varepsilon \leq \bar{\varepsilon}$,

$$
\|f\|_{L^{\infty}(\Omega)} \leq \varepsilon^{2},\|g-1\|_{L^{\infty}(\Omega)} \leq \varepsilon^{2}
$$

and, for some $x_{0} \in \Omega^{+}(u) \cup F(u)$,

$$
\begin{equation*}
\left(x_{n}+a_{0}\right)^{+} \leq u(x) \leq\left(x_{n}+b_{0}\right)^{+} \quad \text { in } B_{r}\left(x_{0}\right) \subset \Omega \tag{8}
\end{equation*}
$$

with

$$
0<b_{0}-a_{0} \leq \varepsilon r,
$$

then

$$
\left(x_{n}+a_{1}\right)^{+} \leq u(x) \leq\left(x_{n}+b_{1}\right)^{+} \quad \text { in } B_{r / 20}\left(x_{0}\right)
$$

with

$$
a_{0} \leq a_{1} \leq b_{1} \leq b_{0}, \quad b_{1}-a_{1} \leq(1-c) \varepsilon r,
$$

and $0<c<1$, universal.
Corollary 2.2. Let $r=1$ in (8). Then, the function

$$
\tilde{u}_{\varepsilon}(x)=\frac{u(x)-x_{n}}{\varepsilon} \quad \varepsilon \leq \bar{\varepsilon}
$$

satisfies

$$
\left|\tilde{u}_{\varepsilon}(x)-\tilde{u}_{\varepsilon}\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\gamma}
$$

for all $x \in B_{1}\left(x_{0}\right) \cap\left[\Omega^{+}(u) \cup F(u)\right]$ such that $\left|x-x_{0}\right| \geq \varepsilon / \bar{\varepsilon}$.

Proof. From Theorem 2.1, we have

$$
\left(x_{n}+a_{1}\right)^{+} \leq u(x) \leq\left(x_{n}+b_{1}\right)^{+} \quad \text { in } B_{1 / 20}\left(x_{0}\right)
$$

with

$$
a_{0} \leq a_{1} \leq b_{1} \leq b_{0}, \quad b_{1}-a_{1} \leq(1-c) \varepsilon
$$

We reapply Theorem 2.1 , with $r=1 / 20$. To do this we must have

$$
b_{1}-a_{1} \leq \varepsilon^{\prime} / 20 \quad \varepsilon^{\prime} \leq \bar{\varepsilon}
$$

We have

$$
b_{1}-a_{1} \leq 20(1-c) \varepsilon / 20 \equiv \varepsilon^{\prime} / 20
$$

and we require

$$
\varepsilon^{\prime}=20(1-c) \varepsilon \leq \bar{\varepsilon}
$$

Theorem 2.1 gives

$$
\left(x_{n}+a_{2}\right)^{+} \leq u(x) \leq\left(x_{n}+b_{2}\right)^{+} \quad \text { in } B_{1 / 20^{2}}\left(x_{0}\right)
$$

with

$$
a_{0} \leq a_{1} \leq a_{2} \leq b_{2} \leq b_{1} \leq b_{0}
$$

and

$$
b_{2}-a_{2} \leq(1-c) \varepsilon^{\prime} / 20=(1-c)^{2} \varepsilon
$$

Iterating, we get

$$
\begin{equation*}
\left(x_{n}+a_{m}\right)^{+} \leq u(x) \leq\left(x_{n}+b_{m}\right)^{+} \quad \text { in } B_{1 / 20^{m}}\left(x_{0}\right) \tag{9}
\end{equation*}
$$

with

$$
b_{m}-a_{m} \leq(1-c)^{m} \varepsilon
$$

as long as

$$
20^{m}(1-c)^{m} \varepsilon \leq \bar{\varepsilon}
$$

or

$$
20^{-m}(1-c)^{-m} \geq \frac{\varepsilon}{\bar{\varepsilon}}
$$

Set $\left|x-x_{0}\right|^{m} \sim r_{m}=20^{-m}$ and $(1-c)=20^{-\gamma}$. Then we deduce that

$$
\left|\tilde{u}_{\varepsilon}(x)-\tilde{u}_{\varepsilon}\left(x_{0}\right)\right| \leq(1-c)^{m}=r_{m}^{\gamma} \leq C\left|x-x_{0}\right|^{\gamma}
$$

as long as $\left|x-x_{0}\right| \geq \varepsilon / \bar{\varepsilon}$.
The proof of Harnack inequality relies on the following Lemma, which states that a pointwise gain in flatness away from $F(u)$ gives a little less gain, uniformly in half ball $B_{1 / 2}$.

Lemma 2.3. Let u be a viscosity solution of our f.b.p in B_{1}. Set

$$
p(x)=x_{n}+\sigma,|\sigma| \leq \frac{1}{10}, \text { and } \bar{x}=\frac{1}{5} e_{n} .
$$

Assume that

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{2},\|g-1\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{2} .
$$

There exists a universal $\bar{\varepsilon}$ such that if $\varepsilon \leq \bar{\varepsilon}$,

$$
\begin{equation*}
p(x)^{+} \leq u(x) \leq(p(x)+\varepsilon)^{+} \quad \text { in } B_{1} \tag{10}
\end{equation*}
$$

FIGURE 3.
and

$$
\begin{equation*}
u(\bar{x}) \geq(p(\bar{x})+\varepsilon / 2)^{+} \quad(\text { resp. } \leq) \tag{11}
\end{equation*}
$$

then, in $B_{1 / 2}$,

$$
u(x) \geq(p(x)+c \varepsilon)^{+} \quad\left(\text { resp. } u(x) \leq(p(x)+(1-c) \varepsilon)^{+}\right)
$$

for some universal $1<c<1$.
Proof. First we show that the interior gain (11) propagates into a neighborhood of \bar{x}. Clearly we have $u \geq p$ in B_{1}. Let

$$
A=B_{3 / 4}(\bar{x}) \backslash B_{1 / 20}(\bar{x}) .
$$

Note that, since $|\sigma| \leq 1 / 10$ we have (see figure 2 below)

$$
B_{1 / 10}(\bar{x}) \subset B_{1}^{+} .
$$

Also

$$
B_{1 / 2} \subset \subset B_{3 / 4}(\bar{x}) \subset \subset B_{1}
$$

Define

$$
w(x)=c\left[|x-\bar{x}|^{-\gamma}-(3 / 4)^{-\gamma}\right] \quad \text { in } A
$$

and

$$
w \equiv 1 \text { in } B_{1 / 20}(\bar{x})
$$

with the constant c chosen such that $w=1$ on $\partial B_{1 / 20}(\bar{x})$ and γ (large) so that

$$
\begin{equation*}
\Delta w \geq \delta>0, \quad \delta \text { universal. } \tag{12}
\end{equation*}
$$

Note that $w \leq 1$ in A.

By Harnack inequality in $B_{1 / 10}(\bar{x})$, we get

$$
u(x)-p(x) \geq c_{1}(u(\bar{x})-p(\bar{x}))-c_{2}\|f\|_{L^{\infty}\left(B_{1 / 10}\right)} \quad \text { in } \bar{B}_{1 / 20}(\bar{x})
$$

Thus

$$
\begin{equation*}
u(x)-p(x) \geq \frac{c_{1}}{2} \varepsilon-c_{2} \varepsilon^{2} \geq c_{0} \varepsilon \quad \text { in } \bar{B}_{1 / 20}(\bar{x}) \tag{13}
\end{equation*}
$$

To propagate this gain up to $F(u)$ we construct a family of subsolutions.
Set, for $t \geq 0, x \in B_{3 / 4}(\bar{x})$

$$
v_{t}(x)=p(x)+c_{0} \varepsilon(w-1)+t .
$$

Observe that

$$
\Delta v_{t} \geq c_{0} \varepsilon \delta \geq \varepsilon^{2} \geq f \quad \text { in } A
$$

Moreover, in $B_{3 / 4}(\bar{x})$,

$$
v_{0} \leq p \leq u
$$

Thus we can define \bar{t} the largest $t>0$ such that

$$
v_{t} \leq u \quad \text { in } B_{3 / 4}(\bar{x})
$$

We want to show that $\bar{t} \geq c_{0} \varepsilon$. Then, in $B_{1 / 2}$

$$
\begin{aligned}
u(x) & \geq p(x)+c_{0} \varepsilon(w-1)+\bar{t} \\
& \geq p(x)+c_{0} \varepsilon w \\
& \geq p(x)+c \varepsilon
\end{aligned}
$$

since there $w \geq C>0, C$ universal, and we have done.
Suppose $\bar{t}<c_{0} \varepsilon$ and let $x^{*} \in B_{3 / 4}(\bar{x})$ such that

$$
v_{\bar{t}}\left(x^{*}\right)=u\left(x^{*}\right) .
$$

Claim: $x^{*} \in \bar{B}_{1 / 20}(\bar{x})$. Indeed, since $w=0$ on $\partial B_{3 / 4}(\bar{x})$, we deduce

$$
v_{\bar{t}}<p \leq u \quad \text { on } \partial B_{3 / 4}(\bar{x}) .
$$

Inside A we have

$$
\Delta v_{t} \geq f
$$

and also

$$
\left|\nabla v_{\bar{t}}\right| \geq\left|D_{n} v_{\bar{t}}\right|=\left|1+c_{0} \varepsilon D_{n} w\right| .
$$

We want to show that $v_{\bar{t}}$ is a strict subsolution in A. For this we have to prove that

$$
\left|\nabla v_{\bar{t}}\right| \geq g \quad \text { on } F\left(v_{\bar{t}}\right) \cap A .
$$

Observe that

$$
\begin{aligned}
\left\{v_{\bar{t}} \leq 0\right\} \cap A & =\left\{p(x)+c_{0} \varepsilon(w-1)+\bar{t} \leq 0\right\} \cap A \\
& \subset\left\{p(x)-c_{0} \varepsilon \leq 0\right\} \cap A=\left\{x_{n} \leq-\sigma+c_{0} \varepsilon\right\} \cap A \\
& \subset\left\{x_{n}<3 / 20\right\}
\end{aligned}
$$

so that $\bar{B}_{1 / 20} \cap\left\{v_{\bar{t}} \leq 0\right\}=\varnothing$.

FIGURE 4.
This implies that

$$
\nu_{x} \cdot e_{n} \equiv \frac{x-\bar{x}}{|x-\bar{x}|} \cdot e_{n} \geq c>0 \quad \text { on }\left\{v_{\bar{t}} \leq 0\right\} \cap A .
$$

In particular, since $|\nabla w| \geq C>0$ in A, we get

$$
D_{n} w=\nabla w \cdot e_{n}=|\nabla w|\left(\nu_{x} \cdot e_{n}\right) \geq c_{1}>0 \text { on } F\left(v_{\bar{t}}\right) \cap A .
$$

Thus,

$$
\left|\nabla v_{\bar{t}}\right|=\left|1+c_{0} \varepsilon D_{n} w\right| \geq 1+c_{2} \varepsilon \geq g \quad \text { on } F\left(v_{\bar{t}}\right) \cap A
$$

and $v_{\bar{t}}$ is a strict subsolution in A. Therefore $x^{*} \in \bar{B}_{1 / 20}(\bar{x})$ and

$$
u\left(x^{*}\right)=v_{\bar{t}}\left(x^{*}\right)=p\left(x^{*}\right)+\bar{t} \leq p\left(x^{*}\right)+c_{0} \varepsilon
$$

in contradiction with (13).
Proof of Theorem 2.1. Let $x_{0}=0 \in \Omega^{+}(u) \cup F(u), r=1$. From (8) we have

$$
\begin{equation*}
p(x)^{+} \leq u(x) \leq(p(x)+\varepsilon)^{+} \quad \text { in } B_{1} \tag{14}
\end{equation*}
$$

with $p(x)=x_{n}+a_{0}$. We distinguish 3 cases.

1. $\left|a_{0}\right|<1 / 10$. Then the result follows directly from Lemma 4 .
2. $a_{0}>1 / 10$. Then $u \geq x_{n}+a_{0}>x_{n}+1 / 10$ implies that $B_{1 / 10} \subset B_{1}^{+}(u)$ and the conclusion follows from interior Harnack inequality.
3. $a_{0}<-1 / 10$. Then $u \leq x_{n}+a_{0}+\varepsilon<\left(x_{n}-1 / 10+\varepsilon\right)^{+}$implies that $(\varepsilon$ small $) u=0$ in a neighborhood of $x=0$. Contradiction.

Lesson 3

Outline

- A Neumann problem
- Improvement of flatness
- The final iteration

3.1 A Neumann problem

We need to show that viscosity solutions of the problem

$$
\begin{cases}\Delta v=0 & \text { in } B_{r} \cap\left\{x_{n}>0\right\} \tag{15}\\ v_{n}=0 & \text { on } B_{r} \cap\left\{x_{n}=0\right\}\end{cases}
$$

are indeed classical. We recall the notion of viscosity solution.
Definition 3.1. We say that v, continuous in $B_{r} \cap\left\{x_{n} \geq 0\right\}$, is a viscosity solution of (15) if for every quadratic polynomial P touching v by below (resp. above) at $x^{*} \in B_{r} \cap\left\{x_{n} \geq 0\right\}$ we have:
a) if $x^{*} \in B_{r} \cap\left\{x_{n}>0\right\}$, then $\Delta P \leq 0$ (resp. $\Delta P \geq 0$);
b) if $x^{*} \in B_{r} \cap\left\{x_{n}=0\right\}$ then $P_{n}\left(x^{*}\right) \leq 0\left(\right.$ resp. $\left.P_{n} \geq 0\right)$.

Remarks 3.1.

1) It is enough to consider polynomials P touching v strictly by below or above. If not, one replaces P by $P_{\eta}(x)=P(x) \mp \eta\left(x_{n}-x_{n}^{*}\right)^{2}, \eta>0$.
2) In the condition b) it is enough to consider polynomials P with $\Delta P>0($ resp. $\Delta P<0)$. Indeed, assume P touches by below v at $x^{*} \in B_{r} \cap\left\{x_{n}=0\right\}$. Consider

$$
P^{*}(x)=P(x)-\eta\left(x_{n}-x_{n}^{*}\right)+C(\eta)\left(x_{n}-x_{n}^{*}\right)^{2} .
$$

for $\eta>0$. Then P^{*} touches by below and, if $C(\eta)>0$ is large,

$$
\Delta P^{*}>0, P_{n}^{*}\left(x^{*}\right)=P_{n}\left(x^{*}\right)-\eta
$$

If b) holds for strictly subharmonic polynomials, then $P_{n}\left(x^{*}\right) \leq \eta$. Letting $\eta \rightarrow 0$ we recover $P_{n}\left(x^{*}\right) \leq 0$.

Lemma 3.1. Let v be a viscosity solution of problem (15), then $v \in C^{\infty}\left(B_{r} \cap\left\{x_{n} \geq 0\right\}\right)$.
Proof. Reflect v in an even way across $x_{n}=0$, defining

$$
v^{*}(x)=v(x) \text { for } x_{n} \geq 0, v^{*}(x)=v\left(x^{\prime},-x_{n}\right) \text { for } x_{n}<0 .
$$

We show that v^{*} is harmonic in B_{r}, in the viscosity sense. Since viscosity harmonic functions are harmonic in the classical sense, it follows that v^{*} is smooth in B_{r}.

Thus, let P be a quadratic polynomial touching v^{*} strictly by below at $x^{*} \in B_{r}$. We must show that $\Delta P \leq 0$.

It is clearly enough to consider $x^{*} \in\left\{x_{n}=0\right\}$. Define

$$
S(x)=\frac{P(x)+P\left(x^{\prime},-x_{n}\right)}{2} .
$$

Then S touches strictly by below v^{*} at x^{*} and

$$
\Delta S=\Delta P, S_{n}\left(x^{\prime}, 0\right)=0
$$

For $\varepsilon>0$, let

$$
S^{\varepsilon}(x)=S(x)+\varepsilon x_{n}+t .
$$

If ε and t are small, S^{ε} touches v^{*} by below at some point x_{ε}.
Since $v_{n}\left(x^{\prime}, 0\right)=0$ in the viscosity sense and

$$
S_{n}^{\varepsilon}\left(x_{\varepsilon}\right)=\varepsilon>0
$$

we deduce that $x_{\varepsilon} \in B_{r} \backslash\left\{x_{n}=0\right\}$. Therefore $\Delta P=\Delta S \leq 0$.

3.2 Improvement of flatness

The key lemma is the following
Lemma 3.2 (Improvement of flatness). Assume that

$$
\begin{equation*}
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{2},\|g-1\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{2} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x_{n}-\varepsilon\right)^{+} \leq u(x) \leq\left(x_{n}+\varepsilon\right)^{+} \quad \text { in } B_{1} . \tag{17}
\end{equation*}
$$

There exists a (universal) r_{0} such that, if $r \leq r_{0}$ and $\varepsilon \leq \varepsilon_{0}$, for some $\varepsilon_{0}(r)$, then we have

$$
\begin{equation*}
\left(x \cdot \nu-\frac{1}{2} \varepsilon r\right)^{+} \leq u(x) \leq\left(x \cdot \nu+\frac{1}{2} \varepsilon r\right)^{+} \quad \text { in } B_{r} \tag{18}
\end{equation*}
$$

for a suitable unit vector ν, with $\left|e_{n}-\nu\right| \leq c \varepsilon$, c universal.
Remark 3.2. The number r_{0} will determine the rescaling parameter \bar{r} in the final iteration. In turn, $\bar{\varepsilon}=\varepsilon_{0}(\bar{r})^{2}$, in order to insure the hypotheses (16).

Proof. We split it into 3 main steps. Introduce the notation:

$$
\Omega_{\rho}(u)=\left[B_{1}^{+}(u) \cup F(u)\right] \cap B_{\rho} .
$$

Step 1. Compactness. Fix r_{0} universal (it will be chosen in step 3) and $r \leq r_{0}$. Assume that the theorem is not true. Then we can find a sequence $\varepsilon_{k} \rightarrow 0$ and a sequence of solutions u_{k} of our f.b.p. in B_{1} with r.h.s. f_{k} and f.b. term g_{k},

$$
\left\|f_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon_{k}^{2},\left\|g_{k}-1\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon_{k}^{2}
$$

such that $0 \in F\left(u_{k}\right)$,

$$
\begin{equation*}
\left(x_{n}-\varepsilon_{k}\right)^{+} \leq u_{k}(x) \leq\left(x_{n}+\varepsilon_{k}\right)^{+} \quad \text { in } B_{1}, \tag{19}
\end{equation*}
$$

but (18) is not true.

Consider the normalization

$$
\tilde{u}_{k}(x)=\frac{u_{k}(x)-x_{n}}{\varepsilon_{k}} \quad x \in \Omega_{1}\left(u_{k}\right) .
$$

Then

$$
\left|\tilde{u}_{k}\right| \leq 1 \quad \text { in } \Omega_{1}\left(u_{k}\right) .
$$

From corollary 2.2 we get

$$
\left|\tilde{u}_{k}(x)-\tilde{u}_{k}(y)\right| \leq C|x-y|^{\gamma}
$$

for

$$
|x-y| \geq \frac{\varepsilon_{k}}{\bar{\varepsilon}} \quad \text { in } \Omega_{1 / 2}\left(u_{k}\right)
$$

where $\bar{\varepsilon}$ is defined in Theorem 2.1.
From (19) it follows that $F\left(u_{k}\right)$ converges in Hausdorff distance to $B_{1} \cap\left\{x_{n}=0\right\}$. Then, using Ascoli-Arzelà Theorem, we infer that the graph of \tilde{u}_{k} over $\Omega_{1 / 2}\left(u_{k}\right)$ converges (up to a subsequence) in Hausdorff distance to a graph of a Hölder continuous \tilde{u} in $B_{1 / 2} \cap\left\{x_{n} \geq 0\right\}$.

Step 2. The linearized (Neumann) problem. We show that the limiting function \tilde{u} satisfies in the viscosity sense the following conditions:

$$
\begin{cases}\Delta \tilde{u}=0 & \text { in } B_{1 / 2} \cap\left\{x_{n}>0\right\} \\ \tilde{u}_{n}=0 & \text { on } B_{1 / 2} \cap\left\{x_{n}=0\right\} .\end{cases}
$$

We prove only the supersolution condition. The subsolution one is analogous.
Let P be a quadratic polinomial touching \tilde{u} at $x^{*} \in B_{1 / 2} \cap\left\{x_{n} \geq 0\right\}$ strictly by below. We have to show that
a) if $x^{*} \in B_{1 / 2} \cap\left\{x_{n}>0\right\}$ then $\Delta P \leq 0$;
b) if $x^{*} \in B_{1 / 2} \cap\left\{x_{n}=0\right\}$ then $P_{n}\left(x^{*}\right) \leq 0$.

We have to carry the supersolution condition on the sequence u_{k}, on which we have information.

First, since $\tilde{u}_{k} \rightarrow \tilde{u}$ in the sense specified above, there exist points $x_{k} \in \Omega_{1 / 2}\left(u_{k}\right), x_{k} \rightarrow x^{*}$, and constants $c_{k} \rightarrow 0$ such that

$$
P\left(x_{k}\right)+c_{k}=\tilde{u}_{k}\left(x_{k}\right)
$$

and

$$
P(x)+c_{k}<\tilde{u}_{k}(x)
$$

near x_{k}. In terms of u_{k} this says that the polynomial

$$
Q_{k}(x)=\varepsilon_{k}\left(P(x)+c_{k}\right)+x_{n} .
$$

touches by below u_{k} at x_{k}.
There are only two possibilities.
a) If $x^{*} \in B_{1 / 2} \cap\left\{x_{n}>0\right\}$ then $x_{k} \in B_{1 / 2}^{+}\left(u_{k}\right)$ for k large and we get, since u_{k} is a viscosity solution,

$$
\varepsilon_{k} \Delta P=\Delta Q_{k} \leq f_{k}\left(x_{k}\right) \leq \varepsilon_{k}^{2}
$$

or

$$
\Delta P \leq \varepsilon_{k}
$$

and in the limit $\Delta P \leq 0$.
b) If $x^{*} \in B_{1 / 2} \cap\left\{x_{n}=0\right\}$ we can assume that $\Delta P>0$, as observed above. Then, $x_{k} \in F\left(u_{k}\right)$ for k large. In fact, if this is not true, we find a subsequence $x_{k_{s}} \in B_{1 / 2}^{+}\left(u_{k_{s}}\right)$ for which, as in case a),

$$
\Delta P \leq \varepsilon_{k_{s}}
$$

in contraddiction with $\Delta P>0$.
Thus, $x_{k} \in F\left(u_{k}\right)$ for k large. Since

$$
\nabla Q_{k}(x)=\varepsilon_{k} \nabla P(x)+e_{n}
$$

we have, for k large, $\left|\nabla Q_{k}\right|>0$. Since Q^{+}touches u_{k} by below, we can write

$$
\left|\nabla Q_{k}\left(x_{k}\right)\right| \leq g\left(x_{k}\right) \leq 1+\varepsilon_{k}^{2}
$$

On the other hand, since

$$
\left|\nabla Q_{k}\left(x_{k}\right)\right|^{2}=\left|\varepsilon_{k} \nabla P\left(x_{k}\right)+e_{n}\right|^{2}=\varepsilon_{k}^{2}\left|\nabla P\left(x_{k}\right)\right|^{2}+2 \varepsilon_{k} P_{n}\left(x_{k}\right)+1
$$

we get, after division by ε_{k},

$$
\varepsilon_{k}\left|\nabla P\left(x_{k}\right)\right|^{2}+2 P_{n}\left(x_{k}\right) \leq 2 \varepsilon_{k}+\varepsilon_{k}^{3}
$$

from which $P_{n}\left(x^{*}\right) \leq 0$ as desired.
Step 3. Basic improvement. From step 2, \tilde{u} solves the Neumann type problem and

$$
\begin{equation*}
|\tilde{u}| \leq 1 \text { in } B_{1 / 2} \cap\left\{x_{n} \geq 0\right\} \tag{20}
\end{equation*}
$$

From the regularity of \tilde{u} (Lemma 3.1) and (20) we can write, for any $r<1 / 2$,

$$
\left|\tilde{u}(x)+\nabla_{x^{\prime}} \tilde{u}(0) \cdot x^{\prime}\right| \leq C_{0} r^{2} \quad \text { in } B_{r} \cap\left\{x_{n} \geq 0\right\}
$$

since $\tilde{u}(0)=\tilde{u}_{n}(0)=0$, with C_{0} universal.
Set $\tilde{\nu}^{\prime}=\nabla_{x^{\prime}} \tilde{u}(0)$ and note that $\left|\tilde{\nu}^{\prime}\right| \leq \tilde{C}, \tilde{C}$ universal. Then for k large enough, depending on r, we have

$$
\tilde{\nu}^{\prime} \cdot x^{\prime}-C_{1} r^{2} \leq \tilde{u}_{k}(x) \leq \tilde{\nu}^{\prime} \cdot x^{\prime}+C_{1} r^{2} \quad \text { in } \Omega_{r}\left(u_{k}\right)
$$

Going back to u_{k}, we can write

$$
\varepsilon_{k} \tilde{\nu}^{\prime} \cdot x^{\prime}+x_{n}-C_{1} r^{2} \varepsilon_{k} \leq u_{k}(x) \leq \varepsilon_{k} \tilde{\nu}^{\prime} \cdot x^{\prime}-x_{n}+C_{1} r^{2} \varepsilon_{k} \quad \text { in } \Omega_{r}\left(u_{k}\right)
$$

Define

$$
\nu=\frac{\left(\varepsilon_{k} \tilde{\nu}^{\prime}, 1\right)}{\sqrt{\varepsilon_{k}^{2}\left|\tilde{\nu}^{\prime}\right|^{2}+1}}
$$

and note that, for k large,

$$
\begin{gathered}
1 \leq \sqrt{\varepsilon_{k}^{2}\left|\tilde{\nu}^{\prime}\right|^{2}+1} \leq 1+\frac{\tilde{C}^{2} \varepsilon_{k}^{2}}{2} \\
\left|\nu-e_{n}\right|^{2}=\frac{\varepsilon_{k}^{2}\left|\tilde{\nu}^{\prime}\right|^{2}+\left(\sqrt{\varepsilon_{k}^{2}\left|\tilde{\nu}^{\prime}\right|^{2}+1}-1\right)^{2}}{\varepsilon_{k}^{2}\left|\tilde{\nu}^{\prime}\right|^{2}+1} \leq C \varepsilon_{k}^{2}
\end{gathered}
$$

Then, we have

$$
\nu \cdot x-\frac{\tilde{C}^{2} \varepsilon_{k}^{2}}{2} r-C_{1} r^{2} \varepsilon_{k} \leq u_{k}(x) \leq \nu \cdot x+\frac{\tilde{C}^{2} \varepsilon_{k}^{2}}{2} r+C_{1} r^{2} \varepsilon_{k} \quad \text { in } \Omega_{r}\left(u_{k}\right)
$$

We want that

$$
\frac{\tilde{C}^{2} \varepsilon_{k}}{2}+C_{1} r \leq \frac{1}{2}
$$

Thus, choose $r \leq r_{0}$ with, say, $C_{1} r_{0} \leq 1 / 4$, and k large so that $\tilde{C}^{2} \varepsilon_{k} \leq 1 / 2$. Then

$$
\nu \cdot x-\frac{\varepsilon_{k}}{2} r \leq u_{k}(x) \leq \nu \cdot x+\frac{\varepsilon_{k}}{2} r \quad \text { in } \Omega_{r}\left(u_{k}\right)
$$

Since

$$
\left(x_{n}-\varepsilon_{k}\right)^{+} \leq u_{k}(x) \leq\left(x_{n}+\varepsilon_{k}\right)^{+} \quad \text { in } B_{1},
$$

we infer

$$
\left(\nu \cdot x-\frac{\varepsilon_{k}}{2} r\right)^{+} \leq u_{k}(x) \leq\left(\nu \cdot x+\frac{\varepsilon_{k}}{2} r\right)^{+} \quad \text { in } B_{r}
$$

which is a contraddiction.

3.3 Final iteration

We are now ready to prove Theorem 1.1. Consider the blow up sequence

$$
u_{k}(x)=\frac{u\left(\rho_{k}(x)\right)}{\rho_{k}} \quad x \in B_{1} .
$$

We have to check that the hypotheses of the improvement of flatness lemma are iteratively satisfied.

We choose $\rho_{k}=\bar{r}^{k}$, where $\bar{r}^{\beta} \leq 1 / 4, \bar{r} \leq r_{0}, r_{0}$ as in Lemma 3.2. Moreover, let

$$
\bar{\varepsilon}=\varepsilon_{0}(\bar{r})^{2}, \varepsilon_{k}=\varepsilon_{0}(\bar{r}) 2^{-k} \quad k \geq 0
$$

with $\varepsilon_{0}(\bar{r})$ as in lemma 3.2.
Then

$$
\left|f_{k}(x)\right| \equiv\left|\rho_{k} f_{k}\left(\rho_{k} x\right)\right| \leq \bar{\varepsilon} \bar{r}^{k} \leq \varepsilon_{k}^{2}
$$

and

$$
\begin{aligned}
\left|g\left(\rho_{k} x\right)-1\right| & =\left|g\left(\rho_{k} x\right)-g(0)\right| \leq[g]_{0, \beta} \rho_{k}^{\beta}=\bar{\varepsilon} \bar{r}^{\beta k} \\
& \leq \varepsilon_{k}^{2} .
\end{aligned}
$$

Thus, for $k=0$ the flatness assumption of Lemma 3.2 is satisfied by u_{0}. By induction on k we conclude that u_{k} is ε_{k}-flat in B_{1} and therefore that $F(u)$ is $C^{1, \alpha}$ at the origin, for some $\alpha \in(0,1)$. Since all the estimates are uniform if we replace the origin by any point on $F(u) \cap B_{1 / 2}$, it follows that $F(u)$ is $C^{1, \alpha}$ in $B_{1 / 2}$.

This concludes the proof of Theorem 1.2.

Lesson 4

Outline

- Two phase problems and their viscosity solutions. Lipschitz continuity.
- Main Theorems and.preliminary results.
- Strategy for the improvement of flatness.

4.1 Two phase problems and their viscosity solutions. Lipschitz continuity

To better emphazize ideas and techniques we consider the model problem

$$
\begin{cases}\Delta u=f, & \text { in } \Omega^{+}(u) \cup \Omega^{-}(u) \tag{21}\\ \left(u_{\nu}^{+}\right)^{2}-\left(u_{\nu}^{-}\right)^{2}=1, & \text { on } F(u):=\partial \Omega^{+}(u) \cap \Omega\end{cases}
$$

where, we recall,

$$
\Omega^{+}(u)=\{x \in \Omega: u(x)>0\}, \quad \Omega^{-}(u)=\{x \in \Omega: u(x) \leq 0\}^{\circ},
$$

and u_{ν}^{+}and u_{ν}^{-}denote the normal derivatives in the inward direction to $\Omega^{+}(u)$ and $\Omega^{-}(u)$ respectively.

We assume that f is bounded in Ω and continuous in $\Omega^{+}(u) \cup \Omega^{-}(u)$. Let us introduce the notion of comparison subsolution/supersolution.

Definition 4.1. We say that $v \in C(\Omega)$ is a strict (comparison) subsolution (resp. supersolution) to (21) in Ω, if and only if $v \in C^{2}\left(\overline{\Omega^{+}(v)}\right) \cap C^{2}\left(\overline{\Omega^{-}(v)}\right)$ and the following conditions are satisfied:

1. $\Delta v>f(r e s p .<f)$ in $\Omega^{+}(v) \cup \Omega^{-}(v)$;
2. If $x_{0} \in F(v)$, then, at x_{0} :

$$
\left(v_{\nu}^{+}\right)^{2}-\left(v_{\nu}^{-}\right)^{2}>1 \quad\left(\text { resp. }\left(v_{\nu}^{+}\right)^{2}-\left(v_{\nu}^{-}\right)^{2}<1, v_{\nu}^{+}\left(x_{0}\right) \neq 0\right) .
$$

Notice that by the implicit function theorem, according to our definition the free boundary of a comparison subsolution/supersolution is C^{2}.

Finally we can give the definition of viscosity solution to the problem (21).
Definition 4.2. Let u be a continuous function in Ω. We say that u is a viscosity solution to (21) in Ω, if the following conditions are satisfied:

1. $\Delta u=f$ in $\Omega^{+}(u) \cup \Omega^{-}(u)$ in the viscosity sense;
2. Any strict comparison subsolution v (resp. supersolution) cannot touch u by below (resp. by above) at a point $x_{0} \in F(v)($ resp. $F(u))$.

The next result states the optimal regularity of the solution of our free boundary problem (f.b.p. in the sequel).

Theorem 4.1. A viscosity solution of (21) in Ω is Lipschitz continuous in every compact subset of Ω.

The proof follows from the following monotonicity formula, as in [CJK], Theorem 4.5.
Theorem 4.2. Let u, v be nonnegative, continuous functions in B_{1}, with

$$
\Delta w \geq-1, \Delta v \geq-1 \text { in the sense of distributions }
$$

and $u(0)=v(0)=0, u(x) v(x)=0$ in B_{1}. Then there exists $C=C(n)$ such that

$$
\Phi(r)=\frac{1}{r^{4}} \int_{B_{r}} \frac{|\nabla u|^{2}}{|x|^{n-2}} \int_{B_{r}} \frac{|\nabla v|^{2}}{|x|^{n-2}} \leq C\left(1+\int_{B_{1}} u^{2}\right)\left(1+\int_{B_{1}} v^{2}\right) .
$$

for $r \leq 1 / 2$.

4.2 Main Theorems and preliminary results

We now state our main results. Here constants depending only on $n,\|f\|_{\infty}$, and $\operatorname{Lip}(u)$ will be called universal. We always assume that $0 \in F(u)$.

Theorem 4.3. Let u be a (Lipschitz) viscosity solution to our f.b.p. in B_{1}. Assume that $f \in L^{\infty}\left(B_{1}\right)$ is continuous in $B_{1}^{+}(u) \cup B_{1}^{-}(u)$. There exists a universal constant $\delta_{0}>0$ such that, if

$$
\begin{equation*}
\left\{x_{n} \leq-\delta\right\} \subset B_{1} \cap\left\{u^{+}(x)=0\right\} \subset\left\{x_{n} \leq \delta\right\} \tag{22}
\end{equation*}
$$

with $0 \leq \delta \leq \delta_{0}$, then $F(u)$ is $C^{1, \gamma}$ in $B_{1 / 2}$.
As in the one phase case, the following consequence holds.
Theorem 4.4. Let u be a (Lipschitz) viscosity solution to our f.b.p. in B_{1}. Assume that $f \in L^{\infty}\left(B_{1}\right)$ is continuous in $B_{1}^{+}(u) \cup B_{1}^{-}(u)$. If $F(u)$ is a Lipschitz graph in a neighborhood of 0 , then $F(u)$ is $C^{1, \gamma}$ in a (smaller) neighborhood of 0 .

The proof of Theorem 4.3 is based on an iterative procedure that "squeezes" dyadically our solution around an optimal configuration $U_{\beta}(x \cdot \nu)$ where $U_{\beta}=U_{\beta}(t)$ is given by

$$
U_{\beta}(t)=\alpha t^{+}-\beta t^{-} \quad \beta \geq 0, \alpha=\sqrt{1+\beta^{2}}
$$

and ν is a unit vector, which play the role of normal vector at the origin. $U_{\beta}(x \cdot \nu)$ is a so-called two plane solution when $f=0$. Indeed the first step is to check that the flatness condition (22) implies that u is close to $U_{\beta}\left(x_{n}\right)$ for some β (see Lemma 4.9).

The above plan works nicely as long as the two phases u^{+}, u^{-}are, say, comparable (nondegenerate case). The difficulties arise when the negative fase becomes very small but at the same time not negligeable (degenerate case). In this case the flatness assumption in Theorem 4.3 gives a control of the positive phase only, through the closedness to a one plane solution $U_{0}\left(x_{n}\right)=x_{n}^{+}$.

As we shall see, this require to face a dycotomy in the final iteration.
Let us also state the following elementary lemma, that we give for a general continuous function and that translate "vertical" closedness between u and U_{β} into "horizontal" closedness, which is much more confortable for our purposes.

Lemma 4.5. Let u be a continuous function. If, for a small $\eta>0$,

$$
\left\|u-U_{\beta}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \eta
$$

and

$$
\left\{x_{n} \leq-\eta\right\} \subset B_{1} \cap\left\{u^{+}(x)=0\right\} \subset\left\{x_{n} \leq \eta\right\}
$$

then:

- If $\beta \geq \eta^{1 / 3}$,

$$
U_{\beta}\left(x_{n}-\eta^{1 / 3}\right) \leq u(x) \leq U_{\beta}\left(x_{n}+\eta^{1 / 3}\right) \quad \text { in } B_{3 / 4}
$$

- If $\beta<\eta^{1 / 3}$,

$$
U_{0}\left(x_{n}-\eta^{1 / 3}\right) \leq u^{+}(x) \leq U_{0}\left(x_{n}+\eta^{1 / 3}\right) \quad \text { in } B_{3 / 4}
$$

The proof of Theorem 4.3 is reduced to the following main Lemma.
Main Lemma 4.6. Let u be a (Lipschitz) viscosity solution to our f.b.p. in B_{1}, with $\operatorname{Lip}(u) \leq L$. There exists a universal constant $\bar{\eta}>0$ such that, if

$$
\begin{equation*}
\left\|u-U_{\beta}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \bar{\eta} \quad \text { for some } 0 \leq \beta \leq L \tag{23}
\end{equation*}
$$

and

$$
\left\{x_{n} \leq-\bar{\eta}\right\} \subset B_{1} \cap\left\{u^{+}(x)=0\right\} \subset\left\{x_{n} \leq \bar{\eta}\right\}
$$

and

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \bar{\eta}
$$

then $F(u)$ is $C^{1, \gamma}$ in $B_{1 / 2}$.
The parameter $\bar{\eta}$ will be equal to $\tilde{\varepsilon}^{3}$, where $\tilde{\varepsilon}$ is universal, suitably chosen in the basic improvement lemma. In practice, the dichotomy nondegenerate versus degenerate translates (according to Lemma 4.6) into the two cases:

$$
\beta \geq \tilde{\varepsilon}: \text { nondegenerate }, \quad \beta<\tilde{\varepsilon}: \text { degenerate. }
$$

The reduction of Theorem 4.3 to Lemma 4.6 is based on the following three lemmas. The first one is an "almost nondegeneracy" of u^{+}, δ-away from $F(u)$. The proof parallel the second part of the proof of Lemma 1.4.

Lemma 4.7 (Almost nondegeneracy). Let u be a solution to our f.b.p. in B_{2} with $\operatorname{Lip}(u) \leq L$ and $\|f\|_{L^{\infty}\left(B_{2}\right)} \leq L$. Let g be a Lipschitz function with, $\operatorname{Lip}(g) \leq L, g(0)=0$. If

$$
\left\{x_{n} \leq g\left(x^{\prime}\right)-\delta\right\} \subset\left\{u^{+}=0\right\} \subset\left\{x_{n} \leq g\left(x^{\prime}\right)+\delta\right\}
$$

then

$$
u(x) \geq c_{0}\left(x_{n}-g\left(x^{\prime}\right)\right), \quad x \in\left\{x_{n} \geq g\left(x^{\prime}\right)+2 \delta\right\} \cap B_{\rho_{0}}
$$

for some $c_{0}, \rho_{0}>0$ depending on n, L as long as $\delta \leq c_{1}, . c_{1}$ universal.
Proof. It suffices to show that our statement holds for $\left\{x_{n} \geq g\left(x^{\prime}\right)+C \delta\right\}$ for a possibly large constant C. Then one can apply Harnack inequality to obtain the full statement.

Also it is enough to consider $x=d e_{n}$ (recall that $g(0)=0$). Precisely, we want to show that

$$
u\left(d e_{n}\right) \geq c_{0} d, \quad d \geq C \delta
$$

After rescaling, we are reduced to prove that (keeping the same notations)

$$
u\left(e_{n}\right) \geq c_{0}
$$

as long as $\delta \leq 1 / C$, and $\|f\|_{L^{\infty}\left(B_{2}\right)}$ is sufficiently small. Let $\gamma>0$ and

$$
w(x)=\frac{1}{2 \gamma}\left(1-|x|^{-\gamma}\right)
$$

be defined on the closure of the annulus $A=B_{2} \backslash \bar{B}_{1}$, with $\|f\|_{L^{\infty}}$ small enough so that

$$
\Delta w<-\|f\|_{L^{\infty}\left(B_{2}\right)} \quad \text { on } A .
$$

Let

$$
w_{t}(x)=w\left(x+t e_{n}\right)
$$

Notice that

$$
\left|\nabla w_{0}\right|<1 \quad \text { on } \partial B_{1} .
$$

From our flatness assumption for $t>, 0$ sufficiently large (depending on the Lipschitz constant of g), w_{t} is strictly above u. We decrease t and let \bar{t} be the first t such that w_{t} touches u by above.

Since $w_{\bar{t}}$ is a strict supersolution to $\Delta u=f$ in A the touching point z can occur only on the $\eta:=\frac{1}{2 \gamma}\left(1-2^{-\gamma}\right)$ level set in the positve phase of u, and $|z| \leq C=C(L)$.

Since u is Lipschitz continuous, $0<u(z)=\eta \leq L d(z, F(u))$, that is a full ball around z of radius η / L is contained in the positive phase of u.

Thus, for $\bar{\delta}$ small depending on η, L we have that $B_{\eta / 2 L}(z) \subset\left\{x_{n} \geq g\left(x^{\prime}\right)+2 \bar{\delta}\right\}$. Since $x_{n}=g\left(x^{\prime}\right)+2 \bar{\delta}$ is Lipschitz we can connect e_{n} and z with a chain of intersecting balls included in the positive side of u, with radii comparable to $\eta / 2 L$. The number of balls depends on L. Then we can apply Harnack inequality and obtain

$$
u\left(e_{n}\right) \geq c u(z)=c_{0}
$$

as desired.
The second one is a compactness lemma (we skip the the proof that requires a rather standard viscosity argument).

Lemma 4.8 (Compactness). Let u_{k} be a sequence of viscosity solutions to our f.b.p. with right-hand-side f_{k} satisfying $\left\|f_{k}\right\|_{L^{\infty}} \leq L$. Assume:
(a) $u_{k} \rightarrow u^{*}$ uniformly on compact sets,
(b) $\left\{u_{k}^{+}=0\right\} \rightarrow\left\{\left(u^{*}\right)^{+}=0\right\}$ in the Hausdorff distance.:

Then

$$
-L \leq \Delta u^{*} \leq L, \quad \text { in } \Omega^{+}\left(u^{*}\right) \cup \Omega^{-}\left(u^{*}\right)
$$

and

$$
\left(u_{\nu}^{*+}\right)^{2}-\left(u_{\nu}^{*-}\right)^{2}=1 \quad \text { on } F\left(u^{*}\right)
$$

both in the viscosity sense.
The final lemma translates the flatness condition of the zero set of u^{+}into closedness to a two plane (one plane if $\beta=0$) solution. Precisely:

Lemma 4.9. Let u be a solution to (21) in B_{1} with $\operatorname{Lip}(u) \leq L$ and $\|f\|_{L^{\infty}} \leq L$. For any $\eta>0$ there exist $\bar{\delta}, \bar{\rho}>0$ depending only on η, n, and L such that if

$$
\left\{x_{n} \leq-\delta\right\} \subset B_{1} \cap\left\{u^{+}(x)=0\right\} \subset\left\{x_{n} \leq \delta\right\}
$$

with $0 \leq \delta \leq \bar{\delta}$, then

$$
\begin{equation*}
\left\|u-U_{\beta}\right\|_{L^{\infty}\left(B_{\bar{r}}\right)} \leq \eta \bar{\rho} \tag{24}
\end{equation*}
$$

for some $0 \leq \beta \leq L$.
Proof. Given $\eta>0$ and $\bar{\rho}$ depending on η to be specified later, assume by contradiction that there exist a sequence $\delta_{k} \rightarrow 0$ and a sequence of solutions u_{k} to the problem (21) with right-hand-side f_{k} such that $\operatorname{Lip}\left(u_{k}\right),\left\|f_{k}\right\| \leq L$ and

$$
\begin{equation*}
\left\{x_{n} \leq-\delta_{k}\right\} \subset B_{1} \cap\left\{u_{k}^{+}(x)=0\right\} \subset\left\{x_{n} \leq \delta_{k}\right\} \tag{25}
\end{equation*}
$$

but the u_{k} do not satisfy the conclusion (24).
Then, up to a subsequence, the u_{k} converge uniformly on every compact to a function u^{*}. In view of the flatness condition and of the non-degeneracy of $u_{k}^{+} 2 \delta_{k}$-away from the free boundary (Lemma 4.7), we can apply our compactness lemma and conclude that

$$
-L \leq \Delta u^{*} \leq L, \quad \text { in } B_{1 / 2} \cap\left\{x_{n} \neq 0\right\}
$$

in the viscosity sense and also

$$
\begin{equation*}
\left(u_{n}^{*+}\right)^{2}-\left(u_{n}^{*-}\right)^{2}=1 \quad \text { on } F\left(u^{*}\right) \tag{26}
\end{equation*}
$$

with

$$
u^{*}>0 \quad \text { in } B_{1 / 2} \cap\left\{x_{n}>0\right\} .
$$

Thus,

$$
u^{*} \in C^{1, \gamma}\left(B_{1 / 2} \cap\left\{x_{n} \geq 0\right\}\right) \cap C^{1, \gamma}\left(B_{1 / 2} \cap\left\{x_{n} \leq 0\right\}\right)
$$

for all γ and in view of (26) we have that (for any $\bar{\rho}$ small)

$$
\left\|u^{*}-\left(\alpha x_{n}^{+}-\beta x_{n}^{-}\right)\right\|_{L^{\infty}\left(B_{\bar{\rho}}\right)} \leq C(n, L) \bar{\rho}^{1+\gamma}
$$

with $\alpha^{2}=1+\beta^{2}$. If $\bar{\rho}$ is chosen depending on η so that

$$
C(n, L) \bar{\rho}^{1+\gamma} \leq \frac{\eta}{2} \bar{\rho}
$$

since the u_{k} converge uniformly to u^{*} on $B_{1 / 2}$ we obtain that for all k large

$$
\left\|u_{k}-\left(\alpha x_{n}^{+}-\beta x_{n}^{-}\right)\right\|_{L^{\infty}\left(B_{\bar{\rho}}\right)} \leq \eta \bar{\rho}
$$

a contradiction.
Remark. To obtain Theorem 4.3 from the main Lemma, just rescale by setting

$$
\tilde{u}(x)=\frac{u(\bar{\eta} x / L)}{\bar{\eta} / L}
$$

where $\bar{\eta}$ is as in the Main Lemma. Then, in Theorem 4.3, choose

$$
\delta_{0}=\min \{\bar{\eta}, \bar{\delta}(\bar{\eta})\}^{2}
$$

where $\bar{\delta}(\bar{\eta})$ is as in Lemma 4.9.

4.3 Strategy for the improvement of flatness

We outline the main differences in the two cases degenerate/nondegenerate.
Let us start with the nondegenerate case. As in the one phase case, the key lemma is:
Lemma 4.10 (Basic improvement). Let the solution u satisfy

$$
\begin{equation*}
U_{\beta}\left(x_{n}-\varepsilon\right) \leq u(x) \leq U_{\beta}\left(x_{n}+\varepsilon\right) \quad \text { in } B_{1}, \tag{27}
\end{equation*}
$$

with $0<\beta \leq L$ and

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{2} \beta
$$

If $0<r \leq r_{0}$ for r_{0} universal, and $0<\varepsilon \leq \varepsilon_{0}$ for some ε_{0} depending on r, then

$$
\begin{equation*}
U_{\beta^{\prime}}\left(x \cdot \nu_{1}-r \frac{\varepsilon}{2}\right) \leq u(x) \leq U_{\beta^{\prime}}\left(x \cdot \nu_{1}+r \frac{\varepsilon}{2}\right) \quad \text { in } B_{r} \tag{28}
\end{equation*}
$$

with $\left|\nu_{1}\right|=1,\left|\nu_{1}-e_{n}\right| \leq \tilde{C} \varepsilon$, and $\left|\beta-\beta^{\prime}\right| \leq \tilde{C} \beta \varepsilon$ for a universal constant \tilde{C}.

Proof. The proof of Lemma 4.10 follows the same three steps of the corresponding proof in the one phase case. Steps 1 and 2 are only outlined here. The proof is completed in Section 5.

Step 1: compactness. Fix $r \leq r_{0}$, to be chose suitably. By contradiction assume that, for some sequences $\varepsilon_{k} \rightarrow 0$ and u_{k}, solutions of our f.b.p. in B_{1} with r.h.s. f_{k} such that $\left\|f_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq$ $\varepsilon_{k}^{2} \beta_{k}$ and

$$
\begin{equation*}
U_{\beta_{k}}\left(x_{n}-\varepsilon_{k}\right) \leq u_{k}(x) \leq U_{\beta_{k}}\left(x_{n}+\varepsilon_{k}\right) \quad \text { in } B_{1}, 0 \in F\left(u_{k}\right), \tag{29}
\end{equation*}
$$

with $0 \leq \beta_{k} \leq L, \alpha_{k}^{2}=1+\beta_{k}^{2}$, but the conclusion of the lemma does not hold.
Then one proves via a Harnack type inequality (Lemma 5.1), that the sequence of normalized functions

$$
\tilde{u}_{k}(x)= \begin{cases}\frac{u_{k}(x)-\alpha_{k} x_{n}}{\alpha_{k} \varepsilon_{k}}, & x \in B_{1}^{+}\left(u_{k}\right) \cup F\left(u_{k}\right) \\ \frac{u_{k}(x)-\beta_{k} x_{n}}{\beta_{k} \varepsilon_{k}}, & x \in B_{1}^{-}\left(u_{k}\right)\end{cases}
$$

converges uniformly (up to a subsequence) to a limit function \tilde{u}, Hölder continuous in $B_{1 / 2}$. Also $\alpha_{k}^{2}=1+\beta_{k}^{2}$ converges to $\tilde{\alpha}^{2}=1+\tilde{\beta}^{2}$.

Step 2: limit function. The limit function \tilde{u} is a viscosity solution of the transmission problem

$$
\begin{cases}\Delta \tilde{u}=0 & \text { in } B_{1 / 2} \cap\left\{x_{n} \neq 0\right\} \tag{30}\\ \tilde{\alpha}^{2}\left(\tilde{u}_{n}\right)^{+}-\tilde{\beta}^{2}\left(\tilde{u}_{n}\right)^{-}=0 & \text { on } B_{1 / 2} \cap\left\{x_{n}=0\right\}\end{cases}
$$

One proves that \tilde{u} is regular in the closure of both half-balls (see Lemmas 5.4, 5.5). Hence we can write that, since $\tilde{u}(0)=0$, for all $r \leq 1 / 4$ (say),

$$
\begin{equation*}
\left|\tilde{u}(x)-\left(x^{\prime} \cdot \nu^{\prime}+\tilde{p} x_{n}^{+}-\tilde{q} x_{n}^{-}\right)\right| \leq C r^{2}, \quad x \in B_{r} \tag{31}
\end{equation*}
$$

with

$$
\tilde{\alpha}^{2} \tilde{p}-\tilde{\beta}^{2} \tilde{q}=0, \quad\left|\nu^{\prime}\right|=\left|\nabla_{x^{\prime}} \tilde{u}(0)\right| \leq C
$$

Step 3: contradiction. From (31), since \tilde{u}_{k} converges, uniformly to \tilde{u} in $B_{1 / 2}$ we have

$$
\begin{equation*}
\left|\tilde{u}_{k}(x)-\left(x^{\prime} \cdot \nu^{\prime}+\tilde{p} x_{n}^{+}-\tilde{q} x_{n}^{-}\right)\right| \leq C^{\prime} r^{2}, \quad x \in B_{r} . \tag{32}
\end{equation*}
$$

Set

$$
\beta_{k}^{\prime}=\beta_{k}\left(1+\varepsilon_{k} \tilde{q}\right) \quad \nu_{k}=\frac{1}{\sqrt{1+\varepsilon_{k}^{2}\left|\nu^{\prime}\right|^{2}}}\left(e_{n}+\varepsilon_{k}\left(\nu^{\prime}, 0\right)\right)
$$

Then,

$$
\alpha_{k}^{\prime}=\sqrt{1+\beta_{k}^{\prime 2}}=\alpha_{k}\left(1+\varepsilon_{k} \tilde{p}\right)+O\left(\varepsilon_{k}^{2}\right), \quad \nu_{k}=e_{n}+\varepsilon_{k}\left(\nu^{\prime}, 0\right)+\varepsilon_{k}^{2} \tau, \quad|\tau| \leq C
$$

where to obtain the first equality we used that $\tilde{\alpha}^{2} \tilde{p}-\tilde{\beta}^{2} \tilde{q}=0$ and hence

$$
\frac{\beta_{k}^{2}}{\alpha_{k}^{2}} \tilde{q}=\tilde{p}+o(1)
$$

With these choices we can now show that (for k large and $r \leq r_{0}$)

$$
\widetilde{U}_{\beta_{k}^{\prime}}\left(x \cdot \nu_{k}-\varepsilon_{k} \frac{r}{2}\right) \leq \tilde{u}_{k}(x) \leq \widetilde{U}_{\beta_{k}^{\prime}}\left(x \cdot \nu_{k}+\varepsilon_{k} \frac{r}{2}\right), \quad \text { in } B_{r}
$$

where again we are using the notation:

$$
\widetilde{U}_{\beta_{k}^{\prime}}(x)= \begin{cases}\frac{U_{\beta_{k}^{\prime}}(x)-\alpha_{k} x_{n}}{\alpha_{k} \varepsilon_{k}}, & x \in B_{1}^{+}\left(U_{\beta_{k}^{\prime}}\right) \cup F\left(U_{\beta_{k}^{\prime}}\right) \\ \frac{U_{\beta_{k}^{\prime}}(x)-\beta_{k} x_{n}}{\beta_{k} \varepsilon_{k}}, & x \in B_{1}^{-}\left(U_{\beta_{k}^{\prime}}\right)\end{cases}
$$

This will clearly imply that

$$
U_{\beta_{k}^{\prime}}\left(x \cdot \nu_{k}-\varepsilon_{k} \frac{r}{2}\right) \leq u_{k}(x) \leq U_{\beta_{k}^{\prime}}\left(x \cdot \nu_{k}+\varepsilon_{k} \frac{r}{2}\right), \quad \text { in } B_{r}
$$

leading to a contradiction.
In view of (32) we need to show that in B_{r}

$$
\widetilde{U}_{\beta_{k}^{\prime}}\left(x \cdot \nu_{k}-\varepsilon_{k} \frac{r}{2}\right) \leq\left(x^{\prime} \cdot \nu^{\prime}+\tilde{p} x_{n}^{+}-\tilde{q} x_{n}^{-}\right)-C r^{2}
$$

and

$$
\widetilde{U}_{\beta_{k}^{\prime}}\left(x \cdot \nu_{k}+\varepsilon_{k} \frac{r}{2}\right) \geq\left(x^{\prime} \cdot \nu^{\prime}+\tilde{p} x_{n}^{+}-\tilde{q} x_{n}^{-}\right)+C r^{2}
$$

This can be shown after some elementary calculations as long as $r \leq r_{0}, r_{0}$ universal, and $\varepsilon \leq \varepsilon_{0}(r)$.

We now examine the degenerate case. This time the key lemma is:
Lemma 4. 11. Let the solution u satisfy

$$
\begin{equation*}
U_{0}\left(x_{n}-\varepsilon\right) \leq u^{+}(x) \leq U_{0}\left(x_{n}+\varepsilon\right) \quad \text { in } B_{1}, 0 \in F(u) \tag{33}
\end{equation*}
$$

with

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{4}
$$

and

$$
\begin{equation*}
\left\|u^{-}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{2} . \tag{34}
\end{equation*}
$$

There exists a universal r_{1}, such that if $0<r \leq r_{1}$ and $0<\varepsilon \leq \varepsilon_{1}$ for some ε_{1} depending on r, then

$$
\begin{equation*}
U_{0}\left(x \cdot \nu_{1}-r \frac{\varepsilon}{2}\right) \leq u^{+}(x) \leq U_{0}\left(x \cdot \nu_{1}+r \frac{\varepsilon}{2}\right) \quad \text { in } B_{r}, \tag{35}
\end{equation*}
$$

with $\left|\nu_{1}\right|=1,\left|\nu_{1}-e_{n}\right| \leq C \varepsilon$ for a universal constant C.
Proof. The proof follows the usual same 3 -steps pattern. Steps 1 and 2 are only outlined here. The proof is completed in Section 6.

Step 1: compactness. Fix $r \leq r_{0}$, to be chose suitably. By contradiction assume that, for some sequences $\varepsilon_{k} \rightarrow 0$ and u_{k}, solutions of our f.b.p. in B_{1} with r.h.s. f_{k} such that $\left\|f_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon_{k}^{4}$ and

$$
\begin{gathered}
\left\|u_{k}^{-}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon_{k}^{2} \\
U_{0}\left(x_{n}-\varepsilon_{k}\right) \leq u_{k}(x) \leq U_{0}\left(x_{n}+\varepsilon_{k}\right) \quad \text { in } B_{1}, 0 \in F\left(u_{k}\right)
\end{gathered}
$$

but the conclusion of the lemma does not hold.
Then one proves via a Harnack type inequality (Lemma 6.1), that the sequence of normalized functions

$$
\tilde{u}_{k}(x)=\frac{u_{k}(x)-x_{n}}{\varepsilon_{k}} \quad x \in B_{1}^{+}\left(u_{k}\right) \cup F\left(u_{k}\right)
$$

converges to a limit function \tilde{u}, Hölder continuous in $B_{1 / 2}$.
Step2: limit function. The limit function \tilde{u} is a viscosity solution of the Neumann problem

$$
\begin{cases}\Delta \tilde{u}=0 & \text { in } B_{1 / 2} \cap\left\{x_{n}>0\right\}, \tag{36}\\ \tilde{u}_{n}=0 & \text { on } B_{1 / 2} \cap\left\{x_{n}=0\right\} .\end{cases}
$$

This will be proved in Lemma 6.4. The regularity of \tilde{u} has been already established in Lemma 3.1.

Step 3: contradiction. The contradiction argument proceeds exactly as in the one phase case.

Notice that the improvement in flatness is obtained through the closedness of the positive phase to a one plane solution, as long as inequality (34) holds. This inequality expresses quantitatively the degeneracy of the negative phase and should be kept valid at each step of the final iteration of lemma 4.11. However, it could happen that this is not the case and in some step of the iteration, at some level ε_{k} of flatness, the norm $\left\|u^{-}\right\|_{L^{\infty}\left(B_{1}\right)}$ becomes of order ε_{k}^{2}. When these occurs, a suitable rescaling restores a nondegenerate situation and we are back to Lemma 4.10.

The situation is precisely described in the following lemma, in which we work in B_{2} for simplicity.

Lemma 4.12. Let u be a solution in B_{2} satisfying

$$
\begin{equation*}
U_{0}\left(x_{n}-\varepsilon\right) \leq u^{+}(x) \leq U_{0}\left(x_{n}+\varepsilon\right) \quad \text { in } B_{1}, 0 \in F(u) \tag{37}
\end{equation*}
$$

with

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{4},
$$

and for \tilde{C} universal,

$$
\begin{equation*}
\left\|u^{-}\right\|_{L^{\infty}\left(B_{2}\right)} \leq \tilde{C} \varepsilon^{2},\left\|u^{-}\right\|_{L^{\infty}\left(B_{1}\right)}>\varepsilon^{2} \tag{38}
\end{equation*}
$$

There exists (universal) ε_{1} such that, if $0<\varepsilon \leq \varepsilon_{1}$, the rescaling

$$
u_{\varepsilon}(x)=\varepsilon^{-1 / 2} u\left(\varepsilon^{1 / 2} x\right)
$$

satisfies, in B_{1} :

$$
U_{\beta^{\prime}}\left(x_{n}-C^{\prime} \varepsilon^{1 / 2}\right) \leq u_{\varepsilon}(x) \leq U_{\beta^{\prime}}\left(x_{n}+C^{\prime} \varepsilon^{1 / 2}\right)
$$

with $\beta^{\prime} \sim \varepsilon^{2}$ and C^{\prime} depending on \tilde{C}.

Proof. Set

$$
v=\frac{u^{-}}{\varepsilon^{2}} .
$$

Then ve have:

$$
\begin{gathered}
F(v) \subset\left\{-\varepsilon<x_{n}<\varepsilon\right\} \\
v \geq 0 \text { in } B_{2} \cap\left\{x_{n} \leq-\varepsilon\right\}, v \equiv 0 \text { in } B_{2} \cap\left\{x_{n}>\varepsilon\right\}
\end{gathered}
$$

and moreover

$$
\begin{gathered}
|\Delta v| \leq \varepsilon^{2} \quad \text { in } B_{2} \cap\left\{x_{n} \leq-\varepsilon\right\}, \\
0 \leq v \leq \tilde{C} \quad \text { on } \partial B_{2}, \\
v\left(x^{*}\right) \geq 1
\end{gathered}
$$

for some point x^{*} in B_{1}.
To get a control of v by above, we use comparison with the solution h of the problem

$$
\Delta h=-\varepsilon^{2} \text { in } D=B_{2} \cap\left\{x_{n}<\varepsilon\right\}, h=v \text { on } \partial D .
$$

We have $v \leq h$ in D and therefore also in B_{2} since $v=0$ for $x_{n} \geq \varepsilon$. By Lipschitz continuity we have, for k universal,

$$
\begin{equation*}
v(x) \leq h(x) \leq k\left(x_{n}-\varepsilon\right)^{-} \quad \text { in } B_{1} . \tag{39}
\end{equation*}
$$

In particular we deduce that

$$
\operatorname{dist}\left(x^{*},\left\{x_{n}=-\varepsilon\right\}\right) \geq c>0 .
$$

To get a control of v by below, we compare v in $B_{1} \cap\left\{x_{n}<-\varepsilon\right\}$ with the harmonic function w

$$
w=0 \text { on } D=B_{1} \cap\left\{x_{n}=-\varepsilon\right\}, w=v \quad \text { on } \partial B_{1} \cap\left\{x_{n} \leq-\varepsilon\right\} .
$$

By maximum principle, we have

$$
w(x)+\varepsilon^{2}\left(|x|^{2}-3\right) \leq v(x) \quad \text { in } B_{1} \cap\left\{x_{n}<-\varepsilon\right\} .
$$

Also, from (39),

$$
w(x)-\varepsilon k\left(|x|^{2}-3\right) \geq v(x) \quad \text { on } \partial\left(B_{1} \cap\left\{x_{n}<-\varepsilon\right\}\right)
$$

and hence in all $B_{1} \cap\left\{x_{n}<-\varepsilon\right\}$. Therefore

$$
\begin{equation*}
|w-v| \leq c \varepsilon \quad \text { in } B_{1} \cap\left\{x_{n}<-\varepsilon\right\} \tag{40}
\end{equation*}
$$

and in particular

$$
w\left(x^{*}\right) \geq \frac{1}{2}
$$

Expanding w around $(0,-\varepsilon)$ and setting $\nabla w(0,-\varepsilon)=a$, we get

$$
\begin{equation*}
|w(x)-a| x_{n}+\varepsilon \| \leq C|x|^{2}+C \varepsilon \tag{41}
\end{equation*}
$$

in $B_{1} \cap\left\{x_{n}<-\varepsilon\right\}$. Notice that $a \geq c>0$, by Hopf Principle.
By (41) and (40), if we restrict to $B_{\varepsilon^{1 / 2}} \cap\left\{x_{n}<-\varepsilon\right\}$

$$
|v(x)-a| x_{n}+\varepsilon| | \leq C \varepsilon
$$

Going back to u^{-}we can write

$$
\left|u^{-}(x)-b \varepsilon^{2}\right| x_{n}+\varepsilon| | \leq C \varepsilon^{3} \quad \text { in } B_{\varepsilon^{1 / 2}} \cap\left\{x_{n}<-\varepsilon\right\}
$$

and

$$
u^{-}(x) \leq b \varepsilon^{2}\left(x_{n}-\varepsilon\right)^{-} \quad \text { in } B_{1}
$$

where b is universal.
Combining the last two inequalities with assumption (37), in $B_{\varepsilon^{1 / 2}}$ we have

$$
\left(x_{n}-\varepsilon\right)^{+}-b \varepsilon^{2}\left(x_{n}-C \varepsilon\right)^{-} \leq u(x) \leq\left(x_{n}+\varepsilon\right)^{+}-b \varepsilon^{2}\left(x_{n}+C \varepsilon\right)^{-}
$$

with $C>0$, universal.
In terms of $u_{\varepsilon}(x)=\varepsilon^{-1 / 2} u\left(\varepsilon^{1 / 2} x\right)$, setting $\beta^{\prime}=b \varepsilon^{2}$, this reads

$$
\left(x_{n}-\varepsilon^{1 / 2}\right)^{+}-\beta^{\prime}\left(x_{n}-C \varepsilon^{1 / 2}\right)^{-} \leq u_{\varepsilon}(x) \leq\left(x_{n}+\varepsilon^{1 / 2}\right)^{+}-\beta^{\prime}\left(x_{n}+C \varepsilon^{1 / 2}\right)^{-}
$$

Setting $\left(\alpha^{\prime}\right)^{2}=1+\left(\beta^{\prime}\right)^{2}=1+b^{2} \varepsilon^{4}$, with small adjustements, we can write

$$
\alpha^{\prime}\left(x_{n}-C^{\prime} \varepsilon^{1 / 2}\right)^{+}-\beta^{\prime}\left(x_{n}-C^{\prime} \varepsilon\right)^{-} \leq u_{\varepsilon}(x) \leq \alpha^{\prime}\left(x_{n}+C^{\prime} \varepsilon^{1 / 2}\right)^{+}-\beta^{\prime}\left(x_{n}+C^{\prime} \varepsilon^{1 / 2}\right)^{-}
$$

with C^{\prime} universal.

Lesson 5

Outline

- The nondegenerate case. Harnack inequality.
- A transmission problem.
- End of the proof of the improvement of flatness Lemma 4.10.

5.1 The nondegenerate case. Harnack inequality.

In this case our solution is trapped between two translations of a true two-plane solution $U_{\beta}, \beta \neq 0$. The Harnack inequality takes the following form.

Theorem 5.1 (Harnack inequality). Let u be a solution of our f.b.p. in B_{2} with Lipschitz constant L. There exists a universal $\tilde{\varepsilon}>0$ such that, if $x_{0} \in B_{2}$ and u satisfies the following condition:

$$
\begin{equation*}
U_{\beta}\left(x_{n}+a_{0}\right) \leq u(x) \leq U_{\beta}\left(x_{n}+b_{0}\right) \quad \text { in } B_{r}\left(x_{0}\right) \subset B_{2} \tag{42}
\end{equation*}
$$

with

$$
\|f\|_{L^{\infty}\left(B_{2}\right)} \leq \varepsilon^{2} \beta, \quad 0<\beta \leq L
$$

and

$$
0<b_{0}-a_{0} \leq \varepsilon r
$$

for some $0<\varepsilon \leq \tilde{\varepsilon}$, then

$$
U_{\beta}\left(x_{n}+a_{1}\right) \leq u(x) \leq U_{\beta}\left(x_{n}+b_{1}\right) \quad \text { in } B_{r / 20}\left(x_{0}\right)
$$

with

$$
a_{0} \leq a_{1} \leq b_{1} \leq b_{0} \quad \text { and } \quad b_{1}-a_{1} \leq(1-c) \varepsilon r
$$

and $0<c<1$ universal.
As in the one phase case, a key consequence of the above Theorem is that for the renormalized function

$$
\tilde{u}_{\varepsilon}(x)= \begin{cases}\frac{u(x)-\alpha x_{n}}{\alpha \varepsilon}, & x \in B_{2}^{+}(u) \cup F(u) \\ \frac{u(x)-\beta x_{n}}{\beta \varepsilon}, & x \in B_{2}^{-}(u)\end{cases}
$$

Corollary 2.2 still holds, with the same proof. Namely:
Corollary 5.2. Let $r=1$ in Theorem 5.1. Then

$$
\left|\tilde{u}_{\varepsilon}(x)-\tilde{u}_{\varepsilon}\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\gamma}
$$

for all $x \in B_{1}\left(x_{0}\right)$ such that $\left|x-x_{0}\right| \geq \varepsilon / \tilde{\varepsilon}$.
The analogous of Lemma 2.3 is the following.
Lemma 5.3. Let u be a viscosity solution of our f.b.p in B_{2}. .Assume that

$$
\begin{equation*}
U_{\beta}(x) \leq u(x) \quad \text { in } B_{1} \tag{43}
\end{equation*}
$$

with

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon^{2} \beta \quad 0<\beta \leq L
$$

Let $\bar{x}=\frac{1}{5} e_{n}$. There exists a universal $\tilde{\varepsilon}$ such that if $\varepsilon \leq \tilde{\varepsilon}$, and

$$
\begin{equation*}
u(\bar{x}) \geq U_{\beta}\left(\bar{x}_{n}+\varepsilon\right) \tag{44}
\end{equation*}
$$

then,

$$
u(x) \geq U_{\beta}\left(\bar{x}_{n}+c \varepsilon\right) \quad \text { in } \bar{B}_{1 / 2}
$$

for some universal $1<c<1$. Similarly, if

$$
u(x) \leq U_{\beta}(x) \quad \text { in } B_{1}
$$

and

$$
u(\bar{x}) \leq U_{\beta}\left(\bar{x}_{n}-\varepsilon\right)
$$

then,

$$
u(x) \leq U_{\beta}\left(\bar{x}_{n}-c \varepsilon\right) \quad \text { in } \bar{B}_{1 / 2}
$$

for some universal $1<c<1$
Proof. We prove only the first part. The second one is completely analogous.
Again, we first show that the interior gain (44) propagates into a neighborhood of \bar{x}. Clearly we have $u \geq U_{\beta}$ in B_{1}. Note that, since $x_{n}>0$ in $B_{1 / 10}(\bar{x})$ and $u \geq U_{\beta}$ in B_{1}, then

$$
B_{1 / 10}(\bar{x}) \subset B_{1}^{+}(u)
$$

Also

$$
B_{1 / 2} \subset \subset B_{3 / 4}(\bar{x}) \subset \subset B_{1} .
$$

By Harnack inequality in $B_{1 / 10}(\bar{x})$, we get

$$
u(x)-U_{\beta}(x) \geq c\left(u(\bar{x})-U_{\beta}(\bar{x})\right)-C\|f\|_{L^{\infty}\left(B_{1 / 10}\right)} \quad \text { in } \bar{B}_{1 / 20}(\bar{x})
$$

Thus, from our assumptions $(\alpha>\beta)$

$$
\begin{equation*}
u(x)-U_{\beta}(x)=u(x)-\alpha x_{n} \geq c \alpha \varepsilon-C \alpha \varepsilon^{2} \geq c_{0} \alpha \varepsilon \quad \text { in } \bar{B}_{1 / 20}(\bar{x}) \tag{45}
\end{equation*}
$$

To propagate this gain up to $F(u)$ we construct a family of subsolutions. Let

$$
A=B_{3 / 4}(\bar{x}) \backslash B_{1 / 20}(\bar{x})
$$

Define

$$
w(x)=c\left[|x-\bar{x}|^{-\gamma}-(3 / 4)^{-\gamma}\right] \quad \text { in } A
$$

with the constant c chosen such that $w=1$ on $\partial B_{1 / 20}(\bar{x})$ and γ (large) so that

$$
\begin{equation*}
\Delta w \geq k(n)>0 \tag{46}
\end{equation*}
$$

Note that $w \leq 1$ in A. Extend

$$
w \equiv 1 \text { in } B_{1 / 20}(\bar{x}) .
$$

Set, for $t \geq 0, x \in B_{3 / 4}(\bar{x}), \psi=1-w$ and

$$
v_{t}(x)=U_{\beta}\left(x_{n}-c_{0} \varepsilon \psi+t \varepsilon\right) .
$$

Observe that

$$
v_{0} \leq U_{\beta} \leq u \quad \text { in } B_{3 / 4}\left(x^{*}\right)
$$

Let \bar{t} the largest $t>0$ such that

$$
v_{t} \leq u \quad \text { in } B_{3 / 4}\left(x^{*}\right)
$$

We want to show that $\bar{t} \geq c_{0}$. Then we get the desired statement. In fact, in $B_{1 / 2}$,

$$
u \geq v_{\bar{t}}=U_{\beta}\left(x_{n}-c_{0} \varepsilon \psi+\bar{t} \varepsilon\right) \geq U_{\beta}\left(x_{n}+c \varepsilon\right)
$$

since $w \geq C_{1}>0$ in $B_{1 / 2}$.
By contradiction, suppose $\bar{t}<c_{0}$. At some point $\bar{x} \in B_{3 / 4}\left(x^{*}\right)$ we have

$$
u(\bar{x})=v_{\bar{t}}(\bar{x}) .
$$

We claim that \bar{x} cannot belong to A and therefore $\bar{x} \in \bar{B}_{1 / 20}\left(x^{*}\right)$.

- $\bar{x} \notin \bar{B}_{3 / 4}\left(x^{*}\right)$. Indeed, on $\partial B_{3 / 4}\left(x^{*}\right) w=0$ whence

$$
v_{\bar{t}}=U_{\beta}\left(x_{n}-c_{0} \varepsilon+\bar{t} \varepsilon\right)<U_{\beta}\left(x_{n}\right) \leq u
$$

- $\bar{x} \notin A^{+}\left(v_{\bar{t}}\right) \cup A^{-}\left(v_{\bar{t}}\right)$. Indeed, in $A^{+}\left(v_{\bar{t}}\right) \cup A^{-}\left(v_{\bar{t}}\right)$ is a strict supersolution for ε small, since (universal),

$$
\Delta v_{\bar{t}} \geq c_{0} \varepsilon \beta \Delta w \geq c_{0} \varepsilon \beta k(n)>\varepsilon^{2} \beta \geq f
$$

- $\bar{x} \notin A \cap F\left(v_{\bar{t}}\right)$. In fact,

$$
\begin{aligned}
\left(v_{\bar{t}}^{+}\right)_{\nu}^{2}-\left(v_{\bar{t}}^{-}\right)_{\nu}^{2} & =\alpha^{2}\left|e_{n}-c_{0} \varepsilon \nabla \psi\right|^{2}-\beta^{2}\left|e_{n}-c_{0} \varepsilon \nabla \psi\right|^{2} \\
& =1+c_{0}^{2} \varepsilon^{2}|\nabla \psi|^{2}-2 c_{0} \varepsilon \psi_{n}>1
\end{aligned}
$$

since $\psi_{n}<0$ (as in the one phase case). This is a strict subsolution condition on $F\left(v_{\bar{t}}\right)$ hence $v_{\bar{t}}$ cannot touch u by below.

Thus $\bar{x} \in \bar{B}_{1 / 20}\left(x^{*}\right)$. But then, since $\psi=0$,

$$
u(\bar{x})=v_{\bar{t}}(\bar{x})=U_{\beta}\left(\bar{x}_{n}+\bar{t} \varepsilon\right)<\alpha \bar{x}_{n}+c_{0} \alpha \varepsilon
$$

contradicting (45).
Proof of Theorem 5.1. We may assume $r=2, x_{0}=0$.We distinguish 3 cases.
(a) $a_{0}>1 / 5$. Then it follows from (42) that $B_{1 / 5} \subset\{u>0\}$ and

$$
0 \leq v(x) \equiv \frac{u(x)-\alpha x_{n}}{\alpha \varepsilon} \leq 1
$$

with

$$
|\Delta v| \leq \varepsilon \quad \text { in } B_{1 / 10}
$$

From Harnack inequality (ε small)

$$
\operatorname{osc}_{B_{1 / 20}}(v) \leq \theta \operatorname{osc}_{1 / 10}(v)=\theta
$$

with $\theta<1$, universal. The conclusion follows easely.
(b) $a_{0}<-1 / 5$. It follows from (42) that $B_{1 / 5} \subset\{u<0\}$ and

$$
0 \leq v(x) \equiv \frac{u(x)-\beta x_{n}}{\beta \varepsilon} \leq 1
$$

with

$$
|\Delta v| \leq \varepsilon \quad \text { in } B_{1 / 10}
$$

Again we conclude by Harnack inequality.
(c) $\left|a_{0}\right| \leq 1 / 5$. From (42), we get

$$
\begin{equation*}
U_{\beta}\left(x_{n}+a_{0}\right) \leq u(x) \leq U_{\beta}\left(x_{n}+a_{0}+\varepsilon\right) \quad \text { in } B_{1} . \tag{47}
\end{equation*}
$$

Let $x^{*}=\frac{1}{5} e_{n}$. Then either $u\left(x^{*}\right) \geq U_{\beta}\left(x_{n}^{*}+a_{0}+\frac{\varepsilon}{2}\right)$ or $u\left(x^{*}\right) \leq U_{\beta}\left(x_{n}^{*}+a_{0}+\frac{\varepsilon}{2}\right)$. Assume the first case occurs (the other one is similar). Then, setting

$$
v(x)=u\left(x-a_{0} e_{n}\right),
$$

(47) reads

$$
U_{\beta}\left(x_{n}\right) \leq v(x) \leq U_{\beta}\left(x_{n}+\varepsilon\right) \quad \text { in } B_{4 / 5}
$$

with

$$
v\left(x^{*}\right) \geq U_{\beta}\left(x_{n}^{*}+\frac{\varepsilon}{2}\right) .
$$

By Lemma 5.3,

$$
v(x) \geq U_{\beta}\left(x_{n}+c \varepsilon\right) \quad \text { in } B_{2 / 5}
$$

or

$$
u(x) \geq U_{\beta}\left(x_{n}+a_{0}+c \varepsilon\right) \quad \text { in } B_{2 / 5}
$$

which is the desired improvement.

5.2 A transmission problem

We consider solutions of the transmission problem

$$
\begin{cases}\Delta \tilde{u}=0 & \text { in } B_{1} \cap\left\{x_{n} \neq 0\right\} \tag{48}\\ \tilde{\alpha}^{2}\left(\tilde{u}_{n}\right)^{+}-\tilde{\beta}^{2}\left(\tilde{u}_{n}\right)^{-}=0 & \text { on } B_{1} \cap\left\{x_{n}=0\right\}\end{cases}
$$

Our main goal is to prove that viscosity solutions (see the definition below) are indeed classical. It is well known that the Dirichlet problem associated to (48) admits a unique classical solution. Precisely, we have:

Lemma 5.4. Let $h \in C\left(\partial B_{1}\right)$. There exists a unique classical solution $\tilde{v} \in C^{\infty}\left(\bar{B}_{1}^{ \pm}\right)$to (48) such that $\tilde{v}=h$ on ∂B_{1}. In particular, there exists a universal constant \tilde{C} such that

$$
\begin{equation*}
\left|\tilde{v}(x)-\tilde{v}(y)-\left(\nabla_{x^{\prime}} \tilde{v}(y) \cdot\left(x^{\prime}-y^{\prime}\right)\right)+\tilde{p}(y) x_{n}^{+}-\tilde{q}(y) x_{n}^{-}\right| \leq \tilde{C}\|\tilde{v}\|_{L^{\infty}\left(B_{1}\right)} r^{2} \tag{49}
\end{equation*}
$$

in $B_{r}(y)$, for every $r \leq 1 / 4, y=\left(y^{\prime}, 0\right) \in B_{1 / 2}$, with

$$
\tilde{\alpha}^{2} \tilde{p}(y)-\tilde{\beta}^{2} \tilde{q}(y)=0
$$

Viscosity solutions are defined in the following way.
Definition 5.1. A function $u \in C\left(B_{1}\right)$ is a viscosity solution to (48) if:
(i) $\Delta u=0$ (any sense is fine)
(ii) Consider functions of the form

$$
\varphi(x)=A+p x_{n}^{+}-q x_{n}^{-}+B Q(y-x)
$$

where A, B, p, q, are constants, $B>0, y=\left(y^{\prime}, 0\right)$ and Q is the harmonic polynomial

$$
Q(x)=\frac{1}{2}\left[(n-1) x_{n}^{2}+\left|x^{\prime}\right|^{2}\right]
$$

Then, if

$$
\tilde{\alpha}^{2} p-\tilde{\beta}^{2} q>0 \quad \text { (strict subsolution condition), }
$$

φ cannot touch u strictly by below at a point $x_{0}=\left(x_{0}^{\prime}, 0\right) \in B_{1}$, while if

$$
\tilde{\alpha}^{2} p-\tilde{\beta}^{2} q<0 \quad \text { (strict supersolution condition), }
$$

φ cannot touch u strictly by above at a point $x_{0}=\left(x_{0}^{\prime}, 0\right) \in B_{1}$.
Remark 5.1. Condition (ii) in the above definition is given in terms of sub/super solutions represented in both the upper and lower halfball, by quadratic harmonic polynomials.

Conditions (i) and (ii) are equivalent to ask that any classical strict sub/super solution cannot touch u by below/above at a point in B_{1}.

We want to show that a viscosity solution is indeed classical. Precisely, we have.
Theorem 5.5. Let \tilde{u} be a viscosity solution to (48) in B_{1} such that $\|\tilde{u}\|_{L^{\infty}\left(B_{1}\right)} \leq 1$. Let \tilde{v} be the classical solution to (48) in $B_{1 / 2}$ with $\tilde{v}=\tilde{u}$ on $\partial B_{1 / 2}$. Then $\tilde{v}=\tilde{u}$ in $B_{1 / 2}$.

Proof. We only prove that $\tilde{v} \leq \tilde{u}$. We use once more a sliding technique. For $\varepsilon>0$ fixed, $t \in \mathbb{R}$, define in $\bar{B}_{1 / 2}$,

$$
v_{t, \varepsilon}(x)=\tilde{v}(x)+\varepsilon\left|x_{n}\right|+\varepsilon x_{n}^{2}-\varepsilon-t .
$$

Notice that $v_{t, \varepsilon}$ is a classical strict subsolution in $B_{1 / 2}$, since $\Delta v_{t, \varepsilon}=2 \varepsilon>0$ outside $x_{n}=0$ and

$$
\tilde{\alpha}^{2}\left(\tilde{v}_{n}^{+}+\varepsilon\right)-\tilde{\beta}^{2}\left(\tilde{v}_{n}^{-}-\varepsilon\right)=\left(\tilde{\alpha}^{2}+\tilde{\beta}^{2}\right) \varepsilon>0
$$

on $x_{n}=0$.
For $t>0$ and large

$$
\begin{equation*}
v_{t, \varepsilon}<\tilde{u} \quad \text { in } B_{1 / 2} \tag{50}
\end{equation*}
$$

Let \hat{t} be the smallest t such that (50) holds and let \hat{x} such that

$$
v_{\hat{t}, \varepsilon}(\hat{x})=\tilde{u}(\hat{x}) .
$$

Since $v_{\hat{t}, \varepsilon}$ a classical strict subsolution in $B_{1 / 2}$, it cannot touch \tilde{u} by below at a point in $B_{1 / 2}$. Hence it must be ${ }^{3} \hat{x} \in \partial B_{1 / 2}$, where $\tilde{v}=\tilde{u}$. This forces

$$
\hat{t}=\varepsilon\left|\hat{x}_{n}\right|+\varepsilon \hat{x}_{n}^{2}-\varepsilon<0
$$

[^2]so that
$$
\tilde{v}(x)+\varepsilon\left|x_{n}\right|+\varepsilon x_{n}^{2}-\varepsilon<\tilde{u}(x) \quad \text { in } B_{1 / 2} .
$$

Letting $\varepsilon \rightarrow 0$ we get $\tilde{v} \leq \tilde{u}$.

5.3 End of the proof of the improvement of flatness Lemma 4.10.

We are now ready to complete the proof of Lemma 4.10.
Step 1. (compactness). Recall that, for $r \leq r_{0}$, chosen in step 3, we assume that there exist sequences $\varepsilon_{k} \rightarrow 0, \beta_{k}, \alpha_{k}$ with

$$
0 \leq \beta_{k} \leq L, \alpha_{k}^{2}=1+\beta_{k}^{2}
$$

and u_{k}, solutions of our f.b.p. in B_{1} with r.h.s. f_{k} such that $\left\|f_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon_{k}^{2} \beta_{k}$ and

$$
\begin{equation*}
U_{\beta_{k}}\left(x_{n}-\varepsilon_{k}\right) \leq u_{k}(x) \leq U_{\beta_{k}}\left(x_{n}+\varepsilon_{k}\right) \quad \text { in } B_{1}, 0 \in F\left(u_{k}\right), \tag{51}
\end{equation*}
$$

but not satisfying the conclusion of Lemma 4.10.
Consider the sequence of normalized functions

$$
\tilde{u}_{k}(x)= \begin{cases}\frac{u_{k}(x)-\alpha_{k} x_{n}}{\alpha_{k} \varepsilon_{k}}, & x \in B_{1}^{+}\left(u_{k}\right) \cup F\left(u_{k}\right) \\ \frac{u_{k}(x)-\beta_{k} x_{n}}{\beta_{k} \varepsilon_{k}}, & x \in B_{1}^{-}\left(u_{k}\right)\end{cases}
$$

Then,

$$
\left|\tilde{u}_{k}\right| \leq 1 \quad \text { in } B_{1}
$$

and from Corollary 5.2,

$$
\left|\tilde{u}_{k}(x)-\tilde{u}_{k}(y)\right| \leq C|x-y|^{\gamma}
$$

for C and $\gamma \in(0,1)$ universal and

$$
|x-y| \geq \varepsilon_{k} / \tilde{\varepsilon} .
$$

As in the one phase case, since $F\left(u_{k}\right)$ converges in Hausdorff distance to $B_{1} \cap\left\{x_{n}=0\right\}$, we infer that the graph of \tilde{u}_{k} converges (up to a subsequence) in Hausdorff distance to a graph of a Hölder continuous \tilde{u} in $B_{1 / 2} \cap\left\{x_{n} \geq 0\right\}$. Also, up to a subsequence

$$
\beta_{k} \rightarrow \tilde{\beta}
$$

and

$$
\alpha_{k} \rightarrow \tilde{\alpha}=\sqrt{1+\tilde{\beta}^{2}}
$$

Step 2: limit function. We now show that \tilde{u} solves the following linearized problem (transmission problem):

$$
\begin{cases}\Delta \tilde{u}=0 & \text { in } B_{1 / 2} \cap\left\{x_{n} \neq 0\right\} \tag{52}\\ \tilde{\alpha}^{2}\left(\tilde{u}_{n}\right)^{+}-\tilde{\beta}^{2}\left(\tilde{u}_{n}\right)^{-}=0 & \text { on } B_{1 / 2} \cap\left\{x_{n}=0\right\}\end{cases}
$$

Since

$$
\left|\Delta u_{k}\right| \leq \varepsilon_{k}^{2} \beta_{k} \quad \text { in } B_{1}^{+}\left(u_{k}\right) \cup B_{1}^{-}\left(u_{k}\right),
$$

one easily deduces that \tilde{u} is harmonic in $B_{1 / 2} \cap\left\{x_{n} \neq 0\right\}$.
Next, we prove that \tilde{u} satisfies the transmission condition on $\left\{x_{n}=0\right\}$ in the viscosity sense.
Let $\tilde{\phi}$ be a function of the form

$$
\tilde{\phi}(x)=A+p x_{n}^{+}-q x_{n}^{-}+B Q(x-y)
$$

with

$$
Q(x)=\frac{1}{2}\left[(n-1) x_{n}^{2}-\left|x^{\prime}\right|^{2}\right], \quad y=\left(y^{\prime}, 0\right), \quad A \in, B>0
$$

and for which the subsolution transmission condition holds, namely:

$$
\tilde{\alpha}^{2} p-\tilde{\beta}^{2} q>0
$$

We must show that $\tilde{\phi}$ cannot touch u strictly by below at a point $x_{0}=\left(x_{0}^{\prime}, 0\right) \in B_{1 / 2}$ (the analogous statement by above follows with a similar argument.)

Suppose that such a $\tilde{\phi}$ exists and let x_{0} be the touching point. To reach a contradiction we construct a sequence of classical subsolutions ψ_{k} touching by below u_{k}.

Let

$$
\begin{equation*}
\Gamma(x)=\frac{1}{n-2}\left[\left(\left|x^{\prime}\right|^{2}+\left|x_{n}-1\right|^{2}\right)^{\frac{2-n}{2}}-1\right] \tag{53}
\end{equation*}
$$

This is a fundamental solution with pole at $\left(0^{\prime}, 1\right)$. Note that

$$
\Gamma(x)=x_{n}+Q(x)+O\left(|x|^{3}\right) \quad x \in B_{1}
$$

Let $z_{k}=y+e_{n}\left(\frac{1}{B \varepsilon_{k}}-A \varepsilon_{k}\right)$ and $B_{k}=B_{1 / B \varepsilon_{k}}\left(z_{k}\right)$. We have

$$
\partial B_{k}=\left\{x:\left|x^{\prime}-y^{\prime}\right|^{2}+\left(x_{n}+A \varepsilon_{k}-\frac{1}{B \varepsilon_{k}}\right)^{2}\right\}=\frac{1}{B^{2} \varepsilon_{k}^{2}}
$$

Thus, the harmonic function

$$
\begin{aligned}
\Gamma_{k}(x) & =\frac{1}{(n-2) B \varepsilon_{k}}\left[\left(B^{2} \varepsilon_{k}^{2}\left|x^{\prime}-y^{\prime}\right|^{2}+\left(B \varepsilon_{k} x_{n}+A B \varepsilon_{k}^{2}-1\right)^{2}\right)^{\frac{2-n}{2}}-1\right] \\
& =\frac{1}{B \varepsilon_{k}} \Gamma\left(B \varepsilon_{k}(x-y)+A B \varepsilon_{k}^{2} e_{n}\right)
\end{aligned}
$$

vanishes on ∂B_{k}. Moreover $\left|\nabla \Gamma_{k}\right|=1$ on ∂B_{k} and

$$
\Gamma_{k}(x)=A \varepsilon_{k}+x_{n}+B \varepsilon_{k} Q(x)+O\left(\varepsilon_{k}^{2}\right) \quad x \in B_{1}
$$

Introduce now the signed distance function from B_{k} given by

$$
d_{k}(x)=d\left(x, B_{k}\right)-d\left(x, \mathbb{R}^{n} \backslash B_{k}\right)
$$

and define

$$
\phi_{k}(x)=a_{k} \Gamma_{k}^{+}(x)-b_{k} \Gamma_{k}^{-}(x)+\alpha_{k}\left(d_{k}^{+}(x)\right)^{2} \varepsilon_{k}^{3 / 2}+\beta_{k}\left(d_{k}^{-}(x)\right)^{2} \varepsilon_{k}^{3 / 2}
$$

where

$$
a_{k}=\alpha_{k}\left(1+\varepsilon_{k} p\right), \quad b_{k}=\beta_{k}\left(1+\varepsilon_{k} q\right)
$$

Note that also ϕ_{k} vanishes on ∂B_{k}.
Finally, let

$$
\tilde{\phi}_{k}(x)= \begin{cases}\frac{\phi_{k}(x)-\alpha_{k} x_{n}}{\alpha_{k} \varepsilon_{k}}, & x \in B_{1}^{+}\left(\phi_{k}\right) \cup F\left(\phi_{k}\right) \\ \frac{\phi_{k}(x)-\beta_{k} x_{n}}{\beta_{k} \varepsilon_{k}}, & x \in B_{1}^{-}\left(\phi_{k}\right)\end{cases}
$$

It follows that in $B_{1}^{+}\left(\phi_{k}\right) \cup F\left(\phi_{k}\right)$

$$
\tilde{\phi}_{k}(x)=A+B Q(x-y)+p x_{n}+A \varepsilon_{k} p+B p \varepsilon_{k} Q(x-y)+\varepsilon_{k}^{1 / 2} d_{k}^{2}+O\left(\varepsilon_{k}\right)
$$

and analogously in $B_{1}^{-}\left(\phi_{k}\right)$

$$
\tilde{\phi}_{k}(x)=A+B Q(x-y)+q x_{n}+A \varepsilon_{k} p+B q \varepsilon_{k} Q(x-y)+\varepsilon_{k}^{1 / 2} d_{k}^{2}+O\left(\varepsilon_{k}\right) .
$$

Hence, $\tilde{\phi}_{k}$ converges uniformly to $\tilde{\phi}$ on $B_{1 / 2}$.
Since \tilde{u}_{k} converges uniformly to \tilde{u} and $\tilde{\phi}$ touches \tilde{u} strictly by below at x_{0}, we conclude that there exist a sequence of constant $c_{k} \rightarrow 0$ and of points $x_{k} \rightarrow x_{0}$ such that the function

$$
\psi_{k}(x)=\phi_{k}\left(x+c_{k} e_{n}\right)
$$

touches u_{k} by below at x_{k}. We thus get a contradiction if we prove that ψ_{k} is a strict subsolution to our free boundary problem, that is

$$
\left\{\begin{array}{cc}
\Delta \psi_{k}>\varepsilon_{k}^{2} \beta_{k} \geq\left\|f_{k}\right\|_{\infty}, & \text { in } B_{1}^{+}\left(\psi_{k}\right) \cup B_{1}^{-}\left(\psi_{k}\right), \\
\left(\psi_{k}^{+}\right)_{\nu}^{2}-\left(\psi_{k}^{-}\right)_{\nu}^{2}>1, & \text { on } F\left(\psi_{k}\right) .
\end{array}\right.
$$

It is easily checked that away from the free boundary

$$
\Delta \psi_{k} \geq \beta_{k} \varepsilon_{k}^{3 / 2} \Delta d_{k}^{2}\left(x+\varepsilon_{k} c_{k} e_{n}\right)
$$

and the first condition is satisfied for k large enough.
Finally, since on $\partial B_{k},\left|\nabla \Gamma_{k}\right|=1$ and $\left|\nabla d_{k}^{2}\right|=0$, the free boundary condition reduces to showing that

$$
a_{k}^{2}-b_{k}^{2}>1
$$

Using the definition of a_{k}, b_{k} we need to check that

$$
\left(\alpha_{k}^{2} p^{2}-\beta_{k}^{2} q^{2}\right) \varepsilon_{k}+2\left(\alpha_{k}^{2} p-\beta_{k}^{2} q\right)>0
$$

This inequality holds for k large in view of the fact that

$$
\tilde{\alpha}^{2} p-\tilde{\beta}^{2} q>0
$$

Thus \tilde{u} is a solution to the linearized problem.
Since we already proved step 3, the proof of Lemma 4-10 is complete.

Lesson 6

Outline

- The degenerate case. Harnack inequality.
- End of the proof of the improvement of flatness Lemma.
- Proof of the main Lemma 4.6.
- A Liouville Theorem and the proof of Theorem 4.4.

6.1 The degenerate case. Harnack inequality

In this case, the negative part is very small compared to the positive one, which, in turn is closed to a one plan solution $U_{0}\left(x_{n}\right)=x_{n}^{+}$. Harnack inequality takes the following form:

Theorem 6.1 (Harnack inequality). Let u be a solution of our f.b.p. in B_{2} with Lipschitz constant L. There exists a universal $\tilde{\varepsilon}>0$ such that, if $x_{0} \in B_{2}$ and u satisfies the following condition

$$
\begin{equation*}
\left(x_{n}+a_{0}\right)^{+} \leq u^{+}(x) \leq\left(x_{n}+b_{0}\right)^{+} \quad \text { in } B_{r}\left(x_{0}\right) \subset B_{2} \tag{54}
\end{equation*}
$$

with

$$
\|f\|_{L^{\infty}\left(B_{2}\right)} \leq \varepsilon^{4}, \quad\|f\|_{L^{\infty}\left(B_{2}\right)} \leq \varepsilon^{2}
$$

and

$$
0<b_{0}-a_{0} \leq \varepsilon r
$$

for some $0<\varepsilon \leq \tilde{\varepsilon}$, then

$$
\left(x_{n}+a_{1}\right)^{+} \leq u^{+}(x) \leq\left(x_{n}+b_{1}\right)^{+} \quad \text { in } B_{r / 20}\left(x_{0}\right)
$$

with

$$
a_{0} \leq a_{1} \leq b_{1} \leq b_{0} \quad \text { and } \quad b_{1}-a_{1} \leq(1-c) \varepsilon r
$$

and $0<c<1$ universal.
As in the previous cases, a key consequence of the above Theorem is that for the renormalized function

$$
\tilde{u}_{\varepsilon}(x)=\frac{u^{+}(x)-x_{n}}{\varepsilon}, \quad x \in B_{1}\left(x_{0}\right)
$$

Corollary 2.2 still holds, with the same proof. Namely:
Corollary 6.2. Let $r=1$ in Theorem 5.1. Then

$$
\left|\tilde{u}_{\varepsilon}(x)-\tilde{u}_{\varepsilon}\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{\gamma}
$$

for all $x \in B_{1}\left(x_{0}\right)$ such that $\left|x-x_{0}\right| \geq \varepsilon / \tilde{\varepsilon}$.
The analogous of Lemma 2.3 is the following.
Lemma 6.3. Let u be a viscosity solution of our f.b.p in B_{2}. Assume that

$$
\begin{equation*}
x_{n}^{+} \leq u^{+}(x) \quad \text { in } B_{1} \tag{55}
\end{equation*}
$$

with

$$
\|f\|_{L^{\infty}\left(B_{2}\right)} \leq \varepsilon^{4}, \quad\|f\|_{L^{\infty}\left(B_{2}\right)} \leq \varepsilon^{2} .
$$

Let $\bar{x}=\frac{1}{5} e_{n}$. There exists a universal $\tilde{\varepsilon}$ such that if $\varepsilon \leq \tilde{\varepsilon}$, and

$$
\begin{equation*}
u^{+}(\bar{x}) \geq\left(\bar{x}_{n}+\varepsilon\right)^{+} \tag{56}
\end{equation*}
$$

then,

$$
u^{+}(x) \geq\left(\bar{x}_{n}+c \varepsilon\right)^{+} \quad \text { in } \bar{B}_{1 / 2}
$$

for some universal $1<c<1$. Similarly, if

$$
u^{+}(x) \leq x_{n}^{+} \quad \text { in } B_{1}
$$

and

$$
u(\bar{x}) \leq\left(\bar{x}_{n}-\varepsilon\right)^{+}
$$

then,

$$
u(x) \leq\left(\bar{x}_{n}-c \varepsilon\right)^{+} \quad \text { in } \bar{B}_{1 / 2}
$$

for some universal $1<c<1$
Proof. We prove only the first part. The second one is completely analogous.
Again, we first show that the interior gain (56) propagates into a neighborhood of \bar{x}. Since $x_{n}>0$ in $B_{1 / 10}(\bar{x})$ and $u^{+} \geq U_{0}$ in B_{1}, then

$$
B_{1 / 10}(\bar{x}) \subset B_{1}^{+}(u) .
$$

Also

$$
B_{1 / 2} \subset \subset B_{3 / 4}(\bar{x}) \subset \subset B_{1} .
$$

By Harnack inequality in $B_{1 / 10}(\bar{x})$, we get

$$
\begin{equation*}
u(x)-x_{n} \geq c\left(u(\bar{x})-\bar{x}_{n}\right)-C\|f\|_{L^{\infty}\left(B_{1 / 10}\right)} \geq c_{0} \varepsilon \quad \text { in } \bar{B}_{1 / 20}(\bar{x}) . \tag{57}
\end{equation*}
$$

Set, in $\bar{B}_{3 / 4}(\bar{x})$

$$
v_{t}(x)=\left(x_{n}-c_{0} \varepsilon \psi(x)+t \varepsilon\right)^{+}-C_{1} \varepsilon^{2}\left(x_{n}-c_{0} \varepsilon \psi(x)+t \varepsilon\right)^{-}
$$

where $\psi=1-w$ is as in Lemma 5.3 and C_{1} is to be chosen later.
We claim that

$$
v_{0} \leq u \quad \text { in } \bar{B}_{3 / 4}(\bar{x}) .
$$

Indeed, where $u \geq 0$, we have $u \geq x_{n} \geq v$. Where u is negative, we compare u^{-}with the solution of the problem

$$
\Delta v=-\varepsilon^{4} \text { in } B_{1} \cap\left\{x_{n}<0\right\}, \quad v=u^{-} \text {on } \partial\left(B_{1} \cap\left\{x_{n}<0\right\}\right) .
$$

Since $\{u<0\} \subset\left\{x_{n}<0\right\}$, it follows that

$$
\begin{equation*}
u^{-}(x) \leq C x_{n}^{-} \varepsilon^{2} \quad \text { in } B_{8 / 9}, C \text { universal. } \tag{58}
\end{equation*}
$$

Since for $C_{1}>C$ and $x_{n}<0$,

$$
C_{1}\left(x_{n}-c_{0} \varepsilon \psi(x)\right)^{-}<C x_{n}^{-}
$$

our claim follows.

Let t^{*} be the largest t such that

$$
v_{t} \leq u \quad \text { in } \bar{B}_{3 / 4}(\bar{x})
$$

We want to show that $t^{*} \geq c_{0}$. Then, from

$$
u^{+}(x) \geq\left(x_{n}-c_{0} \varepsilon \psi(x)+t^{*} \varepsilon\right)^{+} \quad \text { in } \bar{B}_{3 / 4}(\bar{x})
$$

we get

$$
u^{+}(x) \geq\left(x_{n}+c \varepsilon\right)^{+} \quad \text { in } \bar{B}_{1 / 2}
$$

with $c<c_{0} \min _{B_{1 / 2}} w$.
Suppose $t^{*}<c_{0}$. Then at some $\tilde{x} \in \bar{B}_{3 / 4}(\bar{x})$ we have

$$
v_{t^{*}}(\tilde{x})=u(\tilde{x})
$$

We show that such touching point can only occur on $\bar{B}_{1 / 20}(\bar{x})$. Indeed, since $w \equiv 0$ on $\partial B_{3 / 4}(\bar{x})$ from the definition of v_{t} we get that for $t^{*}<c_{0}$

$$
v_{t^{*}}(x)=\left(x_{n}-\varepsilon c_{0}+t^{*} \varepsilon\right)^{+}-\varepsilon^{2} C_{1}\left(x_{n}-\varepsilon c_{0}+t^{*} \varepsilon\right)^{-}<u(x) \quad \text { on } \partial B_{3 / 4}(\bar{x}) .
$$

In the set where $u \geq 0$ this can be seen using that $u \geq x_{n}^{+}$while in the set where $u<0$ again we can use the estimate (58).

We now show that \tilde{x} cannot belong to the annulus $A=B_{3 / 4}(\bar{x}) \backslash \bar{B}_{1 / 20}(\bar{x})$. Indeed,

$$
\Delta v_{t^{*}} \geq \varepsilon^{3} c_{0} k(n)>\varepsilon^{4} \geq\|f\|_{\infty}, \quad \text { in } A^{+}\left(v_{t^{*}}\right) \cup A^{-}\left(v_{t^{*}}\right)
$$

for ε small enough.
Also,

$$
\left(v_{t^{*}}^{+}\right)_{\nu}^{2}-\left(v_{t^{*}}^{-}\right)_{\nu}^{2}=\left(1-\varepsilon^{4} C_{1}^{2}\right)\left(1+\varepsilon^{2} c_{0}^{2}|\nabla \psi|^{2}-2 \varepsilon c_{0} \psi_{n}\right) \quad \text { on } F\left(v_{t^{*}}\right) \cap A \text {. }
$$

Thus,

$$
\left(v_{\bar{t}}^{+}\right)_{\nu}^{2}-\left(v_{\bar{t}}^{-}\right)_{\nu}^{2}>1 \quad \text { on } F\left(v_{\bar{t}}\right) \cap A
$$

as long as ε is small enough (as in the non-degenerate case one can check that $\inf _{F\left(v_{\bar{E}}\right) \cap A}\left(-\psi_{n}\right)>$ $c>0, c$ universal.) Thus, $v_{t^{*}}$ is a strict subsolution to in A which lies below u, hence by definition, \tilde{x} cannot belong to A.

Therefore, $\tilde{x} \in \bar{B}_{1 / 20}(\bar{x})$ and

$$
u(\tilde{x})=v_{\bar{t}}(\tilde{x})=\left(\tilde{x}_{n}+\bar{t} \varepsilon\right)<\tilde{x}_{n}+c_{0} \varepsilon
$$

contradicting (57).

6.2 End of the proof of the improvement of flatness Lemma 4.11

Corollary 6.2 implies that the sequence of normalized functions

$$
\tilde{u}_{k}(x)=\frac{u_{k}(x)-x_{n}}{\varepsilon_{k}} \quad x \in B_{1}^{+}\left(u_{k}\right) \cup F\left(u_{k}\right)
$$

converges to a limit function \tilde{u}, Hölder continuous in $B_{1 / 2}$.

Lemma 6.4. \tilde{u} is a viscosity solution of the Neumann problem

$$
\begin{cases}\Delta \tilde{u}=0 & \text { in } B_{1 / 2} \cap\left\{x_{n}>0\right\} \\ \tilde{u}_{n}=0 & \text { on } B_{1 / 2} \cap\left\{x_{n}=0\right\} .\end{cases}
$$

Proof. As before, the interior condition follows easily thus we focus on the boundary condition. We keep the same notations in the proof of subsection 5.3.

Let $\tilde{\phi}$ be a classical strict subfunction of the form solution of the form

$$
\tilde{\phi}(x)=A+p x_{n}+B Q(x-y)
$$

with

$$
Q(x)=\frac{1}{2}\left[(n-1) x_{n}^{2}-\left|x^{\prime}\right|^{2}\right], \quad y=\left(y^{\prime}, 0\right), \quad A \in, B>0
$$

and

$$
p>0
$$

Then we must show that $\tilde{\phi}$ cannot touch u strictly by below at a point $x_{0}=\left(x_{0}^{\prime}, 0\right) \in B_{1 / 2}$. Suppose that such a $\tilde{\phi}$ exists and let x_{0} be the touching point. Call

$$
\phi_{k}(x)=a_{k} \Gamma_{k}^{+}(x)+\left(d_{k}^{+}(x)\right)^{2} \varepsilon_{k}^{2}, \quad a_{k}=\left(1+\varepsilon_{k} p\right)
$$

where d_{k} is the signed distance to $B_{\frac{1}{B \varepsilon_{k}}}\left(z_{k}\right)$.
Let

$$
\tilde{\phi}_{k}(x)=\frac{\phi_{k}(x)-x_{n}}{\varepsilon_{k}}
$$

As in the previous case, it follows that in $B_{1}^{+}\left(\phi_{k}\right) \cup F\left(\phi_{k}\right)$,

$$
\tilde{\phi}_{k}(x)=A+B Q(x-y)+p x_{n}+A \varepsilon_{k} p+B p \varepsilon_{k} Q(x-y)+\varepsilon_{k} d_{k}^{2}+O\left(\varepsilon_{k}\right)
$$

Hence, $\tilde{\phi}_{k}$ converges uniformly to $\tilde{\phi}$ on $B_{1 / 2} \cap\left\{x_{n} \geq 0\right\}$. Since \tilde{u}_{k} converges uniformly to \tilde{u} and $\tilde{\phi}$ touches \tilde{u} strictly by below at x_{0}, we conclude that there exist a sequence of constants $c_{k} \rightarrow 0$ and of points $x_{k} \rightarrow x_{0}$ such that the function

$$
\psi_{k}(x)=\phi_{k}\left(x+c_{k} e_{n}\right)
$$

touches u_{k} by below at $x_{k} \in B_{1}^{+}\left(u_{k}\right) \cup F\left(u_{k}\right)$. We claim that x_{k} cannot belong to $B_{1}^{+}\left(u_{k}\right)$. Otherwise, in a small neighborhood \mathcal{N} of x_{k} we would have that

$$
\Delta \psi_{k}>\varepsilon_{k}^{4} \geq\left\|f_{k}\right\|_{\infty}=\Delta u_{k}, \quad \psi_{k}<u_{k} \text { in } \mathcal{N} \backslash\left\{x_{k}\right\}, \psi_{k}\left(x_{k}\right)=u_{k}\left(x_{k}\right)
$$

a contradiction.
Thus, since $u_{k}\left(x_{k}\right)=\psi_{k}\left(x_{k}\right)=0$, we have $x_{k} \in F\left(u_{k}\right) \cap \partial \mathcal{B}_{k}$ where

$$
\mathcal{B}_{k}=B_{\frac{1}{B \varepsilon_{k}}}\left(z_{k}-e_{n} c_{k}\right)
$$

Let \mathcal{N}_{ρ} be a small neighborhood of x_{k} of size ρ. Since

$$
\left\|u_{k}^{-}\right\|_{\infty} \leq \varepsilon_{k}^{2}, \quad u_{k}^{+} \geq\left(x_{n}-\varepsilon_{k}\right)^{+}
$$

as in the proof of Harnack inequality, using the fact that $x_{k} \in F\left(u_{k}\right) \cap \partial \mathcal{B}_{k}$ we can conclude by the comparison principle that

$$
u_{k}^{-}(x) \leq c \varepsilon_{k}^{2} d\left(x, \mathcal{B}_{k}\right)^{-}, \quad \text { in } \mathcal{N}_{\frac{3}{4} \rho}
$$

Let

$$
\Psi_{k}(x)= \begin{cases}\psi_{k} & \text { in } \mathcal{B}_{k} \\ c \varepsilon_{k}^{2}\left[-3 d\left(x, \mathcal{B}_{k}\right)+d^{2}\left(x, \mathcal{B}_{k}\right)\right] & \text { outside } \mathcal{B}_{k}\end{cases}
$$

Then Ψ_{k} touches by below u_{k} at $x_{k} \in F\left(u_{k}\right) \cap F\left(\Psi_{k}\right)$. Since $p>0$, for k large enough, we have

$$
\left(\Psi_{k}^{+}\right)_{\nu}^{2}-\left(\Psi_{k}^{-}\right)_{\nu}^{2}=a_{k}^{2}-c \varepsilon_{k}^{4}=\left(1+\varepsilon_{k} p\right)^{2}-c \varepsilon_{k}^{4}>1
$$

which makes Ψ_{k} a subsolution. But this is a contradiction.

6.3 Proof of the main Lemma 4.6

To prove the main Lemma 4.6 we iterate Lemma 4.10 or Lemma 4.11, after proper rescaling. Let r_{0}, r_{1} as in those lemmas and fix a universal \bar{r} such that

$$
\bar{r} \leq \min \left\{r_{0}, r_{1}, \frac{1}{16}\right\}
$$

Also fix a universal $\tilde{\varepsilon}$ such that

$$
\tilde{\varepsilon} \leq \min \left\{\varepsilon_{0}(\bar{r}), \frac{\varepsilon_{1}(\bar{r})}{2}, \frac{1}{2 \tilde{C}}, \frac{\varepsilon_{2}}{2}\right\}
$$

where $\varepsilon_{0}(\bar{r}), \varepsilon_{1}(\bar{r}), \varepsilon_{2}(\bar{r})$ and \tilde{C} are as in Lemmas 4.10, 4.11 and 4.12.
Now let

$$
\bar{\eta}=\tilde{\varepsilon}^{3} .
$$

Suppose our assumptions hold in the ball B_{2}.
Case 1. $\beta \geq \tilde{\varepsilon}$ (non degenerate case).
In view of Lemma 4.5 and our choice of $\tilde{\varepsilon}$, we obtain that u satisfies the assumptions of Lemma 5.1:

$$
U_{\beta}\left(x_{n}-\tilde{\varepsilon}\right) \leq u(x) \leq U_{\beta}\left(x_{n}+\tilde{\varepsilon}\right) \quad \text { in } B_{1}
$$

with $0<\beta \leq L$ and

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq \tilde{\varepsilon}^{3} \leq \tilde{\varepsilon}^{2} \beta .
$$

From Lemma 4.10, we get

$$
U_{\beta_{1}}\left(x \cdot \nu_{1}-\bar{r} \frac{\tilde{\varepsilon}}{2}\right) \leq u(x) \leq U_{\beta_{1}}\left(x \cdot \nu_{1}+\bar{r} \frac{\tilde{\varepsilon}}{2}\right) \quad \text { in } B_{\bar{r}}
$$

with $\left|\nu_{1}\right|=1,\left|\nu_{1}-e_{n}\right| \leq \tilde{C} \tilde{\varepsilon}, 0<\beta_{1} \leq L,\left|\beta_{1}-\beta\right| \leq \tilde{C} \beta \tilde{\varepsilon}$ and $\alpha_{1}=\sqrt{1+\beta_{1}^{2}}$. In particular, by our choice of $\tilde{\varepsilon}$ we have

$$
\beta_{1} \geq \beta(1-\tilde{C} \tilde{\varepsilon}) \geq \frac{\tilde{\varepsilon}}{2}
$$

We can therefore rescale and iterate the argument above. Assume at the step k, for $k=1,2 \ldots$, we have ($\beta=\beta_{0}, e_{n}=\nu_{0}$)

$$
U_{\beta_{k}}\left(x \cdot \nu_{k}-\bar{r}^{k} \tilde{\varepsilon}_{k}\right) \leq u(x) \leq U_{\beta_{k}}\left(x \cdot \nu_{k}+\bar{r}^{k} \tilde{\varepsilon}_{k}\right) \quad \text { in } B_{\bar{r}^{k}}
$$

with $\varepsilon_{k}=2^{-k} \tilde{\varepsilon},\left|\nu_{k}\right|=1,\left|\nu_{k}-\nu_{k-1}\right| \leq \tilde{C} \tilde{\varepsilon}_{k-1}$,

$$
\left|\beta_{k}-\beta_{k-1}\right| \leq \tilde{C} \beta_{k-1} \tilde{\varepsilon}_{k-1}, \quad \varepsilon_{k} \leq \beta_{k} \leq L
$$

and $\alpha_{k}=\sqrt{1+\beta_{k}^{2}}$. Set

$$
\rho_{k}=\bar{r}^{k}
$$

and

$$
u_{k}(x)=\frac{1}{\rho_{k}} u\left(\rho_{k} x\right), \quad f_{k}(x)=\rho_{k} f\left(\rho_{k} x\right) \quad x \in B_{1} .
$$

We have

$$
\left\|f_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \rho_{k} \tilde{\varepsilon}^{3} \leq \tilde{\varepsilon}_{k}^{2} \beta_{k}
$$

and

$$
U_{\beta_{k}}\left(x \cdot \nu_{k}-\tilde{\varepsilon}_{k}\right) \leq u_{k}(x) \leq U_{\beta_{k}}\left(x \cdot \nu_{k}+\tilde{\varepsilon}_{k}\right) \quad \text { in } B_{1} .
$$

Then, applying Lemma 4.10, we get

$$
U_{\beta_{k+1}}\left(x \cdot \nu_{k+1}-\bar{r} \tilde{\varepsilon}_{k+1}\right) \leq u_{k+1}(x) \leq U_{\beta_{k+1}}\left(x \cdot \nu_{k+1}+\bar{r} \tilde{\varepsilon}_{k+1}\right) \quad \text { in } B_{\bar{r}}
$$

or, rescaling back,

$$
U_{\beta_{k+1}}\left(x \cdot \nu_{k+1}-\bar{r}^{k+1} \tilde{\varepsilon}_{k+1}\right) \leq u(x) \leq U_{\beta_{k+1}}\left(x \cdot \nu_{k+1}+\bar{r}^{k+1} \tilde{\varepsilon}_{k+1}\right) \quad \text { in } B_{\bar{r}^{k+1}}
$$

with $\left|\nu_{k+1}\right|=1,\left|\nu_{k+1}-\nu_{k}\right| \leq \tilde{C} \tilde{\varepsilon}_{k},\left|\beta_{k}-\beta_{k+1}\right| \leq \tilde{C} \beta_{k} \tilde{\varepsilon}_{k}$, and $\varepsilon_{k} \leq \beta_{k} \leq L$.
We conclude that $F(u)$ is $C^{1, \alpha}$ at the origin.
Case 2. $\beta<\tilde{\varepsilon}$ (degenerate case).
In view of Lemma 4.5 and our choice of $\tilde{\varepsilon}$, we obtain that u satisfies the assumptions of Lemma 4.11

$$
U_{0}\left(x_{n}-\tilde{\varepsilon}\right) \leq u^{+}(x) \leq U_{0}\left(x_{n}+\tilde{\varepsilon}\right) \quad \text { in } B_{1}
$$

Since (see (23)

$$
\left\|u-U_{\beta}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \bar{\eta}=\tilde{\varepsilon}^{3}
$$

we infer

$$
\left\|u^{-}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \beta+\tilde{\varepsilon}^{3} \leq 2 \tilde{\varepsilon}
$$

Call $\varepsilon^{\prime}=\sqrt{2 \tilde{\varepsilon}}$. Then

$$
U_{0}\left(x_{n}-\varepsilon^{\prime}\right) \leq u^{+}(x) \leq U_{0}\left(x_{n}+\varepsilon^{\prime}\right) \quad \text { in } B_{1}
$$

and

$$
\|f\|_{L^{\infty}\left(B_{1}\right)} \leq\left(\varepsilon^{\prime}\right)^{4},\left\|u^{-}\right\|_{L^{\infty}\left(B_{1}\right)} \leq\left(\varepsilon^{\prime}\right)^{2}
$$

From Lemma 4.11, we get

$$
U_{0}\left(x \cdot \nu_{1}-\bar{r} \frac{\varepsilon^{\prime}}{2}\right) \leq u^{+}(x) \leq U_{0}\left(x \cdot \nu_{1}+\bar{r} \frac{\varepsilon^{\prime}}{2}\right) \quad \text { in } B_{\bar{r}}
$$

with $\left|\nu_{1}\right|=1,\left|\nu_{1}-e_{n}\right| \leq C \varepsilon^{\prime}$ for a universal constant C.
We now rescale as in the previous case, setting

$$
\rho_{k}=\bar{r}^{k}, \varepsilon_{k}=2^{-k} \varepsilon^{\prime}
$$

and

$$
u_{k}(x)=\frac{1}{\rho_{k}} u\left(\rho_{k} x\right), \quad f_{k}(x)=\rho_{k} f\left(\rho_{k} x\right) \quad x \in B_{1} .
$$

Note that

$$
\left\|f_{k}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \rho_{k}\left(\varepsilon^{\prime}\right)^{4} \leq \frac{1}{16}\left(\varepsilon^{\prime}\right)^{4}=\varepsilon_{k}^{4} .
$$

We can iterate Lemma 4.11 and obtain

$$
U_{0}\left(x \cdot \nu_{k}-\varepsilon_{k}\right) \leq u_{k}^{+}(x) \leq U_{0}\left(x \cdot \nu_{k}+\varepsilon_{k}\right) \quad \text { in } B_{1} .
$$

with $\left|\nu_{k}-\nu_{k-1}\right| \leq C \varepsilon_{k-1}$, as long as

$$
\left\|u_{k}^{-}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon_{k}^{2} .
$$

Let $k^{*}>1$ be the first integer for which this fails:

$$
\left\|u_{k^{*}}^{-}\right\|_{L^{\infty}\left(B_{1}\right)}>\varepsilon_{k^{*}}^{2}
$$

and

$$
\left\|u_{k^{*}-1}^{-}\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon_{k^{*}-1}^{2}
$$

We also have

$$
U_{0}\left(x \cdot \nu_{k^{*}-1}-\varepsilon_{k^{*}-1}\right) \leq u_{k^{*}-1}^{+}(x) \leq U_{0}\left(x \cdot \nu_{k^{*}-1}+\varepsilon_{k^{*}-1}\right) \quad \text { in } B_{1} .
$$

By usual comparison argument we can write

$$
u_{k^{*}-1}^{+}(x) \leq C\left|x_{n}-\varepsilon_{k^{*}-1}\right| \varepsilon_{k^{*}-1}^{2} \quad \text { in } B_{19 / 20}
$$

for C universal. Rescaling, we have

$$
\left\|u_{k^{*}}^{-}\right\|_{L^{\infty}\left(B_{1}\right)} \leq C_{1} \varepsilon_{k^{*}}^{2}
$$

where C_{1} universal ($\left(C_{1}\right.$ depends on $\left.\bar{r}\right)$. Then $u_{k^{*}}$ satisfies the assumptions of Lemma 4.12 and therefore the rescaling

$$
v(x)=\varepsilon_{k^{*}}^{-1 / 2} u_{k^{*}}\left(\varepsilon_{k^{*}}^{1 / 2} x\right)
$$

satisfies in B_{1} :

$$
U_{\beta^{\prime}}\left(x \cdot \nu_{k^{*}}-C^{\prime} \varepsilon_{k^{*}}^{1 / 2}\right) \leq v(x) \leq U_{\beta^{\prime}}\left(x \cdot \nu_{k^{*}}+C^{\prime} \varepsilon_{k^{*}}^{1 / 2}\right)
$$

with $\beta^{\prime} \sim \varepsilon_{k^{*}}^{2}$. Call $\hat{\varepsilon}=C^{\prime} \varepsilon_{k^{*}}^{1 / 2}$. Then v is a solution of our f.b.p. in B_{1} with r.h.s.

$$
g(x)=\varepsilon_{k^{*}}^{1 / 2} f_{k^{*}}\left(\varepsilon_{k^{*}}^{1 / 2} x\right)
$$

and the flatness assumption

$$
U_{\beta^{\prime}}\left(x \cdot \nu_{k^{*}}-\hat{\varepsilon}\right) \leq v(x) \leq U_{\beta^{\prime}}\left(x \cdot \nu_{k^{*}}+\hat{\varepsilon}\right)
$$

Since $\beta^{\prime} \sim \varepsilon_{k^{*}}^{2}$, we have

$$
\|g\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon_{k^{*}}^{1 / 2} \varepsilon_{k^{*}}^{4} \leq \hat{\varepsilon}^{2} \beta^{\prime}
$$

as long as $\hat{\varepsilon} \leq \min \left\{\varepsilon_{0}(\bar{r}), \frac{1}{2 \tilde{C}}\right\}$, which is true if $C^{\prime}(2 \tilde{\varepsilon})^{1 / 4} \leq \min \left\{\varepsilon_{0}(\bar{r}), \frac{1}{2 \tilde{C}}\right\}$ or

$$
\tilde{\varepsilon} \leq \frac{1}{2 C^{\prime 4}} \min \left\{\varepsilon_{0}(\bar{r}), \frac{1}{2 \tilde{C}}\right\}^{4}
$$

Under these restrictions, v satisfies the assumptions of the nondegenerate case and we can proceed accordingly.

This concludes the proof of the main Lemma.

6.4 A Liouville Theorem and the proof of Theorem 4.4

Although not strictly necessary, we use the following Liouville type result for global viscosity solutions to a two-phase homogeneous free boundary problem.

Lemma 6. 5. Let U be a global Lipschitz viscosity solution to

$$
\left\{\begin{array}{cc}
\Delta U=0, & \text { in }\{U>0\} \cup\{U \leq 0\}^{\circ} \tag{59}\\
\left(U_{\nu}^{+}\right)^{2}-\left(U_{\nu}^{-}\right)^{2}=1, & \text { on } F(U)=\partial\{U>0\}
\end{array}\right.
$$

Assume that $F(U)=\left\{x_{n}=g\left(x^{\prime}\right), x^{\prime} \in^{n-1}\right\}$ with $\operatorname{Lip}(g) \leq M$. Then g is linear and $U(x)=$ $U_{\beta}(x)$ for some $\beta \geq 0$.

Proof. Assume for simplicity, $0 \in F(U)$. Also, balls in \mathbb{R}^{n-1} are denoted by B_{ρ}^{\prime}.
By the regularity theory in [C1], since U is a solution in B_{2}, the free boundary $F(U)$ is $C^{1, \gamma}$ in B_{1} with a bound depending only on n and on M. Thus,

$$
\left|g\left(x^{\prime}\right)-g(0)-\nabla g(0) \cdot x^{\prime}\right| \leq C\left|x^{\prime}\right|^{1+\alpha}, \quad x^{\prime} \in B_{1}^{\prime}
$$

with C depending only on n, M. Moreover, since U is a global solution, the rescaling

$$
g_{R}\left(x^{\prime}\right)=\frac{1}{R} g\left(R x^{\prime}\right), \quad x^{\prime} \in B_{2}^{\prime}
$$

which preserves the same Lipschitz constant as g, satisfies the same inequality as above i.e.

$$
\left|g_{R}\left(x^{\prime}\right)-g_{R}(0)-\nabla g_{R}(0) \cdot x^{\prime}\right| \leq C\left|x^{\prime}\right|^{1+\alpha}, \quad x^{\prime} \in B_{1}^{\prime}
$$

This reads,

$$
\left|g\left(R x^{\prime}\right)-g(0)-\nabla g(0) \cdot R x^{\prime}\right| \leq C R\left|x^{\prime}\right|^{1+\alpha}, \quad x^{\prime} \in B_{1}^{\prime}
$$

Thus,

$$
\left|g\left(y^{\prime}\right)-g(0)-\nabla g(0) \cdot y^{\prime}\right| \leq C \frac{1}{R^{\alpha}}\left|y^{\prime}\right|^{1+\alpha}, \quad y^{\prime} \in B_{R}^{\prime}
$$

Proof of Theorem 4.3. Let $\bar{\eta}$ be the universal constant in the main Lemma 4.6. Consider the blow-up sequence

$$
u_{k}(x)=\frac{u\left(\delta_{k}\right)}{\delta_{k}}
$$

with $\delta_{k} \rightarrow 0$ as $k \rightarrow \infty$. Each u_{k} is a solution of our f.b.p. with right hand side

$$
f_{k}(x)=\delta_{k} f\left(\delta_{k} x\right)
$$

and

$$
\left\|f_{k}(x)\right\| \leq \delta_{k}\|f\|_{L^{\infty}} \leq \bar{\eta}
$$

for k large enough. Standard arguments using the uniform Lischitz continuity of the u_{k} 's and the nondegeneracy of their positive part u_{k}^{+}, imply that (up to a subsequence)

$$
u_{k} \rightarrow \tilde{u} \quad \text { uniformly on compacts }
$$

and

$$
\left\{u_{k}^{+}=0\right\} \rightarrow\{\tilde{u}=0\} \quad \text { in the Hausdorff distance. }
$$

The blow-up limit \tilde{u} solves the global homogeneous two-phase free boundary problem

$$
\left\{\begin{array}{cc}
\Delta \tilde{u}=0, & \text { in }\{\tilde{u}>0\} \cup\{\tilde{u} \leq 0\}^{\circ} \tag{60}\\
\left(\tilde{u}_{\nu}^{+}\right)^{2}-\left(\tilde{u}_{\nu}^{-}\right)^{2}=1, & \text { on } F(\tilde{u})=\partial\{\tilde{u}>0\}
\end{array}\right.
$$

Since $F(u)$ is a Lipschitz graph in a neighborhood of 0 , it follows from Lemma 6.5 that \tilde{u} is a two-plane solutions, $\tilde{u}=U_{\beta}$ for some $\beta \geq 0$. Thus, for k large enough

$$
\left\|u_{k}-U_{\beta}\right\|_{L^{\infty}} \leq \bar{\eta}
$$

and

$$
\left\{x_{n} \leq-\bar{\eta}\right\} \subset B_{1} \cap\left\{u_{k}^{+}(x)=0\right\} \subset\left\{x_{n} \leq \bar{\eta}\right\}
$$

Therefore, we can apply our flatness Theorem and conclude that $F\left(u_{k}\right)$ and hence $F(u)$ is smooth.

References (minimal)

[B] Batchelor G.K., On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid.Mech. 1 (1956), 177-190.
[C1] Caffarelli L. A., A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $C^{1, \alpha}$, Rev. Mat. Iberoamericana 3 (1987) no. 2, 139-162.
[C2] Caffarelli L. A., A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42 (1989), no.1, 55-78.

CJK] Caffarelli L. A., Jerison D., Kenig C.E., Some new monotonicity theorems with applications to free boundary problems, Ann. of Math. (2) 155 (2002), no. 2, 369-404.
[D] De Silva D., Free boundary regularity for a problem with right hand side, Interfaces and free boundaries 13 (2011), 223-238.
[DFS1] De Silva D., Ferrari F., Salsa S., Two phase problems with distributed sources: regularity of the free boundary. To appear.
[DFS2] De Silva D., Ferrari F., Salsa S., Free boundary regularity for fully nonlinear nonhomogeneous two phase problems. arXiv: 1304.0406v2 [math. AP], 2013.
[EM] Elcrat A. R, Miller K.G., Variational formulas on Lipschitz domains, Trans. Amer. Math. Soc. 347 (1995), 2669-2678.
[FL] Friedman A., Liu Y. A free boundary problem arising in magnetoydrodynamic system, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 22 (1994), 375-448.
[LW] Lederman C., Wolanski N., A two phase elliptic singular perturbation problem with a forcing term, J. Math. Pures Appl. (9) 86 (2006), no. 6, 552-589.
[V]. Varvaruca E. On the existence of sxtreme waves and the Stokes conjecture with vrticity. Journal od Diff. Eq. 246 (2009) 4043-4076.

[^0]: ${ }^{1}$ If K_{1}, K_{2} are two compact sets, their Hausdorff distance is defined by

 $$
 d^{H}\left(K_{1}, K_{2}\right)=\inf \left\{\alpha>0, K_{1} \subset N_{\alpha}\left(K_{2}\right) \text { and } K_{2} \subset N_{\alpha}\left(K_{1}\right)\right\}
 $$

[^1]: ${ }^{2}$ Suppose that a ball \bar{B}_{r} does not intersect $F\left(u_{0}\right)$. Then either $u_{0}>0$ or $u \equiv 0$ in \bar{B}_{r}. In the first case, $u_{k}>0$ in \bar{B}_{r} so that $\bar{B}_{r / 2}$ does not intersects $F\left(u_{k}\right)$ for k large. In the second case, $u_{k}^{+} \leq \sigma$ for any chosen $\sigma>0$, if k is large. Thus, by nondegeneracy, $\bar{B}_{r / 2}$ still does not intersects $F\left(u_{k}\right)$ for k large.

 Conversely, if \bar{B}_{r} does not intersect $F\left(u_{k}\right)$ for any large k, then either $u_{k}>0$ or $u_{k} \equiv 0$ in \bar{B}_{r}. In the first case, u_{k} is harmonic in B_{r} so that u_{0} is harmonic too. Hence, $u_{0}>0$ or $u_{0} \equiv 0$ in B_{r} and B_{r} does not intersects $F\left(u_{0}\right)$. In the second case, $u_{0} \equiv 0$ in B_{r} and again B_{r} does not intersects $F\left(u_{0}\right)$.

[^2]: ${ }^{3}$ An alternative way to proceed, that is using quadratic polynomials, is to suppose that $\hat{t} \geq 0$ and construct

 $$
 \varphi(x)=A+p x_{n}^{+}-q x_{n}^{-}+B Q(y-x)
 $$

 as in Definition 5.1, with

 $$
 \tilde{\alpha}^{2} p-\tilde{\beta}^{2} q>0 \quad \text { (strict subsolution condition) }
 $$

 that touches $v_{\hat{t}, \varepsilon}$ (hence $\left.\tilde{u}\right)$ strictly by below.
 See ([DFS]) for the details.

