Aubry Mather Theory from a Topological Viewpoint II. Topological approach to Aubry-Mather theory

${\sf Marian}\ {\sf Gidea}^{1,2}$

¹Northeastern Illinois University, Chicago

²Institute for Advanced Study, Princeton

WORKSHOP ON INTERACTIONS BETWEEN DYNAMICAL SYSTEMS AND PARTIAL DIFFERENTIAL EQUATIONS (JISD2012)

May 28 - June 1, 2012

Marian Gidea (IAS)

Aubry Mather theory

May 28 - June 1, 2012 1 / 24

- Method of correctly aligned windows (Covering relations)
- 2 Twist and tilt conditions via foliations
- 3 Existence of Aubry-Mather sets

nac

1

Correctly aligned windows (2-dimensional)

• Window: $W = c([0, 1] \times [0, 1])$, where c is a C⁰-coordinate system; exit set $W^{ex} = c(\partial[0, 1] \times [0, 1])$; entry set $W^{en} = c([0, 1] \times \partial[0, 1])$ • **Definition:** W_1 correctly aligned with W_2 under f, if there exist 0 < a < b < 1 such that, via coordinates: (i) $f([a, b] \times [0, 1]) \subset \mathbb{R} \times (0, 1)$ (ii) $f(\{a\} \times [0,1]) \subseteq \{x < 0\}$ and $f(\{b\} \times [0,1]) \subseteq \{x > 1\}$ Weak alignment if instead of (ii) (ii)' $f(\{a\} \times [0,1]) \subseteq \{x \le 0\}$ and $f(\{b\} \times [0,1]) \subseteq \{x \ge 1\}$ • **Theorem:** Correct alignment is robust. Weak alignment is not. • **Theorem:** Given $(W_i)_{i \in \mathbb{Z}}$, $(f_i)_{i \in \mathbb{Z}}$, such that W_i correctly aligned with W_{i+1} under f_i , then $\exists (p_i)_{i \in \mathbb{Z}}, p_i \in W_i$ and $f_i(p_i) = p_{i+1}$ If $(W_i)_{i=1,\dots,d}$ form a loop, then \exists a closed orbit.

Correctly aligned windows (2-dimensional)

• Window: $W = c([0,1] \times [0,1])$, where c is a C⁰-coordinate system; exit set $W^{ex} = c(\partial[0, 1] \times [0, 1])$; entry set $W^{en} = c([0, 1] \times \partial[0, 1])$ • **Definition:** W_1 correctly aligned with W_2 under f, if there exist 0 < a < b < 1 such that, via coordinates: (i) $f([a, b] \times [0, 1]) \subset \mathbb{R} \times (0, 1)$ (ii) $f(\{a\} \times [0,1]) \subseteq \{x < 0\}$ and $f(\{b\} \times [0,1]) \subseteq \{x > 1\}$ Weak alignment if instead of (ii) (ii)' $f(\{a\} \times [0,1]) \subseteq \{x \le 0\}$ and $f(\{b\} \times [0,1]) \subseteq \{x \ge 1\}$ • **Theorem:** Correct alignment is robust. Weak alignment is not. • **Theorem:** Given $(W_i)_{i \in \mathbb{Z}}$, $(f_i)_{i \in \mathbb{Z}}$, such that W_i correctly aligned with W_{i+1} under f_i , then $\exists (p_i)_{i \in \mathbb{Z}}, p_i \in W_i$ and $f_i(p_i) = p_{i+1}$

If $(W_i)_{i=1,...,d}$ form a loop, then \exists a closed orbit.

Correctly aligned windows (2-dimensional)

• Window: $W = c([0, 1] \times [0, 1])$, where c is a C⁰-coordinate system; exit set $W^{ex} = c(\partial[0, 1] \times [0, 1])$; entry set $W^{en} = c([0, 1] \times \partial[0, 1])$ • **Definition:** W_1 correctly aligned with W_2 under f, if there exist 0 < a < b < 1 such that, via coordinates: (i) $f([a, b] \times [0, 1]) \subset \mathbb{R} \times (0, 1)$ (ii) $f(\{a\} \times [0,1]) \subseteq \{x < 0\}$ and $f(\{b\} \times [0,1]) \subseteq \{x > 1\}$ Weak alignment if instead of (ii) (ii)' $f(\{a\} \times [0,1]) \subseteq \{x \le 0\}$ and $f(\{b\} \times [0,1]) \subseteq \{x \ge 1\}$ • **Theorem:** Correct alignment is robust. Weak alignment is not. • **Theorem:** Given $(W_i)_{i \in \mathbb{Z}}$, $(f_i)_{i \in \mathbb{Z}}$, such that W_i correctly aligned with W_{i+1} under f_i , then $\exists (p_i)_{i \in \mathbb{Z}}, p_i \in W_i$ and $f_i(p_i) = p_{i+1}$ If $(W_i)_{i=1,\dots,d}$ form a loop, then \exists a closed orbit.

Diagonal sets in the closed annulus

$$D \cap B_{z_0,z_1}$$
 has two components connecting $I_{z_0}^- \cup \{y = 0\}$ to $I_{z_1}^+ \cup \{y = 1\}$ — upper and lower edges

-1

990

3

Twist maps and diagonal sets

- $f: A \rightarrow A$ orientation preserving, area preserving, boundary preserving, exact symplectic, monotone twist map of the annulus
- D positive diagonal in $B_{z_0,z_1} \Rightarrow f(D)$ has a positive diagonal component D' in $B_{f(z_0),f(z_1)}$
- If D has the upper/lower edge in $f^{k}(I_{w_{0}}^{+}), f^{k}(I_{w_{1}}^{-})$ and $\operatorname{bd}(D \cap B_{z_0,z_1}) \subseteq f^k(I_{w_0}^+ \cup I_{w_1}^-)$ for some w_0, w_1 and some $k > 0 \Rightarrow D'$ has upper/lower edge in $f^{k+1}(I_{w_0}^+), f^{k+1}(I_{w_1}^-)$

SQA

Twist maps and diagonal sets

- $f: A \rightarrow A$ orientation preserving, area preserving, boundary preserving, exact symplectic, monotone twist map of the annulus
- D positive diagonal in $B_{z_0,z_1} \Rightarrow f(D)$ has a positive diagonal component D' in $B_{f(z_0),f(z_1)}$
- If D has the upper/lower edge in $f^{k}(I_{w_{0}}^{+}), f^{k}(I_{w_{1}}^{-})$ and $\operatorname{bd}(D \cap B_{z_0,z_1}) \subseteq f^k(I_{w_0}^+ \cup I_{w_1}^-)$ for some w_0, w_1 and some $k > 0 \Rightarrow D'$ has upper/lower edge in $f^{k+1}(I_{w_0}^+), f^{k+1}(I_{w_1}^-)$

JQ P

Diagonal sets as windows

Windows:

Marian Gidea (IAS)

•
$$W_1 = B_{z_1,z_2} = \{z : \pi_x(z_1) < \pi_x(z) < \pi_x(z_2)\};$$

exit set $W_1^{\text{ex}} = B_{z_1,z_2} \cap [(I_{z_1}^- \cup \{y = 0\}) \cup (I_{z_2}^+ \cup \{y = 1\})]$
• $W_2 = B_{f(z_1),f(z_2)} = \{z : \pi_x(f(z_1)) < \pi_x(z) < \pi_x(f(z_2))\};$
exit set $W_2^- = B_{f(z_1),f(z_2)} \cap [(I_{f(z_1)}^- \cup \{y = 0\}) \cup (I_{f(z_2)}^+ \cup \{y = 1\})]$

- Then W_1 is correctly aligned with W_2 under f
- If W₁ (weakly) correctly aligned with W₂, ..., W_{k-1} (weakly) correctly aligned with W_k, then f^{k-1}(W₁) ∩ W_k determines a diagonal set in W_k
- Trivial remark: if z_1, z_2 are monotone (p, q)-points then there exists a loop of q weakly correctly aligned windows

Numerical implementation.

The diagonal method can be implemented in efficient numerical algorithms – Project M. Capinski and M.G.

- $(u_n)_{n\in\mathbb{Z}}$ left sequence $-\pi_x(f^{-1}(u_{i+1})) \le \pi_x(u_i)$ and $\pi_x(f(u_i)) \le \pi_x(u_{i+1}), \forall i$
- $(v_n)_{n\in\mathbb{Z}}$ left sequence $-\pi_x(v_i) \le \pi_x(f^{-1}(v_{i+1}))$ and $\pi_x(v_{i+1})) \le \pi_x(f(v_i), \forall i, \forall i)$
- If $(u_n)_n$ left seq., $(v_n)_n$ right seq., and $\pi_x(u_i) \leq \pi_x(v_i)$, $\forall i$, then B_{u_i,v_i} is correctly aligned with $B_{u_{i+1},v_{i+1}}$ (robustly) under $f \Rightarrow \exists z, \pi_x(u_i) \leq \pi_x(f^i(z)) \leq \pi_x(v_i), \forall i$
- [Jungreis,1991] nonexistence of invariant circles

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Ends of a manifold

•
$$\mathcal{C}\simeq S^1 imes\mathbb{R}$$
 — cylinder

• The cylinder has two ends
$$\{S, N\}^{\dagger}$$

•
$$A \cup \{S\} \cup \{N\} = S^2$$
 — end compactification [‡]

•
$$A \simeq S^2 \setminus \{S, N\}.$$

[†] End of a manifold *M*: function *e* to each compact set $K \subseteq M$ an unbounded non-empty component e(K) of $M \setminus K$ s.t. $K_1 \subseteq K_2 \Rightarrow e(K_2) \subseteq e(K_1)$. E(M) =the set of ends of *M* – the unbounded components of $M \setminus K$.

[‡] End compactification of M: $\overline{M} = M \cup E(M)$ endowed with a topology satisfying: (i) M is an open subspace of \overline{M} , (ii) the fundamental open neighborhoods of $e \in E(M)$ are of the form $e(K) \cup \{e' \in E(M) | e'(K) = e(K)\}$ for all compacts $K \subseteq M$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Foliations

- *M* manifold of dimension *n*
- Foliation atlas: foliation charts $\{\phi_i : U_i \subseteq M \to \mathbb{R}^n = \mathbb{R}^{n-q} \times \mathbb{R}^q\}$ s.t. $\phi_{ij}(x, y) = (g_{ij}(x, y), h_{ij}(y))$
- Plaques: connected components of $\phi_i^{-1}(\mathbb{R}^{n-q} \times \{y\})$
- Leaves *F*: connected, immersed *q*-dimensional manifolds formed with plaques *x*, *y* ∈ *F* ∈ *F*: ∃*U*₁,..., *U_k*, *x*₀ = *x*,..., *x_i*,..., *x_k* = *y* s.t. *x_{i-1}*, *x_i* on the same plaque in *U_i*

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Twist and tilt conditions via foliations

Foliation of the cylinder

- V 1-dimensional foliation of C s.t. $\forall V \in V$ embedded curve connecting S and N
- Proposition: There exists an essential circle T in C that meets each leaf V ∈ V transversally (exactly once)
- Proof. Start with essential circle γ
 Step 1. Modify γ ↔ essential circle γ' =finitely many curve segments of γ transverse V and finitely many curve segments included in V
 Step 2. Modify the leaf-parts of γ' ↔ essential circle γ̃'' that is transverse to V.
- Coordinate system: $c(x, y) = (\tau(x), c_x(y))$, where $x \in S^1$, $\tau(\mathbb{R}) = T$, $c_x(\mathbb{R}) = V_x$
- Foliation of the covering space $V_{x+n} = V_x + (n, 0)$

JQ P

10 / 24

▲ @ > ▲ E > ▲ E > E May 28 - June 1, 2012 Twist and tilt conditions via foliations

Twist and tilt conditions via foliation

- Monotone twist: f monotone twist condition if f(S) = S, f(N) = N, and $\forall V, V' \in \mathcal{V}$, f(V)is transverse to V'
- If f(V) intersecting V' in a finite set of points $\{z_0 = c_V(t_0), z_1 = c_V(t_1), \dots, z_k = c_V(t_k)\}$ defined index $i_{[c_V(t_i), c_V(t_{i+1})]}$ as in Figure.
- Tilt: f right tilt condition if f(S) = S, f(N) = N, and for each ∀V, V' ∈ V, with f(V) intersecting V' in a finite set of points {z₀, z₁,..., z_k}: ∑^j_{i=0} i_[c_V(t_i),c_V(t_{i+1})] ≤ 0 for each j = 1,..., k − 1
 Note: ∑^{k-1}_{i=0} i_[c_V(t_i),c_V(t_{i+1})] = 0

Twist and tilt conditions via foliations

Diagonal sets in the cylinder

 Notation: z ∈ A, V_z = the unique leaf in V passing through z

•
$$V_{z_i}^+ = \{ w \in V_z \mid w \text{ above } z_i \text{ in } V_{z_0} \},\ V_{z_i}^- = \{ w \in V_z \mid w \text{ below } z_i \text{ in } V_{z_0} \}$$

•
$$B_{z_0,z_1} = \{V_w \mid V_w \text{ is between } V_{z_0} \text{ and } V_{z_1}\}$$

- D positive diagonal in B_{z_0,z_1}
 - (i) *D* is simply connected and the closure of its interior;

(ii)
$$\partial D \cap \operatorname{cl}(B_{z_0,z_1}) \subseteq V_{z_0}^- \cup V_{z_1}^+$$
;

(iii)
$$\partial D \cap V_{z_0}^-
eq \emptyset$$
 and $\partial D \cap V_{z_1}^+
eq \emptyset$

• **Definition:** Infinite window

$$egin{aligned} & W_{z_0,z_1} = \mathrm{cl}(B_{z_0,z_1}) \text{, together with} \ & W_{z_0,z_1}^{\mathrm{ex}} = V_{z_0}^- \cup V_{z_1}^+ \ & W_{z_0,z_1}^{\mathrm{en}} = V_{z_0}^+ \cup V_{z_1}^- \end{aligned}$$

JQ P

- $f: A \to A$ satisfies the circle intersection property if for every lift $\tau: \mathbb{R} \to \mathbb{R}^2$ of an essential circle in the annulus A we have $f(\tau(\mathbb{R})) \cap \tau(\mathbb{R}) \neq \emptyset$
- In the sequel: assume $f: C \to C$ is orientation preserving, satisfies the circle intersection property, maps each end of the cylinder to itself, twists each end infinitely, preserves a measure absolutely continuous with respect to the Lebesgue measure, and satisfies a twist condition or a tilt condition relative to the foliation \mathcal{V}
- For every (p, q), there exists a monotone (p, q)-periodic orbit
- For each $\omega \in \mathbb{R}$, there exists an Aubry-Mather set Σ_{ω} (non-unique) of rotation number ω
 - Choose $p_n/q_n \to \omega \rightsquigarrow \exists z_n \text{ monotone } (p_n, q_n)\text{-periodic point with} \\ \pi_x(z_n) \in [0, 1] \text{ subsequence of } z_n \text{ converges to } z_\omega \text{ monotone and} \\ \rho(z_\omega) = \omega$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Existence of monotone (p, q)-orbits

Idea: Existence of non-monotone orbits implies existence of monotone orbits

•
$$z_1, z_2$$
 are (p, q) -points
• $\forall i = 0, \dots, q, \ \pi_x(f^i(z_1)) < \pi_x(f^i(z_2)), \ \pi_x(f^i(w_1)) < \pi_x(f^i(w_2)), \ \pi_x(f^i(w_1)) < \pi_x(f^i(z_2)), \ \pi_x(f^i(z_1)) < \pi_x(f^i(w_2)), \ (f^i(z_1)) < (f^i(z_1)) <$

•
$$\pi_x(w_j) - \pi_x(z_j)$$
 and $\pi_x(f^q(z_j)) - \pi_x(f^q(z_j))$
have the same sign, for $j = 1, 2$

• Then
$$B_{z_1,z_2}$$
 is correctly aligned with $B_{z_1+(p,0),z_2+(p,0)}$ under f^q . Hence, $f^q - (p,0)$ has a fixed point in the interior of B_{z_1,z_2} and so does every map sufficiently close to f .

DQC2

Existence of monotone (p, q)-orbits

- Step 2: If f has a monotone (p, q)-orbit and a non-monotone (p, q)-orbit, then f has a second monotone (p, q)-orbit and so does every map sufficiently close to f.
- Step 3: Assume w₀ is a non-monotone (p, q)-periodic orbit. Choose z₀ ∉ EO(w₀). There exists a small homotopy f_t with f₀ = f and f_t = f outside a finite collection of narrow vertical strips about z₀ + i/q, i ∈ Z, and off EO(w₀), s.t. f₁ⁱ(z₀) = z₀ + i(p/q, 0) change the y-coordinate of images of points. Hence f₁ has a (p, q)-monotone periodic orbit.

JQ P

Existence of monotone (p, q)-orbits

• Step 4:

- Lemma: if f_n → f in C⁰ as n → ∞, with f_n, f twist maps (tilt maps), if z_n has a monotone orbit for f_n, and if z_n → z, then z has a monotone orbit for f, and ρ(z) = lim_{n→∞} ρ(z_n) ⇒ the set t ∈ [0, 1] for which f_t has a monotone (p, q)-orbit is an closed set.
- By Step 2, the set $t \in [0, 1]$ for which f_t has a monotone (p, q) is an open set.
- By connectedness $f_0 = f$ must have a (p, q)-monotone periodic orbit

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Hall's shadowing lemma

Theorem (Hall): Given {Σ_{ωs}}_{s∈Z}. For every {n_s}_{s=1,...,m} ⊆ N, there exists an orbit {f^j(ζ)} that follows each Σ_{ωs} for a number of n_s iterates, i.e.,

$$\pi_x(f^j(w_s^1)) < \pi_x(f^j(\zeta)) < \pi_x(f^j(w_s^2))$$

for n_s -consecutive j's, and for some $w_s^1, w_s^2 \in \Sigma_{\omega_s}$. In particular, $h_{top}(f) > 0$.

Hall's shadowing lemma

Theorem (Hall): Given {Σ_{ωs}}_{s∈Z}. For every {n_s}_{s=1,...,m} ⊆ N, there exists an orbit {f^j(ζ)} that follows each Σ_{ωs} for a number of n_s iterates, i.e.,

$$\pi_x(f^j(w_s^1)) < \pi_x(f^j(\zeta)) < \pi_x(f^j(w_s^2))$$

for n_s -consecutive j's, and for some $w_s^1, w_s^2 \in \Sigma_{\omega_s}$. In particular, $h_{top}(f) > 0$.

Proof of Hall's shadowing lemma

Recursive argument:

- start with adjacent points w_1^1, w_1^2 in Σ_{ω_1}
- construct windows $B_{f^j(w_1^1)f^j(w_1^2)}$, $j = 1, n_1 - 1$, with $B_{f^j(w_1^1),f^j(w_1^2)}$ correctly aligned with $B_{f^{j+1}(w_1^1),f^{j+1}(w_1^2)}$ under f – each orbit that follows the windows satisfies the order relation
- $\exists p_0 \text{ near } y = 0 \text{ that gets near } y = 1, \text{ and } \exists P_1 \text{ near } y = 1 \text{ that gets near } y = 0 \Rightarrow \text{ for } m_1 \text{ (sufficiently large) no. of iterates}$
- then $B_{f^{n_1+k_1+m_1}(w_1^1), f^{n_1+k_1+m_1}(w_1^2)}$ is correctly aligned with $B_{f^{k_1+m_1}(p_0), f^{k_1+m_1}(p_1)}$, of width > 1
- \bullet hence $B_{f^{n_1+k_1+m_1}(w_1^1),f^{n_1+k_1+m_1}(w_1^2)}$ is correctly aligned with $B_{w_2^1,w_2^2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof of Hall's shadowing lemma

Recursive argument:

- start with adjacent points w_1^1, w_1^2 in Σ_{ω_1}
- construct windows $B_{f^j(w_1^1)f^j(w_1^2)}$, $j = 1, n_1 - 1$, with $B_{f^j(w_1^1), f^j(w_1^2)}$ correctly aligned with $B_{f^{j+1}(w_1^1), f^{j+1}(w_1^2)}$ under f – each orbit that follows the windows satisfies the order relation
- $\exists p_0$ near y = 0 that gets near y = 1, and \exists P_1 near y = 1 that gets near $y = 0 \Rightarrow$ for m_1 (sufficiently large) no. of iterates
- then $B_{f^{n_1+k_1+m_1}(w_1^1), f^{n_1+k_1+m_1}(w_1^2)}$ is correctly aligned with $B_{f^{k_1+m_1}(p_0),f^{k_1+m_1}(p_1)}$, of width > 1
- hence $B_{f^{n_1+k_1+m_1}(w_1^1), f^{n_1+k_1+m_1}(w_1^2)}$ is correctly aligned with $B_{w_1^1,w_2^2}$

JQ P

Two results

- **Proposition 1.** Given \mathcal{Z} a BZI bounded by T_1 and T_2 (*not topologically transitive*). For any $z_1 \in T_1, z_2 \in T_2, U_0, V_0$ neighborhoods of z_1, z_2 , there exists an orbit that goes from U_0 to V_0 .
- **Proposition 2.** Given \mathcal{Z} a BZI bounded by T_1, T_2 , and $\{\Sigma_{\omega_s}\}_{i=1,...,m}$ vertically ordered. For any $z_1 \in T_1, z_2 \in T_2$, U_0 neighborhood of z_1 , V_0 neighborhood of z_2 , $\{n_s\}_{s=1,...,m}$ an increasing sequence in \mathbb{N} , there exists an orbit $f^n(z)$ that starts in an U_0 , ends in V_0 , and 'shadows' each Σ_{ω_s} for n_s iterates s.t.

$$\pi_x(f^j(w_s^1)) < \pi_x(f^j(\zeta)) < \pi_x(f^j(w_s^2))$$

for n_s -consecutive j's, and some $w_s^1, w_s^2 \in \Sigma_{\omega_s}$.

SOR

Two results

- **Proposition 1.** Given \mathcal{Z} a BZI bounded by T_1 and T_2 (*not topologically transitive*). For any $z_1 \in T_1, z_2 \in T_2, U_0, V_0$ neighborhoods of z_1, z_2 , there exists an orbit that goes from U_0 to V_0 .
- **Proposition 2.** Given \mathcal{Z} a BZI bounded by T_1, T_2 , and $\{\Sigma_{\omega_s}\}_{i=1,...,m}$ vertically ordered. For any $z_1 \in T_1, z_2 \in T_2$, U_0 neighborhood of z_1 , V_0 neighborhood of z_2 , $\{n_s\}_{s=1,...,m}$ an increasing sequence in \mathbb{N} , there exists an orbit $f^n(z)$ that starts in an U_0 , ends in V_0 , and 'shadows' each Σ_{ω_s} for n_s iterates s.t.

$$\pi_x(f^j(w_s^1)) < \pi_x(f^j(\zeta)) < \pi_x(f^j(w_s^2))$$

for n_s -consecutive j's, and some $w_s^1, w_s^2 \in \Sigma_{\omega_s}$.

Two results

- **Proposition 1.** Given \mathcal{Z} a BZI bounded by T_1 and T_2 (*not topologically transitive*). For any $z_1 \in T_1, z_2 \in T_2, U_0, V_0$ neighborhoods of z_1, z_2 , there exists an orbit that goes from U_0 to V_0 .
- **Proposition 2.** Given \mathcal{Z} a BZI bounded by T_1, T_2 , and $\{\Sigma_{\omega_s}\}_{i=1,...,m}$ vertically ordered. For any $z_1 \in T_1, z_2 \in T_2$, U_0 neighborhood of z_1 , V_0 neighborhood of z_2 , $\{n_s\}_{s=1,...,m}$ an increasing sequence in \mathbb{N} , there exists an orbit $f^n(z)$ that starts in an U_0 , ends in V_0 , and 'shadows' each Σ_{ω_s} for n_s iterates s.t.

$$\pi_x(f^j(w_s^1)) < \pi_x(f^j(\zeta)) < \pi_x(f^j(w_s^2))$$

for n_s -consecutive j's, and some $w_s^1, w_s^2 \in \Sigma_{\omega_s}$.

Proof of Proposition 1

Lemma [Kaloshin,2003] Suppose that T_1 and T_2 bound a BZI. Let Σ_{ω} be an Aubry-Mather set of rotation number ω inside the BZI. Let p be a recurrent point in Σ_{ω} and W(p) be a neighborhood of p inside the BZI. The following hold true:

- (i) For some positive number n^+ (resp. n^-) depending on W(p) the set $\bigcup_{j=0}^{n^+} f^j(W(p))$ (resp. $\bigcup_{j=0}^{n^-} f^{-j}(W(p))$) separates the cylinder.
- (ii) The set $W^{+\infty} := \bigcup_{j=0}^{\infty} f^j(W(p))$ (resp. the set $W^{-\infty} := \bigcup_{j=0}^{\infty} f^{-j}(W(p))$), is connected and open.
- (iii) The closure of $W^{+\infty}$ (resp. $W^{-\infty}$) contains both boundary tori T_1 and T_2 .
- (iv) The set $W^{\infty} := \bigcup_{j=-\infty}^{\infty} f^j(W(p))$ is invariant, and both $W^{+\infty}$ and $W^{-\infty}$ are open and dense in W^{∞} .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Proof of Proposition 1

- in Σ_{ρ_2}
- Mather connecting property: orbit from \mathcal{U} to \mathcal{V} \rightsquigarrow orbit from U_0 to V_0

Marian Gidea (IAS)

Э

DQC2

Proof of Proposition 1

• Mather connecting property: orbit from \mathcal{U} to \mathcal{V} \rightsquigarrow orbit from U_0 to V_0

Marian Gidea (IAS)

< ∃ >

May 28 - June 1, 2012

Э

DQC2

21 / 24

Birkhoff

Proof of Proposition 1

Mather connecting property: orbit from U to V
 → orbit from U₀ to V₀

Marian Gidea (IAS)

< ∃ >

-

May 28 - June 1, 2012

4 日

Э

DQC2

Proof of Proposition 2

- $\exists I_0 > 0$, $\exists B_{z_0^1, z_0^2}$ such that $F^{I_0}(U_0) \cap \operatorname{cl}(B_{z_0^1, z_0^2})$ has a component that is a positive diagonal D_0 in $B_{z_0^1, z_0^2}$
- $\exists j_0 > 0$, $\exists B_{w_1^1,w_1^2}$ with $w_1^1, w_1^2 \in \Sigma_{\omega_1}$ such that $F^{j_0}(D_0) \cap \operatorname{cl}(B_{w_1^1,w_1^2})$ has a component D_1 that is a positive diagonal in $B_{w_1^1,w_1^2}$
- upper and lower edges of D₁ contained in F^{j₀}(bd(U₀))

JQ P

Proof of Proposition 2

- $\exists I_0 > 0$, $\exists B_{z_0^1, z_0^2}$ such that $F^{I_0}(U_0) \cap \operatorname{cl}(B_{z_0^1, z_0^2})$ has a component that is a positive diagonal D_0 in $B_{z_0^1, z_0^2}$
- $\exists j_0 > 0$, $\exists B_{w_1^1,w_1^2}$ with $w_1^1, w_1^2 \in \Sigma_{\omega_1}$ such that $F^{j_0}(D_0) \cap \operatorname{cl}(B_{w_1^1,w_1^2})$ has a component D_1 that is a positive diagonal in $B_{w_1^1,w_1^2}$
- upper and lower edges of D₁ contained in F^{j₀}(bd(U₀))

Proof of Proposition 2

- [Hall,1989] $\rightsquigarrow \exists C_1 \supseteq C_2 \supseteq \ldots \supseteq C_m$ negative diagonals of $B_{w_1^1,w_1^2}$ s.t.
 - $f^{j_s+n_s}(C_s)$ is a positive diagonal in $B_{w_s^1,w_s^2}$, where $[w_s^1,w_s^2]$ is a gap in Σ_{ω_s}
- C_m intersects $F^{j_0}(\mathrm{bd}(U_0))$
- Similar argument about T_2
- There exists an orbit that goes from $\operatorname{bd}(U_0)$ to $\operatorname{bd}(V_0)$ and 'shadows' each Σ_{ω_s}

[1] M. Gidea and C. Robinson. Diffusion along transition chains of invariant tori and Aubry-Mather sets. Ergod. Th. & Dynam. Sys. (2012), to appear.

[2] G.R. Hall. A topological version of a theorem of Mather on shadowing in monotone twist maps. Dynamical Systems and Ergodic Theory (Warsaw, 1986) (Banach Center Publications, 23). PWN, Q11 Warsaw, 1989, 125–134.

[3] I. Jungreis. A method for proving that monotone twist maps have no invariant circles. Ergodic Theory Dynam. Systems 11(1) (1991), 79–84.
[4] K. Meyer, G.R. Hall and D. Offin. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd Edition, Springer, 2009.
[5] P. Zgliczyński and M. Gidea. Covering relations for multidimensional dynamical systems. J. Differential Equations 202(1) (2004), 32-58.