Geometric methods for invariant manifolds in dynamical systems II.

Invariant manifolds associated with hyperbolic fixed points

Maciej Capiński

AGH University of Science and Technology, Kraków

Plan of the lecture

- Covering relations
- Cone conditions
- Horizontal discs
- Existence of stable manifold
- Existence of unstable manifold
- Intersections of manifolds

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = \overline{B_u} imes \overline{B_s}$$

$$N^- = \partial B_u imes \overline{B_s}$$

Theorem

If
$$N \stackrel{F}{\Rightarrow} N$$
 then $\exists q^* \in N$

$$F(q^*) = q^*$$

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = \overline{B_u} imes \overline{B_s}$$

$$N^- = \partial B_u imes \overline{B_s}$$

Theorem

If
$$N \stackrel{F}{\Rightarrow} N$$
 then $\exists q^* \in N$

$$F(q^*) = q^*$$

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = \overline{B_u} \times \overline{B_s}$$

$$N^- = \partial B_u imes \overline{B_s}$$

Theorem

If
$$N \stackrel{F}{\Rightarrow} N$$
 then $\exists q^* \in N$

$$F(q^*) = q^*$$

Our goals

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = \overline{B_u} \times \overline{B_s}$$

$$N^- = \partial B_u \times \overline{B_s}$$

Theorem

If $N \stackrel{F}{\Rightarrow} N$ then $\exists q \in N$

$$F(q) = q$$

Questions:

- Uniqueness of a fixed point? $F(q^*) = q^*$
- unstable manifold?
- stable manifold?

Our goals

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = \overline{B_u} \times \overline{B_s}$$

$$N^- = \partial B_u imes \overline{B_s}$$

Theorem

If $N \stackrel{F}{\Rightarrow} N$ then $\exists q \in N$

$$F(q) = q$$

Questions:

- Uniqueness of a fixed point? $F(q^*) = q^*$
- unstable manifold?
- stable manifold?

$$Q:\mathbb{R}^u\times\mathbb{R}^s\to\mathbb{R}$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

$$Q:\mathbb{R}^u\times\mathbb{R}^s\to\mathbb{R}$$

$$Q(x,y) = ||x||^2 - ||y||^2$$

$$Q: \mathbb{R}^{u} \times \mathbb{R}^{s} \to \mathbb{R}$$
$$Q(x, y) = ||x||^{2} - ||y||^{2}$$

$$Q = \frac{b}{0} < 0$$

$$Q: \mathbb{R}^{u} \times \mathbb{R}^{s} \to \mathbb{R}$$
$$Q(x, y) = ||x||^{2} - ||y||^{2}$$

$$Q = a, Q = b, \quad a > b > 0$$

$$Q: \mathbb{R}^{u} \times \mathbb{R}^{s} \to \mathbb{R}$$
$$Q(x, y) = ||x||^{2} - ||y||^{2}$$

$$u = 1, s = 2$$

$$Q: \mathbb{R}^{u} \times \mathbb{R}^{s} \to \mathbb{R}$$
$$Q(x, y) = ||x||^{2} - ||y||^{2}$$

$$u = 2, s = 1$$
 $Q = {a \over a} > 0$

Cone conditions

$$Q: \mathbb{R}^u \times \mathbb{R}^s \to \mathbb{R}$$
$$Q(x, y) = ||x||^2 - ||y||^2$$

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

Definition (forward cone cond.)

$$m>1.$$
 If $Q(q_1-q_2)\geqslant 0$ then

$$Q(F(q_1) - F(q_2)) > mQ(q_1 - q_2)$$

$$Q = a, Q = b, \quad a > b > 0$$

Cone conditions

$$Q: \mathbb{R}^u \times \mathbb{R}^s \to \mathbb{R}$$
$$Q(x, y) = ||x||^2 - ||y||^2$$

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

Definition (backward cone cond.)

$$m>1.$$
 If $Q(q_1-q_2)\leqslant 0$ then

$$Q(F^{-1}(q_1) - F^{-1}(q_2)) < mQ(q_1 - q_2)$$

$$Q = a$$
, $Q = b$, $a < b < 0$

Cone conditions

$$Q: \mathbb{R}^u \times \mathbb{R}^s \to \mathbb{R}$$
$$Q(x, y) = ||x||^2 - ||y||^2$$

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

Definition (forward cone cond.)

$$m>1.$$
 If $Q(q_1-q_2)\geqslant 0$ then

$$Q(F(q_1) - F(q_2)) > mQ(q_1 - q_2)$$

$$Q = a, Q = b, \quad a > b > 0$$

Our aim: W^s

Assumptions:

• Covering:

Our aim: Ws

Assumptions:

Covering:

Cone conditions:

$$m>1.$$
 If $Q(q_1-q_2)\geqslant 0$ then
$$Q(F(q_1)-F(q_2))>mQ(q_1-q_2)$$

Our aim: Ws

Assumptions:

Covering:

• Cone conditions:

$$m>1.$$
 If $Q(q_1-q_2)\geqslant 0$ then
$$Q(F(q_1)-F(q_2))>mQ(q_1-q_2)$$

Horizontal discs

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = \overline{B_u} \times \overline{B_s}$$

Definition (horizontal disc)

$$h: B_{\prime\prime} \to N$$

•
$$\pi_x h(x) = x$$

cone conditions:

• $x_1 \neq x_2$ then $Q(h(x_1) - h(x_2)) > 0$

Horizontal discs

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = \overline{B_u} \times \overline{B_s}$$

Definition (horizontal disc)

$$h: B_{\prime\prime} \to N$$

•
$$\pi_x h(x) = x$$

cone conditions:

• $x_1 \neq x_2$ then

$$Q(h(x_1) - h(x_2)) > 0$$

Horizontal discs

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = B_u \times B_s$$

There exists $h^*: B_u \to N$

$$F(h(B_u)) \cap N = h^*(B_u)$$

Proof. chalk.

Stable manifold theorem

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = B_u \times B_s$$

Lemma

There exists $h^*: B_u \to N$

$$F(h(B_u)) \cap N = h^*(B_u)$$

Theorem

There exists W^s such that for any $q \in W^s$

$$F^n(q) \in N \quad n \geqslant 0$$

Proof. chalk.

Unstable manifold theorem

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

$$N = B_u \times B_s$$

Theorem

There exists W^u such that for any $q \in W^u$

$$F^{-n}(q) \in N \quad n \geqslant 0$$

Summing up

Summing up

Theorem (Brouwer)

If $f: N \to N$ is C^0 then $\exists q \in N$

$$f(q) = q$$

Exercise:

- horizontal and vertical discs intersect
- W^u is indeed unstable
- W^s is indeed stable

Tightening bounds

Tightening bounds

Tightening bounds

Theorem (Smale-Birkhoff)

Theorem (Smale-Birkhoff)

Theorem (Smale-Birkhoff)

Theorem (Smale-Birkhoff)

The system has a topological horseshoe (is chaotic).

Theorem (Smale-Birkhoff)

The system has a topological horseshoe (is chaotic).

Theorem (Smale-Birkhoff)

The system has a topological horseshoe (is chaotic).

Theorem (Smale-Birkhoff)

The system has a topological horseshoe (is chaotic).

Theorem (Smale-Birkhoff)

The system has a topological horseshoe (is chaotic).

Theorem (Smale-Birkhoff)

Next lectures

- Not only fixed points
- How to verify the covering condition
- How to verify cone conditions
- Examples

Thank you for your attention

References

Covering relations:

```
[GZ] M. Gidea, P.Zgliczyński, Covering relations for multidimensional dynamical systems I, , J. of Diff. Equations,
202(2004) 32–58
```

• Stable and unstable manifolds of hyperbolic fixed points:

```
[Z] P.Zgliczyński, Covering relations, cone conditions and stable manifold theorem , J. of Diff. Equations 246 (2009) 1774–1819
```