Aubry Mather Theory from a Topological Viewpoint

 II. Topological approach to Aubry-Mather theoryMarian Gidea ${ }^{1,2}$
${ }^{1}$ Northeastern Illinois University, Chicago
${ }^{2}$ Institute for Advanced Study, Princeton

WORKSHOP ON INTERACTIONS BETWEEN DYNAMICAL SYSTEMS AND PARTIAL DIFFERENTIAL EQUATIONS (JISD2012)

$$
\text { May } 28 \text { - June 1, } 2012
$$

Outline

(1) Method of correctly aligned windows (Covering relations)
(2) Twist and tilt conditions via foliations
(3) Existence of Aubry-Mather sets
(4) References

Correctly aligned windows (2-dimensional)

- Window: $W=c([0,1] \times[0,1])$, where c is a C^{0}-coordinate system; exit set $W^{\text {ex }}=c(\partial[0,1] \times[0,1])$; entry set $W^{\text {en }}=c([0,1] \times \partial[0,1])$
- Definition: W_{1} correctly aligned with W_{2} under f, if there exist $0 \leq a<b \leq 1$ such that, via coordinates:
(i) $f([a, b] \times[0,1]) \subseteq \mathbb{R} \times(0,1)$
(ii) $f(\{a\} \times[0,1]) \subseteq\{x<0\}$ and $f(\{b\} \times[0,1]) \subseteq\{x>1\}$
- Weak alignment if instead of (ii) (ii)' $f(\{a\} \times[0,1]) \subseteq\{x \leq 0\}$ and $f(\{b\} \times[0,1]) \subseteq\{x \geq 1\}$
- Theorem: Correct alignment is robust. Weak alignment is not.
- Theorem: Given $\left(W_{i}\right)_{i \in \mathbb{Z}},\left(f_{i}\right)_{i \in \mathbb{Z}}$, such that W_{i} correctly aligned with W_{i+1} under f_{i}, then $\exists\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in W_{i}$ and $f_{i}\left(p_{i}\right)=p_{i+1}$ If $\left(W_{i}\right)_{i=1, \ldots, d}$ form a loop, then \exists a closed orbit.

Correctly aligned windows (2-dimensional)

- Window: $W=c([0,1] \times[0,1])$, where c is a C^{0}-coordinate system; exit set $W^{\text {ex }}=c(\partial[0,1] \times[0,1])$; entry set $W^{\text {en }}=c([0,1] \times \partial[0,1])$
- Definition: W_{1} correctly aligned with W_{2} under f, if there exist $0 \leq a<b \leq 1$ such that, via coordinates:
(i) $f([a, b] \times[0,1]) \subseteq \mathbb{R} \times(0,1)$
(ii) $f(\{a\} \times[0,1]) \subseteq\{x<0\}$ and $f(\{b\} \times[0,1]) \subseteq\{x>1\}$
- Weak alignment if instead of (ii) (ii)' $f(\{a\} \times[0,1]) \subseteq\{x \leq 0\}$ and $f(\{b\} \times[0,1]) \subseteq\{x \geq 1\}$
- Theorem: Correct alignment is robust. Weak alignment is not.
- Theorem: Given $\left(W_{i}\right)_{i \in \mathbb{Z}},\left(f_{i}\right)_{i \in \mathbb{Z}}$, such that W_{i} correctly aligned with W_{i+1} under f_{i}, then $\exists\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in W_{i}$ and $f_{i}\left(p_{i}\right)=p_{i+1}$ If $\left(W_{i}\right)_{i=1, \ldots, d}$ form a loop, then \exists a closed orbit.

Correctly aligned windows (2-dimensional)

- Window: $W=c([0,1] \times[0,1])$, where c is a C^{0}-coordinate system; exit set $W^{\text {ex }}=c(\partial[0,1] \times[0,1])$; entry set $W^{\text {en }}=c([0,1] \times \partial[0,1])$
- Definition: W_{1} correctly aligned with W_{2} under f, if there exist $0 \leq a<b \leq 1$ such that, via coordinates:
(i) $f([a, b] \times[0,1]) \subseteq \mathbb{R} \times(0,1)$
(ii) $f(\{a\} \times[0,1]) \subseteq\{x<0\}$ and $f(\{b\} \times[0,1]) \subseteq\{x>1\}$
- Weak alignment if instead of (ii) (ii)' $f(\{a\} \times[0,1]) \subseteq\{x \leq 0\}$ and $f(\{b\} \times[0,1]) \subseteq\{x \geq 1\}$
- Theorem: Correct alignment is robust. Weak alignment is not.
- Theorem: Given $\left(W_{i}\right)_{i \in \mathbb{Z}},\left(f_{i}\right)_{i \in \mathbb{Z}}$, such that W_{i} correctly aligned with W_{i+1} under f_{i}, then $\exists\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in W_{i}$ and $f_{i}\left(p_{i}\right)=p_{i+1}$ If $\left(W_{i}\right)_{i=1, \ldots, d}$ form a loop, then \exists a closed orbit.

Diagonal sets in the closed annulus

- $A=\mathbb{T}^{1} \times[0,1]$
- $B_{z_{0}, z_{1}}=\left\{w \in A \mid \pi_{x}\left(z_{0}\right)<\pi_{x}(w)<\right.$ $\left.\pi_{x}\left(z_{1}\right)\right\}$
- $I_{z}=\left\{w \in A \mid \pi_{x}(w)=\pi_{x}(z)\right\}$,
$I_{z}^{+}=\left\{w \in I_{z} \mid \pi_{y}(w) \geq \pi_{y}(z)\right\}$,
$I_{z}^{-}=\left\{w \in I_{z} \mid \pi_{y}(w) \leq \pi_{y}(z)\right.$
- $D \subseteq \operatorname{cl}\left(B_{z_{0}, z_{1}}\right)$ positive diagonal in $B_{z_{0}, z_{1}}$:
(i) D is simply connected and the closure of its interior;
(ii) $\partial D \cap \operatorname{cl}\left(B_{z_{0}, z_{1}}\right) \subseteq$

$$
I_{z_{0}}^{-} \cup I_{z_{1}}^{+} \cup\{y=0\} \cup\{y=1\} ;
$$

(iii) $\partial D \cap I_{z_{0}}^{-} \neq \emptyset$ and $\partial D \cap I_{z_{1}}^{+} \neq \emptyset$.

- $\partial D \cap B_{z_{0}, z_{1}}$ has two components connecting $I_{z_{0}}^{-} \cup\{y=0\}$ to $I_{z_{1}}^{+} \cup\{y=1\}$ - upper and lower edges

Twist maps and diagonal sets

- $f: A \rightarrow A$ orientation preserving, area preserving, boundary preserving, exact symplectic, monotone twist map of the annulus
- D positive diagonal in $B_{z_{0}, z_{1}} \Rightarrow f(D)$ has a positive diagonal component D^{\prime} in $B_{f\left(z_{0}\right), f\left(z_{1}\right)}$
- If D has the upper/lower edge in $f^{k}\left(I_{w_{0}}^{+}\right), f^{k}\left(I_{w_{1}}^{-}\right)$and
 $\operatorname{bd}\left(D \cap B_{z_{0}, z_{1}}\right) \subseteq f^{k}\left(I_{w_{0}}^{+} \cup I_{w_{1}}^{-}\right)$for some w_{0}, w_{1} and some $k>0 \Rightarrow D^{\prime}$ has upper/lower edge in $f^{k+1}\left(I_{w_{0}}^{+}\right), f^{k+1}\left(I_{w_{1}}^{-}\right)$

Twist maps and diagonal sets

- $f: A \rightarrow A$ orientation preserving, area preserving, boundary preserving, exact symplectic, monotone twist map of the annulus
- D positive diagonal in $B_{z_{0}, z_{1}} \Rightarrow f(D)$ has a positive diagonal component D^{\prime} in $B_{f\left(z_{0}\right), f\left(z_{1}\right)}$
- If D has the upper/lower edge in $f^{k}\left(I_{w_{0}}^{+}\right), f^{k}\left(I_{w_{1}}^{-}\right)$and
 $\operatorname{bd}\left(D \cap B_{z_{0}, z_{1}}\right) \subseteq f^{k}\left(I_{w_{0}}^{+} \cup I_{w_{1}}^{-}\right)$for some w_{0}, w_{1} and some $k>0 \Rightarrow D^{\prime}$ has upper/lower edge in $f^{k+1}\left(I_{w_{0}}^{+}\right), f^{k+1}\left(I_{w_{1}}^{-}\right)$

Diagonal sets as windows

- Windows:
- $W_{1}=B_{z_{1}, z_{2}}=\left\{z: \pi_{x}\left(z_{1}\right)<\pi_{x}(z)<\pi_{x}\left(z_{2}\right)\right\} ;$
exit set $W_{1}^{\text {ex }}=B_{z_{1}, z_{2}} \cap\left[\left(I_{z_{1}}^{-} \cup\{y=0\}\right) \cup\left(l_{z_{2}}^{+} \cup\{y=1\}\right)\right]$
- $W_{2}=B_{f\left(z_{1}\right), f\left(z_{2}\right)}=\left\{z: \pi_{x}\left(f\left(z_{1}\right)\right)<\pi_{x}(z)<\pi_{x}\left(f\left(z_{2}\right)\right)\right\}$;
exit set $W_{2}^{-}=B_{f\left(z_{1}\right), f\left(z_{2}\right)} \cap\left[\left(l_{f\left(z_{1}\right)}^{-} \cup\{y=0\}\right) \cup\left(l_{f\left(z_{2}\right)}^{+} \cup\{y=1\}\right)\right]$
- Then W_{1} is correctly aligned with W_{2} under f
- If W_{1} (weakly) correctly aligned with W_{2}, \ldots, W_{k-1} (weakly) correctly aligned with W_{k}, then $f^{k-1}\left(W_{1}\right) \cap W_{k}$ determines a diagonal set in W_{k}
- Trivial remark: if z_{1}, z_{2} are monotone (p, q)-points then there exists a loop of q weakly correctly aligned windows

Numerical implementation.

The diagonal method can be implemented in efficient numerical algorithms - Project M. Capinski and M.G.

- $\left(u_{n}\right)_{n \in \mathbb{Z}}$ left sequence $-\pi_{x}\left(f^{-1}\left(u_{i+1}\right)\right) \leq \pi_{x}\left(u_{i}\right)$ and $\pi_{x}\left(f\left(u_{i}\right)\right) \leq \pi_{x}\left(u_{i+1}\right), \forall i$
- $\left(v_{n}\right)_{n \in \mathbb{Z}}$ left sequence $-\pi_{x}\left(v_{i}\right) \leq \pi_{x}\left(f^{-1}\left(v_{i+1}\right)\right)$ and $\left.\pi_{x}\left(v_{i+1}\right)\right) \leq \pi_{x}\left(f\left(v_{i}\right), \forall i, \forall i\right.$
- If $\left(u_{n}\right)_{n}$ left seq., $\left(v_{n}\right)_{n}$ right seq., and $\pi_{x}\left(u_{i}\right) \leq \pi_{x}\left(v_{i}\right), \forall i$, then $B_{u_{i}, v_{i}}$ is correctly aligned with $B_{u_{i+1}, v_{i+1}}$ (robustly) under $f \Rightarrow$ $\exists z, \pi_{x}\left(u_{i}\right) \leq \pi_{x}\left(f^{i}(z)\right) \leq \pi_{x}\left(v_{i}\right), \forall i$
- [Jungreis,1991] - nonexistence of invariant circles

Ends of a manifold

- $C \simeq S^{1} \times \mathbb{R}$ - cylinder
- The cylinder has two ends $\{S, N\}^{\dagger}$
- $A \cup\{S\} \cup\{N\}=S^{2}$ - end compactification \ddagger
- $A \simeq S^{2} \backslash\{S, N\}$.
${ }^{\dagger}$ End of a manifold M : function e to each compact set $K \subseteq M$ an unbounded non-empty component $e(K)$ of $M \backslash K$ s.t. $K_{1} \subseteq K_{2} \Rightarrow e\left(K_{2}\right) \subseteq e\left(K_{1}\right) . E(M)=$ the set of ends of M - the unbounded components of $M \backslash K$.
\ddagger End compactification of $M: \bar{M}=M \cup E(M)$ endowed with a topology satisfying: (i) M is an open subspace of \bar{M}, (ii) the fundamental open neighborhoods of $e \in E(M)$ are of the form $e(K) \cup\left\{e^{\prime} \in E(M) \mid e^{\prime}(K)=e(K)\right\}$ for all compacts $K \subseteq M$

Foliations

- M - manifold of dimension n
- Foliation atlas: foliation charts $\left\{\phi_{i}: U_{i} \subseteq M \rightarrow \mathbb{R}^{n}=\mathbb{R}^{n-q} \times \mathbb{R}^{q}\right\}$ s.t. $\phi_{i j}(x, y)=\left(g_{i j}(x, y), h_{i j}(y)\right)$
- Plaques: connected components of $\phi_{i}^{-1}\left(\mathbb{R}^{n-q} \times\{y\}\right)$
- Leaves \mathcal{F} : connected, immersed q-dimensional manifolds formed with plaques $x, y \in F \in \mathcal{F}$: $\exists U_{1}, \ldots, U_{k}, x_{0}=x, \ldots, x_{i}, \ldots, x_{k}=y$ s.t. x_{i-1}, x_{i} on the same plaque in U_{i}

Foliation of the cylinder

- \mathcal{V} - 1-dimensional foliation of C s.t. $\forall V \in \mathcal{V}$ embedded curve connecting S and N
- Proposition: There exists an essential circle T in C that meets each leaf $V \in \mathcal{V}$ transversally (exactly once)
- Proof. Start with essential circle γ
 Step 1. Modify $\gamma \rightsquigarrow$ essential circle $\gamma^{\prime}=$ finitely many curve segments of γ transverse \mathcal{V} and finitely many curve segments included in \mathcal{V} Step 2. Modify the leaf-parts of $\gamma^{\prime} \rightsquigarrow$ essential circle $\tilde{\gamma}^{\prime \prime}$ that is transverse to \mathcal{V}.
- Coordinate system: $c(x, y)=\left(\tau(x), c_{x}(y)\right)$, where $x \in S^{1}, \tau(\mathbb{R})=T, c_{x}(\mathbb{R})=V_{x}$
- Foliation of the covering space
 $V_{x+n}=V_{x}+(n, 0)$

Twist and tilt conditions via foliation

- Monotone twist: f monotone twist condition if $f(S)=S, f(N)=N$, and $\forall V, V^{\prime} \in \mathcal{V}, f(V)$ is transverse to V^{\prime}
- If $f(V)$ intersecting V^{\prime} in a finite set of points $\left\{z_{0}=c_{V}\left(t_{0}\right), z_{1}=c_{V}\left(t_{1}\right), \ldots, z_{k}=c_{V}\left(t_{k}\right)\right\}$ defined index ${ }_{\left[c_{V}\left(t_{i}\right), c_{V}\left(t_{i+1}\right)\right]}$ as in Figure.

- Tilt: f right tilt condition if $f(S)=S$, $f(N)=N$, and for each $\forall V, V^{\prime} \in \mathcal{V}$, with $f(V)$ intersecting V^{\prime} in a finite set of points $\left\{z_{0}, z_{1}, \ldots, z_{k}\right\}$:
$\sum_{i=0}^{j} i_{\left[c_{V}\left(t_{i}\right), c_{V}\left(t_{i+1}\right)\right]} \leq 0$
for each $j=1, \ldots, k-1$
- Note: $\sum_{i=0}^{k-1} i_{\left[c_{V}\left(t_{i}\right), c_{V}\left(t_{i+1}\right)\right]}=0$

Diagonal sets in the cylinder

- Notation: $z \in A, V_{z}=$ the unique leaf in \mathcal{V} passing through z
- $V_{z_{i}}^{+}=\left\{w \in V_{z} \mid w\right.$ above z_{i} in $\left.V_{z_{0}}\right\}$,
$V_{z_{i}}^{-}=\left\{w \in V_{z} \mid w\right.$ below z_{i} in $\left.V_{z_{0}}\right\}$
- $B_{z_{0}, z_{1}}=\left\{V_{w} \mid V_{w}\right.$ is between $V_{z_{0}}$ and $\left.V_{z_{1}}\right\}$
- D positive diagonal in $B_{z_{0}, z_{1}}$
(i) D is simply connected and the closure of its interior;
(ii) $\partial D \cap \operatorname{cl}\left(B_{z_{0}, z_{1}}\right) \subseteq V_{z_{0}}^{-} \cup V_{z_{1}}^{+}$;
(iii) $\partial D \cap V_{z_{0}}^{-} \neq \emptyset$ and $\partial D \cap V_{z_{1}}^{+} \neq \emptyset$.

- Definition: Infinite window
$W_{z_{0}, z_{1}}=\operatorname{cl}\left(B_{z_{0}, z_{1}}\right)$, together with
$W_{z_{0}, z_{1}}^{e \mathrm{ex}}=V_{z_{0}}^{-} \cup V_{z_{1}}^{+}$
$W_{z_{0}, z_{1}}^{\mathrm{en}}=V_{z_{0}}^{+} \cup V_{z_{1}}^{-}$

Existence of Aubry-Mather sets

- $f: A \rightarrow A$ satisfies the circle intersection property if for every lift $\tau: \mathbb{R} \rightarrow \mathbb{R}^{2}$ of an essential circle in the annulus A we have $f(\tau(\mathbb{R})) \cap \tau(\mathbb{R}) \neq \emptyset$
- In the sequel: assume $f: C \rightarrow C$ is orientation preserving, satisfies the circle intersection property, maps each end of the cylinder to itself, twists each end infinitely, preserves a measure absolutely continuous with respect to the Lebesgue measure, and satisfies a twist condition or a tilt condition relative to the foliation \mathcal{V}
- For every (p, q), there exists a monotone (p, q)-periodic orbit
- For each $\omega \in \mathbb{R}$, there exists an Aubry-Mather set Σ_{ω} (non-unique) of rotation number ω
- Choose $p_{n} / q_{n} \rightarrow \omega \rightsquigarrow \exists z_{n}$ monotone (p_{n}, q_{n})-periodic point with $\pi_{x}\left(z_{n}\right) \in[0,1]$ - subsequence of z_{n} converges to z_{ω} monotone and $\rho\left(z_{\omega}\right)=\omega$

Existence of monotone (p, q)-orbits

Idea: Existence of non-monotone orbits

 implies existence of monotone orbits- Step 1: Given $z_{1}, z_{2}, w_{1}, w_{2}$
- z_{1}, z_{2} are (p, q)-points
- $\forall i=0, \ldots, q, \pi_{x}\left(f^{i}\left(z_{1}\right)\right)<\pi_{x}\left(f^{i}\left(z_{2}\right)\right)$,
$\pi_{x}\left(f^{i}\left(w_{1}\right)\right)<\pi_{x}\left(f^{i}\left(w_{2}\right)\right)$,
$\pi_{x}\left(f^{i}\left(w_{1}\right)\right)<\pi_{x}\left(f^{i}\left(z_{2}\right)\right)$,
$\pi_{x}\left(f^{i}\left(z_{1}\right)\right)<\pi_{x}\left(f^{i}\left(w_{2}\right)\right)$,
- $\pi_{x}\left(w_{j}\right)-\pi_{x}\left(z_{j}\right)$ and $\pi_{x}\left(f^{q}\left(z_{j}\right)\right)-\pi_{x}\left(f^{q}\left(z_{j}\right)\right)$ have the same sign, for $j=1,2$
- $O\left(w_{1}\right)$ turns around $O\left(z_{1}\right)$ at some point, and $O\left(w_{2}\right)$ turns around $O\left(z_{2}\right)$ at some point

- Then $B_{z_{1}, z_{2}}$ is correctly aligned with $B_{z_{1}+(p, 0), z_{2}+(p, 0)}$ under f^{q}. Hence, $f^{q}-(p, 0)$ has a fixed point in the interior of $B_{z_{1}, z_{2}}$ and so does every map sufficiently close to f.

Existence of monotone (p, q)-orbits

- Step 2: If f has a monotone (p, q)-orbit and a non-monotone (p, q)-orbit, then f has a second monotone (p, q)-orbit and so does every map sufficiently close to f.
- Step 3: Assume w_{0} is a non-monotone (p, q)-periodic orbit. Choose $z_{0} \notin E O\left(w_{0}\right)$. There exists a small homotopy f_{t} with $f_{0}=f$ and $f_{t}=f$ outside a finite collection of narrow vertical strips about $z_{0}+i / q, i \in \mathbb{Z}$,
 and off $E O\left(w_{0}\right)$, s.t.
$f_{1}^{i}\left(z_{0}\right)=z_{0}+i(p / q, 0)$ - change the
y-coordinate of images of points. Hence f_{1} has a (p, q)-monotone periodic orbit.

Existence of monotone (p, q)-orbits

- Step 4:
- Lemma: if $f_{n} \rightarrow f$ in C^{0} as $n \rightarrow \infty$, with f_{n}, f twist maps (tilt maps), if z_{n} has a monotone orbit for f_{n}, and if $z_{n} \rightarrow z$, then z has a monotone orbit for f, and $\rho(z)=\lim _{n \rightarrow \infty} \rho\left(z_{n}\right)$ \Rightarrow the set $t \in[0,1]$ for which f_{t} has a monotone (p, q)-orbit is an closed set.
- By Step 2, the set $t \in[0,1]$ for which f_{t} has a monotone (p, q) is an open set.
- By connectedness $f_{0}=f$ must have a (p, q)-monotone periodic orbit

Hall's shadowing lemma

- Theorem (Hall): Given $\left\{\Sigma_{\omega_{s}}\right\}_{s \in \mathbb{Z}}$. For every $\left\{n_{s}\right\}_{s=1, \ldots, m} \subseteq \mathbb{N}$, there exists an orbit $\left\{f^{j}(\zeta)\right\}$ that follows each $\Sigma_{\omega_{s}}$ for a number of n_{s} iterates, i.e.,

$$
\pi_{x}\left(f^{j}\left(w_{s}^{1}\right)\right)<\pi_{x}\left(f^{j}(\zeta)\right)<\pi_{x}\left(f^{j}\left(w_{s}^{2}\right)\right)
$$

for n_{s}-consecutive j 's, and for some $w_{s}^{1}, w_{s}^{2} \in \Sigma_{\omega_{s}}$.
In particular, $h_{\text {top }}(f)>0$.

Hall's shadowing lemma

- Theorem (Hall): Given $\left\{\Sigma_{\omega_{s}}\right\}_{s \in \mathbb{Z}}$. For every $\left\{n_{s}\right\}_{s=1, \ldots, m} \subseteq \mathbb{N}$, there exists an orbit $\left\{f^{j}(\zeta)\right\}$ that follows each $\Sigma_{\omega_{s}}$ for a number of n_{s} iterates, i.e.,

$$
\pi_{x}\left(f^{j}\left(w_{s}^{1}\right)\right)<\pi_{x}\left(f^{j}(\zeta)\right)<\pi_{x}\left(f^{j}\left(w_{s}^{2}\right)\right)
$$

for n_{s}-consecutive j 's, and for some $w_{s}^{1}, w_{s}^{2} \in \Sigma_{\omega_{s}}$.
In particular, $h_{\text {top }}(f)>0$.

Proof of Hall's shadowing lemma

- Recursive argument:
- start with adjacent points w_{1}^{1}, w_{1}^{2} in $\Sigma_{\omega_{1}}$
- construct windows $B_{f j}\left(w_{1}^{1}\right) f\left(w_{1}^{2}\right)$, $j=1, n_{1}-1$, with $B_{f j}\left(w_{1}^{1}\right), f j\left(w_{1}^{2}\right)$ correctly aligned with $B_{f j+1}\left(w_{1}^{1}\right), f^{j+1}\left(w_{1}^{2}\right)$ under f - each orbit that follows the windows satisfies the order relation
- $\exists p_{0}$ near $y=0$ that gets near $y=1$, and \exists P_{1} near $y=1$ that gets near $y=0 \Rightarrow$ for m_{1} (sufficiently large) no. of iterates
- then $B_{f n_{1}+k_{1}+m_{1}}\left(w_{1}^{1}\right), f^{n_{1}+k_{1}+m_{1}}\left(w_{1}^{2}\right)$ is correctly
 aligned with $B_{f^{k_{1}+m_{1}}\left(p_{0}\right), f^{k_{1}+m_{1}}\left(p_{1}\right)}$, of width >1
- hence $B_{f n_{1}+k_{1}+m_{1}\left(w_{1}^{1}\right), f n_{1}+k_{1}+m_{1}\left(w_{1}^{2}\right)}$ is correctly aligned with $B_{w_{2}^{1}, w_{2}^{2}}$

Proof of Hall's shadowing lemma

- Recursive argument:
- start with adjacent points w_{1}^{1}, w_{1}^{2} in $\Sigma_{\omega_{1}}$
- construct windows $B_{f j}\left(w_{1}^{1}\right) f\left(w_{1}^{2}\right)$, $j=1, n_{1}-1$, with $B_{f j}\left(w_{1}^{1}\right), f j\left(w_{1}^{2}\right)$ correctly aligned with $B_{f j+1}\left(w_{1}^{1}\right), f^{j+1}\left(w_{1}^{2}\right)$ under f - each orbit that follows the windows satisfies the order relation
- $\exists p_{0}$ near $y=0$ that gets near $y=1$, and \exists P_{1} near $y=1$ that gets near $y=0 \Rightarrow$ for m_{1} (sufficiently large) no. of iterates
- then $B_{f n_{1}+k_{1}+m_{1}}\left(w_{1}^{1}\right), f^{n_{1}+k_{1}+m_{1}}\left(w_{1}^{2}\right)$ is correctly
 aligned with $B_{f^{k_{1}+m_{1}}\left(p_{0}\right), f^{k_{1}+m_{1}}\left(p_{1}\right)}$, of width >1
- hence $B_{f n_{1}+k_{1}+m_{1}\left(w_{1}^{1}\right), f n_{1}+k_{1}+m_{1}\left(w_{1}^{2}\right)}$ is correctly aligned with $B_{w_{2}^{1}, w_{2}^{2}}$

Two results

- Proposition 1. Given \mathcal{Z} a BZI bounded by T_{1} and T_{2} (not topologically transitive). For any $z_{1} \in T_{1}, z_{2} \in T_{2}, U_{0}, V_{0}$ neighborhoods of z_{1}, z_{2}, there exists an orbit that goes from U_{0} to V_{0}.
- Proposition 2. Given \mathcal{Z} a BZI bounded by T_{1}, T_{2}, and $\left\{\Sigma_{\omega_{s}}\right\}_{i=1, \ldots, m}$ vertically ordered. For any $z_{1} \in T_{1}, z_{2} \in T_{2}, U_{0}$ neighborhood of z_{1}, V_{0} neighborhood of $z_{2},\left\{n_{s}\right\}_{s=1, \ldots, m}$ an increasing sequence in \mathbb{N}, there exists an orbit $f^{n}(z)$ that starts in an U_{0}, ends in V_{0}, and
 'shadows' each $\sum_{\omega_{s}}$ for n_{s} iterates s.t.

$$
\pi_{x}\left(f^{j}\left(w_{s}^{1}\right)\right)<\pi_{x}\left(f^{j}(\zeta)\right)<\pi_{x}\left(f^{j}\left(w_{s}^{2}\right)\right)
$$

for n_{s}-consecutive j 's, and some $w_{s}^{1}, w_{s}^{2} \in \Sigma_{\omega_{s}}$.

Two results

- Proposition 1. Given \mathcal{Z} a BZI bounded by T_{1} and T_{2} (not topologically transitive). For any $z_{1} \in T_{1}, z_{2} \in T_{2}, U_{0}, V_{0}$ neighborhoods of z_{1}, z_{2}, there exists an orbit that goes from U_{0} to V_{0}.
- Proposition 2. Given \mathcal{Z} a BZI bounded by T_{1}, T_{2}, and $\left\{\Sigma_{\omega_{s}}\right\}_{i=1, \ldots, m}$ vertically ordered. For any $z_{1} \in T_{1}, z_{2} \in T_{2}, U_{0}$ neighborhood of z_{1}, V_{0} neighborhood of $z_{2},\left\{n_{s}\right\}_{s=1, \ldots, m}$ an increasing sequence in \mathbb{N}, there exists an orbit $f^{n}(z)$ that starts in an U_{0}, ends in V_{0}, and
 'shadows' each $\sum_{\omega_{s}}$ for n_{s} iterates s.t.

$$
\pi_{x}\left(f^{j}\left(w_{s}^{1}\right)\right)<\pi_{x}\left(f^{j}(\zeta)\right)<\pi_{x}\left(f^{j}\left(w_{s}^{2}\right)\right)
$$

for n_{s}-consecutive j 's, and some $w_{s}^{1}, w_{s}^{2} \in \Sigma_{\omega_{s}}$.

Two results

- Proposition 1. Given \mathcal{Z} a BZI bounded by T_{1} and T_{2} (not topologically transitive). For any $z_{1} \in T_{1}, z_{2} \in T_{2}, U_{0}, V_{0}$ neighborhoods of z_{1}, z_{2}, there exists an orbit that goes from U_{0} to V_{0}.
- Proposition 2. Given \mathcal{Z} a BZI bounded by T_{1}, T_{2}, and $\left\{\Sigma_{\omega_{s}}\right\}_{i=1, \ldots, m}$ vertically ordered. For any $z_{1} \in T_{1}, z_{2} \in T_{2}, U_{0}$ neighborhood of z_{1}, V_{0} neighborhood of $z_{2},\left\{n_{s}\right\}_{s=1, \ldots, m}$ an increasing sequence in \mathbb{N}, there exists an orbit $f^{n}(z)$ that starts in an U_{0}, ends in V_{0}, and
 'shadows' each $\sum_{\omega_{s}}$ for n_{s} iterates s.t.

$$
\pi_{x}\left(f^{j}\left(w_{s}^{1}\right)\right)<\pi_{x}\left(f^{j}(\zeta)\right)<\pi_{x}\left(f^{j}\left(w_{s}^{2}\right)\right)
$$

for n_{s}-consecutive j 's, and some $w_{s}^{1}, w_{s}^{2} \in \Sigma_{\omega_{s}}$.

Proof of Proposition 1

Lemma [Kaloshin,2003] Suppose that T_{1} and T_{2} bound a BZI. Let Σ_{ω} be an Aubry-Mather set of rotation number ω inside the BZI. Let p be a recurrent point in Σ_{ω} and $W(p)$ be a neighborhood of p inside the BZI.
The following hold true:
(i) For some positive number n^{+}(resp. n^{-}) depending on $W(p)$ the set $\bigcup_{j=0}^{n^{+}} f^{j}(W(p))\left(\right.$ resp. $\left.\bigcup_{j=0}^{n^{-}} f^{-j}(W(p))\right)$ separates the cylinder.
(ii) The set $W^{+\infty}:=\bigcup_{j=0}^{\infty} f^{j}(W(p))$ (resp. the set $\left.W^{-\infty}:=\bigcup_{j=0}^{\infty} f^{-j}(W(p))\right)$, is connected and open.
(iii) The closure of $W^{+\infty}$ (resp. $W^{-\infty}$) contains both boundary tori T_{1} and T_{2}.
(iv) The set $W^{\infty}:=\bigcup_{j=-\infty}^{\infty} f^{j}(W(p))$ is invariant, and both $W^{+\infty}$ and $W^{-\infty}$ are open and dense in W^{∞}.

Proof of Proposition 1

- choose $\Sigma_{\rho_{1}}<\Sigma_{\rho_{1}^{\prime}}<\Sigma_{\rho_{1}^{\prime \prime}}-\mathrm{A}-\mathrm{M}$ sets
- $W_{\varepsilon}\left(p_{1}\right)$ neighborhood of $p_{1} \in \Sigma_{\rho_{1}^{\prime \prime}}$
- $\operatorname{cl}\left[\cup_{j=0}^{\infty} f^{-j}\left(W_{\varepsilon}\left(p_{1}\right)\right)\right] \supseteq T_{1}$ [Kaloshin,2003]
- $\exists U_{m} \subseteq U_{m-1} \subseteq \ldots \subseteq U_{0}$ s.t.
- $f^{j_{m}}\left(U_{m}\right)$ intersects $W_{\varepsilon}\left(p_{1}\right)+\left(h_{m}, 0\right)$
- $f^{j_{m}}\left(U_{m}\right)$ crosses the gaps $\left[a_{\rho_{1}}^{m}, b_{\rho_{1}}^{m}\right]$ of $\Sigma_{\rho_{1}}$ and $\left[a_{\rho_{1}^{\prime}}^{m}, b_{\rho_{1}^{\prime}}^{m}\right]$ of $\Sigma_{\rho_{1}^{\prime}}$
- $\left[a_{\rho_{1}}^{m}, b_{\rho_{1}}^{m}\right]$ and $\left[a_{\rho_{1}^{\prime}}^{m}, b_{\rho_{1}^{\prime}}^{m}\right]$ - shifted apart
- $f^{j_{1}}\left(U_{1}\right) \cup f^{j_{m}}\left(U_{m}\right)$ forms an 'arch' over some part of $\Sigma_{\rho_{1}} \rightsquigarrow$ a neighborhood \mathcal{U} of a point in
 $\Sigma_{\rho_{1}}$
- Similarly — an 'arch' over a part of some A-M set $\Sigma_{\rho_{2}}$ near $T_{2} \rightsquigarrow$ a neighborhood \mathcal{V} of a point in $\Sigma_{\rho_{2}}$
- Mather connecting property: orbit from \mathcal{U} to \mathcal{V} \rightsquigarrow orbit from U_{0} to V_{0}

Proof of Proposition 1

- choose $\Sigma_{\rho_{1}}<\Sigma_{\rho_{1}^{\prime}}<\Sigma_{\rho_{1}^{\prime \prime}}-\mathrm{A}-\mathrm{M}$ sets
- $W_{\varepsilon}\left(p_{1}\right)$ neighborhood of $p_{1} \in \Sigma_{\rho_{1}^{\prime \prime}}$
- $\operatorname{cl}\left[\cup_{j=0}^{\infty} f^{-j}\left(W_{\varepsilon}\left(p_{1}\right)\right)\right] \supseteq T_{1}$ [Kaloshin,2003]
- $\exists U_{m} \subseteq U_{m-1} \subseteq \ldots \subseteq U_{0}$ s.t.
- $f^{j_{m}}\left(U_{m}\right)$ intersects $W_{\varepsilon}\left(p_{1}\right)+\left(h_{m}, 0\right)$
- $f^{j_{m}}\left(U_{m}\right)$ crosses the gaps $\left[a_{\rho_{1}}^{m}, b_{\rho_{1}}^{m}\right]$ of $\Sigma_{\rho_{1}}$ and $\left[a_{\rho_{1}^{\prime}}^{m}, b_{\rho_{1}^{\prime}}^{m}\right]$ of $\Sigma_{\rho_{1}^{\prime}}$
- $\left[a_{\rho_{1}}^{m}, b_{\rho_{1}}^{m}\right]$ and $\left[a_{\rho_{1}^{\prime}}^{m}, b_{\rho_{1}^{\prime}}^{m}\right]$ - shifted apart
- $f^{j_{1}}\left(U_{1}\right) \cup f^{j_{m}}\left(U_{m}\right)$ forms an 'arch' over some part of $\Sigma_{\rho_{1}} \rightsquigarrow$ a neighborhood \mathcal{U} of a point in
 $\Sigma_{\rho_{1}}$
- Similarly — an 'arch' over a part of some A-M set $\Sigma_{\rho_{2}}$ near $T_{2} \rightsquigarrow$ a neighborhood \mathcal{V} of a point in $\Sigma_{\rho_{2}}$
- Mather connecting property: orbit from \mathcal{U} to \mathcal{V} \rightsquigarrow orbit from U_{0} to V_{0}

Proof of Proposition 1

- choose $\Sigma_{\rho_{1}}<\Sigma_{\rho_{1}^{\prime}}<\Sigma_{\rho_{1}^{\prime \prime}}-\mathrm{A}-\mathrm{M}$ sets
- $W_{\varepsilon}\left(p_{1}\right)$ neighborhood of $p_{1} \in \Sigma_{\rho_{1}^{\prime \prime}}$
- $\operatorname{cl}\left[\cup_{j=0}^{\infty} f^{-j}\left(W_{\varepsilon}\left(p_{1}\right)\right)\right] \supseteq T_{1}$ [Kaloshin,2003]
- $\exists U_{m} \subseteq U_{m-1} \subseteq \ldots \subseteq U_{0}$ s.t.
- $f^{j_{m}}\left(U_{m}\right)$ intersects $W_{\varepsilon}\left(p_{1}\right)+\left(h_{m}, 0\right)$
- $f^{j_{m}}\left(U_{m}\right)$ crosses the gaps $\left[a_{\rho_{1}}^{m}, b_{\rho_{1}}^{m}\right]$ of $\Sigma_{\rho_{1}}$ and $\left[a_{\rho_{1}^{\prime}}^{m}, b_{\rho_{1}^{\prime}}^{m}\right]$ of $\Sigma_{\rho_{1}^{\prime}}$
- $\left[a_{\rho_{1}}^{m}, b_{\rho_{1}}^{m}\right]$ and $\left[a_{\rho_{1}^{\prime}}^{m}, b_{\rho_{1}^{\prime}}^{m}\right]$ - shifted apart
- $f^{j_{1}}\left(U_{1}\right) \cup f^{j_{m}}\left(U_{m}\right)$ forms an 'arch' over some part of $\Sigma_{\rho_{1}} \rightsquigarrow$ a neighborhood \mathcal{U} of a point in
 $\Sigma_{\rho_{1}}$
- Similarly — an 'arch' over a part of some A-M set $\Sigma_{\rho_{2}}$ near $T_{2} \rightsquigarrow$ a neighborhood \mathcal{V} of a point in $\Sigma_{\rho_{2}}$
- Mather connecting property: orbit from \mathcal{U} to \mathcal{V} \rightsquigarrow orbit from U_{0} to V_{0}

Proof of Proposition 2

- $\exists I_{0}>0, \exists B_{z_{0}^{1}, z_{0}^{2}}$ such that $F^{I_{0}}\left(U_{0}\right) \cap \operatorname{cl}\left(B_{z_{0}^{1}, z_{0}^{2}}\right)$ has a component that is a positive diagonal D_{0} in $B_{z_{0}^{1}, z_{0}^{2}}$
- $\exists j_{0}>0, \exists B_{w_{1}^{1}, w_{1}^{2}}$ with $w_{1}^{1}, w_{1}^{2} \in \Sigma_{\omega_{1}}$ such that $F^{j_{0}}\left(D_{0}\right) \cap \operatorname{cl}\left(B_{w_{1}^{1}, w_{1}^{2}}\right)$ has a component D_{1} that is a positive diagonal in $B_{w_{1}^{1}, w_{1}^{2}}$
- upper and lower edges of D_{1} contained
 in $F^{j_{0}}\left(\operatorname{bd}\left(U_{0}\right)\right)$

Proof of Proposition 2

- $\exists I_{0}>0, \exists B_{z_{0}^{1}, z_{0}^{2}}$ such that $F^{I_{0}}\left(U_{0}\right) \cap \operatorname{cl}\left(B_{z_{0}^{1}, z_{0}^{2}}\right)$ has a component that is a positive diagonal D_{0} in $B_{z_{0}^{1}, z_{0}^{2}}$
- $\exists j_{0}>0, \exists B_{w_{1}^{1}, w_{1}^{2}}$ with $w_{1}^{1}, w_{1}^{2} \in \Sigma_{\omega_{1}}$ such that $F^{j_{0}}\left(D_{0}\right) \cap \operatorname{cl}\left(B_{w_{1}^{1}, w_{1}^{2}}\right)$ has a component D_{1} that is a positive diagonal in $B_{w_{1}^{1}, w_{1}^{2}}$
- upper and lower edges of D_{1} contained
 in $F^{j_{0}}\left(\operatorname{bd}\left(U_{0}\right)\right)$

Proof of Proposition 2

- [Hall,1989] $\rightsquigarrow \exists C_{1} \supseteq C_{2} \supseteq \ldots \supseteq C_{m}$ negative diagonals of $B_{w_{1}^{1}, w_{1}^{2}}$ s.t.
- $f^{j_{s}+n_{s}}\left(C_{s}\right)$ is a positive diagonal in $B_{w_{s}^{1}, w_{s}^{2}}$, where $\left[w_{s}^{1}, w_{s}^{2}\right]$ is a gap in $\Sigma_{\omega_{s}}$
- C_{m} intersects $F^{j_{0}}\left(\operatorname{bd}\left(U_{0}\right)\right)$
- Similar argument about T_{2}
- There exists an orbit that goes from $\operatorname{bd}\left(U_{0}\right)$ to $\operatorname{bd}\left(V_{0}\right)$ and 'shadows' each
 $\Sigma_{\omega_{s}}$

References

[1] M. Gidea and C. Robinson. Diffusion along transition chains of invariant tori and Aubry-Mather sets. Ergod. Th. \& Dynam. Sys. (2012), to appear.
[2] G.R. Hall. A topological version of a theorem of Mather on shadowing in monotone twist maps. Dynamical Systems and Ergodic Theory (Warsaw, 1986) (Banach Center Publications, 23). PWN, Q11 Warsaw, 1989, 125-134.
[3] I. Jungreis. A method for proving that monotone twist maps have no invariant circles. Ergodic Theory Dynam. Systems 11(1) (1991), 79-84.
[4] K. Meyer, G.R. Hall and D. Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd Edition, Springer, 2009.
[5] P. Zgliczyński and M. Gidea. Covering relations for multidimensional dynamical systems. J. Differential Equations 202(1) (2004), 32-58.

