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Method of correctly aligned windows (Covering relations)

Correctly aligned windows (2-dimensional)

o Window: W = ¢([0,1] x [0,1]), where c is a C%-coordinate system;
exit set W = ¢(9[0,1] x [0, 1]); entry set W = ¢([0, 1] x 9]0, 1])

©

(i) f([a, b] x [0,1]) SR x (0,1)
(ii) f({a} x[0,1]) C {x <0} and f({b} x [0,1]) C {x > 1}

©

Weak alignment if instead of (ii)

Definition: W correctly aligned with W, under f, if there exist
0 < a < b <1 such that, via coordinates:

(i) f({a} x [0,1]) C {x < 0} and F({b} x [0,1]) C {x > 1}

© ©

Theorem: Correct alignment is robust. Weak alignment is not.
Theorem: Given (W;)icz, (fi)icz, such that W; correctly aligned

with Wi under f;, then 3(p;)icz, pi € W; and fi(p;) = pit1
If (W;)i=1,...4 form a loop, then 3 a closed orbit.
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Method of correctly aligned windows (Covering relations)

Correctly aligned windows (2-dimensional)

o Window: W = ¢([0,1] x [0,1]), where c is a C%-coordinate system;
exit set W = ¢(9[0,1] x [0, 1]); entry set W = ¢([0, 1] x 9]0, 1])
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Method of correctly aligned windows (Covering relations)

Diagonal sets in the closed annulus

©

A=T! x[0,1]

0 By ={w e Aln(z) < m(w) <
mx(z1)}

o I, ={w e A|m(w) =mx(2)},
I =A{w e l;|my(w) > 7y(2)}, :
I7 ={wel|r,(w) <7 (2) upper

edge

o D C cl(By,,z) positive diagonal in By, ,:
(i) D is simply connected and the closure of
its interior;
(i) ODNcl(Byy,z) <
I, UlLTU{y = 0}u{y =1}
(i) 9DN I # B and ODNIF # 0.
o 0D N By, z has two components connecting
I, U{y=0}to I U {y = 1} — upper
and lower edges
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Method of correctly aligned windows (Covering relations)

Twist maps and diagonal sets

o f: A — A orientation preserving, area
preserving, boundary preserving, exact
symplectic, monotone twist map of the

annulus

pper
edge

o D positive diagonal in By, ,, = f(D) has a
positive diagonal component D’ in
B(z0).f(z)

o If D has the upper/lower edge in
1""((/‘,J|,FO)7 fk(/l;l) and

bd(D N Byy,z,) € FX(I4, U ,,) for some
wo, w; and some k > 0 = D’ has
upper/lower edge in F*TL(13 ), FA(1)

w1
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Method of correctly aligned windows (Covering relations)

Diagonal sets as windows

o Windows:
o Wi =B, , ={z: mx(z1) < mx(2) < me(22)};
exit set W™ = B, ,, N[(I; U{y =0}) U (I} U{y =1})]
o Wo = Br(z) f(z) = 12 : Tx(f(21)) < mx(2) < me(f(22)) }:
exit set Wy~ = Br(z,),(z) N (/) Uy = O U (I, U{y = 1})]
o Then W is correctly aligned with W5 under f
o If Wy (weakly) correctly aligned with W5, ..., Wi_1 (weakly)
correctly aligned with W, then FA=1(W;) N W determines a
diagonal set in W
o Trivial remark: if z;, zo are monotone (p, g)-points then there exists a
loop of g weakly correctly aligned windows

2, r f(z,)
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Method of correctly aligned windows (Covering relations)

Numerical implementation.

The diagonal method can be implemented in efficient numerical
algorithms — Project M. Capinski and M.G.

o (un)nez left sequence — mx(F 1 (uix1)) < mx(u;) and
T (F(ui)) < mx(uiga), Vi

o (Vp)nez left sequence — m,(v;) < mx(F~1(viy1)) and
7TX(V,'+1)) S Wx(f(v,'), Vi, Vi

o If (up)n left seq., (va)n right seq., and mx(u;) < mx(v;), Vi,
then By, ., is correctly aligned with B (robustly) under f =
3z, mx(uj) < e(F1(2)) < mu(V;), Vi

o [Jungreis, 1991] — nonexistence of invariant circles

Ujt+1,Vi+1
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Twist and tilt conditions via foliations

Ends of a manifold

C ~ S x R — cylinder

The cylinder has two ends {S, N} T
AU{S}U{N} = S — end compactification ¥
A~ S2\ {S N}.

© © o o

T End of a manifold M: function e to each compact set K C M an unbounded
non-empty component e(K) of M\ K s.it. Ki C K, = e(Kz) C e(K1). E(M) =
the set of ends of M — the unbounded components of M\ K.

! End compactification of M: M = M U E(M) endowed with a topology
satisfying: (i) M is an open subspace of M, (ii) the fundamental open
neighborhoods of e € E(M) are of the form e(K) U {&’ € E(M) | €'(K) = e(K)}
for all compacts K C M
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Twist and tilt conditions via foliations

Foliations

o M — manifold of dimension n

o Foliation atlas: foliation charts
{¢;: Ui C M —R"=R"9x RI} s.t.
0ij(x,y) = (&i(x,¥), hij(y))

o Plaques: connected components of

¢ H(R™9 x {y})

o Leaves F: connected, immersed g-dimensional /
manifolds formed with plaques x,y € F € F :
U1, ..., Uk, x0 =X, oo, Xjy ooy X = Y S.L.

Xj—1, X; on the same plaque in U;
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Twist and tilt conditions via foliations

Foliation of the cylinder

o V — 1l-dimensional foliation of C s.t. YV € V
embedded curve connecting S and N

o Proposition: There exists an essential circle T
in C that meets each leaf V € V transversally
(exactly once)

o Proof. Start with essential circle v
Step 1. Modify v ~~ essential circle v/ =finitely
many curve segments of v transverse V and
finitely many curve segments included in V
Step 2. Modify the leaf-parts of 7/ ~~ essential
circle 4" that is transverse to V.

o Coordinate system: c(x,y) = (7(x), cx(y)),
where x € S, 7(R) = T, (R) = V4

o Foliation of the covering space
Viin = Vi +(n,0)
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Twist and tilt conditions via foliations

Twist and tilt conditions via foliation

o Monotone twist: f monotone twist condition \j:
if f(S) =S, f(N)=N, and VV, V' €V, f(V) s
is transverse to V' o

o If f(V) intersecting V' in a finite set of points e ’
{20 = cv(to),z1 = cv(tr), ..., 2k = cv(tk)} L
defined index ic, (4),cy (1)) @S in Figure. I~

o Tilt: f right tilt condition if f(S) =S, Pree
f(N) = N, and for each VYV, V' € V, with 4
f(V) intersecting V' in a finite set of points N
{z0,z1,..., 2z }: +1\
Z{':O i[CV(ti)ch(tHl)] <0 L
foreach j=1,...,k—1 N

o Note: 25(;01 ev(t)ev(ti41)] = O 4 /'/

*1
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Twist and tilt conditions via foliations

Diagonal sets in the cylinder

o Notation: z € A, V, = the unique leaf in V
passing through z
o VJF ={we V;|wabove z in V},
V, ={w € V;|w below z in V,}
0 By 2 ={Vw| VW is between V,; and V,,}
o D positive diagonal in By,
(i) D is simply connected and the closure of
its interior;
(i) 9D Ncl(By,z) €V, UV
(i) 9DNV, # 0 and ID NV} # 0.
o Definition: Infinite window
Way,zs = cl(By,. 2 ), together with
Wi, =V, U Vler

Marian Gidea (IAS) Aubry Mather theory May 28 - June 1, 2012 12 /24



Existence of Aubry-Mather sets

Existence of Aubry-Mather sets

o f: A— A satisfies the circle intersection property if for every lift
7 : R — R? of an essential circle in the annulus A we have
f(r(R))N7(R) # 0

o In the sequel: assume f : C — C is orientation preserving, satisfies
the circle intersection property, maps each end of the cylinder to
itself, twists each end infinitely, preserves a measure absolutely
continuous with respect to the Lebesgue measure, and satisfies a
twist condition or a tilt condition relative to the foliation V

o For every (p, q), there exists a monotone (p, q)-periodic orbit

o For each w € R, there exists an Aubry-Mather set ¥, (non-unique) of
rotation number w

o Choose p,/q, — w ~> Iz, monotone (p,, g,)-periodic point with
7x(zn) € [0, 1] — subsequence of z, converges to z, monotone and

plzs) =w
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Existence of Aubry-Mather sets

Existence of monotone (p, g)-orbits

Idea: Existence of non-monotone orbits
implies existence of monotone orbits
o Step 1: Given zy,zp, wy, wo
o z1,2 are (p, q)-points
o Vi=0,...,q m(f(z1)) < m(F(22)),
m(Fi(w)) < ol Fi( ),
T (Fi(w) < melF1(22)),
T (Fi(21)) < mal Fi(wa)),
o mx(wy) — mx(z;) and 7 (F9(z)) — 7x(£F9(z))
have the same sign, for j = 1,2
o O(wy) turns around O(z) at some point,
and O(w,) turns around O(z) at some
point
o Then B, , is correctly aligned with
le+(p’o)122+(p70) under f9. Hence,
f? — (p,0) has a fixed point in the interior
of B, ,, and so does every map sufficiently
close to f.
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Existence of Aubry-Mather sets

Existence of monotone (p, g)-orbits

o Step 2: If f has a monotone (p, g)-orbit
and a non-monotone (p, g)-orbit, then
f has a second monotone (p, g)-orbit
and so does every map sufficiently close
to f.

o Step 3: Assume wy is a non-monotone
(p, q)-periodic orbit. Choose
20 & EO(wp). There exists a small o
homotopy f; with fy = f and f; = f -
outside a finite collection of narrow
vertical strips about zp +i/q, i € Z,
and off EO(wp), s.t.
fi(z0) = z0 + i(p/q,0) — change the
y-coordinate of images of points. Hence
fi has a (p, g)-monotone periodic orbit.

i/ 2+(p/q,0)

Xo Xotp/q
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Existence of Aubry-Mather sets

Existence of monotone (p, g)-orbits

o Step 4:

o Lemma: if f, — f in C% as n — oo, with f,, f twist maps (tilt maps), if
z, has a monotone orbit for f,,, and if z, — z, then z has a monotone
orbit for f, and p(z) = lim,— . p(2,)
= the set t € [0, 1] for which f; has a monotone (p, g)-orbit is an
closed set.

o By Step 2, the set t € [0, 1] for which f; has a monotone (p, q) is an
open set.

o By connectedness fy = f must have a (p, g)-monotone periodic orbit
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Existence of Aubry-Mather sets

Hall's shadowing lemma

o Theorem (Hall): Given {¥, }scz. For every {ns}s—1, . m C N, there
exists an orbit {f/({)} that follows each ¥, for a number of ns
iterates, i.e.,

Te(F(wg)) < mx(F(Q)) < mx(F(wS))
for ns-consecutive j's, and for some wl, w2 € ¥,..
In particular, hyp(f) > 0.

3f Lo
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Existence of Aubry-Mather sets

Hall's shadowing lemma

o Theorem (Hall): Given {¥, }scz. For every {ns}s—1, . m C N, there
exists an orbit {f/({)} that follows each ¥, for a number of ns
iterates, i.e.,

Te(F(wg)) < mx(F(Q)) < mx(F(wS))
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In particular, hyp(f) > 0.
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Existence of Aubry-Mather sets

Proof of Hall's shadowing lemma

o Recursive argument:
o start with adjacent points wi, w2 in ¥,
o construct windows ij(Wll)fj(WIZ),
J=1,m —1, with By, ri(w2) correctly
aligned with Bji1(,1) fi+1(42) under f —each

orbit that follows the windows satisfies the
order relation

o d pp near y = 0 that gets near y =1, and 3 #C)
P; near y =1 that gets near y = 0 = for "
my (sufficiently large) no. of iterates W

o then Bfn1+k1+m1(W11)7fn1+k1+m1(W12) is correctly

aligned with Bf‘k1+m1(p0)7fk1+m1(p1), of
width > 1

o hence Bf‘n1+k1+m1(Wll)’fn1+k1+m1(W12) is correctly
aligned with B,1 .2
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Existence of Aubry-Mather sets

Proof of Hall's shadowing lemma

o Recursive argument:

o start with adjacent points wi, w2 in ¥,

o construct windows ij(Wll)fj(WIZ),
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aligned Wlth ij+1(W11)’fj+1(W12) under f - each
orbit that follows the windows satisfies the
order relation

o 3 pg near y = 0 that gets near y = 1, and 3
P; near y =1 that gets near y = 0 = for
my (sufficiently large) no. of iterates W

o then Bfn1+k1+m1(W11)7fn1+k1+m1(W12) is correctly
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Existence of Aubry-Mather sets

Two results

o Proposition 1. Given Z a BZ| bounded by T3
and T, (not topologically transitive). For any
z1 € T1,z0 € Ty, Uy, Vo neighborhoods of
71, 2, there exists an orbit that goes from Uy
to \/0. ,

o Proposition 2. Given Z a BZI bounded by 7 =
T1, To, and {X., }i=1,. m vertically ordered. :
For any z; € T1,z € Ty, Uy neighborhood of
z1, Vo neighborhood of zp, {ns}s=1,.. m an > E/
increasing sequence in N, there exists an orbit )

f"(z) that starts in an Up, ends in Vj, and I
‘shadows’ each X, for ns iterates s.t.

(7 (wg)) < me(F(C)) < me(F (w3))

for ns-consecutive j's, and some w}

2
5w € Xy,
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Existence of Aubry-Mather sets

Proof of Proposition 1

Lemma [Kaloshin,2003] Suppose that T; and T, bound a BZI. Let X, be
an Aubry-Mather set of rotation number w inside the BZI. Let p be a
recurrent point in X, and W/(p) be a neighborhood of p inside the BZI.
The following hold true:
(i) For some positive number n™ (resp. n~) depending on W(p) the set
Uj’io fI(W(p)) (resp. Uj_o f/(W(p))) separates the cylinder.
(i) The set W :=JZ, fI(W(p)) (resp. the set
W= .= (J2, f 7 (W(p))), is connected and open.

J
(iii) The closure of W™ (resp. W™°°) contains both boundary tori Ty
and Ts.
(iv) Theset W™ :=JZ fi(W(p)) is invariant, and both W*+> and

W™= are open and dense in W,
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Existence of Aubry-Mather sets

Proof of Proposition 1

Qo

(*]

(*]

Qo

choose ¥, <X, <X, —A-M sets
W-(p1) neighborhood of p; € ¥,
cl[Uj’iOf_j(WE(pl))] D Ty [Kaloshin,2003]
AUn C Un1 C ... C U s.t.
° fJ:'"(Um) intersects W.(p1) + (hm,0)
o fIm(Up) crosses the gaps [a]), b)'] of T,
and [a/’)"i,b;”i] of X,/

o [a}, b)) and [a[’z, bl’Z] — shifted apart
f1(Uy) U fim(Up,) forms an ‘arch’ over some
part of X, ~» a neighborhood U/ of a point in
Zﬁl

Similarly — an ‘arch’ over a part of some A-M

set X, near T, ~+ a neighborhood V of a point
in X,

Mather connecting property: orbit from U/ to V
~ orbit from Uy to Vg
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Existence of Aubry-Mather sets

Proof of Proposition 1

© 06 o0 o

choose ¥, <X, <X, —A-M sets
W-(p1) neighborhood of p; € ¥,
cl[Uj’iOf_j(WE(pl))] D Ty [Kaloshin,2003]
AUn C Un1 C ... C U s.t.
° fJ:'"(Um) intersects W.(p1) + (hm,0)
o fIm(Up) crosses the gaps [a]), b)'] of T,
and [a/’)"i,b;”i] of X,/

o [a}, b)) and [a[’z, bl’Z] — shifted apart
f1(Uy) U fim(Up,) forms an ‘arch’ over some
part of X, ~» a neighborhood U/ of a point in
Zpl

Similarly — an ‘arch’ over a part of some A-M

set X, near T, ~+ a neighborhood V of a point

inX,,

Mather connecting property: orbit from U/ to V

~ orbit from Uy to Vg

Marian Gidea (IAS) Aubry Mather theory

Birkhoff
Zone of :
Instability Velp))

I~ — o~ —
fy— — — o~ —
Iy — — —

Ty

May 28 - June 1, 2012 21 /24



Existence of Aubry-Mather sets

Proof of Proposition 1

choose ¥, <X, <X, —A-M sets
W-(p1) neighborhood of p; € ¥,
cl[U2f~(We(p1))] 2 Ty [Kaloshin,2003]
AUn C Un1 C ... C U s.t.
° fJ:m(Um) intersects W.(p1) + (hm,0)
o fIm(Up) crosses the gaps [a]), b)'] of T,
and [a%,?i’b;ni] of X,/

o [a}, b)) and [az’i, bl’Z] — shifted apart

© 06 o0 o

o fi(U;)U fim(U,,) forms an ‘arch’ over some
part of X, ~» a neighborhood U/ of a point in
Zpl

o Similarly — an ‘arch’ over a part of some A-M
set X, near T, ~+ a neighborhood V of a point
in X,

@ Mather connecting property: orbit from U to V
~ orbit from Uy to Vg
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Existence of Aubry-Mather sets

Proof of Proposition 2

o dfp >0, EIBZ&,ZS such that
Flo(Up) N cl(Bzé7Z§) has a component
that is a positive diagonal Dy in 823723

T,

\%)

© Jjo >0, 3B,1 ,2 with wi, w? € ¥,

such that F°(Dg) N cl(BW117W12) has a
component D that is a positive
diagonal in BW117W12 Yo

C WP

o upper and lower edges of D; contained
in Fio(bd(Up))
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Existence of Aubry-Mather sets

Proof of Proposition 2

o dfp >0, EIBZOI,ZS such that
Flo(Up) N 01(823723) has a component
that is a positive diagonal Dy in Bzé,zg
o djo >0, HBW117W12 with Wll, W12 S Zwl
such that F°(Dg) N cl(BW117W12) has a
component Dj that is a positive
diagonal in B,1 2

o upper and lower edges of D; contained
in Flo(bd(Up))
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Existence of Aubry-Mather sets

Proof of Proposition 2

(]

[Hall;1989] ~» 3G; D G D ... 2 Cp
negative diagonals of B,1 2 s.t.

o fistns(C,) is a positive diagonal in
Bu1,w2, where [w, w?] is a gap in L,

Cm intersects F0(bd(Up))

Similar argument about T»

(]

©

©

There exists an orbit that goes from
bd(Up) to bd(Vp) and ‘shadows’ each
Y.

o < = = X6
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