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Statement of the problem

f : Λ× Bu × Bs → Λ×Ru ×Rs

Λ is compact manifold without a boundary (Λ = S1)

y

x

? ?

Do we have an invariant manifold in Λ× Bu × Bs?
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Normally hyperbolic invariant manifold theorem

y

x

y

x

D = D =

f : D → Λ×R2 fε = f + εg

we start with the region D and devise conditions which ensure the
existence of the manifold

the conditions are verifiable with rigorous numerics

JISD2012 Geometric methods for manifolds III. 30 May 2012 4 / 21



Normally hyperbolic invariant manifold theorem

y

x

y

x

D = D =

f : D → Λ×R2

we start with the region D and devise conditions which ensure the
existence of the manifold

the conditions are verifiable with rigorous numerics

JISD2012 Geometric methods for manifolds III. 30 May 2012 4 / 21



Local maps
Topological conditions (covering relations)

D =

}

f
}

f

x

y
k i

x

{Vj} and {Ui} are coverings of Λ

fk i

(
Vj × Bu × Bs

)
⊂ Uk ×Ru ×Rs

JISD2012 Geometric methods for manifolds III. 30 May 2012 5 / 21



Cones

In local coordinates we define

Q(θ, x , y) = ‖x‖2 − ‖y‖2 − ‖θ‖2

Horizontal cone Q ≥ 0:

Q = a and Q = b for 0 < a < b:

For each point q ∈ D we have
a local set which contains the
cone starting from q.
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Cone conditions

m > 1. If Q(x1 − x2) ≥ 0 then

Q(fki (x1)− fki (x2)) > mQ(x1 − x2)

Horizontal cone Q ≥ 0:

Q = a and Q = b for 0 < a < b:

For each point q ∈ D we have
a local set which contains the
cone starting from q.
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Horizontal discs

If Q(x1 − x2) ≥ 0 then Q(fki (x1)− fki (x2)) > mQ(x1 − x2)

A horizontal disc:
b : Bu → Vj × Bu × Bs

x

y

A horizontal disc which
satisfies cone conditions:

x

y

Lemma

An image of a horizontal disc which satisfies cone conditions is a
horizontal disc which satisfies cone conditions.
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Horizontal discs

If Q(x1 − x2) ≥ 0 then Q(fki (x1)− fki (x2)) > mQ(x1 − x2)

Lemma

An image of a horizontal disc which satisfies cone conditions is a
horizontal disc which satisfies cone conditions.

Proof.

x

y

x

y

x0

f k i
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y

x

yfk i
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Forward iterations

If Q(x1 − x2) ≥ 0 then Q(fki (x1)− fki (x2)) > mQ(x1 − x2)

Lemma

For any θ0 ∈ Λ we have a vertical disc of points in {θ0} × Bu × Bs which
stay inside of Λ× Bu × Bs .

Proof.

x

y

0

. . .
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Forward iterations
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Main Result

If Q(x1 − x2) ≥ 0 then Q(fki (x1)− fki (x2)) > mQ(x1 − x2)

Theorem (Main result)

If both the forward map f and its inverse f −1 satisfy the the topological
and cone conditions then there exists a continuous map

χ : Λ→ Λ× Bu × Bs

such that
χ(Λ) = inv(f , Λ× Bu × Bs).

Proof
a vertical disc of forward invariant points:
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Main Result

If Q(x1 − x2) ≥ 0 then Q(fki (x1)− fki (x2)) > mQ(x1 − x2)

Theorem (Main result)

If both the forward map f and its inverse f −1 satisfy the the topological
and cone conditions then there exists a continuous map

χ : Λ→ Λ× Bu × Bs

such that
χ(Λ) = inv(f , Λ× Bu × Bs).

Proof
gives χ(θ0) := q
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Verification of conditions

If Q(x1 − x2) ≥ 0 then Q(fki (x1)− fki (x2)) > mQ(x1 − x2)

We need

[Df (Vj )] ←→


∥∥∥ ∂f1

∂θ

∥∥∥ ≤ C ε ε

ε
∥∥∥ ∂f2

∂x

∥∥∥ ≥ α ε

ε ε
∥∥∥ ∂f3

∂y

∥∥∥ ≤ β


where

β < C < α

with β < 1 < α and ε appropriately small.
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Example of applications
Rotating Hénon map

x̄ = 1 + y − ax2

ȳ = bx

For a = 0.68, b = 0.1 and ε ≤ 1
2

Λ ⊂ Uε = T1 × [x0 − 1.1ε, x0 + 1.1ε]× [y0 − 0.12ε, y0 + 0.12ε],

where

x0 =
−(1− b)−

√
(1− b)2 + 4a

2a
≈ −2.043 3,

y0 = bx0 ≈ −0.204 33.
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θ̄ = θ + ω (mod 1),

x̄ = 1 + y − ax2 + ε cos(2πθ),

ȳ = bx

For a = 0.68, b = 0.1 and ε ≤ 1
2

Λ ⊂ Uε = T1 × [x0 − 1.1ε, x0 + 1.1ε]× [y0 − 0.12ε, y0 + 0.12ε],

where

x0 =
−(1− b)−

√
(1− b)2 + 4a

2a
≈ −2.043 3,

y0 = bx0 ≈ −0.204 33.

JISD2012 Geometric methods for manifolds III. 30 May 2012 13 / 21

y

x

(x   ,y   )00



Driven logistic map

-1 -0.5 0 0.5 1

-0.5

0.5

1

θ = 0

T : R× S1 → R× S1

T (x , θ) = (θ + α, 1− (a + ε sin(2πθ)) x2)

a = 1.31, ε = 0.3 g =

√
5− 1

2
, α =

g

N
.

JISD2012 Geometric methods for manifolds III. 30 May 2012 14 / 21



Driven logistic map

-1 -0.5 0 0.5 1

-0.5

0.5

1

θ = 1
4

T : R× S1 → R× S1

T (x , θ) = (θ + α, 1− (a + ε sin(2πθ)) x2)

a = 1.31, ε = 0.3 g =

√
5− 1

2
, α =

g

N
.

JISD2012 Geometric methods for manifolds III. 30 May 2012 14 / 21



Driven logistic map

-1 -0.5 0 0.5 1

-0.5

0.5

1

θ = 1
2

T : R× S1 → R× S1

T (x , θ) = (θ + α, 1− (a + ε sin(2πθ)) x2)

a = 1.31, ε = 0.3 g =

√
5− 1

2
, α =

g

N
.

JISD2012 Geometric methods for manifolds III. 30 May 2012 14 / 21



Driven logistic map

-1 -0.5 0 0.5 1

-0.5

0.5

1

θ = 3
4

T : R× S1 → R× S1

T (x , θ) = (θ + α, 1− (a + ε sin(2πθ)) x2)

a = 1.31, ε = 0.3 g =

√
5− 1

2
, α =

g

N
.

JISD2012 Geometric methods for manifolds III. 30 May 2012 14 / 21



Driven logistic map

-1 -0.5 0 0.5 1

-0.5

0.5

1

θ = 0

T : R× S1 → R× S1

T (x , θ) = (θ + α, 1− (a + ε sin(2πθ)) x2)

a = 1.31, ε = 0.3 g =

√
5− 1

2
, α =

g

N
.

JISD2012 Geometric methods for manifolds III. 30 May 2012 14 / 21



Driven logistic map

T : R× S1 → R× S1

T (x , θ) = (θ + α, 1− (a + ε sin(2πθ)) x2)

a = 1.31, ε = 0.3 g =

√
5− 1

2
, α =

g

N
.

JISD2012 Geometric methods for manifolds III. 30 May 2012 15 / 21



Driven logistic map

T : R× S1 → R× S1

T (x , θ) = (θ + α, 1− (a + ε sin(2πθ)) x2)

a = 1.31, ε = 0.3 g =

√
5− 1

2
, α =

g

N
.

JISD2012 Geometric methods for manifolds III. 30 May 2012 15 / 21



Driven logistic map

T : R× S1 → R× S1

T (x , θ) = (θ + α, 1− (a + ε sin(2πθ)) x2)

a = 1.31, ε = 0.3 g =

√
5− 1

2
, α =

g

N
.

JISD2012 Geometric methods for manifolds III. 30 May 2012 15 / 21



The planar restricted three body problem

X0

Y
?

H =
1

2

(
P2
X + P2

Y

)
+ YPX − XPY −

1− µ

r1
− µ

r2
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The planar restricted three body problem

0 X

Y

Normal form at L1

(x1, y1, x2, y2) = φ(X , Y , PX , PY )

I =
x2

2 + y 2
2

2

H = λx1y1 + ωI + ∑
N≥i>2

Hi (x1y1, I ) + h.o.t.
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The planar restricted three body problem
Lapunov orbits around L1 - Sun-Earth system

µ = 3.040423398444176× 10−6

H = λx1y1 + ωI + ∑
N≥i>2

Hi (x1y1, I ) + h.o.t.
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The planar restricted three body problem
The approximate center manifold at L1

X , Y , PX coordinates

Set x1 = y1 = 0
φ−1(0, 0, [0, I1], S1)

H = λx1y1 + ωI + ∑
N≥i>2

Hi (x1y1, I ) + h.o.t.
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The planar restricted three body problem
Rigorous enclosure of the center manifold at L1

φ−1([−δ, δ], [−δ, δ], [0, I1], S1)

H = λx1y1 + ωI + ∑
N≥i>2

Hi (x1y1, I ) + h.o.t.
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Next Lecture

Verification of covering and cone conditions

Conditions for vector fields

Foliations

Some more examples

Thank you for your attention
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