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Overview

f:AxB,xBs— AxR"xR®

A is compact manifold without a boundary (A =S
| A X B, x Bs
v y
A X <« 7 4+—> v ?
A <« 75> 0
| f
— X

Do we have an invariant manifold in A x B, x Bg?
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V;i} and {U;} are coverings of A
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Overview

D
Cone conditions
Q{8 x,y) = IxI2 = lIyl2 - |l6]2 (D)

Qu(0.x,y) = =lxI*+ lyll* — ll6]]*

Horizontal cone Qn > 0:

If Qn(g1 —g2) = a > 0 then
Qn(f(g1) —f(q2)) = b > ma

o P
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Overview D
Cone conditions %
Q{8 x,y) = IxI2 = lIyl2 - |l6]2 (D)

Qu(8.x,y) = —Ix|I> + [ly[I> = 16]]?

Horizontal cone Qp > O: Vertical cone Q, > O:

If Qun(q1 —¢2) = a > 0 then If Q (g1 — q») = a then

Qn(f(91) —f(92)) = b > ma Q(FY(q) = F ) = b > ma
m>1 0
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Overview

27

Normally hyperbolic invariant manifolds

é ' f(D)
o0 EA o0

If Qh(ch - q2) = a > 0 then

Qn(f(g1) —f(q2)) = b> ma

Theorem

If f and f~1 satisfy covering and cone conditions, then there exists a
manifold A\ € D.
Moreover, there exist manifolds WY and W?.

A x B, x B,

Y
k&
X
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Stable fibers
Qu(0.x,y) = —IIx|I>+[lyl* = [16]]2

Definition
A vertical disc v C W* is a stable fiver of g € A
if for n >0

1£7(@) = £ (vl "7 0

Qu(f"(q) — "(v(y))) >0

Theorem

If f and f~1 satisfy covering and cone conditions, then there exists a
manifold A\ € A x B, X Bs. Moreover, there exist manifolds W" and W?.

A x B, x B,
Yy

L
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Stable fibers

q
Rate condition: Q. (f"(q) — f"(V(Y)))O
C €1 =
o] 8]+ 2l
(62 B) m(©) —llea] =
v/ g
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Stable fibers

q
Rate condition: Q. (f"(q) — " (v(y)))
>0
orie( S ) IBltlel
©2 m(C) — [|ex]]
Theorem
For any g € A a stable fibre
exists and is unique.

b A 4
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Stable fibers

q
Rate condition: Q.(F"(q) — "(v(y)))
>0
Df] € ( c @ ) Bl + llezll _
€2 m(C) — |le1]]
Lemma
Theorem

If f~1 satisfies covering and cone

L il ] S A\ &) RN il cond. then f~1(v) is a vertical disc.

exists and is unique.
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Stable fibers

Rate condition:

C e 1B + [lea]| Qu(f"(q) — " (v(y)))
Df LI |t |
(e s)  mt o 70
Theorem Proof. g = ()

For any g € A a stable fibre
exists and is unique.

vi = g_i(vo)

<
—
L
—
L
S

JISD2012 Geometric methods for manifolds V.

1June 2012 9 /17



Stable fibers

q
Rate condition:
Q,(f"(q) — (v
one( &g IBltle) o STOTTCVY,
€2 m(C) — [|e1]

Theorem Proof. g; = '(g)

For any g € A a stable fibre y oo

exists and is unique. vi=G"(v) = v

suppose g1, g2 such that

I7to(ar = @)l > 7ty (a1 = g2

This contradicts rate conditions (chalk). H
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Verifying cone conditions

Q(x,y,0) = [Ix|* = [lylI* — 101
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Verifying cone conditions

Q(x,y,0) = [Ix|* = [lylI* — 101
= [IxIIZ = ll(v.0)|>

JISD2012 Geometric methods for manifolds V.



Verifying cone conditions

Q(x,y,0) = [Ix|* = [lylI* — 101
= [IxIIZ = ll(v.0)|>

without loss of generality

Qlx.y) = [Ix]I* = Iyl

JISD2012 Geometric methods for manifolds V.



Verifying cone conditions

Q(x,y,0) = [Ix|* = [lylI* — 101
= [IxIIZ = ll(v.0)|>

without loss of generality

Qlx.y) = [Ix]I* = Iyl

Definition (cone condition)
m > 1. If Q(q1 — q2) > 0 then Q(f(q1) — f(q2)) > mQ(q1 — q2). J
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Verifying cone conditions

f:B,x B; — R" x R®

Qx.y) = [Ix]I* = llylI?

Definition (cone condition)
m > 1. If @(q1 — g2) > 0 then Q(f(q1) — f(q2)) > mQ(q1 — q2). J
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Verifying cone conditions

f:B,x B; — R" x R®

Qx.y) = [Ix]I* = llylI?

Definition (cone condition)
m > 1. If @(q1 — g2) > 0 then Q(f(q1) — f(q2)) > mQ(q1 — q2). J

A €1
[Df] C ( e, B )
eill <e

JISD2012 Geometric methods for manifolds V.



Verifying cone conditions

f:B,x B; — R" x R®

Qx.y) = [Ix]I* = llylI?

Definition (cone condition)
m > 1. If @(q1 — g2) > 0 then Q(f(q1) — f(q2)) > mQ(q1 — q2). J
Lemma
A e m(A)? —e(|[B|| + [|All +&) > m
[Df] C B
“2 IBII? +e(IB] + [|A]l +¢) < m
lleill < e then f satisfies cone conditions.

Proof. chalk.



Cone conditions for vector fields
x'=F(q)

'¥o

-
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Cone conditions for vector fields
x'=F(q)

Q. y) = IIx[I* = lIl?

Id 0
Q ~ C:(o —Id)
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Cone conditions for vector fields
X' = F(q)

QUx,y) = [IxII> = lIyII?
Id 0
Q ~ CZ(O —Id)

Lemma

£ Q9e(1) ~ 9e(a2)) =0 € 2(a1 — @) C[DF] (g1~ 2)

Proof. chalk.
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Cone conditions for vector fields
x' = F(q)

Q. y) = IIx[I* = lIl?
Id 0
@ ~ €= ( 0 —/d )

Lemma

£ Q9e(1) ~ 9e(a2)) =0 € 2(a1 — @) C[DF] (g1~ 2)

Proof. chalk.
Conditions implying
vicv>0 = Vv'(CIDF))v>évTCv

are analogous to ones on previous slide.
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Cone conditions for vector fields
x' = F(q)

Q. y) = IIx[I* = lIl?
Id 0
@ ~ €= ( 0 —/d )

Lemma

£ Q9e(1) ~ 9e(a2)) =0 € 2(a1 — @) C[DF] (g1~ 2)

Proof. chalk.
Conditions implying

vicv>0 = Vv'(CIDF))v>évTCv
are analogous to ones on previous slide. Then

Q(¢e(q1) — ¢e(g2)) > (1+26t)Q(q1 — g2)



Covering conditions for vector fields

9 = F(q) /
NS

-
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Covering conditions for vector fields
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Covering conditions for vector fields

q = F(q) /\

Band
AN —
A €1
[DF] C
(&%) 7
Lemma
& (|7 (e(q) — :(0))[1% [e=0 = 2xT (Ax + €1y) J

Proof. Chalk.
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Covering conditions for vector fields

q = F(q) /\

Band
AN —
A €1
[DF] C
(&%) 7
Lemma
& (|7 (e(q) — :(0))[1% [e=0 = 2xT (Ax + €1y) J

Proof. Chalk.
Assume xT (Ax + €1y) > a > 0. Taking g € N~

I7expe(a)]l = \/Hﬂx(%(q) = ¢:(0))[17 = [l (0)

> 1+ at — tc
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Example
Restricted three body problem

Y><
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Example
Restricted three body problem
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Example
Restricted three body problem
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Example
Restricted three body problem
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Example
Restricted three body problem
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Example
Restricted three body problem
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Example
Restricted three body problem
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Closing remarks

15

0.5

A x B, x By

o
y NI A

0 -1.5
2
x 4 05 0 05 1

@ Invariant manifolds follow from geometric constructions

px
o
e
K

@ Assumptions verifiable - suitable for computer assisted proofs
o All that is needed: [f(q)], [df(D)]

Thank you for your attention.
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