Geometric methods for invariant manifolds in dynamical systems IV.

Fibres and verification of conditions

Maciej Capiński

AGH University of Science and Technology, Kraków

Plan of the lecture

- Overview
- Invariant fibres on stable/unstable manifolds
- Verification of cone conditions
- Covering and cone conditions for vector fields
- Example

$$f: \Lambda \times B_u \times B_s \to \Lambda \times \mathbb{R}^u \times \mathbb{R}^s$$

 Λ is compact manifold without a boundary

$$(\Lambda = \mathbb{S}^1)$$

Do we have an invariant manifold in $\Lambda \times B_u \times B_s$?

Covering relations

 $\{V_j\}$ and $\{U_i\}$ are coverings of Λ

$$f_{k\,i}\left(V_{j}\times\overline{B}_{u}\times\overline{B}_{s}\right)\subset U_{k}\times\mathbb{R}^{u}\times\mathbb{R}^{s}$$

Covering relations

 $\{V_j\}$ and $\{U_i\}$ are coverings of Λ

$$f_{k\,i}\left(V_{j}\times\overline{B}_{u}\times\overline{B}_{s}\right)\subset U_{k}\times\mathbb{R}^{u}\times\mathbb{R}^{s}$$

Cone conditions

$$Q_h(\theta, x, y) = ||x||^2 - ||y||^2 - ||\theta||^2$$

$$Q_{\nu}(\theta, x, y) = -\|x\|^2 + \|y\|^2 - \|\theta\|^2$$

Horizontal cone $Q_h \geq 0$:

If
$$Q_h(q_1 - q_2) = a > 0$$
 then

$$Q_h(f(q_1) - f(q_2)) = b > ma$$

m > 1

Vertical cone $Q_v \ge 0$:

If
$$Q_v(q_1-q_2)=a$$
 then

$$Q_v(f^{-1}(q_1) - f^{-1}(q_2)) = b > m_a$$

Cone conditions

$$Q_h(\theta, x, y) = ||x||^2 - ||y||^2 - ||\theta||^2$$
$$Q_V(\theta, x, y) = -||x||^2 + ||y||^2 - ||\theta||^2$$

Horizontal cone $Q_h \geq 0$:

If
$$Q_h(q_1 - q_2) = a > 0$$
 then $Q_h(f(q_1) - f(q_2)) = b > ma$

m > 1

Vertical cone $Q_{\nu} \geq 0$:

If
$$Q_{\nu}(q_1 - q_2) = a$$
 then $Q_{\nu}(f^{-1}(q_1) - f^{-1}(q_2)) = b > ma$

Normally hyperbolic invariant manifolds

If
$$Q_h(q_1-q_2)=a>0$$
 then $Q_h(f(q_1)-f(q_2))=b>ma$

Theorem

If f and f^{-1} satisfy covering and cone conditions, then there exists a manifold $\Lambda \in D$.

Moreover, there exist manifolds W^u and W^s .

$$Q_{\nu}(\theta, x, y) = -\|x\|^2 + \|y\|^2 - \|\theta\|^2$$

Definition

A vertical disc $v \subset W^s$ is a stable fiver of $q \in \Lambda$ if for $n \geq 0$

$$||f^n(q)-f^n(v(y)))|| \stackrel{n\to+\infty}{\to} 0$$

$$Q_{\nu}(f^{n}(q) - f^{n}(\nu(y))) > 0$$

Theorem

If f and f^{-1} satisfy covering and cone conditions, then there exists a manifold $\Lambda \in \Lambda \times \overline{B_u} \times \overline{B_s}$. Moreover, there exist manifolds W^u and W^s .

 $Q_{v}(f^{n}(q)-f^{n}(v(y)))$

$$[Df] \in \left(egin{array}{cc} \mathbf{C} & \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 & \mathbf{B} \end{array} \right)$$

$$rac{\|\mathbf{B}\|+\|oldsymbol{\epsilon}_2\|}{m(\mathbf{C})-\|oldsymbol{\epsilon}_1\|} < 1$$

.

If f^{-1} satisfies covering and cone cond. then $f^{-1}(v)$ is a vertical disc

Theorem

For any $q \in \Lambda$ a stable fibre exists and is unique.

 $Q_{v}(f^{n}(q)-f^{n}(v(y)))$

$$[Df] \in \left(egin{array}{cc} \mathbf{C} & \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 & \mathbf{B} \end{array} \right)$$

$$rac{\|\mathbf{B}\| + \|oldsymbol{\epsilon}_2\|}{m(\mathbf{C}) - \|oldsymbol{\epsilon}_1\|} < 1$$

0 100 100 0

If f^{-1} satisfies covering and cone cond. then $f^{-1}(v)$ is a vertical disc.

Theorem

For any $q \in \Lambda$ a stable fibre exists and is unique.

$$Q_{\nu}(f^{n}(q) - f^{n}(\nu(y))) > 0$$

$$[Df] \in \left(egin{array}{cc} {\sf C} & {m \epsilon}_1 \ {m \epsilon}_2 & {\sf B} \end{array}
ight)$$

$$rac{\|\mathbf{B}\| + \|\epsilon_2\|}{m(\mathbf{C}) - \|\epsilon_1\|} < 1$$

Theorem

For any $q \in \Lambda$ a stable fibre exists and is unique.

Lemma

If f^{-1} satisfies covering and cone cond. then $f^{-1}(v)$ is a vertical disc.

$$[Df] \in \left(egin{array}{cc} {f C} & {m \epsilon}_1 \ {m \epsilon}_2 & {f B} \end{array}
ight)$$

$$rac{\|\mathbf{B}\|+\|oldsymbol{arepsilon}_2\|}{m(\mathbf{C})-\|oldsymbol{arepsilon}_1\|} < 1$$

$$Q_{\nu}(f^{n}(q) - f^{n}(\nu(y))) > 0$$

Theorem

For any $\bar{q} \in \Lambda$ a stable fibre exists and is unique.

Proof.
$$\bar{q}_i = f^i(\bar{q})$$

 $v_i = \mathcal{G}^{-i}(v_0)$

Rate condition:

$$[Df] \in \left(egin{array}{cc} {f C} & {m \epsilon}_1 \ {m \epsilon}_2 & {f B} \end{array}
ight)$$

$$rac{\|\mathbf{B}\|+\|oldsymbol{\epsilon}_2\|}{m(\mathbf{C})-\|oldsymbol{\epsilon}_1\|} < 1$$

$$Q_{\nu}(f^{n}(q) - f^{n}(\nu(y))) > 0$$

Theorem

For any $\bar{q} \in \Lambda$ a stable fibre exists and is unique.

Proof.
$$\bar{q}_i = f^i(\bar{q})$$

$$v_i = \mathcal{G}^{-i}(v_0) \stackrel{i \to \infty}{\to} v$$

suppose q_1 , q_2 such that

$$\|\pi_{\mathsf{x}, heta}(q_1-q_2)\| > \|\pi_{\mathsf{y}}(q_1-q_2)\|$$

This contradicts rate conditions (chalk). ■

$$Q(x, y, \theta) = ||x||^2 - ||y||^2 - ||\theta||^2$$
$$= ||x||^2 - ||(y, \theta)||^2$$

without loss of generality

$$Q(x,y) = ||x||^2 - ||y||^2$$

Definition (cone condition)

$$m > 1$$
. If $Q(q_1 - q_2) \ge 0$ then $Q(f(q_1) - f(q_2)) > mQ(q_1 - q_2)$.

$$Q(x, y, \theta) = ||x||^2 - ||y||^2 - ||\theta||^2$$
$$= ||x||^2 - ||(y, \theta)||^2$$

without loss of generality

$$Q(x,y) = ||x||^2 - ||y||^2$$

Definition (cone condition)

$$m > 1$$
. If $Q(q_1 - q_2) \ge 0$ then $Q(f(q_1) - f(q_2)) > mQ(q_1 - q_2)$.

$$Q(x, y, \theta) = ||x||^2 - ||y||^2 - ||\theta||^2$$
$$= ||x||^2 - ||(y, \theta)||^2$$

without loss of generality

$$Q(x, y) = ||x||^2 - ||y||^2$$

$$m>1$$
. If $Q(q_1-q_2)\geq 0$ then $Q(f(q_1)-f(q_2))>mQ(q_1-q_2)$.

$$Q(x, y, \theta) = ||x||^2 - ||y||^2 - ||\theta||^2$$
$$= ||x||^2 - ||(y, \theta)||^2$$

without loss of generality

$$Q(x, y) = ||x||^2 - ||y||^2$$

Definition (cone condition)

$$m>1.$$
 If $Q(q_1-q_2)\geq 0$ then $Q(f(q_1)-f(q_2))>mQ(q_1-q_2).$

$$f: B_u \times B_s \to \mathbb{R}^u \times \mathbb{R}^s$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

Definition (cone condition)

$$m>1.$$
 If $Q(q_1-q_2)\geq 0$ then $Q(f(q_1)-f(q_2))>mQ(q_1-q_2).$

$$[Df] \subset \left(egin{array}{cc} \mathbf{A} & oldsymbol{\epsilon}_1 \ oldsymbol{\epsilon}_2 & \mathbf{B} \end{array}
ight)$$
 $\|oldsymbol{\epsilon}_i\| < arepsilon$

Lemma

$$m(\mathbf{A})^2 - \varepsilon(\|\mathbf{B}\| + \|\mathbf{A}\| + \varepsilon) > m$$
$$\|\mathbf{B}\|^2 + \varepsilon(\|\mathbf{B}\| + \|\mathbf{A}\| + \varepsilon) < m$$
then f satisfies cone conditions.

Proof. chalk.

$$f: B_u \times B_s \to \mathbb{R}^u \times \mathbb{R}^s$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

Definition (cone condition)

$$m>1.$$
 If $Q(q_1-q_2)\geq 0$ then $Q(f(q_1)-f(q_2))>mQ(q_1-q_2).$

$$[Df] \subset \left(egin{array}{cc} \mathbf{A} & oldsymbol{\epsilon}_1 \ oldsymbol{\epsilon}_2 & \mathbf{B} \end{array}
ight)$$
 $\|oldsymbol{\epsilon}_i\| < oldsymbol{\epsilon}$

Lemma

$$m(\mathbf{A})^2 - \varepsilon(\|\mathbf{B}\| + \|\mathbf{A}\| + \varepsilon) > m$$
$$\|\mathbf{B}\|^2 + \varepsilon(\|\mathbf{B}\| + \|\mathbf{A}\| + \varepsilon) < m$$
then f satisfies cone conditions.

Proof. chalk

12 / 17

$$f: B_u \times B_s \to \mathbb{R}^u \times \mathbb{R}^s$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

Definition (cone condition)

$$m > 1$$
. If $Q(q_1 - q_2) \ge 0$ then $Q(f(q_1) - f(q_2)) > mQ(q_1 - q_2)$.

$$[Df] \subset \left(egin{array}{cc} \mathbf{A} & oldsymbol{\epsilon}_1 \ oldsymbol{\epsilon}_2 & \mathbf{B} \end{array}
ight)$$
 $\|oldsymbol{\epsilon}_i\| < arepsilon$

Lemma

$$m(\mathbf{A})^2 - \varepsilon(\|\mathbf{B}\| + \|\mathbf{A}\| + \varepsilon) > m$$

 $\|\mathbf{B}\|^2 + \varepsilon(\|\mathbf{B}\| + \|\mathbf{A}\| + \varepsilon) < m$
then f satisfies cone conditions.

Proof. chalk.

$$x' = F(q)$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

$$Q \sim C = \begin{pmatrix} Id & 0 \\ 0 & -Id \end{pmatrix}$$

$$\frac{d}{dt}Q(\phi_t(q_1) - \phi_t(q_2))|_{t=0} \in 2(q_1 - q_2)^T C[DF](q_1 - q_2)$$

$$v^T C v \ge 0 \implies v^T (C[DF]) v > \delta v^T C v$$

$$Q(\phi_t(q_1) - \phi_t(q_2)) > (1 + 2\delta t)Q(q_1 - q_2)$$

$$x' = F(q)$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

$$Q \quad \sim \quad C = \left(\begin{array}{cc} Id & 0 \\ 0 & -Id \end{array} \right)$$

$$\frac{d}{dt}Q(\phi_t(q_1) - \phi_t(q_2))|_{t=0} \in 2(q_1 - q_2)^T C[DF](q_1 - q_2)$$

$$v^T C v \ge 0 \implies v^T (C[DF]) v > \delta v^T C v$$

$$Q(\phi_t(q_1) - \phi_t(q_2)) > (1 + 2\delta t)Q(q_1 - q_2)$$

$$x' = F(q)$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

$$Q \sim C = \begin{pmatrix} Id & 0 \\ 0 & -Id \end{pmatrix}$$

Lemma

$$\frac{d}{dt}Q(\phi_t(q_1) - \phi_t(q_2))|_{t=0} \in 2(q_1 - q_2)^T C[DF](q_1 - q_2)$$

Proof. chalk.

Conditions implying

$$v^T C v \ge 0 \implies v^T (C[DF]) v > \delta v^T C v$$

are analogous to ones on previous slide. Ther

$$Q(\phi_t(q_1) - \phi_t(q_2)) > (1 + 2\delta t)Q(q_1 - q_2)$$

$$x' = F(q)$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

$$Q \sim C = \begin{pmatrix} Id & 0 \\ 0 & -Id \end{pmatrix}$$

Lemma

$$\frac{d}{dt}Q(\phi_t(q_1) - \phi_t(q_2))|_{t=0} \in 2(q_1 - q_2)^T C[DF](q_1 - q_2)$$

Proof. chalk.

Conditions implying

$$v^T C v \ge 0 \implies v^T (C[DF]) v > \delta v^T C v$$

are analogous to ones on previous slide. Then

$$Q(\phi_t(q_1) - \phi_t(q_2)) > (1 + 2\delta t)Q(q_1 - q_2)$$

$$x' = F(q)$$

$$Q(x, y) = ||x||^2 - ||y||^2$$

$$Q \sim C = \begin{pmatrix} Id & 0 \\ 0 & -Id \end{pmatrix}$$

Lemma

$$\frac{d}{dt}Q(\phi_t(q_1) - \phi_t(q_2))|_{t=0} \in 2(q_1 - q_2)^T C[DF](q_1 - q_2)$$

Proof. chalk.

Conditions implying

$$v^T C v \ge 0 \implies v^T (C[DF]) v > \delta v^T C v$$

are analogous to ones on previous slide. Then

$$Q(\phi_t(q_1) - \phi_t(q_2)) > (1 + 2\delta t)Q(q_1 - q_2)$$

$$q' = F(q)$$

$$[DF] \subset \left(egin{array}{cc} \mathbf{A} & \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 & \mathbf{B} \end{array} \right)$$

Lemma

$$\frac{d}{dt} \| \pi_x (\phi_t(q) - \phi_t(0)) \|^2 |_{t=0} = 2x^T (\mathbf{A}x + \epsilon_1 y)$$

Proof. Chalk

Assume
$$x^T(\mathbf{A}x + \boldsymbol{\epsilon}_1 y) > a > 0$$
. Taking $q \in N^-$

$$\|\pi_{x}\phi_{t}(q)\| \geq \sqrt{\|\pi_{x}(\phi_{t}(q) - \phi_{t}(0))\|^{2}} - \|\pi_{x}\phi_{t}(0)\|$$
$$> \sqrt{1 + at} - tc$$

$$q' = F(q)$$

$$[DF] \subset \left(egin{array}{cc} \mathbf{A} & \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 & \mathbf{B} \end{array}
ight)$$

Lemma

$$\frac{d}{dt} \| \pi_x (\phi_t(q) - \phi_t(0)) \|^2 |_{t=0} = 2x^T (\mathbf{A}x + \epsilon_1 y)$$

Proof. Chalk

Assume
$$x^T(\mathbf{A}x + \epsilon_1 y) > a > 0$$
. Taking $q \in N^-$

$$\|\pi_{\mathsf{X}}\phi_{t}(q)\| \ge \sqrt{\|\pi_{\mathsf{X}}(\phi_{t}(q) - \phi_{t}(0))\|^{2}} - \|\pi_{\mathsf{X}}\phi_{t}(0)\|$$
$$> \sqrt{1 + \mathsf{at}} - \mathsf{tc}$$

$$q' = F(q)$$

$$[DF] \subset \left(egin{array}{cc} \mathbf{A} & \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 & \mathbf{B} \end{array}
ight)$$

Lemma

$$\tfrac{d}{dt} \left\| \pi_x(\phi_t(q) - \phi_t(0)) \right\|^2 |_{t=0} = 2x^T (\mathbf{A} x + \epsilon_1 y)$$

Proof. Chalk.

Assume $x^T(\mathbf{A}x + \boldsymbol{\epsilon}_1 y) > a > 0$. Taking $q \in N^-$

$$\|\pi_{x}\phi_{t}(q)\| \geq \sqrt{\|\pi_{x}(\phi_{t}(q) - \phi_{t}(0))\|^{2}} - \|\pi_{x}\phi_{t}(0)\|$$
$$> \sqrt{1 + at} - tc$$

$$q' = F(q)$$

$$[\textit{DF}] \subset \left(\begin{array}{cc} \textbf{A} & \varepsilon_1 \\ \varepsilon_2 & \textbf{B} \end{array} \right)$$

Lemma

$$\frac{d}{dt} \left\| \pi_{x}(\phi_{t}(q) - \phi_{t}(0)) \right\|^{2} |_{t=0} = 2x^{T} (\mathbf{A}x + \epsilon_{1}y)$$

Proof. Chalk.

Assume
$$x^T(\mathbf{A}x + \epsilon_1 y) > a > 0$$
. Taking $q \in N^-$

$$\|\pi_{\mathsf{X}}\phi_{t}(q)\| \ge \sqrt{\|\pi_{\mathsf{X}}(\phi_{t}(q) - \phi_{t}(0))\|^{2}} - \|\pi_{\mathsf{X}}\phi_{t}(0)\|$$

$$> \sqrt{1 + \mathsf{a}t} - \mathsf{t}c$$

Closing remarks

- Invariant manifolds follow from geometric constructions
- Assumptions verifiable suitable for computer assisted proofs
- All that is needed: [f(q)], [df(D)]

Thank you for your attention.

References

• Verification of cone and covering conditions:

[Z] P.Zgliczyński, Covering relations, cone conditions and stable manifold theorem , J. of Diff. Equations 246 (2009) 1774–1819

[CS] M.J.Capiński, P.Roldan, Existence of a Center Manifold in a Practical Domain Around L1 in the Restricted Three Body Problem. SIAM J. Appl. Dyn. Syst. 11, pp. 285-318

• Fibres and higher order smoothness:

[CZ2] M.J.Capiński, P.Zgliczyński, Geometric Proof of the Normally Hyperbolic Invariant Manifold Theorem, preprint

• 3 body problem example:

[C] M.J.Capiński, Lyapunov Orbits at L2 and transversal Intersections of Invariant Manifolds in the Jupiter-Sun Planar Restricted Circular Three Body Problem. To appear in SIAM Journal on Applied Dynamical Systems.

17 / 17